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Abstract
Flooding is an environmental stress for many natural and man-made
ecosystems worldwide. Genetic diversity in the plant response to
flooding includes alterations in architecture, metabolism, and elon-
gation growth associated with a low O2 escape strategy and an anti-
thetical quiescence scheme that allows endurance of prolonged sub-
mergence. Flooding is frequently accompanied with a reduction of
cellular O2 content that is particularly severe when photosynthesis
is limited or absent. This necessitates the production of ATP and
regeneration of NAD+ through anaerobic respiration. The exami-
nation of gene regulation and function in model systems provides
insight into low-O2-sensing mechanisms and metabolic adjustments
associated with controlled use of carbohydrate and ATP. At the de-
velopmental level, plants can escape the low-O2 stress caused by
flooding through multifaceted alterations in cellular and organ struc-
ture that promote access to and diffusion of O2. These processes are
driven by phytohormones, including ethylene, gibberellin, and ab-
scisic acid. This exploration of natural variation in strategies that
improve O2 and carbohydrate status during flooding provides valu-
able resources for the improvement of crop endurance of an envi-
ronmental adversity that is enhanced by global warming.
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Hypoxia (e.g.,
<20.9% and >0%
O2 at 20◦C):
characterized by
increased anaerobic
metabolism,
increased ATP
production via
glycolysis owing to
limited availability of
O2 for oxidative
phosphorylation, and
increased NAD+
regeneration via
lactate and ethanolic
fermentation.
Cellular ATP
content is reduced
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INTRODUCTION

Partial to complete flooding is detrimental
for most terrestrial plants because it hampers
growth and can result in premature death.
Some plant species have a remarkable capacity
to endure these conditions, and certain species
can even grow vigorously in response to flood-
ing. This interspecific variation has a strong
impact on species abundance and distribution
in flood-prone ecosystems worldwide (12, 31,
122, 138, 150, 151). Furthermore, flooding
has a severe negative influence on the produc-
tivity of arable farmland because most crops
are not selected to cope with flooding stress
(121). The Intergovernmental Panel on Cli-
mate Change (IPCC) (http://www.ipcc.ch)
reported that the anthropogenically induced
change of world climate increases the fre-
quency of heavy precipitation and tropical cy-
clone activity. This is likely to engender more

frequent flooding events in river flood plains
and arable farmland, particularly affecting the
world’s poorest farmers (1).

The observation that some plant species
can cope with flooding stress and others can-
not imposes the question of why a flooded
environment is detrimental. The adversity is
largely due to the dramatically reduced gas
exchange between plants and their aerial en-
vironment during partial to complete submer-
gence. Gases such as O2, CO2, and ethylene
diffuse very slowly in water (46). Because of
this tremendous barrier for gas diffusion, the
cellular O2 level can decline to concentrations
that restrict aerobic respiration (39, 46). De-
pending on the tissue and light conditions, the
cellular CO2 level either increases in shoots in
the dark and roots (47) or decreases in shoots
in the light (83). The endogenous concen-
tration of the gaseous plant hormone ethy-
lene increases in tissues surrounded by water
(59, 148). This accumulation activates adap-
tive signal transduction pathways, whereas
similar concentrations hamper normal growth
in many terrestrial plants (93). Furthermore,
complete submergence decreases light inten-
sity, dampening photosynthesis (141). A third
major change in the flooded environment is
the reduction of oxidized soil components to
toxic concentrations (12). In summary, flood-
ing is a compound stress in which the de-
cline in molecular O2 and thus the restriction
of ATP synthesis and carbohydrate resources
have major consequences for growth and sur-
vival. However, O2 depletion is not the only
active stress component, and often its impact
is restricted to nonphotosynthesizing organs
(84).

O2 shortage (hypoxia/anoxia) is not re-
stricted to flooding stress. It is a frequent
metabolic status of cells during normal devel-
opment, particularly in tissues with high cell
density, a high O2 demand, and/or restricted
O2 entry, such as meristems, seeds, fruits, and
storage organs (43). Fundamental insight into
the low O2–sensing mechanism, downstream
signal transduction, and metabolic alterations
that promote survival is key to increased crop
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production in flood-prone environments and
has wider implications for biologists (3, 43).
Most studies on flooding stress have focused
on relatively flood-tolerant species from gen-
era such as Oryza, Rumex, and Echinochloa.
Single species studies are valuable for an un-
derstanding of the regulation of various accli-
mations but less meaningful in an ecological
perspective. Here genetic diversity in accli-
mations to flooding stress is discussed side by
side with the molecular regulation of low-O2

responses and flooding tolerance. Ultimately
we aim to shed light on the genes, proteins,
and processes controlling these phenotypes.

GENETIC DIVERSITY OF
STRATEGIES TO SURVIVE
FLOODING

Not all species in flood-prone environments
are flood tolerant. Some species avoid flood-
ing by completing their life cycle between

Anoxia (e.g., 0% O2
at 20◦C):
characterized by
anaerobic
metabolism, NAD+
regeneration via
lactate and ethanolic
fermentation, and
ATP production
solely via glycolysis
(2–4 mol ATP per
mole hexose).
Cellular ATP
content is low, and
ADP content is
elevated

LOES: low-oxygen
escape syndrome

two subsequent flood events, whereas flood-
ing periods are survived by dormant life
stages [e.g., Chenopodium rubrum thrives in
frequently flooded environments by timing
its growth between floods and producing
seeds that survive flooding (134)]. Estab-
lished plants also use avoidance strategies
through the development of anatomical
and morphological traits. This ameliora-
tion response, here called the low oxy-
gen escape syndrome (LOES) (Figure 1),
facilitates the survival of submerged organs.
Upon complete submergence several species
from flood-prone environments have the ca-
pacity to stimulate the elongation rate of peti-
oles, stems, or leaves. This fast elongation can
restore contact between leaves and air but can
also result in plant death if energy reserves
are depleted before emergence. Concomitant
with high elongation rates, the leaves also de-
velop a thinner overall morphology, develop
thinner cell walls and cuticles, and reorient

Drained Submerged

Low Shoot elongation

Low High

High

Aerenchyma

High Low Leaf thickness

Around intercellular spaces Toward epidermis Chloroplast position

Trait

aaa

bb

Figure 1
Various species display the low-oxygen escape syndrome (LOES) when submerged. The syndrome
includes enhanced elongation of internodes and petioles, the formation of aerenchyma in these organs (air
spaces indicated by arrows labeled a), and increased gas exchange with the water layer through reduced
leaf thickness and chloroplasts that lie directed toward the epidermis (indicated by arrows labeled b).
Photographs are courtesy of Ronald Pierik, Liesje Mommer, Mieke Wolters-Arts, and Ankie Ammerlaan.
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Sub1: Submergence1
polygenic locus of
rice; determines
submergence
tolerance

Oxygen
deficiency/
deprivation: the
natural and
experimental
conditions in which
cellular oxygen
content is reduced
but metabolic status
is not determined

mtETC:
mitochondrial
electron transport
chain

ROS: reactive
oxygen species

chloroplasts toward the leaf surface. These
traits reduce the resistance for diffusion of
CO2 and O2, facilitating inward diffusion and
thereby improving underwater photosynthe-
sis and aerobic metabolism (82, 83). Thus,
the LOES improves the aeration of the plant,
which is further enhanced by the relatively
low resistance for internal gas diffusion ow-
ing to a system of interconnected gas conduits
called aerenchyma, a property typical of many
wetland plants (24, 33). These conduits are
constitutive, induced in existing tissues (roots,
petioles, stems) (33) or formed during the
development of adventitious roots that arise
from the root shoot junction or stem nodes
(115, 142). In specialized cases the longitudi-
nal diffusion of O2 to the root apex is further
enhanced by the development of a barrier to
radial oxygen loss to minimize escape of O2

to the surrounding environment (24, 25).
LOES is costly and will only be selected for

in environments where the cost is outweighed
by benefits such as improved O2 and carbo-
hydrate status, both contributing to a higher
fitness (120). The flooding regime is an im-
portant determinant for selection in favor of
or against LOES. A study on the distribu-
tion of species in the Rhine floodplains con-
firmed this hypothesis. Here LOES occurs
predominantly in species from habitats char-
acterized by prolonged, but relatively shallow,
flooding events (150). However, the benefits
of LOES do not outweigh the costs when
the floods are too deep or ephemeral. These
regimes favor a quiescence strategy character-
ized by limited underwater growth and con-
servation of energy and carbohydrates (39,
91). This strategy is a true tolerance mech-
anism, driven by adjustment of metabolism.
With respect to low-O2 stress, this includes
the downregulation of respiration and limited
stimulation of fermentation to create a posi-
tive energy budget when organ hypoxia starts
(43, 148). The SUB1A gene of the polygenic
rice (Oryza sativa L.) Submergence1 (Sub1) lo-
cus was shown to confer submergence toler-
ance through a ‘quiescence’ strategy in which
cell elongation and carbohydrate metabolism

is repressed (41, 91, 159) (Figure 2).
SUB1A, encodes an ethylene-responsive ele-
ment (ERF) domain–containing transcription
factor (41). The lack of SUB1A-1 or the pres-
ence of a slightly modified allele is associated
with reduced submergence tolerance and the
induction of the LOES. This example demon-
strates that environment-driven selection on
a single locus can significantly alter survival
strategy.

ACCLIMATION TO FLOODING
AT THE CELLULAR LEVEL

Overview of Cellular Adjustments
to Oxygen Deprivation

During flooding, the onset of O2 deprivation
is rapid in the dark and in nonphotosynthetic
cells. The reduced availability of O2 as the
final electron acceptor in the mitochondrial
electron transport chain (mtETC) mediates a
rapid reduction of the cellular ATP:ADP ratio
and adenylate energy charge (AEC) ([ATP +
0.5 ADP]/[ATP+ADP+AMP]) (46). Cells
cope with this energy crisis by relying primar-
ily on glycolysis and fermentation to gener-
ate ATP and regenerate NAD+, respectively.
Whether a LOES or a quiescence response to
flooding is activated, cellular acclimation to
transient O2 deprivation requires tight regu-
lation of ATP production and consumption,
limited acidification of the cytosol, and ame-
lioration of reactive oxygen species (ROS)
produced either as O2 levels fall during flood-
ing or upon reoxygenation after withdrawal of
the flood water.

O2 concentration is 20.95% at 20◦C in air
but ranges from 1 to 7% in the core of well-
aerated roots, stems, tubers, and developing
seeds (14, 44, 46, 107, 136, 137). Within a
root, O2 levels and consumption vary zonally;
the highly metabolically active meristematic
cells are in a continuous state of deficiency.
Upon flooding, the ∼10,000-fold-slower dif-
fusion of O2 in water rapidly limits its avail-
ability for mitochondrial respiration. This
deprivation is progressively more severe as
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Lowland Rice Deepwater Rice

Tolerant Intolerant

Strategy Quiescence LOES LOES

High

N.D.

High

Sub1 haplotype SUB1A-1, SUB1B,
SUB1C

SUB1B, SUB1C or
SUB1A-2, SUB1B, SUB1C

SUB1B, SUB1C or
SUB1A-2, SUB1B, SUB1C

Carbohydrate
consumption Limited by SUB1A-1 High

GA response Inhibited by SUB1A-1 Promoted by SUB1C

Fermentation
capacity High Moderate

Figure 2
Rice responds via different strategies to submergence. Flood-tolerant rice varieties invoke a quiescence
strategy that is governed by the polygenic Submergence1 (Sub1) locus that encodes two or three
ethylene-responsive factor proteins (41, 159). SUB1A is induced by ethylene under submergence and
negatively regulates SUB1C mRNA levels. Flood-intolerant varieties avoid submergence via the low
oxygen escape syndrome (LOES). To this end SUB1C expression is promoted by gibberellic acid (GA)
and is associated with rapid depletion of carbohydrate reserves and enhanced elongation of leaves and
internodes. The LOES is unsuccessful when flooding is ephemeral and deep. Deepwater rice varieties
survive flooding via a LOES, as long as the rise in depth is sufficiently gradual to allow aerial tissue to
escape submergence (61). N.D., not determined.

distance from the source increases and tissue
porosity decreases. For example, the cortex of
nonaerenchymatous maize (Zea mays L.) roots
exposed to 10% O2 becomes hypoxic, whereas
the internal stele becomes anoxic. Even the
apex of aerenchymatous roots encounters se-
vere O2 deprivation (46). In dense storage or-
gans such as potato (Solanum tuberosum L.) tu-
bers and developing plant seeds, exposure to
8% O2 significantly reduces the endogenous
O2 level. However, the decrease in cellular
O2 is strikingly nonlinear from the exterior

to the interior of the organ; cells at the in-
terior of the tuber or endosperm maintain a
hypoxic state (44, 136). This has led to the
suggestion that an active mechanism may al-
low cells to avoid anoxia (43). Such a mecha-
nism may include proactive limitation in the
consumption of both ATP and O2. The low
Km for cytochrome c oxidase (COX) [140 nM
(∼0.013%) O2] should ensure that the activity
of COX continues as long as O2 is available
(31, 46). However, a mechanism that inhibits
the mtETC at or upstream of COX or inhibits
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Normoxia (e.g.,
20.9% O2 at 20◦C):
characterized by
aerobic metabolism,
NAD+ regeneration
primarily via the
mitochondrial
electron transport
chain, and ATP
production via
mitochondrial
oxidative
phsophorylation
(30–36 mol ATP per
mol hexose
consumed); cellular
ATP content is
normal

O2 consumption by other enzymes may allow
cells to sustain hypoxia and avoid death.

Low-Oxygen Sensing

In animals the perception of O2 deficit in-
volves O2-binding proteins, ROS, and mi-
tochondria. The O2-consuming prolyl hy-
droxylases (PHDs) are direct sensors of O2

availability. Under normoxia, PHDs target
the proteosomal degradation of hypoxia in-
ducible factor 1α (HIF1α), a subunit of a het-
erodimeric transcription factor that regulates
acclimation to hypoxia (51). The concomitant
drop in PHD activity stimulates an elevation
in HIF1α as O2 declines. A paradox is that
the production of ROS at the mitochondrial
ubiquinone:cytochrome c reductase complex
(Complex III) is necessary to initiate O2 deficit
responses (7, 51).

There is limited understanding of the
mechanisms by which plant cells sense and
initiate signaling in response to O2 deficit (3,
39, 43). Plants lack a HIF1α ortholog, al-
though PHD mRNAs are strongly induced by
O2 deficit in Arabidopsis thaliana and rice (67,
146). Furthermore, significant increases in
mRNAs encoding enzymes involved in ROS
signaling and amelioration (16, 63, 67, 70, 71)
and evidence of ROS production have been
reported in several species upon transfer to
low O2 conditions. A challenge in monitoring
ROS production during O2 deficit is that ROS
are produced readily upon reoxygenation.
However, ethane, a product of membrane per-
oxidation by ROS, evolves from submerged
rice seedlings in a closed system as levels of O2

fall to as low as 1% (112), providing evidence
that ROS form as O2 levels decline. Blokhina
and colleagues (11) demonstrated that in re-
sponse to anoxia, H2O2 accumulates to higher
levels in the apoplast of root meristems of hy-
poxic wheat (Triticum aestivum) than in the
more anoxia-tolerant rhizomes of Iris pseu-
dacorus. In Arabidopsis seedlings, H2O2 lev-
els increase in response to O2 deprivation
in a ROP GTPase–dependent manner (6).
Genotypes that limit ROP signaling under hy-

poxia display lower levels of H2O2 accumula-
tion and altered gene regulation in stressed
seedlings. Indications that mitochondria are
crucial to low-O2 sensing in plants comes
from the release of Ca2+ from mitochondria of
cultured maize cells within minutes of trans-
fer to anoxia (127). This release may be ac-
tivated by mitochondrial ROS production at
Complex III of the mtETC (99). A rapid
spike in cytosolic Ca2+ was also observed in
the cotyledons of Arabidopsis seedlings upon
transfer to anoxia and again at higher ampli-
tude upon reoxygenation (119). These Ca2+

transients are required for alterations in gene
expression that enhance ethanolic fermenta-
tion and ATP management during the stress
(3, 66, 88, 119, 126, 128). Further studies are
needed to confirm whether mitochondrion-
to-nucleus signaling, mediated by ROS pro-
duction and Ca2+ release from mitochondria,
contributes to reconfiguration of metabolism
under low O2. Additional players in the ac-
climation response may be the reduction of
ATP content and decline in cytosolic pH as
well as change in levels of metabolites such as
sucrose and pyruvate (3, 39). mRNAs encod-
ing mitochondrial alternative oxidase, (AOX)
are strongly induced by low-O2 stress (63, 67,
70, 71). AOX diverts ubiquinone from Com-
plex III; if active as O2 levels decrease, AOX
would paradoxically reduce oxygen availabil-
ity for COX and decrease ATP production.
However, if active as O2 levels rise upon re-
oxygenation, AOX may limit mitochondrial
ROS production (99).

Management of the Energy Crisis

Within minutes of transfer to an O2-depleted
environment, cells reliant on external O2 limit
processes that are highly energy consumptive
and alter metabolism to increase anaerobic
generation of ATP by cytosolic glycolysis (31).
This shift is followed by fermentation of pyru-
vate to the major end products, ethanol or
lactate, yielding NAD+ to sustain anaerobic
metabolism (Figure 3). A crisis in ATP avail-
ability ensues because glycolysis is inefficient,
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yielding 2 to 4 mol ATP per mol hexose as
compared with 30 to 36 mol ATP by the
mtETC. Evaluation of gene transcripts, en-
zymes, and metabolites in a variety of species
and genotypes demonstrated the production
of minor metabolic end products that are also
important for NAD+ and NAD(P)+ regen-
eration. Although mutant analyses with sev-
eral species have demonstrated that glycol-
ysis and fermentation are necessary for cell
survival under O2 deprivation, the enhance-
ment of these processes is not well corre-
lated with prolonged endurance of this stress
(31, 46).

The anaerobic energy crisis necessitates a
blend of optimized ATP production with lim-
ited energy consumption. ATP-demanding
processes such as DNA synthesis and cell
division are curtailed (46), and the produc-
tion of rRNA is dramatically reduced (36).
In Arabidopsis and other plants, low-O2 stress
markedly limits protein synthesis but main-
tains the initiation of translation of a subset of
cellular mRNAs, many of which encode en-
zymes involved in anaerobic metabolism and
the amelioration of ROS (16, 36). Therefore,
under O2 deprivation, a mechanism oper-
ates that sequesters untranslated mRNAs and
lessens ATP expenditure, thereby allowing for
the recovery of protein synthesis within min-
utes of reoxygenation.

Carbohydrate mobilization and sucrose
catabolism. The metabolic response to O2

deprivation is orchestrated by the availability
and mobilization of carbohydrates (31, 137).
In some plants and tissues, the induction of
amylases by low O2 or flooding promotes the
conversion of starch to glucose (Figure 3).
However, the mobilization of starch dur-
ing O2 deprivation is not universal. Both
the tubers of potatoes and rhizomes of the
flood-tolerant marsh plant Acorus calamus L.
have considerable carbohydrate reserves, but
Acorus rhizomes are more capable of mo-
bilizing starch into respirable sugars under
anoxia (2). This slow consumption of starch
allows the rhizomes to sustain a low level of

metabolism that affords survival of long peri-
ods of submergence. Seeds of rice, rice weeds
(e.g., some Echinochloa species), and tubers of
Potamogeton pectinatus also mobilize starch un-
der anoxia (29, 40, 50). In rice seeds, this starch
mobilization requires the depletion of soluble
carbohydrates, suggesting regulation by sugar
sensing (50, 72). In organs lacking starch re-
serves or effective starch mobilization, the ex-
haustion of soluble sugars prior to reoxygena-
tion is likely to result in cell death.

Plants possess two independent routes for
the catabolism of sucrose, the bidirectional
UDP-dependent sucrose synthase (SUS) and
the unidirectional invertase (INV) pathways
(Figure 3). The net cost for entry into gly-
colysis is one mol pyrophosphate (PPi) per
mol sucrose via the SUS route, if the UTP
produced by UDP-glucose pyrophosphory-
lase (UGPPase) is utilized by fructokinase
(FK) in the subsequent conversion of UDP-
glucose to glucose-6P or the ATP consumed
by FK is recycled by nucleoside diphosphate
(NDP) kinase. By contrast, the cost via the
INV pathway is two mol ATP per mol su-
crose. The SUS route is positively regulated
under O2 deprivation through opposing in-
creases in SUS and the repression of INV
gene expression and enzymatic activity (10,
14, 43, 44, 64, 67). The energetic disadvantage
of the INV route was confirmed by the inabil-
ity of transgenic potato tubers with elevated
INV activity to maintain ATP levels under
8% O2 (14). The SUS pathway is enhanced
in a variety of species by rapid increases in
transcription of SUS mRNAs, which is most
likely driven by sucrose starvation (64, 71).
Other glycolytic reactions may utilize avail-
able PPi during O2 deprivation, thereby im-
proving the net yield of ATP per mol sucrose
catabolized. The phosphorylation of fructose-
6P to fructose-1,6P2 by the bidirectional
PPi-dependent phosphofructokinase (PFP)
is favored over the unidirectional ATP-
dependent phosphofructokinase (PFK), and
a pyruvate Pi dikinase (PPDK) may substi-
tute for cytosolic pyruvate kinase (PK) in O2-
deprived rice seedlings (95).
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Metabolic end products. During O2 depri-
vation, pyruvate decarboxylase (PDC) con-
verts pyruvate to acetaldehyde, which is me-
tabolized by alcohol dehydrogenase (ADH) to
ethanol, with the regeneration of NAD+ to
sustain glycolysis. PDC- and ADH-deficient
genotypes confirm the essentiality of ethano-
lic fermentation in the acclimation to flooding
and low-O2 stress (6, 31, 46, 65). In Arabidop-
sis seedlings, the level of induction of ADH is
controlled by the activation of a ROP GTP-
ase (5). O2 deprivation promotes an increase
in active ROP, which leads to the elevation of
transcripts that encode ADH and ROPGAP4,
a GTPase that inactivates ROP. In a ropgap4
null mutant, ADH mRNA and ROS are signif-
icantly elevated under hypoxia, and seedling
survival is reduced. This led to the proposal
that a ROP rheostat controls the temporal
regulation of ADH expression under low O2

(3, 39).
The production of ethanol is benign ow-

ing to its rapid diffusion out of cells, whereas
the intermediate acetaldehyde is toxic. Ac-
etaldehyde dehydrogenase (ALDH) catalyzes
the conversion of acetaldehyde to acetate,
with the concomitant reduction of NAD+ to
NADH. A mitochondrial ALDH is signifi-
cantly induced by anoxia in coleoptiles of rice
(67, 87), but not in seedlings of Arabidopsis
(65). ALDH activity correlates with anaerobic
germination capability of Echinochloa crus-galli

under strict anoxia (40). Under O2-limiting
conditions, ALDH consumes NAD+ and may
thereby limit glycolysis, whereas upon reoxy-
genation acetaldehyde converted to acetate by
mitochondrial ALDH enters the tricarboxylic
acid (TCA) cycle (Figure 3).

In addition to ethanol, lactate is produced
in plant cells under O2 deprivation. The ac-
cumulation of lactate under low-O2 stress has
garnered considerable interest (31, 35, 48, 98)
ever since the demonstration that its transient
appearance precedes that of ethanol in the
root tips of maize seedlings (105). The pH
of the cytosol of maize root tips declines from
7.5 to a new equilibrium at pH 6.8 following-
transfer to anoxia. It is posited that the tran-
sition from lactic to ethanolic fermentation is
controlled by a pH-stat. The ∼0.6 unit de-
crease in cytosolic pH favors the catalytic op-
timum of PDC and thereby limits lactate and
promotes ethanol production. Anoxic ADH-
deficient root tips continue to produce lac-
tate and fail to stabilize the cytosolic pH, re-
sulting in rapid cytosolic acidification and cell
death (106). Thus, the switch from lactic to
ethanolic fermentation is critical for the main-
tenance of cytosolic pH. An alternative pro-
posal is that this switch, under conditions of
O2 deprivation and in aerobic cells in which
ethanol is produced, is driven by a rise in
pyruvate rather than the increase in lactate
or reduction of cytosolic pH (130). When

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 3
Metabolic acclimations under O2 deprivation. Plants have multiple routes of sucrose catabolism, ATP
production, and NAD+ and NAD(P)+ regeneration. Blue arrows indicate reactions that are promoted
during the stress. Metabolites indicated in bold font are major or minor end products of metabolism
under hypoxia. Abbreviations are as follows: 2-OGDH, 2-oxyglutarate dehydrogenase; ADH, alcohol
dehydrogenase; AlaAT, alanine aminotransferase; ALDH, acetaldehyde dehydrogenase; AspAT, aspartate
aminotransferase; CoASH, coenzyme A; CS, citrate synthase; FK, fructokinase; GABA-T, GABA
transaminase; GDC, glutamate decarboxylase; GDH, glutamate dehydrogenase; GHBDH,
γ-aminobutyrase dehydrogenase; GOGAT, NADPH-dependent glutamine: 2-oxoglutarate
aminotransferase; GS, glutamine synthase; HXK, hexokinase; ICDH, isocitrate dehydrogenase; LDH,
lactate dehydrogenase; MDH, malate dehydrogenase; NDP kinase, nucleoside diphosphate kinase; NiR,
nitrite reductase; NR, nitrate reductase; PCK, phosphenolpyruvate carboxylase kinase; PDC, pyruvate
decarboxylase; PDH, pyruvate dehydrogenase; PEPC, phosphenolpyruvate carboxylase; PFK,
ATP-dependent phosphofructokinase; PFP, PPi-dependent phosphofructokinase; PGI,
phosphoglucoisomerase; PGM, phosphoglucomutase; PK, pyruvate kinase; PPDK, pyruvate Pi dikinase;
SDH, succinate dehydrogenase; SSADH, succinate semialdehyde dehydrogenase; Starch Pase, starch
phosphorylase; SUS, sucrose synthase; UGPPase, UDP-glucose pyrophosphorylase.
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pyruvate levels increase, the low Km of mi-
tochondrial pyruvate dehydrogenase (PDH)
and high Km of PDC serve to limit carbon en-
try into the TCA cycle and promote ethanolic
fermentation.

Flooding stress is likely to involve a gradual
transition from normoxia to hypoxia, allow-
ing cells to initiate processes that favor sur-
vival. Plants exposed to a period of hypoxia
for 2 to 4 h prior to transfer to an anoxic
environment are more capable of avoiding
cell death than those that undergo an abrupt
anoxic shock (31). The preexposure to 3%
or 4% O2 reduces the severity of ATP de-
pletion, allows the synthesis of stress-induced
and normal cellular proteins (19), and acti-
vates a lactate efflux mechanism (158). Lac-
tate removal from the cytoplasm may be ac-
complished by the hypoxia-induced nodulin
intrinsic protein (NIP2;1), which was iden-
tified in Arabidopsis as a plasma membrane–
associated protein capable of driving lactate
transport in Xenopus oocytes (23). Most likely,
a decline in cytosolic pH of 0.2 to 0.5 units un-
der O2 shortfall establishes a new pH set point
that influences multiple aspects of metabolism
(35, 48, 95). The management of this pH de-
cline involves ethanolic fermentation and is
benefited by the availability of a lactate ef-
flux mechanism and proton ATPase activity.
However, some species or organ systems, such
as the tuber shoots of Potamogeton pectinatus,
do not show an adjustment in cytosolic pH
during O2 deprivation. The stem elongation
in these shoots under anoxia results from cell
expansion that occurs in the absence of an ad-
justment in cytosolic pH and appears to be
maintained by tight constraints on ATP pro-
duction and consumption (29).

Besides the major fermentation end prod-
ucts, lactate and pyruvate, O2 deficiency is
associated with the elevation of alanine, γ-
aminobutyric acid (GABA), succinate, and
occasionally malate (29, 31, 46, 113, 137,
139). Strong induction of cytosolic and mito-
chondrial alanine aminotransferase (AlaAT),
aspartate aminotransferase, mitochondrial
glutamate dehydrogenase (GDH), and mi-

tochondrial Ca2+/calmodulin-regulated glu-
tamate decarboxylase (GDH) mRNA and/or
enzymatic activity is consistent with pyruvate
conversion to alanine or GABA (Figure 3)
(63, 67, 70, 71, 100, 139). GABA may be fur-
ther metabolized via the mitochondrial GABA
shunt to γ-hydroxylbutyrate with the regen-
eration of NAD(P)+ (17). Upon reoxygena-
tion, alanine can be recycled back to pyru-
vate, and GABA can be converted to succinate.
Amino acid oxidation may thereby minimize
the decline in cytosolic pH and reduce carbon
loss via ethanol or lactate. An appreciation of
the relative significance of the major and mi-
nor pathways of anaerobic metabolism will re-
quire metabolite profiling and flux studies that
resolve organ specific and temporal aspects of
production in relationship to changes in redox
and energy status.

Nitrite, nitric oxide, mitochondria, and
hemoglobin. Nitrate and nitrite are also im-
plicated in cellular adjustment to O2 depriva-
tion. Nitrate is assimilated and reduced to am-
monia via nitrate reductase (NR) and nitrite
reductase (NiR) (Figure 3). NR but not NiR
mRNAs increase significantly in response to
hypoxia/anoxia in Arabidopsis and rice (67, 70,
71). Even without an increase in NR levels, a
reduction of cytosolic pH may increase nitrite
production because of the low pH optimum
of this enzyme (57). Roots of tobacco plants
engineered to have reduced NR levels display
several metabolic anomalies under anoxia, in-
cluding higher levels of soluble hexoses and
ATP, enhanced ethanol and lactate produc-
tion, and increased acidification of the cytosol
(125). By contrast, maize seedling roots sup-
plied with nitrate during anoxia maintain a
slightly higher cytosolic pH than do control
seedlings (69). Notably, the provision of mi-
cromolar levels of nitrite to seedling roots had
a similar effect on the adjustment of cytosolic
pH. This unexpected benefit of low levels of
nitrite is unlikely to be due to a direct effect
on NAD(P)+ regeneration and may indicate a
role of nitrite in a regulatory mechanism that
augments homeostasis under low O2.
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A plant-specific association has surfaced
between nitrate/nitrite metabolism, mito-
chondrial ATP synthesis, and a low-O2-
induced nonsymbiotic Class 1 hemoglobin
(HB). Plant mitochondria provided with mi-
cromolar levels of nitrite under anoxia have
the capacity to coordinate the oxidation
of NADH and NAD(P)H with low lev-
els of ATP production (124). This nitrite-
promoted process involves the evolution of
nitric oxide (NO) via a pathway that re-
quires the activity of rotenone-insensitive
NAD(P)H dehydrogenases, mtETC Com-
plex III (ubiquinone:cytochrome c reduc-
tase), and Complex IV (COX). In the pro-
posed pathway (124), NAD(P)H produced
during O2 deficit is oxidized by Ca2+-sensitive
NAD(P)H dehydrogenases on the inner mito-
chondrial membrane surface, providing elec-
trons to the ubiquinone pool. In the absence
of O2, nitrite may serve as an electron accep-
tor at Complex III or IV, yielding NO, which
may activate signal transduction by promot-
ing mitochondrial ROS production and Ca2+

release. The cytosolic HB that accumulates
under O2 deprivation, however, scavenges and
detoxifies NO in planta by converting it into
nitrate in an NAD(P)H-consuming reaction
over a broad pH optimum (30, 57). The cou-
pled activities of HB and cytosolic NR re-
generate nitrite that may enter the mitochon-
drion, where it continues the cycle of NO
and ATP production (94, 124). A major chal-
lenge is to confirm in planta that nitrite con-
version to NO functions as a surrogate final
electron acceptor. Nonetheless, the scenario
is consistent with reports that overexpression
of HB in several species decreases rates of
ethanolic fermentation, augments ATP main-
tenance, and fosters NO production under
hypoxia. By contrast, the inhibition of HB
expression increases NAD(P)H:NAD(P)+ ra-
tios and reduces cytosolic pH (30, 56, 57,
123). Notably, NO inhibits COX activity and
thereby reduces ATP production under nor-
moxia. Might NO formed during the transi-
tion from normoxia to hypoxia be the factor
that dampens O2 consumption to avoid cellu-

lar anoxia (43)? If so, the production of NO
prior to the synthesis of HB may allow the
cell to transition slowly from normoxia to hy-
poxia, providing a segue that augments energy
management.

THE LOW-OXYGEN ESCAPE
SYNDROME

Enhanced Growth Leading
to the Emergence of Shoots

Plants forage for limiting resources by adjust-
ing carbon allocation and overall plant archi-
tecture such that the capture of resources is
consolidated (93, 96). As O2 and CO2 be-
come limiting for plants in flood-prone en-
vironments, species from widely dispersed
families that share the capacity to survive in
flood-intense environments initiate signaling
pathways that lead to fast extension growth
of shoot organs (101, 147). These leaves,
when reaching the water surface, function
as snorkels to facilitate the entrance of O2

and the outward ventilation of gases such as
ethylene and methane trapped in roots (24,
145). Another benefit of the emergence of leaf
blades is a higher rate of carbon gain from
aerial photosynthesis (82).

Fast shoot elongation under water is
not restricted only to species occurring in
environments with periodic floods (e.g.,
deepwater rice, Rumex palustris, Ranunculus
sceleratus) (61, 148, 150). It persists in true
aquatics that develop floating leaves or
flowers [e.g., Nymphoides peltata (82)] and
in species that germinate in anaerobic mud
followed by an extension growth phase to
reach better-aerated water/air layers (e.g.,
seedlings of Oryza sativa, Potamogeton pectina-
tus, P. distinctus) (58, 113, 129). The explored
mechanism of shoot elongation in Marsh
dock (R. palustris) and deepwater rice (92,
115, 149) can be used to shed light on the
mechanistic backbone of genetic diversity in
flooding-induced shoot elongation.

The shoot elongation response can occur
in petioles or internodes, depending on the
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developmental stage or predominant growth
form of the plant. Interestingly, petiole elon-
gation in rosette plants is accompanied by hy-
ponastic growth that changes the orientation
of the petiole from prostrate to erect. This
directional growth brings the leaf in such a
position that enhanced petiole elongation will
result in leaf blade emergence in the shortest
possible time. Accordingly, petiole elongation
lagged behind hyponastic growth in R. palus-
tris rosettes (26).

It is generally accepted that the submer-
gence signal for enhanced shoot elongation is
the gaseous phytohormone ethylene (76, 101,
147). Ethylene is biosynthesized via an O2-
dependent pathway, and the endogenous con-
centration of this hormone is determined pre-
dominantly by production rate and outward
diffusion. Both aspects are affected by sub-
mergence. Several biosynthetic genes [e.g.,
those encoding ACC synthase (ACS) and
ACC oxidase (ACO)] are upregulated by sub-
mergence (102, 135, 154), whereas diffusion
of ethylene to the outside environment is
strongly hampered. As a result, the endoge-
nous concentration rises to a new, higher equi-
librium. Ethylene production persists in sub-
merged shoots as O2 continues to diffuse from
the water into the shoot, guaranteeing rela-
tively high endogenous O2 concentrations in
shoot cells even in the dark (80). Submergence
or low oxygen also upregulates the expression
of ethylene receptor genes, including RpERS1
in R. palustris (155), OsERL1 in deepwater rice
(156), and ETR2 in Arabidopsis (16, 63, 70, 72).
An elevation of ethylene receptor levels fol-
lowing submergence is counterintuitive be-
cause these molecules are negative regulators
of ethylene signaling. However, this increase
would allow rapid cessation of ethylene sig-
naling as the plants emerge from the water
and vent off the accumulated ethylene.

Ethylene is the input signal for several
parallel pathways required for fast elonga-
tion under water (Figure 4). Under fully sub-
merged conditions the accumulated ethylene
downregulates abscisic acid (ABA) levels via
an inhibition of 9-cis-epoxycarotenoid dioxy-

genase (NCED) expression, a family of rate-
limiting enzymes in ABA biosynthesis that be-
longs to the carotenoid cleavage dioxygenases,
(CCDs) and via an activation of ABA break-
down to phaseic acid (9, 61, 110). The de-
cline of the endogenous ABA concentration
in R. palustris is required to stimulate the ex-
pression of gibberellin (GA) 3-oxidase, an en-
zyme that catalyzes the conversion to bioac-
tive gibberellin (GA1) (8), and in deepwater
rice to sensitize internodes to GA (61). Down-
stream of GA, three sets of genes play a role in
submergence-induced shoot elongation. The
first group encodes proteins involved in cell
wall loosening; the second, those involved in
the cell cycle; and the third, those involved
in starch breakdown. Additional genes with
putative regulatory roles in enhanced intern-
ode elongation have been identified in flooded
deepwater rice (22, 108, 117, 132, 133).

The rigid cell wall constrains the rate and
direction of turgor-driven cell growth. Sig-
nificant increases in acid-induced cell wall ex-
tension upon submergence were observed in
rice (20), R. palustris (152), and Regnellidium
diphyllum (62). This could be reversed even
when R. palustris petioles were desubmerged,
emphasizing the correlation between exten-
sibility and submergence-induced elongation
(152). Cell wall extensibility is thought to be
associated with cell-wall-loosening proteins,
such as expansins (EXPs) and xyloglucan en-
dotransglycosylase/hydrolases (XTHs) (27).
Submergence-induced elongation is strongly
correlated with increases in mRNAs encod-
ing expansins A (EXPA) and B (EXPB), along
with EXP protein abundance and activity
(21, 62, 68, 89, 152, 153). Interestingly, in
some species ethylene directly regulates EXP
expression (62, 152, 153) (Figure 4). In sub-
merged R. palustris petioles, ethylene not only
enhances EXP expression but also stimulates
proton efflux into the apoplast (153), which is
essential for EXP action.

The second group of GA-regulated genes
is involved in cell cycle regulation. In
very young petioles of the fringed wa-
terlily (Nymphoides peltata) and the youngest
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Cell elongation and/or division

ABA

GA

RpNCED1-4
RpNCED6-10

RpGA3OX1

OsEXPA2
OsEXPA4
OSEXPB3
OsEXPB4
OsEXPB6
OsEXPB11
OsXTR1
OsXTR3

cyc2Os1
cyc2Os2
cdc2Os2
HistoneH3
OsRPA1

OsTMK
OsGRF1-3
OsGRF7,8,10,12
OsDD3-4
OsSBF1
OsGRF9

RpEXPA1
RdEXPA1

OsUSP1

Apoplastic
acidification

OsSUB1A

OsSUB1C
OsAMY3D

OsABA8ox1

Submergence Ethylene
OsACS1
OsACS2
OsACS5
RpACS1

OsACO1
RpACO1

RpERS1

Figure 4
Schematic model of the plant processes, hormones, and genes involved in submergence-induced shoot
elongation (blue signifies upregulated genes and red signifies downregulated genes). Gene abbreviations
are as follows: CYC2Os, cyclin; CDC2Os, cyclin-dependent kinase; OsACO and RpACO, ACC oxidase;
OsACS and RpACS, ACC synthase; OsDD, differentially displayed (61); OsAMY, amylase (41); OsEXP,
RdEXP, and RpEXP, expansins; OsGRF, growth-regulating factor (22); OsRPA, replication protein A1;
OsSBF, sodium/bile acid symporter family (108); OsSUB1, submergence1; OsTMK, transmembrane
protein kinase (133); OsUSP, universal stress protein (117); RpERS1, ethylene receptor (155); RpNCED,
9-cis-epoxycarotenoid dioxygenase; RpGA3ox, gibberellin 3-oxidase (8); OsXTR, xyloglucan
endotransglucosylase-related (27); OsABA8ox, ABA 8′-hydroxylase (110). Os indicates Oryza sativa, Rd
indicates Regnellidium diphyllum, and Rp indicates Rumex palustris.

internode of deepwater rice, ethylene pro-
motes not only cell elongation but also cell
division. Consistent with this increase in cell
division is the observed upregulation of cy-
clin (CYC2Os1, CYC2Os2), cyclin-dependent
kinase (CDC2Os2), HistoneH3, and replication
protein A1 (OsRPA1) (114, 115, 131).

The third group of GA-regulated genes
is involved in starch breakdown. R. palustris
plants depleted of soluble sugars and starch

show a very restricted underwater elongation
response (49). Carbohydrates are required to
deliver energy and the building blocks for new
cell wall synthesis (115, 148). The require-
ment of carbohydrates can be fulfilled by the
translocation of photosynthates and by the
degradation of starch reserves via an increase
in α-amylase activity (115). Fukao and col-
leagues (41) reported that α-amylase gene ex-
pression (OsAmy3D) in leaves of submerged
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rice is regulated by SUB1C, an ethylene-
responsive factor (ERF)-domain-containing
protein of the polygenic Sub1 locus. This gene
is regulated positively by GA and negatively
by a related ERF in the Sub1 locus, SUB1A-
1, which is present in some rice accessions.
These results imply that carbohydrate levels
in submerged plants are also under hormonal
control.

There is considerable genetic variation be-
tween and within species in submergence-
induced elongation capacity. The closely re-
lated species Rumex acetosa and R. palustris
show inhibition and stimulation of petiole
elongation upon exposure to ethylene, respec-
tively. Both accumulate significant amounts
of ethylene when submerged (4), but R. ace-
tosa lacks ABA downregulation (9), GA upreg-
ulation (104), and increased EXP expression
(153). However, when R. acetosa is exposed to
elevated GA levels without enhanced ethylene
or when ABA levels are reduced with fluri-
done in submerged plants, petiole elongation
is strongly stimulated (9, 104). This demon-
strates that signal transduction components
required for elongation growth downstream
of ABA and GA are present in this species and
can be activated. It also shows that in R. acetosa,
contrary to R. palustris, ethylene cannot switch
on this cascade. Most likely, elements down-
stream of ethylene but upstream of ABA/GA
explain differences in ethylene-induced elon-
gation between Rumex species.

Rice cultivars also show variation in elon-
gation capacity during submergence (28, 41,
120). The Sub1 locus controls underwater
elongation through genetic distinctions in the
two to three ERF proteins it encodes (41,
159) (Figure 2). SUB1A-1 is present in the
Sub1 locus only in submergence-tolerant lines
and is induced by ethylene. SUB1C is present
in all rice lines and is induced by GA. The
between-cultivar variation in elongation cor-
relates with genotypic variation and expres-
sion of ERFs of the Sub1 locus. The slowly
elongating rice varieties of indica rapidly and
strongly induce SUB1A-1 upon submergence,
whereas all elongating indica and japonica

varieties lack either the SUB1A gene or the
SUB1A-1 allele (159). Transformation of an
elongating japonica variety with a SUB1A-1
full-length cDNA under the control of the
maize Ubiquitin1 promoter resulted in a sig-
nificant repression of underwater elongation
(159). The expression of SUB1A-1 coincides
with repressed accumulation of transcripts for
EXPs and reduced expression of SUB1C (41),
suggesting that SUB1A acts upstream of GA
regulation of EXPs and SUB1C.

Improvement of the Oxygen
and Carbohydrate Status
in Submerged Plants

At the whole-plant level, complete submer-
gence leads to a dramatic shift in the carbon
budget and energy status, potentially result-
ing in death. Some relief of this problem,
with the leaves still submerged, is underwa-
ter photosynthesis (83). The significance of
this was exposed by studies showing that light
availability enhances survival under water in
both flood-tolerant and intolerant species (55,
81, 86, 141) and that O2 levels in submerged
plants are affected by light intensity (90). Im-
proved survival of submergence in the light
is correlated with a higher carbohydrate sta-
tus (97) and internal O2 concentrations (80,
84, 103). However, underwater photosynthe-
sis can be limited by low light and CO2

availability. Consistent with these findings are
studies showing that illumination can main-
tain sugar transport and leaf ATP content at
near-normoxic levels under strict O2 depriva-
tion in rice and wheat leaves (85).

True aquatics develop specialized leaves
characterized by an overall thin leaf and
cuticle, a high degree of dissection, and epi-
dermal cell chloroplasts. These traits reduce
the diffusion barriers and shorten the dif-
fusion pathways, thus enhancing carbon in-
put per leaf area and unit time (111). Other
strategies, developed by true aquatics to
enhance carbon gain, are the utilization
of HCO3 as carbon source, C4 or CAM
metabolism, or hydrosoil CO2 consumption
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(75, 83). Very little information is available
about the occurrence of these last strate-
gies in terrestrial plants from flood-prone
environments.

Leaf acclimations to submergence have
been characterized for R. palustris (82) and
other amphibious species (18, 37, 157). Leaves
developed under water are 20% thinner with
an increased specific leaf area (SLA) (m2 g−1),
indicating a large surface area relative to mass.
The higher SLA is related not only to the
lower leaf thickness of aquatic leaves but also
to their tenfold-lower starch content. Fur-
thermore, aquatic leaves have thinner epider-
mal cell walls and cuticles, and their chloro-
plasts lie close to the epidermis rather than
toward the intercellular spaces as is typical for
aerial leaves (82). These acclimations are con-
sistent with the view that CO2 directly enters
the mesophyll cells of these leaves via diffusion
through the epidermis and not via stomata
and intercellular gas diffusion. This diffusion
pathway under water has a much higher dif-
fusion resistance for gases than does intercel-
lular diffusion. Calculations for R. palustris in-
dicate a 15,000-fold-higher resistance to CO2

diffusion in leaves under submergence than
when in air (81). However, the morphological
and anatomical changes decrease gas diffusion
resistance for CO2 (38). In R. palustris these
acclimations result in a dramatic reduction of
the diffusion resistance between submerged
leaves and leaves in air to a factor of less than
400 (81). Functional consequences of these ac-
climations in R. palustris include higher rates
of net underwater assimilation and lower CO2

compensation points (81). Similar effects are
also described for amphibious species (13, 55,
140). The relatively low diffusion resistance in
aquatic leaves also permits increased inward
diffusion of O2 from the water layer into the
shoot. This results, in the dark, in an inter-
nal O2 concentration of 17% in acclimated
petioles of R. palustris when submerged in air-
saturated water, whereas nonacclimated peti-
oles reach only 9% (80).

These observations demonstrate that the
water column can function as an important

source of O2 for terrestrial plants when they
are exposed to submergence and that O2 lev-
els in leaves, stems, and petioles below the
critical O2 pressure (0.8%; 31) are rare and
probably restricted to densely packed tissues
or to aquatic environments that are extremely
stagnant or have low O2 levels. Although root
systems will likely benefit from these shoot ac-
climations, O2 pressures in the roots will still
be much lower than the values mentioned here
for shoots, especially at night, when there is no
photosynthesis (90). It is therefore expected
that even with LOES acclimations, roots will
also rely on the metabolic cellular adjustments
to O2 deprivation for survival.

Plants in frequently flooded environments
are expected to display these traits at a higher
frequency than do those in rarely flooded ar-
eas. Consistently, Ranunculus repens popula-
tions in temporary lakes are characterized by
constitutively dissected leaves. This morphol-
ogy allows for a relatively large leaf surface
and an improved gas exchange and results in
relatively high rates of underwater photosyn-
thesis. Plants from more terrestrial popula-
tions have less-dissected leaves and relatively
low rates of underwater photosynthesis (73,
74). However, a comparative study of nine
species, both flooding tolerant and intolerant,
showed that gas exchange acclimations un-
der water are not restricted to flood-tolerant
species (84). In this study all but one species
developed aquatic leaves that were thinner
and had thinner outer cell walls and cuticles
and a higher SLA. These responses were in-
dependent of the species’ flooding tolerances.
Furthermore, leaf plasticity upon submer-
gence resulted in increased O2 levels in all
species. Therefore, between-species variation
in inducible leaf acclimations in terrestrial
plants, to optimize gas exchange when sub-
merged, is not related to the variation in
flooding tolerance of the species investigated
(84). This conclusion hints toward a lim-
ited role of submergence signals, such as
elevated ethylene, in inducing leaf acclima-
tions that enhance gas exchange under wa-
ter. Plants that are not exposed to flooding
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throughout their life are not expected to use
these signals to switch on signaling cascades
that lead to altered leaf anatomy and mor-
phology. More likely, signals associated with
changed rates of photosynthesis and/or re-
duced levels of carbohydrates induce these
leaf acclimations. This hypothesis is consis-
tent with observations that shade-acclimated
plants with reduced rates of photosynthe-
sis develop thinner leaves with higher SLA
(78). Consistently, transgenic tobacco plants
with substantially reduced Rubisco levels have
reduced photosynthesis and increased SLA
(34).

Improvement of Internal Gas
Diffusion: Aerenchyma

Important traits for survival in flooded en-
vironments are those that reduce the resis-
tance for diffusion of O2 and CO2 from the
environment to the plant. Equally signifi-
cant, however, is the resistance that hampers
gas diffusion within organs. Fast gas diffu-
sion can be accomplished only in a gaseous
diffusion medium, over short distances, by
limited loss of the gas along the diffusion
path, and by restricted tortuosity of the dif-
fusion route. These requirements are met in
aerenchymatous tissue, characterized by lon-
gitudinally interconnected gas spaces in roots
and shoots. Aerenchyma is either constitu-
tively present and/or induced upon flooding
(116, 144) and develops in existing tissues or
concomitant with the development of new
roots (32). Distinct physiological processes
are at the basis of aerenchyma formation. This
led to the discrimination of two aerenchyma
types: (a) lysigenous aerenchyma formed by
cell death and (b) schizogenous aerenchyma
in which gas spaces develop through the
separation of previously connected cells (23,
33, 60). A third type, termed expansigenous
aerenchyma, is characterized by intercellu-
lar gas spaces that develop through cell divi-
sion and cell enlargement, without cell sepa-
ration or collapse/death (118). Combinations
of these aerenchyma types also exist (118), and

within one plant species different types can be
present in different organs (32, 33).

The mechanism of schizogenous aeren-
chyma formation is largely unknown as com-
pared with that of lysigenous aerenchyma.
Low O2 and elevated ethylene can induce
lysigenous aerenchyma development in roots
of maize in a manner that is phenotypically
similar to the process promoted by flooding
(32). Under flooded conditions, subambient
O2 concentrations stimulate the production
of ethylene, which accumulates in roots sur-
rounded by water and induces programmed
cell death (PCD) in the cortex tissue (53).
Accordingly, hypoxic roots, exposed to
inhibitors of ethylene biosynthesis or ac-
tion, form no gas spaces (53). Downstream
components of this regulatory route include
protein kinases, protein phosphatases, G
proteins, Ca2+, and inositol phospholipids
(54). The targets of these signaling routes
include proteins associated with cell wall
breakdown. The activity of cellulase increases
in roots upon exposure to low O2 or ethylene
(52). Furthermore, increases in pectinase
and xylanase activity (15) and the induction
of XTH mRNAs occur in diverse species in
response to flooding or hypoxia (67, 70, 109).

Large data collections are available on ge-
netic diversity in traits that contribute to the
delivery of O2 to root tips. Justin & Armstrong
(60) compared 91 species from wetland, in-
termediate, and nonwetland habitats. Nearly
all the species from nonwetland environments
had low root porosities, whereas high consti-
tutive and increased porosities upon flooding
were associated with species from wetland en-
vironments. Also, other studies confirmed the
strong correlation between high root porosi-
ties and occurrence in wet environments (45,
77, 143). Interestingly, a comparative study
on 35 wild Hordeum accessions from environ-
ments that differ in flooding intensity showed
that this correlation does not always exist and
that aerenchyma development can be con-
strained by phylogeny (42).

Aerenchyma is also formed in shoot or-
gans, providing a system of interconnected
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channels from leaf to root tip. In a study with
14 species divided over seven families, the
aerenchyma content of petioles strongly cor-
related with plant survival during complete
submergence. This robust correlation per-
sisted in environmental conditions with (light)
and without (dark) underwater photosynthe-
sis (79, 84). These observations suggest that
aerenchyma is important not only for survival
during partial flooding but also during com-
plete submergence. Petiole aerenchyma likely
facilitates the diffusion of O2 from shoot or-
gans to the roots. The O2 involved can be pho-
tosynthetically derived during the light period
or obtained from the water layer by the shoot
during the dark.

CONCLUSIONS AND
FUTURE PERSPECTIVES

The growing understanding of the molec-
ular basis and genetic diversity in submer-
gence and flooding acclimations provides

opportunities to breed and engineer crops tol-
erant of these conditions that would benefit
the world’s farmers. The evaluation of diver-
sity exposes plasticity in metabolic and de-
velopmental acclimations that enable distinct
strategies that increase fitness in a flooded
environment. Natural variation in acclima-
tion schemes provides opportunities for de-
velopment of crops with combinations of sub-
mergence tolerance traits that are optimal at
specific developmental stages and under par-
ticular flooding regimes, which vary substan-
tially worldwide. The first example of this is
the use of marker-assisted breeding to intro-
duce the submergence-tolerance conferring
Sub1 genotype to selected rice cultivars (159),
which may appreciably benefit rice produc-
tion in flood-prone lands in the Third World.
The further exploration of the molecular ba-
sis of genetic diversity in flooding tolerances
is critical given the global climate change sce-
narios that predict heavy precipitation in re-
gions of our planet.

SUMMARY POINTS

1. Evaluation of diversity exposes the remarkable plasticity in metabolic and develop-
mental acclimations that enable increased fitness in a flooded environment.

2. Plants employing an escape strategy develop a suite of traits collectively called the
low-oxygen escape syndrome (LOES).

3. A consequence of low-O2 stress is a requirement for energy conservation that is
invoked through adjustments in gene expression, carbohydrate catabolism, NAD(P)+

regeneration, and ATP production.

4. Energy conservation is influenced by a low-O2-induced nonsymbiotic hemoglobin
that regulates cytosolic and mitochondrial processes, including rates of fermentation,
NO, and ATP production.

5. Enhanced shoot elongation upon submergence requires the action of at least three
hormones (ethylene, ABA, and GA) that regulate processes such as apoplastic acidifi-
cation, cell wall loosening, cell division, and starch breakdown.

6. Anatomical and biochemical leaf acclimations upon submergence facilitate underwa-
ter photosynthesis as well as the inward diffusion of O2 from the floodwater.

7. Aerenchyma in root and shoot tissue not only is important for survival during partial
submergence but also facilitates O2 diffusion from shoot to root while the plant is
completely submerged.
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FUTURE ISSUES

1. Plant species differ in their growth response to ethylene during submergence. This is
far from understood but probably involves signal transduction components upstream
of ABA and GA. The characterization of SUB1A is an important finding in this
respect. More work is needed because this is probably an important selection point
to differentiate survival strategies.

2. A quiescence strategy (carbohydrate conservation) in rice is associated with submer-
gence tolerance. However, not all plants that fail to elongate under water are tolerant.
The question arises as to whether cells of these plants are metabolically inactive
or simply lack other aspects also needed for tolerance (e.g., the ability to manage
ATP, cytosolic pH, or cellular O2 content; protection against ROS; or aerenchyma
development).

3. Characterization of the Sub1 locus provides an opportunity to breed or engineer
submergence-tolerant rice that could benefit farmers in flood-prone areas. Studies
are needed to determine if submergence and salt tolerance can be combined because
floodwaters can be saline.

4. The development of rice cultivars with improved underwater germination and low-O2

escape capabilities may reduce herbicide use.
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