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Abstract
Plant cells grow through increases in volume and cell wall surface
area. The mature morphology of a plant cell is a product of the dif-
ferential rates of expansion between neighboring zones of the cell
wall during this process. Filamentous actin arrays are associated with
plant cell growth, and the activity of actin-binding proteins is proving
to be essential for proper cell morphogenesis. Actin-nucleating pro-
teins participate in cell expansion and cell plate formation whereas
the recycling of actin monomers is required to maintain actin dynam-
ics and controlled growth. Coordination of actin-binding protein
activity and other aspects of cytoskeletal behavior during cell devel-
opment maintains cohesive cell expansion. Emerging plant signal-
ing networks are proving to be powerful regulators of morphology-
shaping cytoskeletal activity, and in this review we highlight current
research in actin network regulation.
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Exocytosis: delivery
of vesicles and their
contents to the
external
environment via
fusion with the
plasma membrane

F-actin: filamentous
actin (actin polymer)

Cytoplasmic
streaming: the
active movement of
vesicles and
organelles through
the cytoplasm

ABP: actin-binding
protein
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INTRODUCTION

Plant cell growth is a coordinated irreversible
increase in plasma membrane and cell wall
surface area. The building blocks for cell
growth are Golgi-derived vesicles, which con-
sist of cell wall matrix materials surrounded
by membrane. These Golgi-derived vesicles
are delivered to the cellular location where
growth occurs, where they fuse with the
plasma membrane and deposit their contents
into the cell wall. Due to the inability of
cell wall matrix to move within the cell wall,
growth is limited to sites of exocytosis (51).
In plant cells, different types of cell growth
have been defined: isodiametrical growth,
anisotropic, intercalary or diffuse growth, and
tip growth. Isodiametrical-growing cells ex-
pand equally over their whole surface, result-
ing in a ball-shaped cell. Anisotropic expand-

ing cells restrict growth to large but defined
areas, creating elongated and sometimes more
complicated cell morphologies. Examples of
these cell types are leaf pavement cells that
form interlocking lobes and trichomes that
exhibit several developmental stages where
some parts of the cell expand over a large sur-
face area to form complex branching patterns.
In tip-growing cells, expansion occurs over a
small area of the cell surface, which results in
tubular, elongated cells.

The eukaryote actin cytoskeleton plays a
pivotal role in many cellular processes that to-
gether regulate cell growth and morphology.
Specifically in the case of plant cell growth,
filamentous actin (F-actin) coordinates cyto-
plasmic streaming and guides growth materi-
als to zones of exocytosis (88) although not all
actin-dependent vesicle trafficking is coupled
to growth (74a). In several plant cell types,
such as root hairs and leaf pavement cells, ev-
idence is accumulating for dynamic fine F-
actin configurations that localize to cell sur-
face areas undergoing expansion (29, 31, 71).
Fine F-actin has been hypothesized to deliver,
filter, and retain cell wall matrix containing
Golgi-derived vesicles to the plasma mem-
brane area where exocytosis occurs (71) and
has been demonstrated in some cell types to
determine the cell surface area where growth
takes place (50). The formation of F-actin ar-
rays depends on the biochemical interactions
of actin monomers and actin-binding proteins
(ABPs). Studying the role of actin and ABPs in
plant cell growth has consequently provided
insights into the biochemistry of the plant
actin cytoskeleton. In this review we summa-
rize the experiments that have identified the
functions of actin during plant cell growth,
and describe the genetic and biochemical ev-
idence for the role of plant ABPs in coordi-
nating F-actin formation to achieve cell ex-
pansion. Additionally, the genetic and physical
interactions of ABPs with regulatory proteins
can be placed into a signaling network to de-
scribe the plant morphogenetic pathways that
lead to the actin cytoskeleton.
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DEFINING THE ROLE OF ACTIN
IN PLANT CELL GROWTH

A productive method to investigate the func-
tion of the actin cytoskeleton in cellular pro-
cesses and plant development is to depoly-
merize the actin cytoskeleton and analyze the
consequences. There are two classes of com-
monly used actin-depolymerizing drugs: the
latrunculins and the cytochalasins. Latrun-
culin forms a high-affinity 1:1 complex with
monomeric actin [globular actin (G-actin)],
preventing incorporation into filamentous
actin (19). The lack of available G-actin for
polymerization changes the equilibrium be-
tween G-actin and F-actin so that F-actin
depolymerizes. Cytochalasins inhibit poly-
merization by capping free barbed ends, thus
preventing the addition of G-actin to actin fil-
aments (13), leading to net-depolymerization.
In tip-growing pollen tubes and root hair
cells, the consequences of treatment with
actin-depolymerizing drugs have been care-
fully analyzed. In both cell types, growth is
inhibited when low concentrations of actin-
depolymerizing drugs are applied (31, 47, 50,
71). At still lower concentrations of actin-
depolymerizing drugs, the expanding apex
of tip-growing cells swells. This root hair
swelling is concentration dependent to a con-
centration of 0.1 μM of cytochalasin D (50).
Surprisingly, the amount of available data con-
cerning the consequences of actin depolymer-
ization on intercalary cell growth is limited.
Plants grown in medium complemented with
a high concentration of latrunculin B (10 μM)
for two weeks show little alteration in cell di-
vision organization, but cell elongation is re-
duced dramatically (4). A two-day treatment
of Arabidopsis roots with cytochalasin B causes
root cells to swell radially (6).

Observations made using pharmaceuticals
can be compared to the phenotypes of actin
mutants. Mutations of the Arabidopsis ACT7
actin gene cause a reduction in the total
amount of F-actin in vegetative tissue (32).
Consequently, germination is delayed and less
efficient, and root growth is retarded and
wavy. In plants homozygous for the most se-

G-actin: globular
actin (actin
monomer)

Barbed end: An
actin polymer has
two ends; the barbed
(+) end and the
pointed (−) end. The
barbed end has a
higher affinity for
monomers and
grows at a greater
rate

Bundling: the
parallel or
antiparallel close
alignment of
individual actin
filaments to form an
actin cable

Intercalary growth:
relatively unfocused
insertion of new cell
wall material within
a defined area of
plant cell wall,
resulting in “diffuse”
growth, as opposed
to the highly focused
process of tip growth

vere mutant alleles, root apical cells are not
organized in straight files with oblique cell-
cell junctions (32). Mutations of ACT2 (act2-
1; deformed root hairs (der) 1–1 to 1–3) cause
phenotypes restricted to root hair position-
ing and growth (69, 79). Although overexpres-
sion of ACT2 under its own promoter does
not cause any strong defects, overexpression
of ACT1 under the ACT2 promoter causes
dwarfed plants and morphological changes in
most organs, which correlates with a strong
increase in actin polymerization and bundling
(46). These data show that plant actin iso-
forms must vary in their biochemical prop-
erties, and both the expression levels of actin
genes and their developmental context are im-
portant during plant development to achieve
cell expansion.

In trichomes, the effects of actin depoly-
merization during different developmental
stages of individual cell expansion have been
studied in detail. Trichomes are structures
that extend from the surface of many aerial or-
gans. Arabidopsis leaf trichomes are unicellular,
highly polarized, and consist of a stalk with an
average of three branches. The relatively con-
sistent size and spacing of branches makes leaf
trichomes a powerful morphogenetic model.
Treatment with cytochalasin or latrunculin
disrupts trichome morphogenesis: The first
stages of trichome development (stalk elon-
gation and branch initiation) take place nor-
mally (66, 86); however, during later develop-
mental stages, actin depolymerization causes
branches to swell, twist, or abort. For distor-
tion to occur, the location of exocytosis must
be altered by actin depolymerization, not just
inhibited (83). This suggests that during cer-
tain types of intercalary growth F-actin guides
rather than drives the zones of cell expansion.

ACTIN-BINDING PROTEINS IN
PLANTS

In all eukaryote cells, F-actin configuration
and actin dynamics are determined by the
actions of numerous ABPs. The actions of
different classes of ABPs regulate aspects
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Nucleation: the
thermodynamically
unfavorable stage of
actin polymerization
in which individual
monomers form the
“seed” of a new
filament

Arp: actin-related
protein

of actin biochemistry including nucleation,
bundling, filament capping, fragmentation,
and monomer availability; other ABPs are in-
volved in transport along actin filaments or
use actin as a scaffold. Below, we discuss the
functions of ABPs in actin organization and
plant development.

Actin Nucleators

Actin nucleation is the formation of a new
actin filament from G-actin. It can occur
spontaneously when the G-actin concentra-
tion is high. However, despite high concen-
trations of G-actin in living cells, G-actin is
prevented from nucleating spontaneously by
actin-sequestering proteins such as profilin,
and chaotic spontaneous nucleation is un-
likely to be responsible for F-actin formation
in vivo. Recently, specialized actin-nucleating
proteins were found to play essential roles in
actin-dependent plant growth processes.

The Arp2/3 Complex

In animals, protists, and fungi the activated
Arp2/3 complex nucleates actin by promot-
ing barbed-end actin assembly while capping
the pointed end. The complex attaches itself
to the flanks of existing filaments and initi-
ates a new F-actin branch at an angle of 70◦

relative to the parent filament. The Arp2/3
complex consists of seven subunits [Arp2,
Arp3, ArpC1/p41, ArpC2/p31, ArpC3/p21,
ArpC4/p20, and ArpC5/p16 (39)]. Homologs
of all Arp2/3 complex subunits are present
in plants (64), but to date there is no
in vitro biochemical evidence that a plant
Arp2/3 complex nucleates actin filaments in
a similar fashion to other eukaryote Arp2/3
complexes. However, components of the Ara-
bidopsis Arp2/3 complex can complement mu-
tations of yeast homologs, and vice versa,
inferring the existence of a plant complex (25,
59). In addition, mutations in the plant Arp2/3
complex can be complemented with mam-
malian subunits (65).

Three “distorted” class mutants have been
shown to encode subunits of the Arp2/3 com-

plex: wurm is a mutant of the Arp2 subunit,
distorted1 is a mutant of the Arp3 subunit, and
crooked represents the ArpC5/p16 subunit (59,
61, 64, 65). The most dramatic phenotype can
be observed in trichomes, which develop a
distorted morphology highly similar to that
caused by actin-depolymerizing drugs, indi-
cating that these mutant phenotypes are gen-
erated by defects in the actin cytoskeleton (66,
86). Besides defects in trichome development,
root hair growth under certain conditions is
disturbed in Arp2/3 mutants (64, 65). The
root hair phenotype varies from wavy growth
to a widened diameter to root hairs with mul-
tiple tips. Also, less pronounced interlocking
of lobes between leaf pavement cells and the
curling of hypocotyl epidermal cells during
periods of rapid elongation in Arp2/3 mutants
have been reported (64, 65).

The changes in actin organization, caused
by mutations in Arp2/3 complex subunits,
have best been studied in trichomes. Using
the GFP-mTalin probe, Mathur et al. (64,
65) show severe, localized aggregations of
actin. Using immunolocalization and phal-
loidin staining, the Szymanski group (25, 59)
concludes that the actin filaments failed to lo-
calize as coherent populations that are aligned
with the long axis of the cell. In addition they
show that the amount of actin in the core
of trichome branches, compared to the to-
tal amount of actin (core and cortical actin
together), is reduced in Arp2/3 complex mu-
tants. From these descriptions it can be con-
cluded that the actin organization in Arp2/3
mutant trichomes differs somewhat when al-
ternative actin visualization techniques are
used.

A functioning Arp2/3 complex is essential
in yeast where deletion of several subunits is
lethal (93). The Arp2/3 complex is also es-
sential in C. elegans (82) and Drosophila (43,
100). In mammalian cells, RNAi inhibition
of the Arp2/3 complex inhibits cell growth
(37). In contrast, plants only develop sev-
eral subtle, tissue-specific, developmental de-
fects, as discussed above. Also, the loss of total
F-actin content appears to be far less severe in
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plants compared to animal and protist cells.
This points to a less pronounced role of
the Arp2/3 complex in the biochemistry of
plant actin nucleation than in other eukary-
otic organisms.

Formins

Formins represent a second major group of
actin nucleators that stimulate de novo actin
nucleation and extension from the barbed
end. Paradoxically, fungal and animal formins
partially cap the growing barbed end (56,
76, 102), yet in some cases can accelerate
monomer incorporation at the barbed end be-
yond the limits of free diffusion (80).

Unlike the putative plant Arp2/3 complex,
plant formins have been studied to some ex-
tent in vitro. Four plant formins (AtFH1,
AtFH4, AtFH5, and AtFH8) have been shown
to nucleate purified actin, and allow exten-
sion from the barbed end of filaments (44,
70, 96, 20a). Like other formins, the plant
formins appear to bind to the barbed end of F-
actin, inhibit actin depolymerization from the
barbed end, and partially protect the barbed
end from other proteins that otherwise would
terminate barbed-end growth. The study of
the biochemistry of plant formins is com-
plicated by several factors including the di-
vision of plant formins into two large and
distinct clades, the absence of recognizable
autoinhibition domains that are found in ani-
mal and yeast formins, and the direct tethering
of group I formins to lipid membranes. The
21 plant formins are divided by sequence sim-
ilarity and domain organization into groups I
and II (20, 21), but only group I formins have
been studied in vitro. The divergence between
groups I and II extends to the residues pre-
dicted to make contact with actin monomers,
suggesting that group II formins may have
a very distinct biochemistry. Also, few in
vitro studies have included longer fragments
containing transmembrane domains and pu-
tative control regions that might influence
the interactions between plant formins and
actin.

AtFH: Arabidopsis
thaliana formin
homolog

When overexpressed in tobacco pollen
tubes, the actin-nucleating domains of group
I formin AtFH1 increase the number of actin
cables (18), indicating that group I plant
formins can induce actin polymerization in
vivo. Pollen tubes transformed with less than
1 μg of full-length AtFH1 transgene show
an initial increase in growth rate followed by
subsequent growth inhibition as F-actin ca-
bles begin to accumulate (18). In root hairs,
overexpression of full-length AtFH8 can in-
duce the accumulation of fine F-actin and the
disruption of tip growth (96). Expression of
the N terminus of AtFH4 without the actin-
nucleating C terminus also disrupts root hair
growth (20a). The overexpression of AtFH1,
AtFH4, and AtFH8 shows that formins have
the potential to affect growth through F-actin
formation, but the actual function of most
plant formins remains unknown. So far only
one isoform, AtFH5, has been reported to
have any null phenotype (44). Interestingly,
this is a reduction in the rate of cell wall for-
mation, supporting the hypothesis that plant
formins within a natural context participate in
growth processes.

Gelsolin

A gelsolin-like protein that can nucleate actin
polymerization from monomers has been
identified in poppy pollen tubes (40). Gel-
solin can tightly cap barbed ends in vitro,
and only allows extension from the pointed
end of filaments (40). The pointed end has
distinct biochemical properties to the barbed
end, and the action of proteins such as pro-
filin are likely to inhibit pointed-end growth
within a plant cell. Gelsolin also severs actin
filaments and blocks the assembly of profilin-
actin complex onto actin filament ends and
enhances profilin-mediated actin depolymer-
ization. The localization and function of gel-
solin have not been investigated in vivo.

Heterodimeric Capping Protein

Heterodimeric capping protein binds tightly
to the barbed end of actin filaments. Like
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Sequestering
activity: the ability
of some
actin-binding
proteins to bind
G-actin and
temporarily remove
the monomer from
the cytoplasmic pool
of “free” actin
available for
polymerization

ADF: actin
depolymerization
factor

gelsolin, the barbed-end binding affinity of
plant capping protein allows it to act as a nu-
cleator that facilitates pointed-end elongation
(41). The elongation rate of filaments in vitro
is significantly slowed by a combination of
capping protein and profilin, as capping pro-
tein blocks barbed-end growth and profilin
actin is unable to associate with the pointed
end (41). In animals, capping protein dramati-
cally alters F-actin arrays generated by Arp2/3
complex activity (10), and it remains to be seen
whether plant capping protein function is re-
quired for plant Arp2/3 complex-dependent
growth processes.

To date, the number of varieties of actin-
nucleating proteins in plants is unknown,
and other classes of actin nucleators may
yet be identified. F-actin severing proteins
can conceivably produce a significant contri-
bution of free F-actin ends for plant actin
polymerization. Future work will reveal ad-
ditional insight into the regulation of free
barbed and pointed-end generation in plants
and how these processes contribute to plant
development.

Other ABPs that Affect Cell Growth:
Profilin

Profilin specifically binds G-actin. When
bound to profilin, G-actin cannot incorporate
at the pointed ends of actin filaments or nu-
cleate, whereas incorporation at the barbed
ends continues at the normal rate (75). The
sequestering action of proteins like profilin
allows cells to maintain high levels of actin
monomers without risking spontaneous nu-
cleation or filament extension. In some plant
cells actin exists at a 1:1 molar concentra-
tion with profilin (31). Because pollen grains
are packed with such a high concentration,
profilin is a major antigen responsible for
pollen allergies. Formins are designed to ex-
ploit actin monomers bound to profilin, and
the presence of profilin greatly influences
formin biochemistry (56, 80). Five isoforms
of profilin have been identified in the Ara-
bidopsis genome, and the biochemical proper-

ties of profilin vary from isoform to isoform in
Maize (54). In pollen tubes and Tradescantia
stamen hair cells, profilin is evenly distributed
throughout the cytoplasm, although some of
the profilin accumulates in the nucleus of
Tradescantia stamen hair cells for unknown
reasons (38, 89, 90). Transgenic plants over-
expressing PFN-1 have longer roots and root
hairs that are twice as long as wild-type hairs
(78). An increase in the amount of growth,
but no change in cell shape, suggests that pro-
filin does not play a role in spatially restrict-
ing actin turnover. It is not clear whether the
growth rate or the duration of the growth
period is increased in these lines. When ex-
pression of profilin was inhibited by antisense
RNA expression, a variety of developmen-
tal changes were found, including an over-
all dwarf phenotype with short hypocotyls
and early flowering. The dwarf phenotype
is caused by the development of shorter and
more isodiametrically shaped cells (78). This
indicates that a minimum amount of profilin-
bound monomeric actin has to be available for
proper cell expansion.

ADF/cofilin

ADF/cofilin binds both to G- and F-actin
and enhances actin dynamics by severing actin
filaments and increasing the depolymeriza-
tion from the pointed end (14, 35). The ac-
tivity of plant ADF is influenced by several
factors. Phosphorylation of Ser-6 decreases
the activity of plant ADF (85) and undoes
the localization of overexpressed GFP-ADF
to actin filaments (16). In contrast to ani-
mals, phosphorylation of plant ADF is reg-
ulated by a calmodulin-like domain protein
kinase (CDPK) (2, 85). The activity of ADF
is also inhibited by phosphatidylinositol 4,5-
bisphosphate (PIP2) or phosphatidylinositol
4-monophosphate (PIP) binding (35). Finally,
the activity of ADF is pH dependent. At high
pH (8.0), ADF severs actin filaments, whereas
it binds F-actin at a lower pH (6.0) (36). Dong
et al. (23) tested the consequences of over-
expression and inhibition of the ADF1 gene
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in Arabidopsis. Overexpression of ADF causes
irregular cellular and tissue morphogenesis
and reduces the growth of cells and organs
(23). In contrast, ADF inhibition results in
a delay in flowering and stimulated cell ex-
pansion, as well as organ growth (23). The
actin cytoskeleton was visualized with the live
cell actin probe GFP-mTalin. When ADF1
was overexpressed, this revealed the disap-
pearance of thick actin cables in different cell
types. ADF1 inhibition caused an induction
of actin cable formation. Although it should
be kept in mind that GFP-mTalin has been
shown to compete for binding places on F-
actin with ADF and thus inhibits the activity
of the latter (49), it is likely that an increase in
actin polymerization when ADF is inhibited
and a decrease in actin polymerization when
ADF is overexpressed occur.

In tip-growing cells, ADF plays an impor-
tant role in regulating actin dynamics. In root
hairs, ADF overexpression leads to a highly
irregular F-actin organization and the disap-
pearance of thick bundles of actin, resulting
in an increase in the radial root hair diam-
eter, whereas underexpression inhibits root
hair growth (23). In pollen tubes, a differ-
ent response is observed: Overexpression of
ADF inhibits pollen tube growth in a dose-
dependent manner (16). Differences between
the biochemical properties of pollen and veg-
etative ADFs have been found, which may
cause these contrasting responses (1).

AIP1

Plant Actin Interacting Protein 1 (AIP1), a
protein also conserved in yeast and animals,
enhances the activity of the lily pollen-specific
ADF1 in vitro in a synergistic manner (1).
The activity of this ADF isoform in the ab-
sence of AIP1 is remarkably low, and it is
not phosporylated, even though the conserved
Ser-6 is present (1). When at an equimolar
concentration, AIP1 enhances the activity of
LiADF1 in vitro by nearly three times (1).
Upon the expression of AIP1 RNAi species
and the subsequent reduction of endogenous

AIP1: actin
interacting protein 1

CAP: cyclase
associated protein

AIP1 protein levels, Arabidopsis leaves, roots,
shoots, and root hairs fail to expand normally
(48). These cell expansion defects are fatal
in lines where AIP1 expression is inhibited
strongly. The actin organization in intercalary
growing cells and root hairs is severely dis-
rupted. Thick bundles of actin appear in the
cytoplasm of intercalary growing cells, and
(unlike control root hairs) F-actin cables are
observed in the root hair tip (48). If AIP1
solely enhances the activity of ADF, a sim-
ilar phenotype would be expected in ADF-
inhibited plants (see previous section), but this
is not the case. Even though actin bundling
has been reported in both situations (23, 48),
ADF inhibition stimulates cell expansion and
organ growth whereas AIP1 underexpression
inhibits these processes. Further characteriza-
tion of the ADF-AIP1 biochemical relation-
ship is required to understand these pheno-
typic contrasts. The possibility exists that the
functions of plant AIP1 may extend beyond
the stimulation of ADF activity.

CAP

In yeast, Cyclase Associated Protein (CAP) is
a subunit of the cAMP-generating adenylyl
cyclase complex. CAP interacts with the actin
cytoskeleton in many eukaryotic species and
inhibits actin polymerization in vitro by se-
questering monomeric actin (27, 33). In Ara-
bidopsis, a CAP homolog was successfully used
to pull down actin and vice versa from cy-
toplasmic extracts (5), which might indicate
a direct interaction with plant actin. Over-
expression of the Arabidopsis CAP homolog
resulted in a lower level of fluorescence in
Bright Yellow 2 (BY-2) Tobacco tissue cul-
ture cells stained with fluorescent phalloidin,
from which the authors conclude that CAP in-
duces actin depolymerization. BY-2 cells over-
expressing AtCAP are inhibited from entering
mitosis. Overexpression of CAP in Arabidopsis
induces growth defects such as size reduction
of leaves and petioles caused by decreased cell
size and cell number. Arabidopsis plants over-
expressing profilin isoform PFN1 do not show
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ROP: Rho of Plants

Endocytosis: the
internalization and
recycling of vesicles
from the plasma
membrane

growth inhibition, but instead some cell types
show excessive expansion (78). Therefore, the
actin-sequestering role of AtCAP cannot be
entirely equivalent to that of profilin. Recent
work has shown that the S. cerevisiae homolog
of CAP prevents actin monomer addition to
the barbed end of F-actin whereas profilin
prevents monomer addition to the pointed
end (67). S. cerevisiae CAP also appears to en-
hance actin turnover mediated by ADF and
profilin (3). Plant CAP is therefore likely to
play a unique biochemical role in cytoskeletal
organization and plant development.

Actin-Bundling Proteins

Plants possess at least three classes of actin-
bundling proteins: villins (42, 91, 99), fim-
brins (55, 57, 68), and elongation factor-1α

(36). Villin bundles actin filaments in a unipo-
lar fashion (97) and localizes to actin ca-
bles in pollen tubes (91, 98) and root hairs
(87). In root hairs, microinjection of an anti-
body raised against villin causes unbundling
of F-actin (52, 87) and migration of the
nucleus toward the apex of growing root
hairs (52). Although villin-mediated actin
bundling reinforces F-actin against depoly-
merization by ADF, plant villins do not appear
to posses other activities of proteins from the
villin/gelsolin family (these include actin nu-
cleation, capping, depolymerization, and fila-
ment severing) (42). The activity of plant villin
isoforms can either be sensitive (99) or in-
sensitive (42) to the concentration of calcium
ions.

Fimbrins are actin filament cross-linkers
that are calcium concentration independent
(57), localize to actin filaments (55), and pro-
tect actin filaments against profilin-induced
depolymerization (57). Fimbrin has two actin-
binding domains. The second domain, fused
to GFP, is used for in vivo visualization of the
actin cytoskeleton in plant cells (48, 84, 92).

Elongation Factor-1α (EF-1α) is a pro-
tein with a dual function. It binds aminoacyl-
tRNA to the ribosome, but it also binds to
actin and bundles it, while inhibiting incorpo-

ration of monomeric actin at low pH (36). The
activity of EF-1α is enhanced by ADF (36).
Lopez-Valenzuela et al. (63a) show that dur-
ing maize endosperm development, the actin-
bundling properties of EF-1a differ.

Actin-bundling activity is shared by several
different families of plant ABPs, but much re-
mains to be discovered concerning the func-
tions of actin-bundling proteins in vivo and
their importance during plant development.

SIGNALING TO ACTIN

A striking example of the coordinated power
of ABPs comes from the in vitro reconsti-
tution of actin-based motility. This requires
the unpolarized biochemical activity of pro-
filin and ADF to maintain a pool of free G-
actin, and the polar stimulation of the Arp2/3
complex to produce localized F-actin (74). In a
plant cell the formation of F-actin arrays must
require the coordinated activation and/or re-
pression of a variety of ABPs in time and space.
Recent developments have begun to identify
signaling systems that orchestrate this activ-
ity in developing plant cells (see Figure 1).
The function of small GTPases in cytoskeletal
control is currently receiving wide attention.

ROPs

In tip-growing cells and leaf epidermal pave-
ment cells, Rho of Plants (ROP) GTPases are
involved in regulating cell expansion and lo-
calize to sites of tip growth and intercalary
growth (15, 17, 29, 45, 72). In addition, ROPs
localize to developing cell plates and cross
walls (72) and to Golgi bodies (17), as well
as particpate in endocytosis (11). The animal,
protist, and fungal homologs of ROPs (the
RHOs, RACs, and CDC42) are major reg-
ulators of the actin cytoskeleton.

Overexpression of constitutively active
ROP (CA-rop) leads to the production of
root hairs with multiple tips and isodiametric
swelling. Dominant negative forms of ROP
(DN-rop) cause inhibition of cell growth
(45, 72). In both cases, changes in the actin
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Figure 1
Major known control
pathways to the plant
actin cytoskeleton.
Proteins within the
red zone have been
proven to alter actin
biochemistry directly
whereas ABPs within
the yellow zone
(CHUP and SH3p1)
bind actin but with
unknown effects (58,
73). SPIKE1 (77)
and the PRONE
family (9) are ROP
GTPase exchange
factors with the
potential to stimulate
ROP activity.

configuration correlate with defects in cell
growth. Root hairs expressing DN-rop2 have
a reduced amount of fine F-actin in com-
parison to wild-type hairs, whereas in hairs
expressing CA-rop2 a dense network of fine
F-actin is present (45). Molendijk et al. (72)
show that the polar ROP signaling occurs be-
fore root hair growth initiates, indicating that
ROPs may serve as a polarity marker. Once
root hair growth is initiated, ROPs localize
to the expanding root hair tip. Changes in the
actin cytoskeleton and cell expansion have also
been reported in pollen tubes when ROPs are
overexpressed (17, 30). Excessive fine F-actin
accumulates in the apical region and a thick
band of transverse F-actin is formed in the
subapex, which correlates with a switch from
polar growth to isodiametrical swelling (30).
Overexpression of GTPase-activating protein
(RopGAP1) (30), and injection of antibodies
against Rop1 (63), caused a similar decrease in
the amount of apical fine F-actin and growth
inhibition. During the early expansion phase
of leaf pavement cells, the location of fine F-

RIC: ROP
interacting CRIB
motif protein

CRIB: Cdc42/Rac
interactive binding
protein

actin formation and cell expansion are deter-
mined by ROP proteins. Expression of CA-
rop2 leads to expansion over the whole cell
surface, which correlates with the formation
of cortical fine F-actin over the whole cell sur-
face. In contrast, expression of DN-rop2 leads
to inhibition of growth and a decrease in the
amount of cortical fine F-actin (29). These ob-
servations resemble observations made in root
hairs and pollen tubes: At the membrane sur-
face where expansion takes place, ROPs are
activated and fine F-actin is formed.

RICs: Effectors of ROP

RICs are CRIB motif-containing proteins
that interact with the active (GTP-bound)
form of ROP isoforms (94). Different classes
of RICs have been identified that activate an-
tagonizing pathways in pollen tube and leaf
pavement cell growth. In pollen tubes, Rop1
interacts directly with Ric3 and Ric4 (34,
94). Both Ric3 and Ric4 cause growth depo-
larization when overexpressed (34, 94). Ric4
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SCAR: suppressor
of Cyclic AMP
Receptor

stimulates the formation of F-actin in the
pollen tube apex (34). Ric3 overexpression
leads to an increased cytoplasmic calcium con-
centration in the apex of growing pollen tubes
that disassembles fine F-actin (34). Combined
overexpression of both Ric3 and Ric4 does not
cause changes in pollen tube growth, indicat-
ing that the balance between Ric3 and Ric4
activity is critical (34).

In leaf epidermal cells, a similar mech-
anism that requires balanced levels of two
counteracting Rics is essential for the interca-
lation of adjoining cells (28). Leaf epidermal
cells adhere together by forming a series of in-
terlocking lobes. GTP-bound Rop2 and Rop4
activate Ric4, which in turn induces local as-
sembly of cortical F-actin in zones of growth
that become lobes (28). Simultaneously, Rop2
and Rop4 inhibit Ric1 (28). Ric1 promotes the
formation of organized cortical microtubules
and in turn inhibits the formation of a grow-
ing lobe and Rop2/4 activation. This inter-
relationship between actin, microtubules, and
the cell wall during plant cell expansion has
been recently reviewed by Smith and Oppen-
heimer (85a). Through the local changes in
Rop2/4 activity, indentations and outgrowths
are formed by the two counteracting pathways
of Ric1 and Ric4 (28).

The components of the ROP pathway
downstream of Ric4 that effect changes to the
actin cytoskeleton remain to be identified, but
this pathway appears to be a major component
in the regulation of localized growth.

The SCAR Complex

The SCAR complex is an effector of Rac cy-
toskeletal reorganization in animals and pro-
tists, and recent work has identified homologs
of SCAR complex components in plants (7,
8, 12, 22, 24, 62, 81, 101, 103). Yeast-2-
hybrid assays and in vitro pull-down experi-
ments have demonstrated binary interactions
between these plant protein homologs that are
equivalent to those characterized in the mam-
malian complex (7, 8, 24, 26, 101). One mem-
ber of the putative plant complex, PIR121,

binds the active form of ROP2 (7) whereas
plant SCAR, another component, can acti-
vate the Arp2/3 complex in vitro and bind
G-actin (8, 22, 26). Null mutants of com-
ponents PIR121 and NAP1 phenocopy the
knockouts of the Arp2/3 complex, showing
almost an identical distortion of trichomes
and other epidermal cell types. This indicates
that the SCAR complex is required to acti-
vate the Arp2/3 complex. To date, mutant al-
leles of only one isoform of Arabidopsis SCAR
(SCAR2) have been found to exhibit a phe-
notype (8, 101). This again resembles that
of other Arp2/3 pathway knockouts, but is
less severe, indicating that other SCAR iso-
forms or other classes of Arp2/3 regulators
may perform similar functions to SCAR2 via
the SCAR complex.

CONCLUDING REMARKS

Accumulating evidence points toward the
importance of a subpopulation of dynamic
F-actin in growth processes. The morpho-
genesis of different cell types appears reliant
on the activities of different subsets of ABPs:
Pollen growth is insensitive to Arp2/3 muta-
tions but is sensitive to manipulation of pro-
filin or ADF, whereas trichome growth is so
dependent on Arp2/3 activity that Arp2/3 null
mutants resemble the effects of total actin de-
polymerization. Many plant ABPs have been
studied in biochemical assays in vitro, but
their precise role in plant growth is unchar-
acterized. Very fundamental questions con-
cerning how actin influences growth remain
to be answered: How do actin filaments guide
vesicles? Do polymerizing actin filaments ex-
ert forces against membranes, and if so, which
ones? How much of the influence of actin fil-
aments on growth is through the organization
of other systems such as the microtubule cy-
toskeleton?

Some of these questions might be an-
swered in part by discovering how and where
ABPs are manipulated within a plant cell.
The recent developments in the understand-
ing of ROP effectors has added support to
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the role of ROPs in signaling to the plant cy-
toskeleton. Activated ROP localizes to zones
of growth and F-actin dynamicity. One in-
tact pathway from GTPase signaling to F-
actin formation is beginning to emerge from
the plant SCAR complex, although the bio-
logical significance of the ROP2-PIR121 in-
teraction remains to be proven. Still to be
considered are the actions of other signal-

ing systems such as phospholipids and cal-
cium ions. Both affect the activities of muilti-
ple ABPs, and it has been suggested that both
systems are downstream of ROP signaling (53,
60). However, lessons from the study of an-
imal signaling pathways to the cytoskeleton
show that ABP control is often dependent
upon multiple pathways with extensive cross
talk and self-regulation.

SUMMARY POINTS

1. In plant cells, growth is limited to sites of exocytosis and coincides with local fine
F-actin arrays.

2. Actin and the Arp2/3 complex govern the locations of cell growth in Arabidopsis leaf
trichome cells, but unlike other eukaryotes, the plant Arp2/3 complex is not essential
for life.

3. Plant formins nucleate F-actin that grows from the barbed end in vitro and are involved
in plant growth processes in vivo.

4. Capping protein and gelsolin also have the potential to nucleate filaments, but these
grow from the pointed end only.

5. Profilin prevents spontaneous nucleation and chaotic polymerization by sequestering
G-actin, whereas capping protein potentially controls the availability of growing F-
actin barbed ends.

6. Recycling actin monomers through the actions of ADF and AIP1 maintains actin
dynamics and has complex effects on plant growth.

7. ROP GTPases promise to be the focus of a signaling network that controls multiple
cytoskeletal processes, including F-actin formation and cell morphogenesis.

8. RIC proteins are ROP effectors that act differentially to regulate actin and micro-
tubules during cell morphogenesis.

9. The plant SCAR complex regulates the Arp2/3 complex and is possibly a ROP effector.
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