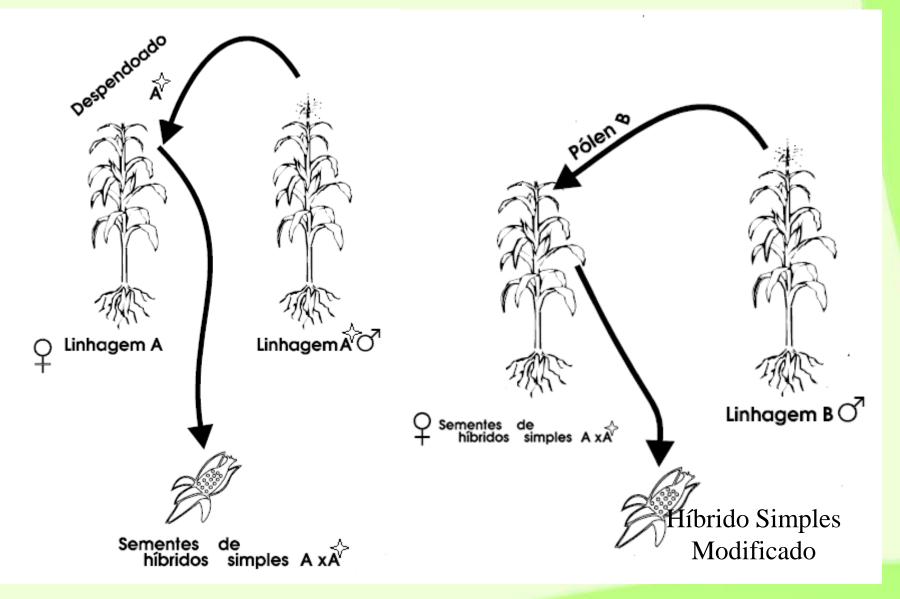
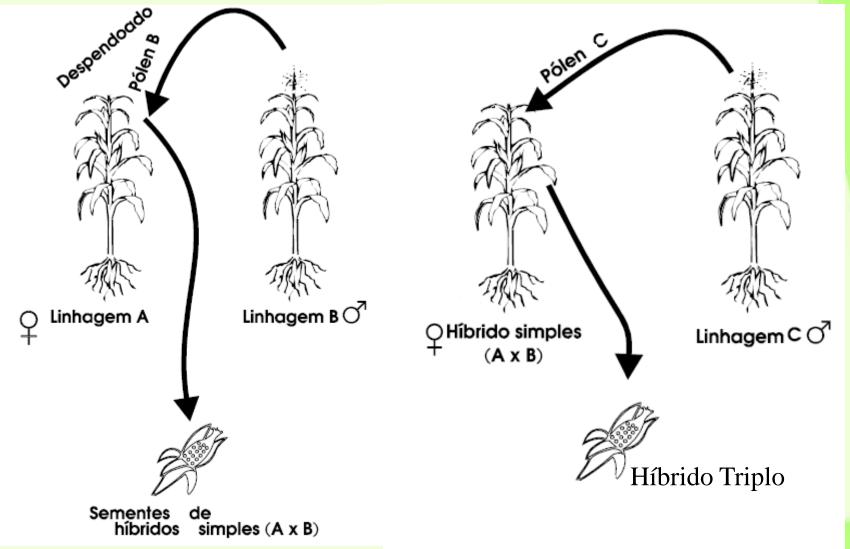
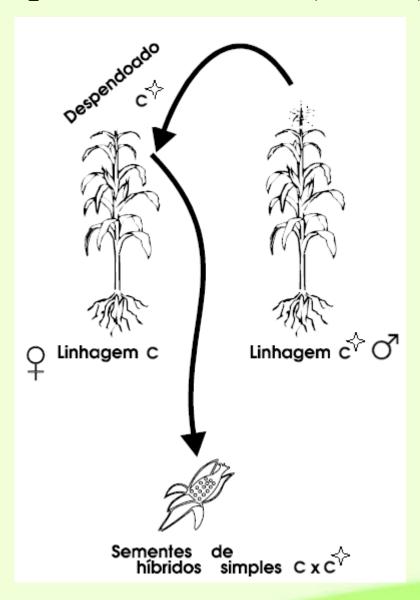
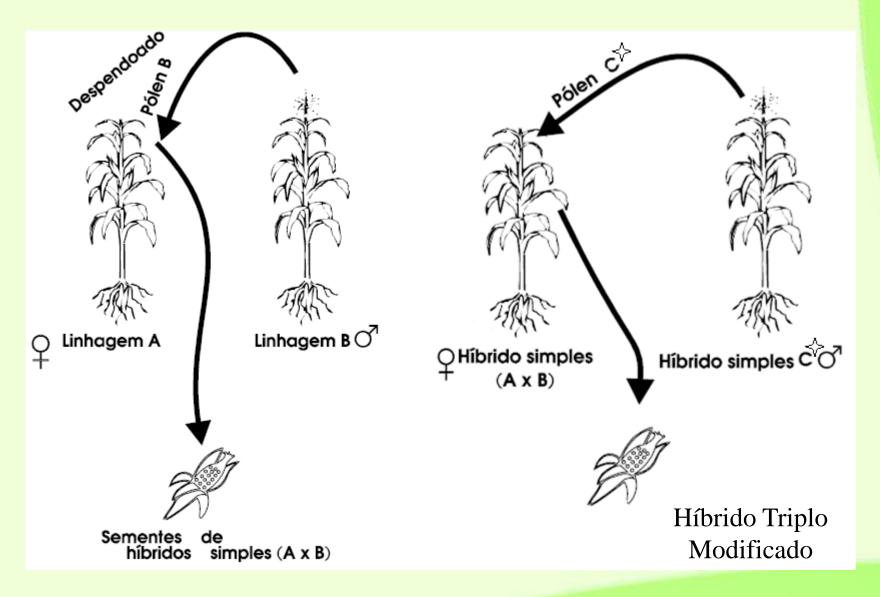

Universidade de São Paulo - USP Escola Superior de Agricultura "Luiz De Queiroz" - ESALQ Departamento de Genética LGN-313 Melhoramento Genético

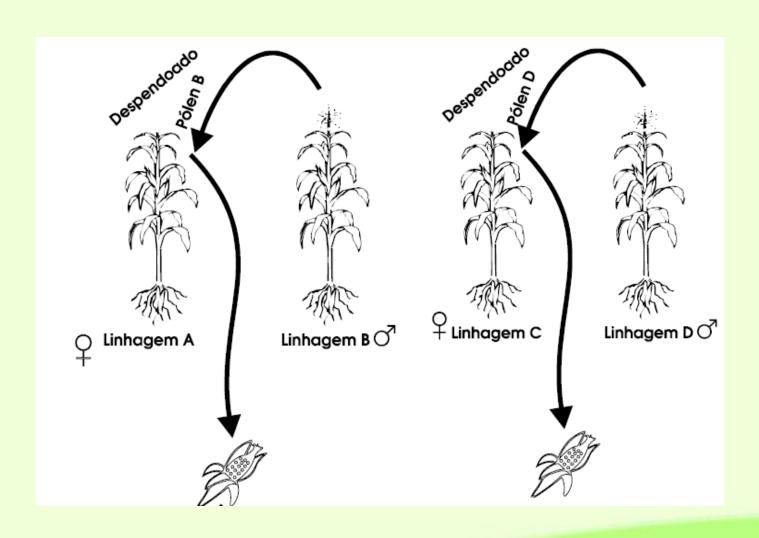

Predição de Híbridos e Macho Esterilidade Genético Citoplasmática

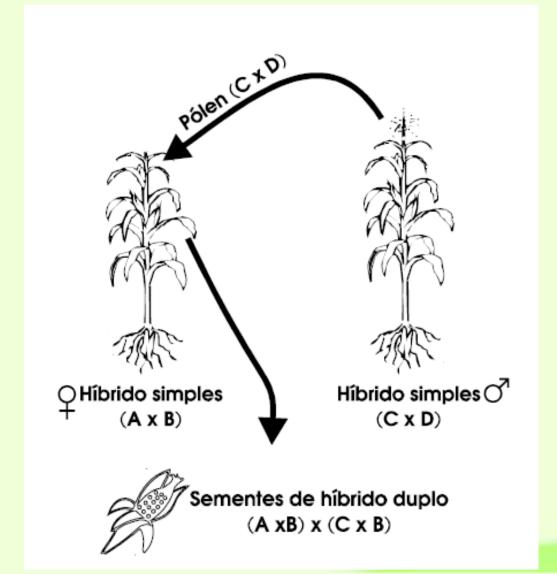
Fabiani da Rocha Felipe Bermudez Pereira


Híbrido Simples (A x B)


Híbrido Simples Modificado (A x A') x B

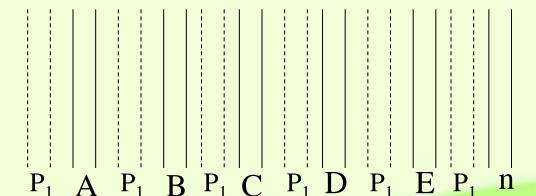

Híbrido Triplo (A x B) x C


Híbrido Triplo Modificado (A x B) x (C x C')


Híbrido Triplo Modificado (A x B) x (C x C')

Híbrido Duplo (A x B) x (C x D)

Híbrido Duplo (A x B) x (C x D)



Número de linhagens parentais e sua correspondência com o número possível de diversos tipos de híbridos.

Número de linhagens	Testcrosses	HS	НТ	HD
5	5	10	30	15
10	10	45	360	630
20	20	190	3.420	14.535
100	100	4.950	485.100	11.763.675
n	n	n(n-1)/2	n(n-1)(n-2)/2	n(n-1)(n-2)(n-3)/8

Produção HS − (A x B) ?

- Para caracteres de baixa herdabilidade a performance das linhagens não podem ser utilizadas para prever as dos híbridos
 - Seleção para capacidade de combinação
 - Testcrosses

- ✓ Só muda a fêmea
- ✓ Avalia as combinações
- ✓ 15 linhagens = 15 combinações

Rendimento em kg/ha dos híbrido simples possíveis resultantes do cruzamento entre cinco linhagens.

HS	Rendimento	HS	Rendimento
A x B	4.550	BxD	4.320
A x C	4.030	ВхЕ	4.630
A x D	2.840	C x D	3.910
ΑxΕ	2.930	CxE	2.930
B x C	2.720	DxE	3.540

Produção HT: (A x E) x B?

Rendimento em kg/ha dos híbrido simples possíveis resultantes do cruzamento entre cinco linhagens.

HS	Rendimento	HS	Rendimento
A x B	4.550	B x D	4.320
A x C	4.030	BxE	4.630
A x D	2.840	C x D	3.910
ΑxΕ	2.930	CxE	2.930
ВхС	2.720	DxE	3.540

$$(A \times E) \times B = [(A \times B) + (X \times B)/2]$$

$$(A \ x \ B) \ x \ C =$$

$$[(4.550) + (4.630)/2]$$

$$= 4.590$$

Produção HD – (A x D) x (B x C)?

Rendimento em kg/ha dos híbrido simples possíveis resultantes do cruzamento entre cinco linhagens.

HS	Rendimento	HS	Rendimento
A x B	4.550	B x D	4.320
AxC	4.030	BxE	4.630
AxD	2.840	C x D	3.910
ΑxΕ	2.930	CxE	2.930
BxC	2.720	DxE	3.540

$$(A \times D) \times (B \times C) =$$

$$[(A \times B) + (A \times C) +$$

$$(B \times D) + (C \times D)/4]$$

$$(A \times D) \times (B \times C) =$$
 $[(4.550) + (4.030) +$
 $(4.320) + (3.910)/4]$
 $= 4.202 \text{ kg/ha}$

Características de diferentes híbridos e variedades referentes aos aspectos de produtividade, uniformidade e estabilidade do rendimento (+ = intensidade).

Genótipo	Produtividade	Uniformidade	Estabilidade	Custo semente
HS	++++	++++	+	++++
HT	+++	+++	++	+++
HD	++	++	+++	++
VPA	+	+	++++	+

Por que é necessário a compra de sementes a cada safra?

$$P_1=5$$
 ton
 $P_2=7$ ton
 $F_1=12$ ton
 $F_2=?$

A redução em
$$F_2$$
 vai depender da heterose em F_1

$$F_n = F_{n-1} - \frac{h}{2^{n-1}}$$

$$h = \overline{F_1} - \overline{P_S}$$

Por que é necessário a compra de sementes a cada safra?

$$h = \overline{F_1} - \overline{P_S}$$

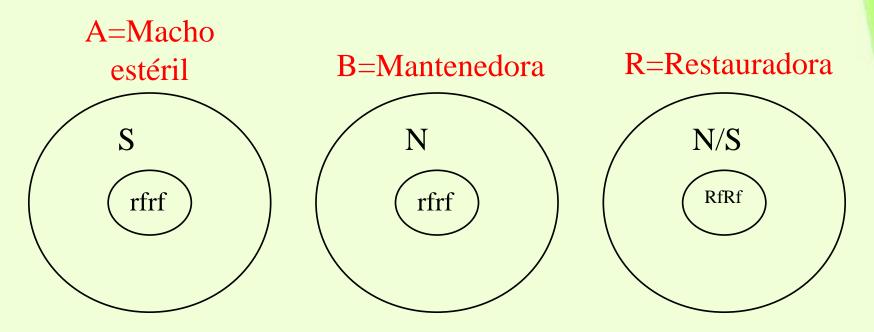
$$F_2 = 12 - \frac{6}{2^{2-1}} = 9 \text{ ton}$$

$$12 \text{ ton ----- 100\%}$$

$$9 \text{ ton ----- x}$$

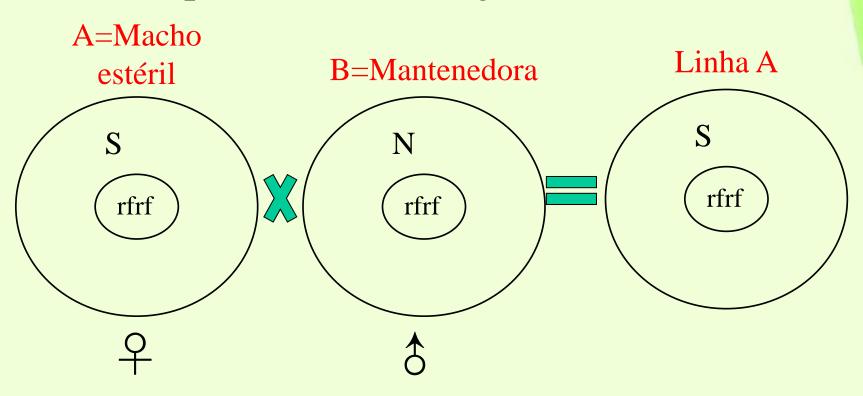
x = 75%

$$P_1$$
=5 ton
 P_2 =7 ton
 F_1 =12 ton
 F_2 =?

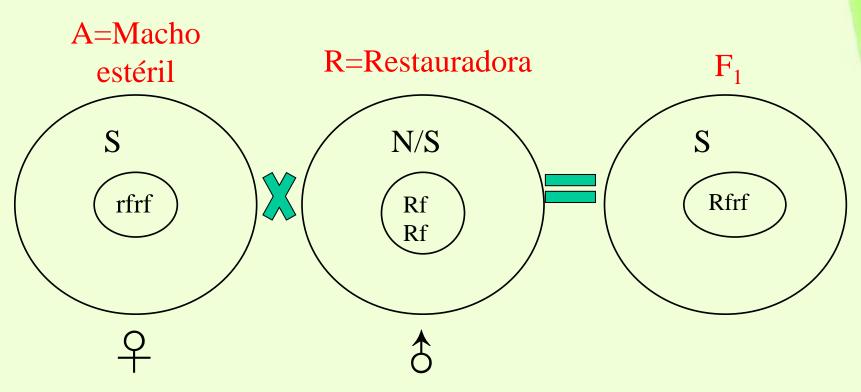

Esterilidade Genético Citoplasmática

• Como eliminar o processo de despendoamento em milho (alógama)?

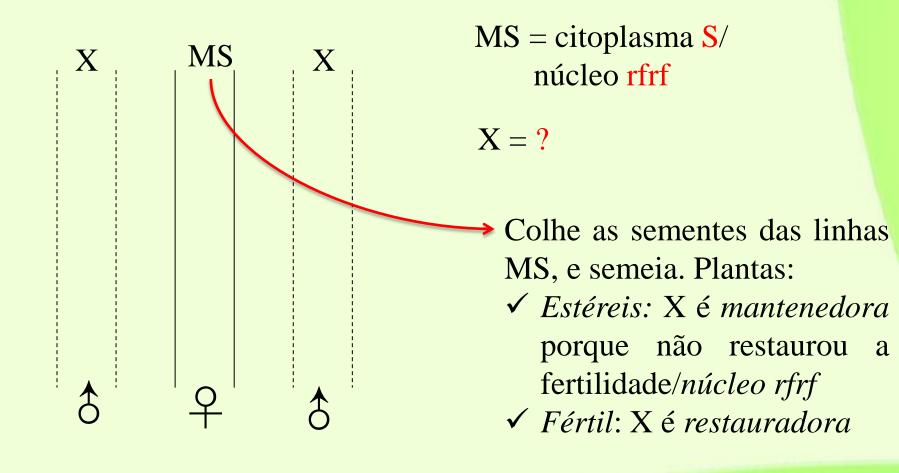
• É possível a produção de híbridos de arroz (autógama)?


Esterilidade Genético Citoplasmática

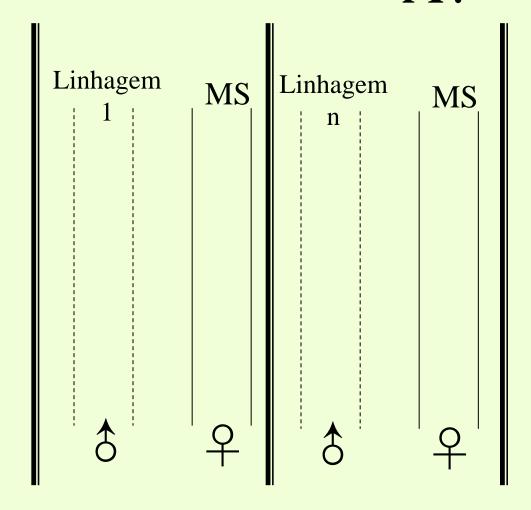
• Sistema A-B-R


Sistema três linhas

1) Campo de **multiplicação** de sementes



Sistema três linhas

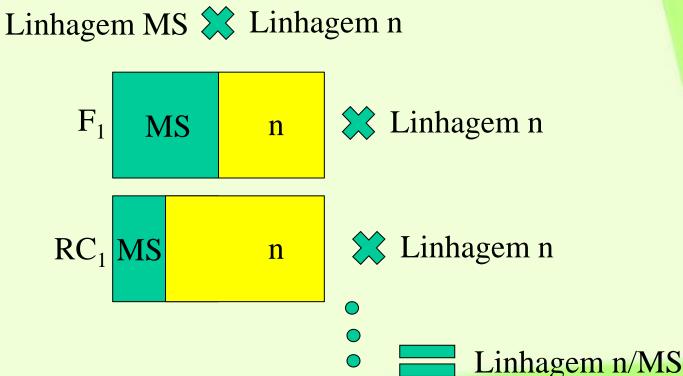

2) Campo de **produção** de sementes F₁

Como identificar uma linha restauradora e mantenedora?

Como sintetizar uma nova linha A?

- ✓ Primeiro passo:
- ✓ *Testcrosses* para encontrar linha B (mantenedora, núcleo rfrf)

Como sintetizar uma nova linha A?


- ✓ Segundo passo:
- ✓ Avaliar a descendência
 - ✓ Se estéril, a linhagem n pode ser utilizada para sintetizar uma linha A (linhagem n é mantenedora)

Como sintetizar uma nova linha A?

✓ Retrocruzamento para inserir o citoplasma

MS

Recorrente

Milho

O milho é uma espécie alógama

• MS descrita por Rhoades em 1933

- Não há necessidade de despendoamento manual
 - Mão-de-obra
 - Despendoamento diminui produtividade

Milho

 Citoplasma T foi amplamente empregado para a produção de híbridos nos EUA até o final da década de 60

• Macho-esterilidade T foi praticamente extinta USA: Helmintosporiose (Helminthosporium maydis)

Milho


Figura 1: Detalhes de plantas férteis e macho-estéreis. A: Plantas macho-estéreis em fase de florescimento (pendões fechados, sem pólen). B: Detalhe do pendão de planta macho-estéril (pendão fechado, sem pólen). C: Detalhe do pendão de planta fértil (pendão com anteras liberando pólen).

Fonte: Sílvia Neto Jardim Belicuas e Lauro José Moreira Guimarães. Disponível em: http://www.agrolink.com.br/culturas/milho/ArtigoDetalhe.aspx?codNoticia=116507

Girassol

O girassol é uma espécie alógama

Linha A

Linha B (mantenedora)

Linha R (restauradora)

Fonte: Claudio Guilherme Portela de Carvalho, 27°. Encontro sobre temas de Genética e Melhoramento – Piracicaba/SP – 05/10/2010

Girassol: Híbrido x variedade

Ano	Média do melhor híbrido (kg/ha)	Média dos híbridos (kg/ha)	Média das variedades (kg/ha)	Diferença
2008/2009	2562	2382	1870	512
2007/2008	2355	2070	-	-
2006/2007	1972	1713	1330	383
2005/2006	2517	2236	1406	830
2005/2004	2400	2000	1550	450
2004/2005	2185	1900	1515	385

Fonte: Claudio Guilherme Portela de Carvalho, 27°. Encontro sobre temas de Genética e Melhoramento — Piracicaba/SP — 05/10/2010

Cebola

A cebola é uma espécie alógama

- Áreas de produção: Regiões Sul, Nordeste e Sudeste
 - Predomínio a agricultura de base familiar
 - Cultivares de polinização aberta
- Novas fronteiras:
 - Fazendas-empresas: Nordeste (Chapada Diamantina,
 BA) e em áreas do Cerrado em Goiás (Cristalina) e
 Minas Gerais (São Gotardo)
 - Sementes híbridas

Cebola

- Produção de sementes híbridas de cebola só se tornou economicamente viável a partir da identificação e caracterização de sistemas de macho-esterilidade do tipo genéticacitoplasmática (CMS)
 - CMS-S (amplamente utilizado em programas de melhoramento e produção de sementes)
 - CMS-T

Arroz

O arroz é uma espécie autógama

- China: cultivo comercial de híbridos de arroz desde 1976
- 2006
 - -50% da área = 15 milhões ha
 - 103,5 milhões de ton ano; 6.900 kg/ha

Arroz

Heterose

- √ Vigor
- ✓ ↑ rendimento

✓ Gene da MS é pleiotrópico

✓ Encartuchamento panícula

Arroz – cultivar convencional x híbrida.

	Característica	Convencional	Híbrido
	Número de grãos	150	300
	PMG	\downarrow	↑
	Tamanho panícula	\downarrow	↑
	Panículas/planta	\downarrow	↑
	Sistema radicular	\downarrow	↑
	Estatura	\downarrow	↑
	Ciclo	\downarrow	↑
	Perfilhamento	\downarrow	↑
	Resistência Doença	↑	\downarrow

Fabiani - fabiani@usp.br Felipe - fbermudez@usp.br