UNIVERSIDADE DE SÃO PAULO

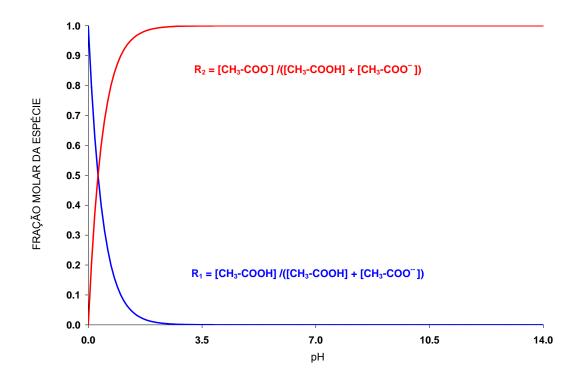
ESCOLA SUPERIOR DE AGRICULTURA "LUIZ DE QUEIROZ"

DEPARTAMENTO DE CIÊNCIAS EXATAS

LCE 151 - FUNDAMENTOS DE QUÍMICA INORGÂNICA E ANA LÍTICA

LISTA DE EXERCÍCIOS 5

- **1.** Calcule o valor de pH de uma solução de ácido nítrico (HNO_3) 0,1 mol L^{-1} e de uma solução de hidróxido de cálcio $Ca(OH)_2$ 0,1 mol L^{-1} .
- 2. Em uma solução aquosa de HNO₃ quais são as fontes de H⁺? Discuta a relevância de cada uma delas.
- 3. Calcule o valor de pH de uma solução de hidróxido de lítio (LiOH) 10⁻⁹ mol L⁻¹.
- **4.** Discorra sobre a utilização do método simplificado de cálculo de pH de soluções aquosas de ácidos e bases fracas.
- **5.** Considere uma solução aquosa de ácido hipocloroso (HCIO) 0,000001 mol L⁻¹ e outra solução de ácido acético (CH₃-COOH) também 0,000001 mol L⁻¹. Sendo ambos os ácidos monopróticos fracos, calcule os valores de pH dessas soluções empregando o método simplificado e o Visual MINTEQ. Em qual solução houve maior diferença absoluta ($|\Delta pH|$) entre os valores de pH calculados pelos dois procedimentos? Sendo ambos os ácidos monopróticos e estando ambos em mesma concentração, qual seria a razão do valor de $|\Delta pH|$ ser maior para um deles? Dados Ka HCIO = 3,5 x 10^{-8} ; Ka CH₃-COOH = $1,75 \times 10^{-5}$. Obs. HCIO = H⁺ + CIO⁻.
- **6.** Calcule com o método simplificado o valor de pH de uma solução de NH $_3$ 0,1 mol L $^{-1}$. Dado: Kb = 1,8 x 10 $^{-5}$.
- **7.** Uma solução de foi preparada por meio da diluição com água de 0,5 mL do produto comercial (2 mol L⁻¹) para um volume final de 100 mL (SOLUÇÃO A). Desta solução transferiu-se uma alíquota de 1 mL para balão volumétrico de 100 mL cujo volume foi completado com água (SOLUÇÃO B). Calcule com Visual MINTEQ para ambas as soluções:
- a. os valor de Ka (baseado em atividades) do ácido acético
- **b.** o grau de ionização do ácido acético


Explique a razão das semelhanças e diferenças encontradas nos resultados dos itens a e b.

- 8. Para uma solução de ácido fosfórico (H₃PO₄) 0,1 mol L⁻¹:
- **a.** apresente o sistema de equações [balanço molar de fosfatos, balanço de cargas e constantes de equilíbrio (valores no caderno)] utilizado para o cálculo exato de pH
- **b.** apresente os valores encontrados pelo Visual MINTEQ para cada termo de concentração de cada equação desse sistema.
- **9.** Em um litro de solução de ácido acético 0,01 mol L⁻¹ foram adicionados 0,01 mol de HCI sem haver alteração significativa de volume. Calcule com o Visual MINTEQ os valores do grau de ionização do ácido acético e os valores de sua constante de ionização Ka (usando valores de atividade) antes e após a adição de HCI. Qual é a razão entre as concentrações molares do íon acetato produzido antes e após a adição de HCI. Como você explica as diferenças encontradas?

10. A uma solução de CH_3 -COOH foram adicionados volumes crescentes de HCl de modo a se obter uma variação de valores de pH entre 0 e 7 e volumes crescentes de NaOH para se obter uma variação de valores de pH entre 7 e 14 . Em cada valor de pH calcularam-se os valores das concentrações molares de CH_3 -COOH remanescente e de CH_3 -COO $^-$ formado e foram calculadas para o respectivo valor de pH os valores das frações molares R_1 e R_2 dadas por:

 $R_1 = [CH_3-COOH] / ([CH_3-COOH] + CH_3-COO^-] e R_2 = [CH_3-COO^-] / ([CH_3-COOH] + CH_3-COO^-].$ Com esses dados foi elaborado o gráfico abaixo.

Interprete o gráfico e explique a razão dos comportamentos das curvas obtidas. Em qual valor de pH tem-se [CH₃-COOH] remanescente = [CH₃-COO-] formado?

Dados:

Reações que ocorrem no sistema:

Na região de adição de HCI:

CH₃-COO + H⁺ proveniente do ácido → CH₃-COOH

Na região de adição de NaOH:

CH₃-COOH + OH⁻ proveniente da base → CH₃-COO⁻ + H₂O

Lembrete: [CH₃-COOH] + [CH₃-COO-] = BALANÇO MOLAR DE ACETATO = CONSTANTE