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Endocytosis and vesicle recycling via secretory endo-

somes are essential for many processes in multicellular

organisms. Recently, higher plants have provided useful

experimental model systems to study these processes.

Endocytosis and secretory endosomes in plants play

crucial roles in polar tip growth, a process in which

secretory and endocytic pathways are integrated

closely. Plant endocytosis and endosomes are important

for auxin-mediated cell–cell communication, gravitropic

responses, stomatal movements, cytokinesis and cell

wall morphogenesis. There is also evidence that F-actin

is essential for endocytosis and that plant-specific

myosin VIII is an endocytic motor in plants. Last,

recent results indicate that the trans Golgi network in

plants should be considered an integral part of the

endocytic network.

Endocytosis is an essential process in all eukaryotic cells.
It is involved in the internalization of molecules from the
plasmamembrane and extracellular environment, plasma
membrane recycling, including uptake and the degra-
dation of signal molecules [1]. The recent increase of
interest in endocytosis has focused, to a large extent, on its
extensive roles in signaling. This includes the identifi-
cation of endosomes as motile signaling platforms [2],
Ca2C-regulated secretion and cycling of synaptic vesicles,
as well as of other exocytic and endocytic vesicles [3].
Moreover, endocytosis and endocytic proteins are linked
closely with human cancer [4,5]. Recent research has
questioned the text-book view of the structural and
functional segregation of exocytic and endocytic path-
ways, and indicated that secretory pathways in both
animal and plant cells are integrated closely with their
endocytic networks [3,6,7]. This is true not only for early
endosomes and recycling endosomes. Surprisingly, even
lysosomes and vacuoles, which are end-stations of the
degradative endocytic pathway, can serve as secretory
organelles in some situations [8–10].

The study of endocytosis in higher plants remained
relatively dormant for a long period because of the notion
that endocytosis would not work against the high turgor
pressure in plant cells. However, recent evidence argues
against this [6,11–17], and plants provide useful model
systems for studying signaling endosomes and cell–cell
communication based on vesicle recycling [6,11,12].
Corresponding author: Baluška, F. (baluska@uni-bonn.de).
Available online 11 July 2005

www.sciencedirect.com 0962-8924/$ - see front matter Q 2005 Elsevier Ltd. All rights reserved
Moreover, plant cells can internalize components of their
cell wall [10,11,13,15], which might provide an important
paradigm of an effective mechanism for remodelling extra-
cellular matrices in other organisms.

Compartments, molecules and markers

The endocytic machinery, which encompasses both mol-
ecules and membranous compartments, is well conserved
in higher plant species (Box 1; Figure I). In plants, animals
and yeast, some plasma membrane proteins together with
extracellular cargo are delivered to endosomes via clathrin-
coated vesicles, whereas other proteins are internalized
from plasma membrane domains that are enriched with
structural sterols (Box 1; Figure I).

In plants, several proteins that are involved in clathrin-
dependent endocytosis have been identified. These include
clathrin, adaptor proteins such as AP180, and two adap-
tins [16,17]. Clathrin-coated vesicles in plant cells are
smaller (70–90 nm) [16] than in animal cells (120 nm),
which might facilitate endocytic uptake against the high
turgor pressure of plant cells [14]. Other components that
interact with the clathrin coat and its adaptor proteins
(e.g. dynamins and associated proteins that contain an
SH3 domain) occur in plants and are involved in endo-
cytosis, vesicular trafficking and cytokinesis [18,19]. These
data demonstrate that clathrin-dependent endocytosis
and its molecular machinery are conserved in plants.
Structural sterols and lipid-raft domains also occur in
plants but have not been characterized in detail [20].
Nevertheless, plant structural sterols are reported to be
internalized into endosomes [21] and distributed within
endocytic networks (Box 1; Figure I) [11,12]. They have
been proposed to play a role in a constitutive endocytic
cycling of some plasma membrane transport proteins [6].

Three Rab GTPases, Ara6, Ara7 and Rha1, are specific
molecular markers of plant endosomes (Box 1; Figure I).
However, there is controversy about using Rab markers
to identify early and late endosomes in transient over-
expression systems. For example, Ara7 and Rha1 have
been localized to both early [22] and late endosomes [23].
This might be explained by a model in which there is
domain-specific maturation of early endosomes into late
endosomes when early endosomes, which are enriched
with Ara7 and Rha1, progressively recruit Ara6 and,
presumably, other late endocytic molecules, in a domain-
specific fashion [22,23]. Because the plant endomembrane
system is highly dynamic [24], with extensive interactions
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Box 1. Endosomal compartments in plants

Early endosomes are the first station and branch point in the endocytic

pathway in plants. They accumulate endocytic tracers within 2–5 min

and serve as sorting compartments for the newly internalized cargo.

They are believed to participate in the rapid cycling of plasma

membrane molecules but are not well defined structurally (Figure I).

Recycling endosomes are loosely defined compartments that are

involved in the recyclingand secretion ofcargo to the plasmamembrane.

Late endosomes are identical to multivesicular bodies and/or

prevacuolar compartments where endocytic and biosynthetic path-

ways converge. They play an important role in the sorting of new

synthesized proteins to vacuoles. Late endosomes are most likely to

represent a branch-point in the endocytic pathway that leads to the

secretion of cargo to either the vacuole or the cell surface. Late

endosomes have been defined structurally and molecularly (Figure I).

They contain small internal vesicles in their lumen, and are labelled

10–20 min after exposure to endocytic marker dyes (Figure I).

Secretory endosomes participate in exocytosis by either generating

secretory vesicles or fusing completely with the plasma membrane.

Lytic vacuoles are compartments that are specialized for the degra-

dation and turnover of cargo, and are equivalent to mammalian

lysosomes and yeast vacuoles (Figure I).

The identity of endocytic compartments that correspond to

mammalian early/recycling and late endosomes, lysosomes and

TGN, are defined operationally using either the time-course of

internalization or appearance of endocytic tracers such as FM

dyes and filipin-labelled sterols, and by the functional accumula-

tion of molecular markers such as Rab GTPases, SNAREs, ARF,

ARF-GEF, vacuolar-sorting receptors and PtdIns(3)P-binding FYVE-

domain (Figure I).

Plant-specific problems with endosomal terminology
Plant-cell biologists have tended to develop their own terms

such as ‘partially-coated reticulum’ (PCR) and ‘pre-vacuolar com-

partment’ (PVC) for some endocytic organelles [6,11,12,29]. PCR

might correspond to either the early endosome or the TGN, but

its identity has not been confirmed in vivo [6,12]. By contrast, the

PVC and MVB are thought to represent the same compartment,

which is most likely to belong to the late endosomal system in

plants [29]. Therefore, we use the term ‘late endosome’ to refer

to the PVC and MVB in this review. We use the term ‘lytic vacuole’ for

the plant compartment that is equivalent functionally to the

mammalian lysosome.
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Figure I. Endocytic network in plant cells. Clathrin-coated pits (CCPs) and lipid-raft domains that are enriched with structural sterols (double blue triangles) on the plasma

membrane (PM) serve as internalization platforms for plasma membrane-associated molecules and cargo. These internalized molecules are sorted by two populations of

plant endosomes: (1) by early/recycling endosomes; and (2) late endosomes/prevacuolar compartment (PVC)/multivesicular body (MVB); and by the TGN. On sorting,

these molecules are either recycled and secreted back to the PM or delivered to lytic vacuoles for degradation and turnover. Internalization of membrane-bound,

fluorescent, styryl FM dyes is indicated by double red elipses. Corresponding molecular markers are depicted in different colours: SNAREs are in red; Rab-GTPases are in

green; and vacuolar sorting receptors are in blue. Inhibitory effects of BFA and wortmannin are indicated in yellow. Abbreviations: AP, adaptor protein; ARF, ADP

ribosylation factor (small GTPase); BP, binding protein; CCV, clathrin-coated vesicle; FYVE, PtdIns(3)P-binding domain; GNOM, ARF-GEF (guanine nucleotide exchange

factor for ARF); VSR, vacuolar-sorting receptor. The terminology of plant Rab GTPases is not yet settled. Ara6 corresponds to AtRabF1, Ara7 to AtRabF2b, and Rha1

to AtRabF2a.
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between diverse endocytic compartments [22], caution
should be taken when interpreting data obtained in
transient overexpression systems. This is particularly
significant if molecular markers are overexpressed in
www.sciencedirect.com
heterologous species because this might result in ectopic
expression rather than the true localization pattern.
Recent data from our laboratory [24] indicate that strong
overexpression of a FYVE-domain construct results in its
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(a) (b)FM1–43 FM4–64

Figure 1. Integrated endocytic and secretory networks in tip-growing root hairs of plants. (a,b) Actively growing root hairs, like pollen tubes [35,71], internalize endocytic

tracers FM1–43 (a) and FM4–64 (b) within minutes and accumulate them throughout their growing tips. Bars, 4 mm. Pictures courtesy of Miroslav Ovecka (University of

Vienna, Austria).
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mislocalization to a vacuolar compartment [24,25], whereas
moderate and low expression levels assure proper local-
ization to endosomes. To avoid such artefacts, results from
transient overexpression systems should be supported by
data from stably transformed, homologous plant lines
that, ideally, carry marker constructs under the control of
their own promoters, and/or by localization of correspond-
ing endocytic proteins in situ.

In Arabidopsis, Ara7 localization is sensitive to
ARF-GEF GNOM [26]. In addition, Ara7 colocalizes with
the soluble N-ethyl-maleimide-sensitive factor attach-
ment protein receptor (SNARE) VAMP727 [22]. By con-
trast, structural sterols that are internalized from the
plasma membrane and prevacuolar SNAREs, such as
SYP21 and SYP22, colocalize with Ara6 in late endosomes
[21,22]. Systematic analysis of the expression and local-
izationofSNAREs inArabidopsis revealedthat17SNAREs,
including SYP111/KNOLLE and AtVAMP721, localize to
both the plasma membrane and endosomes [27]. Two
SNAREs, VAMP727 and AtVTI14, are specific for early/
recycling endosomes, and six SNAREs, SYP21, SYP22,
SYP51, SYP52, AtVTI11 and AtVTI13, regulate transport
between late endosomes and the lytic vacuole [27].
Vacuolar transport also needs specific vacuolar-sorting
receptors such as BP80 [28], which has been identified
recently as a reliable marker for prevacuolar compart-
ments that represent late endosomes in plants (Box 1;
Figure I) [29]. It is possible that Rab GTPases and
SNAREs are specialized for either early or late endosomal
compartments, but their precise functions, mechanisms of
actions and interactions are unknown in plants.

FM-dyes are water-soluble, amphiphilic, styryl com-
pounds that are non-fluorescent in aqueous media but
fluoresce intensely on insertion into the outer leaflet of the
plasma membrane [30]. They have been used extensively
as membrane-selective markers to monitor endocytosis
and exocytosis. In neurons that are actively releasing
neurotransmitters, these dyes are first internalized and
then secreted via recycling synaptic vesicles, and whole
nerve terminals become brightly stained [31]. FM4–64 is
an invaluable tool to study endocytosis and endosomes in
plants [14,22,24,26,27,29,30,32]. Thus, it is generally
accepted that FM4–64 is an endocytic tracer and vacuolar
marker, depending on the exposure times (Box 1; Figure I).
In tobacco BY-2 cells in suspension, FM4–64 partially
colocalizes with sialyltransferase, a molecular marker of
the trans-Golgi cisternae and the trans-Golgi network
(TGN) [30,33], but not with the GDP-mannose transporter
[29,34], a true Golgi marker. The physico-chemical
www.sciencedirect.com
properties of FM1–43, an alternative endocytic marker,
differ only slightly from that of FM4–64 [14,36]. However,
the reliability of FM1–43 as an endocytic tracer in plants
is not unequivocally settled yet [14,35–37]. Although
FM1–43 sometimes labels mitochondria in turgid guard
cells [14], it is, apparently, a reliable endocytic marker in
other cell types such as BY-2 suspension cells and root
hairs in which the labelling pattern seems indistinguish-
able from that of FM4–64 (Figure 1) [36,37].

Exposure of plant cells to FM-dyes for up to 10 min
results in colocalization of thedyeswithAra7,Rha1,GNOM,
the KAT1 KC-channel, SYP111/KNOLLE, AtVAMP721,
AtVAMP727, AtVTI14, and the FYVE-domain marker for
phosphatidylinositol 3-phosphate [PtdIns(3)P] in early and
recycling endosomes (Box 1; Figure I) [14,22,24,26,27].
With longer exposures (10 min–2 h), FM4–64 labels also
late endosomes and colocalizes with Ara6, BP80, pre-
vacuolar SNAREs and vacuoles [21,22,24,27,29].
Endocytosis of receptors

Biotinylated proteins such as bovine serum albumin
(BSA) and horseradish peroxidase (HRP) have been used
as endocytic markers that are internalized into plant cells
by a process with the characteristics of receptor-mediated
endocytosis [38]. Non-biotinylated BSA and HRP do not
enter plant cells, which indicates that the uptake of these
markers depends on a specific receptor that recognizes the
biotin moiety. Additionally, bacterial elicitors such as
lipopolysaccharides are internalized into plant cells by
endocytosis [39]. However, the receptors that mediate
endocytic uptake of biotin and lipopolysaccharides are still
to be discovered and characterized.

Receptor endocytosis in plant cells has been proved for
the brassinosteroid receptor BRI1, which regulate diverse
aspects of plant growth and development. BRI1, the trans-
membrane leucine-rich repeat (LRR) protein kinase, inter-
actswithanotherLRRkinaseBAK1 (alsoknownasSERK3).
Recently, heterodimerization, endocytic internalization and
constitutive cycling of BRI1 and SERK3 has been reported
in vivo [40]. This constitutive cycling is independent of
the brassinosteroid signal but co-expression of BRI1 and
SERK3 results in accelerated endocytosis. The same group
reported previously that the similar receptor-like kinase
(RLK) SERK1 must interact with kinase-associated pro-
tein phosphatase (KAPP) to accomplish endocytosis [41].
Another plant RLK, CRINKLY4, undergoes rapid endo-
cytic internalization and both signaling and turnover of
this RLK depend on its extracellular domain, which forms
a b-propeller [42]. Additionally, endocytic trafficking of

http://www.sciencedirect.com


Review TRENDS in Cell Biology Vol.15 No.8 August 2005428
RLKs such as CLV1 (CLAVATA 1) and other RLKs that
belong to the SERK subfamily is expected because their
kinase domains interact with the endosomal sorting nexin
[43]. Another example is the receptor for the fungal
elicitor ethylene-inducing xylanase (LeEix2) which is a
cell-surface glycoprotein that possesses a signal for
receptor-mediated endocytosis. A point mutation (Tyr993
to Ala) in the endocytosis signal of LeEix2 abolishes its
ability to induce a hypersensitive response [44].
Fluid-phase endocytosis and phagocytosis-like

internalization of bacteria

Lucifer yellow (LY) is a membrane-impermeable fluor-
escent dye that is used widely as a marker of fluid-phase
endocytosis [45], but its use in plants cells should be
treated with caution because it is transported actively
across membranes in some cell types [46]. Plants possess
the plant-specific class VIII myosins that act as an
endocytic motor for the fluid-phase endocytosis pathway
that is visualized with LY [45]. Plant cells internalize
sucrose via fluid-phase endocytosis, and sucrose even acts
as a signal for the induction of this endocytic pathway [47].
Furthermore, the combination of LYand FM4–64 has been
used recently to identify autolysosomes in plant cells in
culture [48]. Plant cells also undergo phagocytosis-like
internalization of symbiotic bacteria of the genus Rhizo-
bium, a process that depends on the action of Rab GTPases
and the generation of PtdIns(3)P [49,50].
Endocytosis, endosomes and the TGN

It is known that endosomes interact extensively with the
TGN during protein sorting. Generally, the TGN is con-
sidered to be an integral part of the Golgi apparatus, but
several observations indicate that the TGN is an inde-
pendent organelle in plant cells [27,28]. Moreover, some
data from plant and animal cells are at variance with the
TGN as part of the Golgi apparatus and indicate that
the TGN is part of the endocytic network. For example,
endosomes and TGN share endocytic molecules such as
dynamin, clathrin, endocytic SNAREs, Rabs, ARFs, and
ARF-GEFs such as GNOM and BIG2 [11,27,28,51–53],
and they are characterized by abundant structural
sterols in their membranes [21] and by the formation
of tubules [54]. Finally, plant endosomes and TGN ele-
ments aggregate in brefeldin A (BFA)-treated cells and
form BFA-induced compartments that show typical peri-
nuclear localization [11–13,21,26,55]. BFA is a fungal
toxin that targets specifically ARF-GEF proteins that are
involved in vesicle trafficking and regulated secretion
from either the TGN or endosomes. In this way BFA blocks
secretory pathways, but not the first internalization steps
in endocytosis [11]. Similarly, in BFA-treated animal cells
the endomembrane system divides at the TGN–Golgi
interface and endosomes aggregate with TGN elements
to form a perinuclear TGN–endosomal hybrid organelle
[56,57] that resembles the BFA-induced compartments of
plant cells [11–13,21,26]. By contrast, the Golgi apparatus
of BFA-treated animal and plant cells in suspension
cultures merge with the endoplasmic reticulum (ER) to
form a Golgi apparatus–ER hybrid organelle [55–57].
www.sciencedirect.com
In plant cells analyzed by electron microscopy, the TGN
does not colocalize with the Golgi apparatus [28], and
several reports show that this is also the case in animal
cells. In one of themost dramatic examples in animal cells,
the TGN accumulates at the synapses of neuronal cells
[58] whereas the Golgi apparatus is localized deep within
these cells near the nuclear surface, as in all animal cells.
Moreover, the characteristic split of the endomembrane
system after treatment with BFA, when TGN elements
accumulate with endosomes to form the BFA-induced
compartments of plant cells [11] and the TGN–endosomal
hybrid organelle of animal cells [56,57], provides strong
support for a concept in which the TGN is an inherent part
of the endocytic network in plants. Finally, the most con-
vincing argument for the independent nature of the TGN
is provided by the analysis of plant SNAREs [27].

These studies indicate that the TGN is obviously an
inappropriate term for this organelle, especially because
many authors use the terms TGN and Golgi apparatus
interchangeably. Thus, changing the term TGN to ‘post-
Golgi network’, as proposed in [27], would be more con-
sistent with its characteristics as part of the dynamic
system of the endocytic network.
Endocytosis, endosomes and the actin cytoskeleton

In plant cells, pharmacological studies using the actin-
disrupting drugs latrunculin B and cytochalasin D reveal
that the intact F-actin cytoskeleton is important for the
endocytic internalization of plasma membrane proteins,
structural sterols, cell wall pectins and extracellular fluids
[11–13,21,26,45]. Furthermore, endocytosis and cycling of
structural sterols is compromised in actin mutants [21].
These data are consistent with a crucial role of the actin
cytoskeleton in endocytosis in other eukaryotic systems
such as yeast and mammals [59,60].

In addition to its involvement in endocytic internaliz-
ation, the actin cytoskeleton is also required for short-
range endosomal movements in mammalian and yeast
cells [59,60], and for short-range and long-range move-
ments in plant cells [24]. Further studies reveal that
uptake of the fluid-phase marker LY occurs preferentially
at plasmodesmata domains, which are enriched with
F-actin and the plant-specific myosin VIII [45,61,62].
Inhibition of myosin ATPase activity with 2,3 butanedione
monoxime slows endocytic uptake of LY, which indicates
an active role for myosin(s) in this process [45]. Plants
contain two classes of myosin; class VIII and XI. Cell-
periphery-associated myosins of class VIII are the only
candidates for an endocytic motor because class XI
myosins do not localize to the cell periphery and are
important for intracellular trafficking [63]. In animal
cells, myosin VI has been implicated in endocytosis,
vesicular trafficking and cellular processes such as cell
migration and mitosis [64]. Interestingly, plant myosin
VIII localizes to plant synapses [61,62,65], while myosin
VI is localized to neuronal synapses, where it is involved in
the endocytosis of glutamate receptors [66]. The particular
functions of class VIII myosins in endocytosis in plants
remain to be established.
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Integrated endocytic and secretory networks regulate

cell polarity and tip growth

Endocytosis plays an important role in polarity and tip
growth. For example, the endocytic protein Sla2p/End4,
which links the endocytic machinery with the actin cyto-
skeleton [67], is crucial in establishing zones of polarized
growth in yeast [68]. Tip-growing plant cells, such as root
hairs and pollen tubes, have persistent polarized growth
that depends on both secretory and endocytic pathways. It
is believed that tip-growing cells need balanced exocytosis
and endocytosis to regulate the amount of plasma mem-
brane at the apices of these cells, and to maintain their
highly polarized pattern of growth [24,35,37,69,70]. Import-
antly, endocytosis is concentrated in the growing tips of
these highly polarized cells [24,35,37,70].

The endocytic tracers, FM4–64 and FM1–43, are
internalized rapidly by pollen tubes and root hairs,
preferentially at the growing apices [24,35,37,71]. In
growing root-hair tips, highly motile plant endosomes
have been visualized with independent molecular markers
including a double FYVE-domain peptide and endosomal
Rab proteins such as Rha1 andAra6 [24]. FM dyes label the
whole apex, the so-called clear zone, of pollen tubes and root
hairs after 10–15 min (Figure 1a,b) [37,71]. These findings
indicate that the endocytic and exocytic pathways are
integrated closely in polarized, tip-growing plant cells.

Clathrin-coated pits and vesicles are also concentrated
at the apices of pollen tubes and root hairs (Figure 2)
[69,70]. Actin patches, which are assumed to be sites of
endocytosis, are tip-focused in growing root hairs [24],
which correspond with important roles of the actin cyto-
skeleton in endocytosis and polarized-tip growth. More-
over, actin polymerization and intact actin filaments,
but not microtubules (for animal cells see [72]), are
essential for the movement of early and late endosomes
in root hairs [24].
Polar auxin transport, synaptic cell–cell communication

and gravisensing

Transcellular transport of auxin, which is a typical feature
of plant tissues and organs [73], depends on endocytosis
(a)

Figure 2. Clathrin-coated pits and vesicles in pollen tubes. (a) Clathrin-coated pits (

multivesicular bodies (asterisks) localize to the sub-apical region of cryofixed/freeze-sub

(University of Nijmegen, Netherlands).

www.sciencedirect.com
and endocytic networks [6,26,74]. In addition to aberrant
cell walls (see below), gnom/emb30 mutants have defects
in the polar transport of auxin because of failure in endo-
cytic recycling of putative auxin transporters of the PIN
family [26,51]. In addition, classical inhibitors of the polar
transport of auxin also inhibit endocytosis [74]. Further
close links between auxin and endocytosis in plants have
been reported recently: first, auxin treatment increases
endosomal PtdIns(3)P [75]; and second, exogenous auxin
inhibits endocytosis in plant cells [76]. Studies of plant
endocytosis reveal that ARF-GEF GNOM is an endosomal
protein that maintains the integrity of endosomes and is
essential for cycling of the putative auxin-efflux cofactor
PIN1 and polar auxin transport dependent on vesicle
recycling [26,51]. This link between ARF-GEF and
endosomes is surprising [51]. Recently, however, a
BFA-sensitive ARF-GEF in animal cells, BIG2, is also
reported to localize to endosomes and the TGN [52], and to
be essential for their integrity [53]. These findings
demonstrate that data obtained using plant cells might
also be relevant to animal cells.

BFA-mediated inhibition of all secretory pathways
stops cell–cell transport of auxin almost immediately
[77]. Thus, it is possible that auxin is secreted in a
neurotransmitter-like fashion [65,76,78]. Auxin is trans-
ported across F-actin- and myosin VIII-enriched end-poles,
which represent plant synapses [65]. Its transcellular
transport is extremely sensitive to gravity, and most
auxin is transported along the gravity vector [65]. Recent
studies reveal that the auxin-dependent graviresponse
of Arabidopsis shoots depends on endocytic-like proteins
that have similarities to the J-domain protein RME8 of
Caenorhabditis elegans [79]. The significance of this find-
ing is far-reaching because the endocytic network might
participate in both plant gravisensing and graviresponses.
For example, gateable cell–cell channels called plasmo-
desmata [62], which interconnect plant cells into a
syncytium-like ‘supercell’, might be relevant for these
processes. In this respect, the RME8-like protein is also
implicated in the endocytic recycling of viral-movement
proteins [80] that target plasmodesmata and regulate
*
*

(b)

arrows) and clathrin-coated vesicles (arrowheads) localize to the apex, and (b)

stituted pollen tubes of Arabidopsis. Bars, 350 nm. Pictures courtesy of Jan Derksen
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(a) (b)

Figure 3. Endocytosis of cell wall cargo represented by GPI-anchored arabinogalactan-proteins (AGPs). (a,b) Immunogold electron-microscopic localization of AGPs

with the monoclonal antibody JIM13 shows presumptive cell wall signaling molecules at the plasma membrane, and in late endosomes and lytic vacuoles. AGPs are thought

to be internalized endocytically from the plasma membrane (indicated by arrowheads) and delivered to late endosomes resembling MVB and/or prevacuolar compartments

(a,b arrows), and then to lytic vacuoles (b, star) for degradation and turnover. For details, see [15,83].
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cell–cell transport of virus particles and endogenous
proteins [62,80]. Mutations that affect other proteins,
including VAM3 and VTI11 that are involved in the
vesicular traffic to lytic vacuoles, also result in defects
in shoot gravitropism [81,82]. Importantly, the VTI11
SNARE is invoked in vacuolar organization and gravi-
tropism and in the transcellular transport of auxin [82].

Cytokinesis and guard cells: the role of endocytosis and

endosomes in cell wall morphogenesis

Dividing and growing plant cells internalize massive
amounts of cross-linked cell wall pectins, and also cell
wall-associated arabinogalactan proteins anchored with
glycosylphosphatidylinositol to the plasma membrane
(Figure 3) [10,13,15,83]. Internalized pectins accumulate
within BFA-induced compartments alongside several
recycling proteins, which indicates that pectins might
also be recycled [11,13]. An attractive possibility is that
pectins which are cross-linked by either Ca2C or boron are
released from their cross-linkages and recycled back to cell
walls. This would maintain cell walls in a loosened state
that is essential for their growth. However, another pos-
sible reason for the accumulation of cross-linked pectins
in endosomes of dividing plant cells is that plant
cells undergoing cytokinesis need to generate a new cell
wall very quickly (in a few minutes). Plant endosomes,
the integrity of which is dependent on ARF1-related
GNOM/EMB30 activity, are filled with cross-linked cell
wall pectins and xyloglucan in dividing root cells [10].
Endosomal pectins serve as ‘ready-to-use’ building blocks
for the formation of new cell walls. In support of these
data, ADP ribosylation factor 1 (ARF1), which associates
with the plasma membrane and endocytic BFA-induced
compartments in maize [13], also localizes to the plasma
membrane, endosomes and TGN (Box 1; Figure I) [84] and
is essential for cytokinesis in root cells of Arabidopsis [84].
These data fit well with recent studies showing that both
endocytosis and endosomes are crucial in animal cyto-
kinesis [85]. Intriguingly, endosomes are involved in the
execution of cytokinesis [10] and in setting the division
plane in plant cells (Figure 4) [86].
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Another plant system that requires the rapid degra-
dation and formation of cell walls are guard cells of
stomatal complexes. These drive repetitive opening and
closing of stomata via rapid increases and decreases in
their size. The resulting dramatic change in cell-surface
area is accomplished by active endocytosis [32], and endo-
somal PtdIns(3)P is essential for these stomatal move-
ments [87]. Pectins are abundant in guard-cell walls, and
those involved in endocytic internalization [10] are also
essential for guard-cell movements [88].

Moreover, the importance of endocytosis for cell wall
morphogenesis is apparent from the development of
aberrant cell walls in mutants of endocytic proteins such
as dynamin [19] and the sec7-like protein GNOM with
ARF-GEF activity [26], which is also known as EMB30
[89]. Interestingly, pectins are mislocalized in cells of the
emb30 mutant [89], which links the GNOM/EMB30
protein to cell wall biogenesis. This is perhaps not
surprising, considering that GNOM/EMB30 regulates
endosomal recycling of PIN1 in early endosomes [26].
Cell wall pectins undergo the same route of vesicular
recycling as PIN1 [11,13,76], which might also depend
on GNOM/EMB30.

Outlook and perspectives

There is a resurgence of interest in plant endocytosis
[6,11,12]. Despite all the negative predictions, highly
turgid plant cells accomplish endocytosis [11,12] and
rapid recycling via secretory endosomes [6,14]. This is a
strong argument for the immense, ancient importance of
endocytosis in eukaryotic cells, which can be traced back
to the early evolution of eukaryotes. Many of the old
dogmas of plant biology might be on ‘shaky ground’ in the
face of new data on endocytosis. For example, new data
reveal that cell walls undergo rapid remodelling via
endocytosis [10,11,13,15,83] and that the TGN is probably
part of the endocytic network. Furthermore, intriguing
similarities between the roles of endocytosis in plants and
animals are emerging. Recent results [6,65,78] indicate
that plants, like animals, undergo a form of synaptic
cell–cell communication that involves rapid endocytosis
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(a) (b) (c)

Figure 4. An endocytic belt predicts the division plane in premitotic plant cells. (a) The preprophase band (PPB) of microtubules predicts the cell-division plane. (b,c) Dynamic

PPB microtubules induce local endocytosis as visualized with FM4–64 (B and C). Green color represents microtubules visualized with a GFP–MAP4 construct, and red color

depicts the FM4–64-labelled plasma membrane, endosomes and endocytic vesicles. For further details, see [86]. Images were taken from [86] with the agreement of the

corresponding authors, Pankaj Dhonukshe and Theodorus Gadella. Bar, 10 mm.
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and vesicle recycling. Moreover, the KC-channel TWIK1,
which is involved in neuronal excitation, has been iden-
tified as a modulator of the endocytic/recycling machinery
in animals [90]. Interestingly in this respect, the plant
KC-channel TRH1 [91] is required for the transcellular
transport of auxin, which is driven by endocytosis and
vesicular recycling [26,65,73,74,78]. The endocytic net-
work, particularly secretory endosomes, is now in the
spotlight of diverse fields including neurobiology, immuno-
biology, pathology, virology and plant biology. Higher
plants will surely be at the forefront of this fascinating
field of cell biology.
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Note added in proof
Two important papers have been published recently that advance the
issues covered in our review. First, out of 590 human kinases screened,
210 are involved in endocytosis [92]. Second, recycling chemokine
CX3CL1 (fractalkine) accumulates in mildly acidic juxtanuclear endo-
somes and TGN elements, whereas it becomes trapped in BFA-induced
compartments near nuclei [93]. These perinuclear, BFA-induced compart-
ments resemble those reported for BFA-treated plant cells.
References

1 Mellman, I. (1996) Endocytosis and molecular sorting. Annu. Rev. Cell
Dev. Biol. 12, 575–625

2 Howe, C.L. and Mobley, W.C. (2004) Signalling endosome hypothesis:
a cellular mechanism for long distance communication. J. Neurobiol.
58, 207–216
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