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Abstract

We study the invasion of a top predator into a food chain in a chemostat. For each

trophic level, a bioenergetic model is used in which maintenance and energy reserves are

taken into account. Bifurcation analysis is performed on the set of nonlinear ordinary

di�erential equations which describe the dynamic behaviour of the food chain. In this

paper, we analyse how the ability of a top predator to invade the food chain depends on

the values of two control parameters: the dilution rate and the concentration of the

substrate in the input. We investigate invasion by studying the long-term behaviour

after introduction of a small amount of top predator. To that end we look at the sta-

bility of the boundary attractors; equilibria, limit cycles as well as chaotic attractors

using bifurcation analysis. It will be shown that the invasibility criterion is the posi-

tiveness of the Lyapunov exponent associated with the change of the biomass of the top

predator. It appears that the region in the control parameter space where a predator can

invade increases with its growth rate. The resulting system becomes more resistant to

further invasion when the top predator grows faster. This implies that short food chains

with moderate growth rate of the top predator are liable to be invaded by fast growing

invaders which consume the top predator. There may be, however, biological con-

straints on the top predator's growth rate. Predators are generally larger than prey while

larger organisms commonly grow slower. As a result, the growth rate generally de-

creases with the trophic level. This may enable short food chains to be resistant to in-

vaders. We will relate these results to ecological community assembly and the debate on

the length of food chains in nature. Ó 1999 Elsevier Science Inc. All rights reserved.
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1. Introduction

Food chains in the chemostat with an abiotic substrate at the base
are studied in this paper. Population dynamics at each trophic level follows
the Dynamic Energy Budget (DEB) model [1]. This model takes energy
reserves into account, leading to an additional state variable besides the
population biomass. Ingested food is converted into energy which is added
to the energy reserves. From this pool, energy is used for maintenance and
growth. The derivation of the population dynamic model from the dy-
namics of the individuals, which propagate by binary ®ssion, is discussed in
Ref. [2].

Cunningham and Nisbet [3], and Nisbet et al. [4] studied the dynamic
behaviour of a two-trophic microbial food chain consisting of substrate, bac-
terium and ciliate in a chemostat. They showed that the introduction of
maintenance has a stabilizing e�ect, especially at low dilution rates. In Refs.
[5±7], a study is made of the complex dynamics of a forced two-trophic
microbial food chain in a chemostat, driven by a periodic in¯ow of substrate.
This forced system displays quasi-periodicity, phase locking, period doubling
and chaotic dynamical behaviour.

The aim of this paper is to study invasion by a top predator into microbial
food chains in the chemostat. Furthermore, bifurcation diagrams for food
chains of length three and four are discussed. These diagrams describe the
dynamic behaviour of the invaded system. For chemostats, the dilution rate
and the concentration of the substrate in the reservoir are the natural free
bifurcation parameters. These are the control parameters of the chemostat
which are set by the experimentalist. Consequently, all points in the bifurcation
diagrams are for a ®xed composition of the food chain. The diagram for the
three-trophic food chain resembles those of the so-called Rosenzweig±Mac-
Arthur model [8,9], for ecosystems [10±14]. Various types of complex dy-
namics, including chaotic behaviour, are found.

We will relate the results to the debate on the length of food chains in na-
ture. Yodzis [15] and Post and Pimm [16] among others dealt with invasion of a
species in a community. In these studies it is assumed that the invaded system
converges to a stable equilibrium; a situation which holds for the Lotka±
Volterra model with a linear functional response. However, models with the
Holling type II, that is a hyperbolic functional response, such as the present
DEB model, multiple attractors for certain regions in the free parameter space
exist. Furthermore, besides point attractors, limit cycles and strange attractors
can occur. The presence of these attractors complicates the study of the in-
vasion by a top predator considerably.

The paper is organized as follows. In Section 2 the model is described. In
Section 3 bifurcation diagrams for food chains of di�erent lengths are pre-
sented. The set of parameter values proposed in Ref. [3] is used. Only local
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bifurcations will be dealt with. The results were obtained using di�erent gen-
eral-purpose bifurcation computer software packages AUTO [17,18], and
LOCBIF, CONTENT [19,20] supplemented with special purpose codes written
by ourselves.

Section 4 deals with the resistance of a food chain to invasion by a top
predator. A top predator invades when it is able to increase after the intro-
duction of a small number of individuals in a food chain. The condition for
invasion of a top predator is proven to be identical to the condition for
transcritical bifurcations in the case of equilibria, limit cycles and chaos. For an
increasing maximum growth rate of the top predator, the resistance of the food
chain to invasion decreases and simultaneously the resistance of the food chain
after invasion increases. These results suggest that there are also severe re-
strictions on the existence of short food chains with moderate maximum
growth rate of its top predator. In Section 5 we will relate these observations to
the assembly community method and to hypotheses on the length of food
chains in nature, as proposed in the literature.

2. The model

The chemostat is a well-stirred vessel with constant in¯ux of the substrate, xr

and out ¯ux with dilution rate, D. Let x0�t� denote the density of the resource
(substrate) and let xi�t�, i � 1; . . . ; n, denote the biomass densities of prey, any
number of intermediate predators, and, ®nally, the top predator, where n is the
number of trophic levels. Furthermore, let ei�t�, i � 1; . . . ; n, denote the scaled
reserve densities. At each trophic level, the scaled energy density is de®ned as
the actual energy density divided by the maximum energy density, which is
assumed to be a species-speci®c parameter. The model reads

dx0

dt
� �xr ÿ x0�Dÿ I0;1x1f0;1�x0�; �1a�

dei

dt
� miÿ1;i�fiÿ1;i�xiÿ1� ÿ ei�; i � 1; . . . ; n; �1b�

dxi

dt
� �Miÿ1;i�ei� ÿ D�xi ÿ Ii;i�1xi�1fi;i�1�xi�; i � 1; . . . ; nÿ 1; �1c�

dxn

dt
� �Mnÿ1;n�en� ÿ D�xn; �1d�

where the scaled Holling type II functional response fiÿ1;i is de®ned by

fiÿ1;i�xiÿ1��def xiÿ1

kiÿ1;i � xiÿ1

; i � 1; . . . ; n; �2�

and the growth rate Miÿ1;i by

B.W. Kooi et al. / Mathematical Biosciences 157 (1999) 217±236 219



Miÿ1;i�ei� �def miÿ1;iei ÿ migi

ei � gi
; i � 1; . . . ; n: �3�

The last term on the right-hand sides of Eqs. (1a) and (1c) represents the de-
pletion rate due to predation. This functional response is proportional to the
predator biomass density, where the proportionality parameter Iiÿ1;i is the
maximum ingestion rate. Two sub-indices are used to indicate that two levels,
prey and predator, are involved. The ®rst term on the right-hand sides of
Eqs. (1c) and (1d) is the growth term, which is proportional to biomass density.
Finally, there are terms due to washout. This term is given as Dxi for all trophic
levels. For the top predator this is the only source of depletion. Eq. (1b) is a
constitutive relationship which states that the energy reserves density dynamics
follows food dynamics via a ®rst order process. This equation is de®ned at the
individual level. It is assumed that all individuals belonging to the population
possess the same reserve energy density. Eq. (1b) is not a mass balance equa-
tion and therefore there is no washout term. For the biological meaning of the
parameters the reader is referred to Ref. [1] and also Table 1.

We now show that the solution of system (1) is bounded. We ®rst observe
that the boundaries of the positive cone, xi � 0, for i � 1; . . . ; n, are invariant
and therefore the biomass densities are positive, xi�t� > 0, t P 0 when xi�0� > 0,
because of the uniqueness of the solution. Furthermore, Eq. (1b) imply that
06 ei�t�6 1, t P 0 when 06 ei�0�6 1, since 06 fiÿ1;i�xiÿ1�t��6 1. Eq. (1a)
shows that for the density of the substrate in the reactor dx0=dt > 0 for x0 � 0
and therefore the density of the substrate is non-negative: x0�t�P 0, t P 0 when
x0�0�P 0.

Finally we introduce dissipated mass densities pi expressed in the same units
as the xi (for example C-moles)

Table 1

Parameters and state variables (t� time, m� biomass, v� volume of the reactor; the subindex

denotes the trophic level)

Parameter Dimension Units Interpretation

t t h Time

x0 m vÿ1 mg dmÿ3 Substrate density

xi m vÿ1 mg dmÿ3 Biomass density

xr m vÿ1 mg dmÿ3 Substrate concentration in reservoir

D tÿ1 hÿ1 Dilution rate

kiÿ1;i m vÿ1 mg dmÿ3 Saturation constant

Iiÿ1;i tÿ1 hÿ1 Maximum food uptake rate

liÿ1;i tÿ1 hÿ1 Overall maximum population growth rate

yiÿ1;i ± ± Maximum yield

mi tÿ1 hÿ1 Maintenance rate coe�cient

miÿ1;i tÿ1 hÿ1 Energy conductance, µ assimilation rate

gi ± ± Energy investment ratio, µ costs for growth
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dp1

dt
� x1 1

��
ÿ 1

y0;1

�
l0;1f0;1 � m1

�
ÿ Dp1; �4a�

and for each level i � 2; . . . ; n

dpi

dt
� xi 1

��
ÿ 1

yiÿ1;i

�
liÿ1;ifiÿ1;i � mi

�
� xi

eiÿ1

giÿ1

Iiÿ1;ifiÿ1;i ÿ Dpi; �4b�
where we assume that these dissipated masses leave the reactor via the e�ux
with dilution rate D. This washout is represented by the last term on the right-
hand sides of Eqs. (4a) and (4b). The ®rst term on the right-hand sides is due to
incomplete conversion from biomass of the prey into biomass of the predator.
The maximum growth rate is de®ned by liÿ1;i � miÿ1;i=gi. Then the maximum
yield de®ned by yiÿ1;i � liÿ1;i=Iiÿ1;i; for i � 1; . . . ; n, is smaller than 1 because
mass cannot be generated spontaneously. The second term mixi is associated
with the costs for maintenance. The third term on the right-hand side of Eq. (4a)
is the equivalent biomass which re¯ects the unused reserve energy stored in the
prey because predators do not use the prey energy reserves, eiÿ1, for growth. In a
forthcoming paper, the consequences of the latter assumption will be studied.

Eqs. (4a) and (4b) imply, since the ®rst terms are non-negative (all param-
eter values are positive and yiÿ1;i6 1, 06 fiÿ1;i6 1, 06 ei6 1), that pi�t�P
pi�0�exp �ÿDt� and hence the dissipated mass densities pi are non-negative for
t P 0 when pi�0� > 0 with i � 1; . . . ; n.

The weighted total biomass in the reactor may be de®ned by

H�t� � x0�t� ÿ xr �
Xn

i�1

ei

gi

�
� 1

�
xi�t� �

Xn

i�1

pi�t�; t P 0: �5�

For this quantity H�t� we have

dH
dt
� ÿDH : �6�

Therefore, xi�t�P 0, i � 0; . . . ; n and pi�t�P 0, i � 1; . . . ; n are bounded for
t P 0, and system (1) converges asymptotically to the invariant hyperplane
H � 0.

3. Bifurcation diagrams

The bifurcation parameters are the chemostat control parameters: the
dilution rate, D, and the concentration substrate in the reservoir, xr. The
parameter values together with the unitsystem are given in Table 2. Most
bifurcation curves for equilibria as well as the codimension 2 points were
calculated with LOCBIF [19,21]. AUTO [18] was used for the calculation of the
bifurcation curves for limit cycles, including period doubling.

Due to the parameter values for the prey (namely g1 � 80 and m1 � 40) the
full system (1) happens to be sti�. In order to circumvent numerical problems
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and time-consuming computations when calculating the bifurcation diagram,
the dynamics of the energy reserves density of the prey is assumed to be quasi-
static; that is e1�t� � f0;1�x0�t��. In this way the originally seven-dimensional
problem is reduced to six dimensions. Comparison of the simulation results for
the full and reduced system indicates that for the parameter setting given in
Table 2 the reduction is justi®ed.

In Fig. 1 we show the bifurcation diagram for a two-trophic food chain.
There are three biologically important regions; a region where the predator
goes to extinction, a region where a stable equilibrium exists and region where
a stable limit cycle exists.

Fig. 2 gives the bifurcation diagram for a three-trophic food chain. The
transcritical bifurcation curves TCe;1, TCe;2 and TCe;3, the tangent bifurcation
curve Te;3 together with the Hopf bifurcation curves Hÿ2 , Hÿ32

, Hÿ31
and H�3 , were

already presented in Ref. [2]. In the present paper the bifurcations of periodic
orbits are also discussed.

In the region between Hÿ2 , H�3 and Hÿ31
there is a stable interior equilibrium

for the three-trophic food chain. At the supercritical Hopf bifurcation curve
Hÿ31

this equilibrium becomes unstable and a stable limit cycle was found nu-
merically when changing the free parameters in the regions studied in this
paper.

Close to the codimension 2 point M1 the Hopf bifurcation curve is initially
supercritical �Hÿ32

� but becomes subcritical �H�3 � at the Bautin bifurcation point
L, see Fig. 2. The transcritical curve, TCc;3; for limit cycles at the boundary of
the positive cone with x3 � 0, intersects the Hopf bifurcation curve Hÿ32

near
point M1. Observe that there is a tangent bifurcation curve for interior limit
cycles which orginates in the Bautin bifurcation point L and which is tangent to
the transcritical curve TCc;3 where it lies on the boundary of the positive cone

Table 2

Parameter set for bacterium-ciliate models, after Cunningham and Nisbet [3,4]

Parameter Unit Values

i� 1 i� 2 i� 3 i� 4

yiÿ1;i ± 0.4 0.6 0.6 0.6

liÿ1;i hÿ1 0.5 0.2 0.15 0.1

kiÿ1;i mg dmÿ3 8 9 10 20

Iiÿ1;i hÿ1 1.25 0.33 0.25 0.167

mi hÿ1 0.025 0.01 0.0075 0.005

gi ± 80.0 1.0 0.504 0.4

miÿ1;i hÿ1 40.0 0.2 0.0756 0.04

The values for the new parameters mi (equal to 5% of maximum growth rate liÿ1;i) and gi are also

given. The relationships Iiÿ1;i � liÿ1;i=yiÿ1;i and liÿ1;i � miÿ1;i=gi hold true for i � 1; . . . ; n.
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with x3�t� � 0. This tangent bifurcation curve is not displayed in Fig. 2. The
dynamics in the region around point M1 was described elsewhere [22].

At the codimension 2 point M2 the transcritical bifurcation for equilibria
TCe;3 changes from subcritical to supercritical. A tangent bifurcation curve for
equilibria Te;3 originates in this point M2. Similarly, at the codimension 2 point
M3 the transcritical bifurcation for limit cycles TCc;3 changes from subcritical to
supercritical. In this point M3 a tangent bifurcation curve for limit cycles Tc;31

originates. There is a second tangent bifurcation curve Tc;32
for limit cycles.

Curves F1 and F2 mark period-1! 2 ¯ip bifurcations.
Fig. 3 is a one-parameter bifurcation diagram for the local maxima of

the top predator x3. The free parameter is the dilution rate D while the
concentration substrate in the reservoir is ®xed at xr � 275. In order to get rid
of the transients, integration is performed for a ®xed time (we used 20 000 h)
without examination of the results. From that point in time (until 30 000 h) the
biomass of the top predator peak value is shown as a dot in the diagram. At
the top the rotated bifurcation diagram, Fig. 2, for 2506 xr6 275 is plotted.
Bifurcation points (the D values for intersection points in two-parameter dia-
gram, Fig. 2, of bifurcation curves with xr � 275 line) are indicated by vertical
lines in the one-parameter bifurcation diagram Fig. 3.

Fig. 1. Bifurcation diagram for DEB model with two trophic levels: system (1) with n � 2. Values

assigned to physiological parameters are listed in Table 2. The curves TCe;1 and TCe;2 are trans-

critical bifurcation curves and Hÿ2 marks a supercritical Hopf bifurcation curve.
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There is a cascade of period doubling which leads to complex dynamic
behaviour. The chaotic attractor disappears when D � 0:027 when an unstable
limit cycle cuts the chaotic attractor. With D � 0:0125 this happens when a
limit cycle becomes unstable itself at a tangent bifurcation (curve Tc;31

). In Ref.
[23] these boundary crises are studied and linked to global bifurcations.

Fig. 4 shows the two coexisting stable interior limit cycles together with the
unstable limit cycle on the boundary of the positive cone for D � 0:01 and
xr � 275. The arrow gives the direction in which the orbit is traversed. The dot
in the middle is the position of the unstable equilibrium, a saddle point with a
pair of complex conjugated eigenvalues with positive real part. One of the
displayed stable limit cycles passes the unstable positive equilibrium closely,
indicating the possibility of the homoclinic orbit. In Ref. [24] we found a global
Shil'nikov homoclinic bifurcation (Ref. [21], p. 204) for the unstable positive
equilibrium for D � 0:015.

In Fig. 5 we show the bifurcation diagram for a four-trophic food chain.
The parameter values are given in Table 2. This diagram shows some simi-
larities with the diagram for the three-trophic food chain (Fig. 2) in the

Fig. 2. Bifurcation diagram for DEB model with three levels: system (1) with n � 3. Dotted curves

H�3 and Hÿ3 mark Hopf bifurcations, curve Te;3 a tangent bifurcation curve TCe;3 marks transcitical

bifurcations and curve TCc;3 a transcritical bifurcation for limit cycles with x3 � 0. Point L is a

Bautin bifurcation point, where the Hopf bifurcation changes from supercritical to subcritical. The

solid curves F1 and F2 are ¯ip bifurcations for limit cycles (period-1! 2).
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neighbourhood of the codimension 2 point M1, which is now on the super-
critical Hopf bifurcation curve for the three-trophic food chain Hÿ3 . This point
also lies on the transcritical curve for equilibria TCe;4 and in this point a su-
percritical Hopf bifurcation Hÿ42

originates which becomes subcritical, curve
H�4 , in the Bautin bifurcation point L1 and later supercritical, curve Hÿ41

, again
in the point L2. From these points there originate again tangent bifurcation
curves for limit cycles denoted by Tc;41

and Tc;42
. Finally, from M1 also trans-

critical bifurcation for limit cycles occurs, curve TCc;4. As in the case of a three-
trophic level food chain from M2, where it becomes supercritical, a tangent
bifurcation curve for equilibria Te;4 originates. Only period-1! 2 ¯ip bifur-
cations curves F1 and F2 are shown. In the region inside these curves complex
dynamic behaviour can occur, but this is not discussed in this paper.

The transcritical curves for equilibria TCe;3 and TCe;4 and for limit cycles
TCc;3 and TCc;4 for the three- and four-trophic food chain, displayed in Figs. 2

Fig. 3. One-parameter bifurcation diagram for peak values of top predator as a function of dilution

rate D, where concentration in reservoir is xr � 275 mg dmÿ3. Solid curve gives stable equilibrium

values while dashed curve shows unstable equilibrium values. The dashed curves are unstable at-

tractors. At the top the rotated two-parameter bifurcation diagram, Fig. 2, for 2506 xr 6 275 mg

dmÿ3 is plotted. Bifurcation points (the D values for intersection points in two-parameter diagram,

Fig. 2, of bifurcation curves with xr � 275 line) are indicated by vertical lines in the one-parameter

bifurcation diagram.
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and 5 are important with respect to the invasibility of a top predator, as will be
explained in the next section.

4. Invasibility of a top predator

Invasion via a point attractor, limit cycle and ®nally chaotic attractor will
now be discussed. The area in the xr, D-plane where invasion is possible will be
used as a measure for invasibility. Sensitivity with respect to the maximum
growth rate of the top predator is analysed at the end of this section.

Let n be the length of the food chain with the potential invader included as
the top predator. The region of persistence of the food chain is bounded by two

Fig. 4. Phase portrait simulation with DEB model for dilution rate D � 0:01 hÿ1 and concentration

in the reservoir xr � 275 mg dmÿ3. The ranges for the three variables are 06 x16 100 mg dmÿ3,

06 x2 6 30 mg dmÿ3 and 06 x36 9 mg dmÿ3. Two interior stable limit cycles and one unstable limit

cycle with x3 � 0 on the boundary of the phase space. The dots are equidistant in time with time

separation of 4.0 h. On the bottom plane the stable limit cycle for the two-trophic food chain is

plotted. The large dot denotes the unstable positive equilibrium. The arrow gives the direction of

the ¯ow.
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transcritical bifurcation curves; TCe;n for the equilibria, and TCc;n for the limit
cycles. In order to investigate invasion the stability of the attractor on the
boundary of the positive cone, where xj�t� > 0, j < n and xn�t� � 0, has to be
considered as part of the n-trophic food chain. These attractors are stable with
respect to the �nÿ 1�-trophic food chain. Our technique is a variation on the
procedure worked out in Ref. [25].

We start with invasion of a boundary equilibrium which is assumed to be
stable. For example, on the left side of the Hopf bifurcation curve Hÿ2 in Fig. 1,
the stable equilibrium of the �nÿ 1�-trophic food chain is denoted by

E0 � ��x0 �e1 �x1 � � � �enÿ1 �xnÿ1 �en �xn�T; �7�
where �xn � 0 and �en � fnÿ1;n��xnÿ1�. Let I be the �2nÿ 1� � �2nÿ 1� Jacobian
matrix for the �nÿ 1�-trophic food chain and J be a �2n� 1� � �2n� 1� Ja-
cobian matrix for the n-trophic food chain, both evaluated at E0

Fig. 5. Bifurcation diagram for DEB model with four trophic levels: system (1) with n � 4. Point

M1 is intersection point for TCe;4, Hÿ3 , Hÿ42
, TCc;4. The curves TCe;4 and TCc;4 are transcritical bi-

furcation curves for the equilibria and limit cycles, respectively and Hÿ41
, Hÿ42

and H�4 mark su-

percritical and one subcritical Hopf bifurcation curve, respectively. Point M2 is the intersection of

the transcritical bifurcation curve TCe;4 and the tangent bifurcation curve Te;4, both for equilibria.

Points L1 and L2 are Bautin bifurcation points, where the Hopf bifurcation changes from super-

critical to subcritical and backward. From these points L1 and L2 tangent bifurcation curves for

limit cycles, Tc;41
and Tc;42

originate. The solid curves F1 and F2 are ¯ip bifurcations for limit cycles

(period-1! 2).
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J �

0 0

I ..
. ..

.

0 0
0 ÿInÿ1;n

�f nÿ1;n

0 . . . 0 mnÿ1;n
�f
0
nÿ1;n ÿmnÿ1;n 0

0 . . . 0 0 0 �Mÿ D

0BBBBBBB@

1CCCCCCCA; �8�

where �f nÿ1;n � fnÿ1;n��xnÿ1� and

�f
0
nÿ1;n �

dfnÿ1;n

dxnÿ1

��xnÿ1�
and the actual growth rate of the top predator �M �Mnÿ1;n��en�.

Expanding the determinant of matrix Jÿ kI , where I is the �2n� 1� �
�2n� 1� identity matrix we ®nd

det �Jÿ kI� � det �Iÿ kI� � �ÿmnÿ1;n ÿ k� � � �Mÿ Dÿ k�: �9�
Hence, besides the 2nÿ 1 eigenvalues with negative real parts (by assumption
of a stable equilibrium E0 of the �nÿ 1�-trophic food chain) of the matrix I,
there are two additional eigenvalues, namely ÿmnÿ1;n, which is always negative,
and �Mÿ D.

The zero-crossing of the latter expression thus turns out to be the test-func-
tion for the transcritical bifurcation TCe;n. In these points the growth rate of top
predator �M equals just the depletion rate D. When the growth rate �M is greater
than the depletion rate D the equilibrium E0 becomes unstable. As a result
the top predator can invade. Hence the invasibility condition reads �M > D.

We now restrict our attention to a three-trophic food chain, n � 3 whose
bifurcation diagram is given in Fig. 2. The values for the state variables in
equilibrium will be taken as functions of the two control parameters D and xr.
The function �Mÿ D is zero on the curves TCe;3 and its partial derivative with
respect to xr is positive for all xr as will be derived below. In the equilibrium
point E0, the right-hand sides of system (1) are zero and we have �x3 � 0 and
�ei � �f iÿ1;i for i � 1; 2; 3. It is easy to show that

df2;3��x2�
d�x2

> 0; �10�
and therefore

d�M�f2;3��x2�� ÿ D�
d�x2

> 0: �11�
Because �x3 � 0, Eq. (1c) for i � 2 gives an expression for �xi which is inde-
pendent of xr. Then, from Eq. (1a) it follows that o�x0=oxr > 0 and subsequently
from Eq. (1c) with i � 1 that o�x2=oxr > 0. Together with Eq. (11) we conclude
that o� �Mÿ D�=oxr > 0 for the whole region bounded by the curves TCe;3 and
Hÿ2 and consequently in that region we have �Mÿ D > 0; that is, the top pre-
dator can invade.

228 B.W. Kooi et al. / Mathematical Biosciences 157 (1999) 217±236



The stability of the boundary limit cycles (for example for n � 3 on the right
side of the Hopf bifurcation curve Hÿ2 in the bifurcation diagram Fig. 2), de-
noted by

L0�t� � �~x0�t� ~e1�t� ~x1�t� � � � ~enÿ1�t� ~xnÿ1�t� ~en�t� ~xn�t��T ; �12�
will now be studied. We have ~xn�t� � 0 and the function ~en�t� is the solution of
the linear ODE (1b) for i � n with a periodic coe�cient ~f nÿ1;n�t�

d~en

dt
� mnÿ1;n

~f nÿ1;n�t�
�

ÿ ~en

�
; �13�

and a periodic boundary condition ~en�0� � ~en�T0�. We assume that this periodic
orbit with period T0 is stable for the �nÿ 1�-trophic food chain.

Let I�t� now be a �2nÿ 1� � �2nÿ 1� continuous periodic matrix of period
T0 and W�t� the fundamental matrix of _y � I�t�y, where

y�t� �

x0�t� ÿ ~x0�t�
e1�t� ÿ ~e1�t�
x1�t� ÿ ~x1�t�

..

.

enÿ1�t� ÿ ~enÿ1�t�
xnÿ1�t� ÿ ~xnÿ1�t�

0BBBBBBBB@

1CCCCCCCCA
: �14�

Let J�t� denote the �2n� 1� � �2n� 1� periodic matrix of the form

J�t� �

0 0

I�t� ..
. ..

.

0 0
0 ÿInÿ1;n

~f nÿ1;n�t�
0 . . . 0 mnÿ1;n

~f
0
nÿ1;n�t� ÿmnÿ1;n 0

0 . . . 0 0 0 ~M�t� ÿ D

0BBBBBBB@

1CCCCCCCA; �15�

where ~f nÿ1;n � fnÿ1;n�~xnÿ1�, ~f
0
nÿ1;n � �dfnÿ1;n=dxnÿ1��~xnÿ1� and for the instanta-

neous actual growth rate of the top predator ~M�t� �Mnÿ1;n�~en�t��. Then with
initial condition U�0� � I and where

z�t� �
y�t�

en�t� ÿ ~en�t�
xn�t� ÿ ~xn�t�

0@ 1A; �16�

the fundamental matrix U�t� of _z � J�t�z is given by

U�t� �

0 g1�t�
W�t� ..

. ..
.

0 g2nÿ2�t�
f1�t� . . . f2nÿ2�t� expfÿmnÿ1;ntg g2nÿ1�t�

0 . . . 0 0 expfR t
0
� ~Mÿ D�dsg

0BBBBB@

1CCCCCA:
�17�

B.W. Kooi et al. / Mathematical Biosciences 157 (1999) 217±236 229



All functions are evaluated along the periodic orbit L0. The functions fi�t� and
gi�t�, where i � 1; . . . ; 2nÿ 1, are given by ODES, which are not formulated
here. Any solution z�t� satis®es

z�T0� � U�T0�z�0�: �18�
By assumption of a stable periodic orbit of the �nÿ 1�-trophic cycle L0, one
eigenvalue of the matrix W�T0� is equal to 1 and the other eigenvalues 2nÿ 2
are inside the unit cycle. Expanding the determinant of the monodromy matrix
U�T0� of the cycle L0 we ®nd that besides 2nÿ 1 eigenvalues of W�T0� there are
two additional Floquet multipliers, eigenvalues of U�T0�, namely
expfÿmnÿ1;nT0g, which always lies inside the unit circle, and expfR T0

0
~M�t�dt

ÿ T0Dg. When this second multiplier equals 1 the mean growth rate of the
top predator equals just the depletion rate D. The invasibility condition
reads

Tÿ1
0

ZT0

0

~M�t�dt > D: �19�

Finally we study invasion when the �nÿ 1�-trophic food chain shows cha-
otic behaviour. One route to chaotic behaviour is via a cascade of period
doubling (Fig. 3) where T0 increases to in®nity. This cascade suggests that the
condition for invasion is just Eq. (19) with T0 !1 where we integrate along
the aperiodic chaotic attractor, denoted by

C0�t� � �x̂0�t� ê1�t� x̂1�t� � � � ênÿ1�t� x̂nÿ1�t� ên�t� x̂n�t��T; �20�
where x̂n � 0 and where the energy density ên is the solution of the following
ODE

dên

dt
� mnÿ1;n�f̂ nÿ1;n�t� ÿ ên�; �21�

with f̂ nÿ1;n�t� � fnÿ1;n�x̂nÿ1�t��. By assumption the system is initially (at t � 0) in
the basis of attraction of the strange attractor C0.

In order to derive the invasibility condition we use the notion of the
Lyapunov exponent. Because the �nÿ 1�-trophic food chain is chaotic at least,
one of its Lyapunov exponents is positive. As in the case of the boundary
equilibria E0 and the limit cycles L0, two Lyapunov exponents associated with
the top predator are independent from those of the invaded system. The de-
terminant of the Jacobian matrix can therefore be factorized as in Eq. (9). This
is due to an important feature of the Jacobian matrices J and J�t� given in
Eqs. (8) and (15). The element J2nÿ1;2n is zero, as a result of the requirement
that both factors M�en� ÿ D and xn on the right-hand side of Eq. (1d) are zero.
In food chains, the top predator consumes only the predator and hence the
elements J2n;i;, i � 1; . . . ; 2nÿ 2, on the last row are zero too. For the same
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reason the ®rst 2nÿ 1 elements of column 2nÿ 1 elements Jj;2nÿ1, j �
1; . . . ; 2nÿ 1 are zero as well.

The Lyapunov exponent evaluated for the boundary attractor with xn � 0 is
de®ned by (see Ref. [26])

lim
T!1

Tÿ1

ZT
0

1

xn

dxn

dt
dt � lim

T!1
Tÿ1

ZT
0

�M̂�t� ÿ D� dt; �22�

where M̂�t� �M�ên�t�� is the growth rate function evaluated on the boundary
chaotic attractor C0. The top predator can invade when this Lyapunov expo-
nent is positive.

Now we consider a three-trophic food chain again. Below the bifurcation
curve TCc;3 in Fig. 2 the mean growth rate is greater than the depletion rate D3

and the periodic orbit L0 becomes unstable. In that region the multiplier as-
sociated with the biomass of the top predator is greater than 1. As a result the
top predator can invade in this region.

The position in the bifurcation diagram determines to which attractor the
system will converge when a small perturbation of the unstable equilibrium or
limit cycle on the boundary attractor of the positive cone is applied. With
invasion of a two-trophic food chain the system will converge asymptotically
to a unique positive point attractor of the resulting three-trophic chain re-
gardless of whether the two-trophic food chain is originally in a point attractor
or a limit cycle. The top predator controls the oscillating two-trophic food
chain towards a stable interior equilibrium, namely when Hÿ3 is on the left side
of Hÿ2 .

Finally the in¯uence of the maximum growth rate of the top predator on the
resistance of a two-trophic food chain to invasion may be studied. To that end
the codimension 2 bifurcation point M1 in Fig. 2 is continued with three bi-
furcation parameters, D, xr and m2;3. In order to assess the invasibility of the
resulting invaded system the in¯uence of the maximum growth rate of the
predator is also studied. Then the three bifurcation parameters are D, xr and
m1;2. We took in all cases the maintenance rate to be 5% of the maximum
growth rate; that is mi � 0:05liÿ1;i. All other parameters given in Table 2 are
kept constant.

Fig. 6 shows the bifurcation diagram for these cases. There is a stable
equilibrium for the two-trophic food chain in the region bounded by the two
transcritical bifurcation curves TCe;2 and TCe;3. When l1;2 � 0:5 the invasibility
region of the top predator is smaller than in the original case with l1;2 � 0:2.
When l2;3 � 0:2 the region with resistance to invasibility is much smaller than
in the original case. This shows that a potential invader with a high maximum
growth rate can invade easily and subsequently that a high maximum growth
rate of the invaded top predator gives a high resistance to further invasion of
the food chain.
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5. Discussion and conclusions

Yodzis ([15], p. 231) formulates three criteria which need to be satis®ed for a
successful invasion of a species in a community when there is a unique positive
equilibrium point:
1. A colonizing species must be able to increase when rare.
2. When the new species is added to the community, there must be an equilib-

rium with at least one positive density.
3. That equilibrium must be locally stable.

Post and Pimm [16] found that in sequences of 200 attempted invasions, two
things tended to happen as a community was built up: the return time of the
equilibrium increased (lower resilience) and it became more di�cult for new
species to invade (invasion resistance). The Lotka±Volterra model was used in
their study. For this model the equilibria are the solutions of a linear set of
equations (because of the linear functional response), see for instance Ref. [27],
p. 59. As a result the conditions mentioned above can be readily checked.

Fig. 6. Bifurcation diagram for DEB model, system (1), for three cases, parameter setting given in

Table 2, large growth rate for the predator �l1;2 � 0:5 hÿ1 instead of 0:2 hÿ1� and larger growth

rate for the top predator �l2;3 � 0:2 hÿ1 instead of 0:15 hÿ1�. For an explanation of the symbols see

Fig. 2. With maximum growth rate of the top predator l2;3 � 0:2 hÿ1 the bifurcation curves Hÿ2 and

TCe;2 are those for the original diagram. The dots are the codimension 2 point M1 for the three cases.
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Later, similar studies were also performed based on the Lotka±Volterra dy-
namics in Refs. [28,29], however in Ref. [30] a number of shortcomings of the
technique used in Refs. [16,28] are discussed.

Using Holling type II functional responses complicates the analysis because
there are possibly multiple equilibria. In Section 4 a condition is derived that
ascertains that after a perturbation of the boundary equilibrium, limit cycle or
chaotic attractor, the biomass of the top predator increases but the approach
used here leaves unanswered the question to which attractor the invaded sys-
tem converges.

Eq. (6) shows that system (1) is bounded and dissipative for positive dilution
rates, D > 0 and positive concentration of substrate in the reservoir, xr > 0, and
therefore there is at least one attractor. Introduction of a in®nitesimal small
amount of top predator results in convergence to the attractor in whose basin
of attraction the food chain starts. When the invasibility condition is ful®lled
this will be another attractor than the boundary attractor itself. With food
chains with more than two-trophic levels, multiple attractors also occur on the
boundary and the invasibility condition has to be checked for each boundary
attractor separately. With the control parameter setting used in Fig. 4 there
are two stable limit cycles and one unstable limit cycle as is clear from Fig. 3
with D � 0:01. In that case, it could occur that this system is invasible via
one boundary attractor but that the top predator goes into extinction by
convergence to another boundary attractor, see also Ref. [31]. The ¯ow passes
the unstable boundary attractor via the interior of the positive cone.

To rule out stochastic e�ects the `law of large numbers' may be involved.
Stochasticity is nevertheless important in the early phase of the invasion. For
instance, the founder individual might leave the reactor due to wash out before
it can reproduce. To circumvent this situation the volume of the reactor can be
increased such that the number of individuals remains large while the biomass
density is small. When a top predator immigrates with large densities the model
has to be altered, by introduction of an extra positive term on the right-hand
side of Eq. (1d) or as an initial state where the biomass density of the top
predator is not in®nitesimally small. For instance, starting close to the interior
equilibrium of the three-trophic food chain with xr � 275 and D � 0:0375
(Fig. 3) the food chain converges to that equilibrium, while for small initial
values for x3 the food chain converges to the stable boundary limit cycle, that is
the top predator goes into extinction.

The model predicts that a top predator with a large growth rate can invade a
food chain easily, that is for various environmental conditions. If the procedure
proposed by Post and Pimm would be followed and the range of possible
values for the maximum growth rates is unbounded we would expect that our
system does become invasion resistant when a predator with a very high
growth rate has invaded. This poses the following question, Why do short food
chains with moderate growth rates of the top predator exist at all?
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It is tempting to interpret this issue for food chains in nature. Competition
in food webs and time-varying (seasonal) environments as they occur in
communities in nature are not considered although they will be important
factors. On the other hand food chains under chemostat conditions might re-
semble some ecosystems, for instance when the supply of resources is constant
in a very simple model for a lake, see also Ref. [32].

In ecological literature the question, Why are food chains so short?, is dis-
cussed frequently, see for instance Refs. [15,32,33]. Empirical evidence indi-
cates that in nature the number of trophic levels within ecosystems seldom
exceeds ®ve or six (Ref. [32], p. 142). A number of hypotheses have been
proposed to explain this. One hypothesis is based on energy limitation and a
second on dynamic properties, namely longer food chains have lower resilience
(a measure of the rate at which the ecosystem can recover from disturbances)
than shorter chains have. Hutchinson [33] has pointed out that since predators
tend to be larger than their prey, predators will get bigger and bigger as one
moves up a food chain, so that eventually a further link in the chain would
require an animal that is too large to be practical (see Ref. [15], p. 243).

Related ideas are used to address the question raised above, namely that
there is no invasion resistance when the growth rate of the invader is very large,
an assertion based on the model predictions. To that end individual growth
and reproduction rates have to be linked to the population growth rate. In
structured population models one distinguishes between members of the
population with respect to age or size. The dynamics is mathematically de-
scribed by a partial di�erential equation. Several techniques have been devel-
oped (see Refs. [34,35]) to derive approximations in the form of one or a few
ordinary di�erential equations. For organisms which propagate by binary
®ssion this is done in Ref. [2]. The population growth rate appears to be almost
proportional to the individual growth rate. For reproducing species with sev-
eral live stages (egg, embryo, juvenile, adult) often the birth rate is used as the
population growth rate in unstructured model described by an ordinary dif-
ferential equation. As the body size of a species we use the notion of the ul-
timate body size of the organisms which make up the population. Food intake
rate is proportional to the area of the surface of the organism, while mainte-
nance rate is proportional to the volume of the organism. During growth the
ratio between the area and volume changes with volume and as a result there is
an ultimate body size where energy derived from food just equals the main-
tenance costs. For constant food availability the size as a function of age is the
so-called von Bertalan�y growth curve.

In Ref. [1], p. 217, body size scaling relationships are derived to compare
individual parameters (some of them are shown in Table 1) across species.
These relationships have been tested intensively for data on: birds, mammals,
reptiles and amphibians, ®shes, crustaceans, molluscs. According to the body
size scaling relationships, the maximum growth rate (Ref. [1], p. 224) and the
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maximum reproductive rate (Ref. [1], p. 236) decrease with ultimate body size
while the life span increases. Thus, generally the maximum population growth
rate decreases with body size.

In conclusion: the biological constraint that predators tend to be larger than
their prey and that larger species grow slower imply that the maximum growth
rate is decreasing with the trophic level. This restricts invasibility in longer food
chains. Long food chains can exist only when the dilution rate is low and the
concentration of the substrate in the reservoir is large.

Comparison of the bifurcation diagrams Figs. 2 and 5 indicate that the term
`organizing centre' used in Ref. [10] for the codimension 2 point, denoted by M1,
is appropriate. The global picture around this point seems for food chains of
di�erent length qualitatively the same. The invasibility condition for the three
types of boundary attractors (point attractor, limit cycle and strange attractor)
is that the Lyapunov exponent associated with the invader is positive, that is
`average' growth rate of the invader has to be greater than its depletion rate.

Acknowledgements

The authors like to thank Hugo van den Berg for valuable discussions. The
research of the second author was supported by the Netherlands Organization
for Scienti®c Research (NWO).

References

[1] S.A.L.M. Kooijman, Dynamic Energy Budgets in Biological Systems: Theory and Applica-

tions in Ecotoxicology, Cambridge University, Cambridge, 1993.

[2] B.W. Kooi, S.A.L.M. Kooijman, Existence and stability of microbial prey±predator systems,

J. Theor. Biol. 170 (1994) 75.

[3] A. Cunningham, R.M. Nisbet, Transients and oscillations in continuous culture, in: M.J.

Bazin (Ed.), Mathematical Methods in Microbiology, 1983, p. 77.

[4] R.M. Nisbet, A. Cunningham, W.S.C. Gurney, Endogenous metabolism and the stability of

microbial prey±predator systems, Biotechnol. Bioeng. 25 (1983) 301.

[5] M. Kot, G.S. Sayler, T.W. Schultz, Complex dynamics in a model microbial system, Bull.

Math. Biol. 54 (1992) 619.

[6] S. Pavlou, I. Kevrekidis, Microbial predation in a periodically operated chemostat: A global

study of the interaction between natural and externally imposed frequencies, Math. Biosci. 108

(1992) 1.

[7] A. Gragnani, S. Rinaldi, A universal bifurcation diagram for seasonally perturbed predator±

prey models, Bull. Math. Biology 57 (1995) 701.

[8] M.L. Rosenzweig, R.H. MacArthur, Graphical representation and stability conditions of

predator±prey interactions, Am. Natural. 97 (1963) 209.

[9] M.L. Rosenzweig, Exploitation in three trophic levels, Am. Natural. 107 (1973) 275.

[10] K. McCann, P. Yodzis, Bifurcation structure of a tree-species food chain model, Theor.

Popul. Biol. 48 (1995) 93.

B.W. Kooi et al. / Mathematical Biosciences 157 (1999) 217±236 235



[11] A. Hastings, T. Powell, Chaos in a three-species food chain, Ecology 72 (1991) 896.

[12] A. Klebano�, A. Hastings, Chaos in one-predator, two-prey models: general results from

bifurcation theory, Math. Biosci. 122 (1994) 221.

[13] A. Klebano�, A. Hastings, Chaos in three-species food chain, J. Math. Biol. 32 (1994) 427.

[14] Y.A. Kuznetsov, S. Rinaldi, Remarks on food chain dynamics, Math. Biosci. 124 (1996) 1.

[15] P. Yodzis, Introduction to Theoretical Ecology, Harper and Row, New York, 1989.

[16] W.M. Post, S.L. Pimm, Community assembly and food web stability, Math. Biosci. 64 (1983)

169.

[17] E. Doedel, J. Kern�evez, Auto: Software for continuation problems in ordinary di�erential

equations with applications, Technical report, California Institute of Technology, Applied

Mathematics, 1986.

[18] E.J. Doedel, A.R. Champneys, T.F. Fairgrieve, Y.A. Kuznetsov, B. Sandstede, X. Wang,

Auto 97: Continuation and bifurcation software for ordinary di�erential equations, Technical

report, Concordia University, Montreal, Canada, 1997.

[19] A.I. Khibnik, Y.A. Kuznetsov, V.V. Levitin, E.V. Nikolaev, Continuation techniques and

interactive software for bifurcation analysis of ODEs and iterated maps, Physica D 62 (1993)

360.

[20] Y.A. Kuznetsov, V.V. Levitin, CONTENT, Centrum voor Wiskunde en Informatica (CWI),

1st ed., Kruislaan 413, 1098 SJ Amsterdam, The Netherlands, 1997.

[21] Y.A. Kuznetsov, Elements of Applied Bifurcation Theory, Applied Mathematical Sciences,

vol. 112, Springer, New York, 1995.

[22] B.W. Kooi, M.P. Boer, S.A.L.M. Kooijman, Complex dynamic behaviour of autonomous

microbial food chains, J. Math. Biol. 36 (1997) 24.

[23] M.P. Boer, B.W. Kooi, S.A.L.M. Kooijman, Food chain dynamics in the chemostat, Math.

Biosci. 150 (1998) 43.

[24] B.W. Kooi, M.P. Boer, S.A.L.M. Kooijman, Consequences of population models on the

dynamics of food chains, Math. Biosci. 153 (1998) 99.

[25] H.L. Smith, P. Waltman, The Theory of the Chemostat, Cambridge University, Cambridge,

1994.

[26] V.A.A. Jansen, E�ects of dispersal in a tri-tropic metapopulation model, J. Math. Biol. 33

(1995) 195.

[27] J. Hofbauer, K. Sigmund, The Theory of Evolution and Dynamical Systems, Cambridge

University, Cambridge, 1988.

[28] J.A. Drake, The mechanism of community assembly and succession, J. Theor. Biol. 147 (1990)

213.

[29] R. Law, R.D. Morton, Permanence and the assembly of ecological communities, Ecology 77

(1996) 762.

[30] R.D. Morton, R. Law, S.L. Pimm, J.A. Drake, On models for assembling ecological

communities, Oikos 75 (1996) 493.

[31] O. Diekmann, S.D. Mylius, J.R. ten Donkelaar, Saumon �a la Kaitala et Getz, sauce

hollandaise (1998).

[32] D.L. DeAngelis, Dynamics of Nutrient Cycling and Food Webs, number 9 in Population and

Community Biology series, Chapman and Hall, London, 1992.

[33] G.E. Hutchinson, An Introduction to Population Ecology, Yale University, New Haven, CT,

1978.

[34] J.A.J. Metz, O. Diekmann, The dynamics of physiologically structured populations, Lecture

Notes in Biomathematics, vol. 68, Springer, Berlin, 1986.

[35] A.M. Roos de, A gentle introduction to physiologically structured population models, in: S.

Tuljapurkar, H. Caswell (Eds.), Structured-Population Models in Marine, Terrestrial, and

Freshwater systems, Chapman and Hall, London, 1997, p. 119.

236 B.W. Kooi et al. / Mathematical Biosciences 157 (1999) 217±236


