CAPÍTULO 1: MEDIDAS FÍSICAS, GRANDEZAS E UNIDADES

1.1 INTRODUCÃO

A necessidade de medir é muito antiga e remonta à origem das civilizações. Por longo tempo cada país, cada região, cada cidade teve seu próprio sistema de medidas. Essas unidades de medidas, entretanto, eram geralmente arbitrárias e imprecisas, como por exemplo, aquelas baseadas no corpo humano: palmo, pé, polegada, braça, côvado (antiga medida de comprimento equivalente a 66 cm).

Isso criava muitos problemas para o comércio, porque as pessoas de uma região não estavam familiarizadas com o sistema de medir das outras regiões, e também porque os padrões adotados eram, muitas vezes, subjetivos. As quantidades eram expressas em unidades de medir pouco confiáveis, diferentes umas das outras e que não tinham correspondência entre si.

A necessidade de converter uma medida em outra era tão importante quanto a necessidade de converter uma moeda em outra. Na verdade, em muitos países, inclusive no Brasil dos tempos do Império, a instituição que cuidava da moeda também cuidava do sistema de medidas.

Em 1789, numa tentativa de resolver esse problema, o Governo Republicano Francês pediu à Academia de Ciências da França que criasse um sistema de medidas baseado numa "constante natural", ou seja, não arbitrária. Assim foi criado o **Sistema Métrico Decimal**, constituído inicialmente de três unidades básicas: o metro, que deu nome ao sistema, o litro e o quilograma (posteriormente, esse sistema seria substituído pelo Sistema Internacional de Unidades - SI).

Dentro do Sistema Métrico Decimal, a unidade de medir a grandeza comprimento foi denominada **metro** e definida como "a décima milionésima parte da quarta parte do meridiano terrestre" (dividiu-se o comprimento do meridiano por 4.000.000). Para materializar o metro, construiu-se uma barra de platina de secção retangular, com 25,3 mm de espessura e com 1 m de comprimento de lado a lado. Essa medida materializada, datada de 1799, por não ser mais utilizada como padrão é conhecida como o "metro do arquivo".

A unidade de medir a grandeza volume, no Sistema Métrico Decimal, foi chamada de **litro** e definida como "o volume de um decímetro cúbico". O litro permanece como uma das unidades em uso pelo SI.

LCE0200 Física do Ambiente Agrícola

Definido para medir a grandeza massa, o **quilograma** passou a ser a "massa de um decímetro cúbico de água na temperatura de maior massa específica, ou seja, a 4,44°C". Para materializá-lo foi construído um cilindro de platina iridiada, com diâmetro e altura iguais a 39 milímetros.

Muitos outros países adotaram o sistema métrico, inclusive o Brasil, aderindo à Convenção do Metro. Entretanto, apesar das qualidades inegáveis do Sistema Métrico Decimal - simplicidade, coerência e harmonia - não foi possível torná-lo universal. Além disso, o desenvolvimento científico e tecnológico passou a exigir medições cada vez mais precisas e diversificadas. Em 1960, portanto, o Sistema Métrico Decimal foi substituído pelo Sistema Internacional de Unidades - SI, mais complexo e sofisticado.

O Sistema Internacional de Unidades - SI foi sancionado em 1960 pela Conferência Geral de Pesos e Medidas e constitui a expressão moderna e atualizada do antigo Sistema Métrico Decimal, ampliado de modo a abranger os diversos tipos de grandezas físicas, compreendendo não somente as medições que ordinariamente interessam ao comércio e à indústria (domínio da metrologia legal), mas estendendo-se completamente a tudo o que diz respeito à ciência da medição.

O Brasil adotou o Sistema Internacional de Unidades - SI em 1962. A Resolução nº 12 de 1988 do Conselho Nacional de Metrologia, Normalização e Qualidade Industrial - CONMETRO, ratificou a adoção do SI no País e tornou seu uso obrigatório em todo o território nacional.

1.2 GRANDEZAS E UNIDADES FUNDAMENTAIS DO SI

As grandezas físicas fundamentais ou de base são aquelas a partir das quais todas as outras grandezas físicas são definidas, ou seja, as demais grandezas são combinações das grandezas fundamentais. Na Tabela 1.1 apresentam-se as grandezas fundamentais, seguidas de seus símbolos dimensionais e também de suas unidades no Sistema Internacional de Unidades (SI) com as respectivas abreviações:

- O Sistema Internacional de Unidades compreende as unidades fundamentais citadas acima, as unidades derivadas obtidas a partir das sete unidades fundamentais e ainda as unidades suplementares de caráter geométrico: o ângulo plano e o ângulo sólido cujas unidades são respectivamente o radiano, abreviado por rad e o estereorradiano, abreviado por sr. (1 sr é o ângulo sólido para o qual a razão entre a área da calota esférica central interceptada e o quadrado do raio respectivo é igual à unidade). Uma esfera define um ângulo sólido de $4\pi sr$. Exemplos de grandezas derivadas:
- \cdot Velocidade: m s⁻¹ é a unidade derivada da razão entre as unidades fundamentais metro e segundo.
- · Velocidade angular: rad s⁻¹ é a unidade derivada da razão entre a unidade fundamental metro e a unidade suplementar radiano.

Capítulo 1: Medidas físicas, grandezas e unidades

Tabela 1.1 - Grandezas fundamentais do Sistema Internacional de Unidades (SI)

Grandeza	Unidade	Símbolo	Definição	
comprimento	metro	m	" o comprimento do percurso coberto pela luz, no vácuo, em 1/299 792 458 de um segundo". (1983)	
massa	quilograma	kg	" este protótipo (um certo cilindro de liga de platina-irídio) será considerado daqui por diante a unidade de massa". (1889)	
			Obs: O protótipo foi baseado na massa de água, a 4 °C, contida em um cubo de 10 centímetros de aresta	
tempo	segundo	S	" a duração de 9 192 631 770 vibrações da transição entre dois níveis hiperfinos do estado fundamental do átomo de césio 133". (1967)	
corrente elétrica	ampere	A	" a corrente constante que, mantida em dois condutores retilíneos, paralelos, de comprimento infinito, de seção circular desprezível e separados pela distância de 1 metro no vácuo, provoca entre estes condutores uma força igual a 2.10 ⁻⁷ Newton por metro de comprimento". (1946)	
temperatura termodinâmica	kelvin	K	" a fração 1/273,16 da temperatura termodinâmica do ponto triplo da água". (1967).	
termountained			Obs.: A temperatura relativa na escala Celsius é definida por: t = T - To ,onde To = 273,15 K, por definição.	
quantidade de matéria	mol	mol	" a quantidade de substância de um sistema que contém tantas entidades elementares quanto são os átomos em 0,012 quilogramas de carbono 12". (1971)	
intensidade luminosa	candela	cd	" a intensidade luminosa, na direção perpendicular, de uma superficie de 1/600 000 metros quadrados, de um corpo negro na temperatura de solidificação da platina, sob a pressão de 101,325 Newton por metro quadrado". (1967)	
			Obs: a temperatura de solidificação da platina, sob a referida pressão é 2043 K.	

Adaptado do "The International System of Unit (SI)", National Bureau of Standards Special Publication 330, edição de 1972.

3

LCE0200 Física do Ambiente Agrícola

Tabela 1.2 - Grandezas derivadas do Sistema Internacional de Unidades (SI)

Grandeza	Definição	Unidade SI	Unidades alternativas
Área		m ²	ha,
Volume		m^3	L, cc
Velocidade	Distância/tempo	m s ⁻¹	km h ⁻¹ , nó
Aceleração	Velocidade/tempo	m s ⁻²	
Força	Massa x aceleração	N (Newton) = kg m s-2	dina
Pressão	Força/área	$Pa (Pascal) = N m^{-2}$	atm, bar, cmHg
Energia	Força x distância	J (Joule) = N m	cal, erg, kWh,
_			BTU, eV
Potência	Energia/tempo	$W (Watt) = J s^{-1}$	Cv

Tabela 1.3 - Prefixos do SI

Fator	Prefixo	Símbolo	Fator	Prefixo	Símbolo
10^{1}	deca	da	10-1	deci	d
10^{2}	hecto	h	10^{-2}	centi	c
10^{3}	quilo	k	10^{-3}	mili	m
10^{6}	mega	M	10 ⁻⁶	micro	μ
10^{9}	giga	G	10-9	nano	n
10^{12}	tera	T	10^{-12}	pico	p
10^{15}	peta	P	10^{-15}	femto	f
10^{18}	exa	E	10^{-18}	ato	a

1.3 TRANSFORMAÇÃO DE UNIDADES – REGRA DA CADEIA

A transformação de unidades segue regras algébricas simples e pode ser realizada sistematicamente pela "regra da cadeia". Vejamos a seguir alguns exemplos de transformações por esse método:

Exemplo 1: A quantos km h⁻¹ equivalem 30 m s⁻¹?

Como 1000 m = 1 km, temos que 1 km / 1000 m = 1; Da mesma forma, 1 h = 3600 s e, portanto, 3600 s / 1 h = 1. Assim,

$$30\frac{m}{s} = 30\frac{m}{s} \cdot \frac{1 \, km}{1000 \, m} \cdot \frac{3600 \, s}{1 \, h} = \frac{30.3600}{1000} \frac{km}{h} = 108 \frac{km}{h}$$

Capítulo 1: Medidas físicas, grandezas e unidades

Exemplo 2: Expressar a aceleração gravitacional ($g = 9.81 \text{ m s}^{-2}$) na unidade km h⁻²

Novamente utilizaremos 1 km / 1000 m = 1 e 3600 s / 1 h = 1. Assim.

$$9.81\frac{m}{s^2} = 9.81\frac{m}{s^2} \cdot \frac{1 \ km}{1000 \ m} \cdot \left(\frac{3600 \ s}{1 \ h}\right)^2 = 9.81\frac{m}{s^2} \cdot \frac{1 \ km}{1000 \ m} \cdot \frac{3600^2 \ s^2}{1^2 \ h^2} = \frac{9.81.3600^2 \ km}{1000 \ h^2} = 1.27.10^5 \frac{km}{h^2}$$

Exemplo 3: Quantos litros existem em um metro cúbico?

Um litro é definido como um decímetro cúbico. Como 1 m = 10 dm. temos que 10 dm / 1 m = 1. Portanto:

$$1 m^3 = 1 m^3 \left(\frac{10 dm}{1 m} \right)^3 = 1 m^3 \cdot \frac{10^3 dm^3}{1^3 m^3} = 1000 dm^3 = 1000 L$$

EXERCÍCIOS

- 1.1 O micrômetro (1 μ m = 10⁻⁶ m) é comumente chamado de *micron*.
 - a) Quantos mícrons existem em 1 km? R:1.109 µm
 - b) Que fração do cm e igual a 1 µm? R: 0,0001 cm
- 1.2 Um nó é definido como uma milha náutica por hora. Uma milha náutica equivale à distância de 1 minuto de latitude. O perímetro da Terra é 40.000 km.
 - a) A quantos metros equivale uma milha náutica? R: 1851.8 m
 - b) Um navio anda na velocidade de 20 nós. Oual sua velocidade em m/s?
- 1.3 Uma unidade astronômica (UA) é a distância média da Terra ao Sol. aproximadamente igual a 150.000.000 km. A velocidade da luz vale cerca de 3.0.10⁸ m/s. Escreva esta velocidade em termos de unidades astronômicas por minuto. R: 0,12 UA/min
- 1.4 Uma unidade de área frequentemente utilizada para expressar áreas de terra é o hectare, definido como 10⁴ m². Uma mina de carvão a céu aberto consome 75 hectares de terra, a uma profundidade de 26 m por ano. Calcule o volume de terra retirada neste tempo em km³. R: 0.0195 km³
- 1.5 Rendimento agrícola norte-americano é expresso frequentemente em bushels/acre. A quantas toneladas por hectare equivale um rendimento de soia de 40 bushels/acre? (1 acre = 4047 m^2 : 1 bushel soia = 0.0272 ton). R: 2,69 ton/ha

5

LCE0200 Física do Ambiente Agrícola

- 1.6 A densidade da água é igual a 1 g cm⁻³. Qual é a densidade da água expressa na unidade:
 - a) kg/L
- R: 1 kg/L
- b) kg m⁻³
- R: 1000 kg/m³ c) libras por pé cúbico (1 lb = 0.454 kg; 1 pé = 30.48 cm)

- 1.7 Uma estação meteorológica observou em determinado dia uma chuva de 18 mm. Quantos litros de água precipitaram durante esta chuva em cada hectare? R: 180 000 L/ha
- 1.8 Um cavalo-vapor (cv) equivale a 735.5 W. Qual é o consumo de energia de uma máquina de 5 cv que funciona durante 10 horas, em Joule e em eV? (1 $eV = 1.6 \cdot 10^{-19} \text{ J}$ R: 132.390.000 J ou 8.2631.10²⁶ eV
- 1.9 Um suíno, na fase de creche, ganha 30 gramas por dia.
 - a) Qual é o ganho de massa por unidade de tempo, em miligramas por segundo? R: 0,3472 mg/s
 - b) Oual é o ganho de peso por unidade de tempo, em Newton por hora? R: 0.0122 N/h
- 1.10 A quantidade média de radiação solar que chega na superfície da Terra está em torno de 1 cal cm⁻² min⁻¹. Expressar essa quantidade em unidades do Sistema Internacional, sabendo que 1 caloria equivale a 4.18 J. R: 696.7 J m⁻² s⁻¹
- 1.11 Transforme as grandezas abaixo para as respectivas unidades:
 - a) 9810 dinas = kgf

- b) 7814 N = kgf
- R: 796,53 kgf
- c) $200 \text{ cm s}^{-2} = \underline{\qquad} \text{ms}^{-2}$
- R: 2 m s⁻²
- d) $80 \text{ km h}^{-1} = \underline{\qquad} \text{m s}^{-1}$
- R: 22,22 m s⁻²
- e) $3.000 \text{ L h}^{-1} = \underline{\qquad} \text{m}^3 \text{ s}^{-1}$ f) $7.500 \text{ N m}^{-2} = \text{kgf m}^{-2}$
- R: 8.33.10⁻⁴ m³ s⁻¹
- g) $7 \text{ kgf cm}^{-2} = \text{kgf m}^{-2}$
- R: 764,52 kgf m⁻²
- h) $820 \text{ N m}^{-3} = \text{kgf m}^{-3}$
- R: 70.000 kgf m⁻² R: 83,59 kgf m⁻³
- i) $8.000.000 \text{ cm}^2 \text{ s}^{-1} = \text{m}^2 \text{ s}^{-1}$
- R: 800 m² s⁻¹
- j) $9.700 \, \text{din cm}^{-3} = \, \text{kgf m}^{-3}$
- R: 9887.87 kgf m⁻³