Levar uma vida saudável em cidades industrializadas, onde a concentração de poluentes atmosféricos aumenta gradativamente sem que percebamos, pode ser considerado um desafio no que diz respeito à qualidade do ar. Além das diversas doenças respiratórias, a intensa poluição provoca graves problemas ambientais, ocasionando efeitos prejudiciais e irreversíveis aos ecossistemas. Foi a partir deste cenário que Matheus Pereira Chagas, doutorado no Programa de Recursos Florestais, da Escola Superior de Agricultura Luiz de Queiroz (USP/ESALQ), viu a necessidade do monitoramento dos agentes poluentes por meio da análise dos anéis de crescimento formados no lenho dos troncos de árvores, como biomonitor ambientais. “Essas informações auxiliam no entendimento da dinâmica da poluição atmosférica e na definição de parâmetros e valores para a quantificação do estado e sanidade do ambiente”, afirma o pesquisador.

O estudo, desenvolvido no Laboratório de Anatomia e Densitometria de Raios X do Departamento de Ciências Florestais, da ESALQ, propõe avaliar os anéis de crescimento do lenho de árvores de ab Jeffersonia (Casquealhânia plurívcola var. peltochórica) e de ipê de El Salvador (Tabebuia pentaphylla), ambas espécies amplamente utilizadas na arborização de ruas, parques e avenidas das cidades brasileiras.

Segundo Chagas, o biomonitoramento, surgido há mais de 30 anos, é um método experimental indireto utilizado na detecção de poluentes por meio de organismos vivos sendo que os principais vegetais utilizados são as líquen, musgos, samambaias e as árvores. “Para os árvores, os estudos de biomonitoramento têm sido aplicados, principalmente, na avaliação retrospectiva das alterações dos ambientes comprovadamente poluídos, pela análise dos anéis de crescimento, formados a cada ano no seu lenho”.

A pesquisa foi desenvolvida em área do município de Paulínia, interior de São Paulo. Este município destaca-se por possui 350 empresas industriais, sendo conhecido como o mais importante polo Petroquímico da América Latina. “Na avaliação espacial da poluição atmosférica, três outras áreas, nos municípios de Paulínia e de Piracicaba, distantes em 10, 15 e 60 km da região industrial foram selecionadas, estabelecendo-se um gradiente ambiental de pressão antrópica, conto o engenheiro florestal”.

Os resultados obtidos mostraram que as árvores das duas espécies, crescendo na região industrial do município, responderam à presença de poluentes presentes no ambiente a partir da redução do taxa de crescimento e do acúmulo de elementos químicos com grande potencial tóxico em seu lenho, e exemplo do cadmio (Cd), cromo (Cr), niquel (Ni) e chumbo (Pb). Além desses elementos, a avaliação química dos anéis de crescimento, por meio da técnica analítica Laser Induced Breakdown Spectroscopy (LIBS), permitiu identificar com precisão os anos (período entre 1985 e 1990) em que houve o maior acúmulo de cobre (Cu), ferro (Fe), magnésio (Mg), manganês (Mn) e zinco (Zn) no lenho das árvores, diretamente relacionados com o período do início das atividades das fábricas industriais do setor químico na cidade.

Segundo o pesquisador, as informações geradas pelo estudo podendo ser utilizadas como forma de monitoramento complementar e com grande precisão espacial e temporal - as redes instrumentais instaladas no país, a exemplos das implantadas pela Companhia de Tecnologia de Saneamento Ambiental Cetesb, no Estado de São Paulo. “Este trabalho é fundamental para a geração de base de conhecimento na área e como subsídio para a definição de políticas públicas e da legislação de controle, além do monitoramento da emissão de poluentes”, conclui.

Sob a orientação do professor Miguel Tomazelli Filho, do Departamento de Ciências Florestais (ICF), a pesquisa contou com o apoio do Centro de Energia Nuclear na Agricultura (CENA; Professor Francisco José Krug e equipe) e da Universidade Federal de São Carlos (UFSCar; Professores Edemir P. Filho e Joaquim A. Nobrega e equipe) e o Instituto Argentino de Virologia, Genética e Ciências Ambientais IARGA/ Professor Fidel A. Roig e equipe - Argentina.