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Functions of melatonin in plants: a review

Abstract: The number of studies on melatonin in plants has increased

significantly in recent years. This molecule, with a large set of functions in

animals, has also shown great potential in plant physiology. This review

outlines the main functions of melatonin in the physiology of higher plants. Its

role as antistress agent against abiotic stressors, such as drought, salinity, low

and high ambient temperatures, UV radiation and toxic chemicals, is

analyzed. The latest data on their role in plant–pathogen interactions are also

discussed. Both abiotic and biotic stresses produce a significant increase in

endogenous melatonin levels, indicating its possible role as effector in these

situations. The existence of endogenous circadian rhythms in melatonin levels

has been demonstrated in some species, and the data, although limited, suggest

a central role of this molecule in the day/night cycles in plants. Finally,

another aspect that has led to a large volume of research is the involvement of

melatonin in aspects of plant development regulation. Although its role as a

plant hormone is still far of from being fully established, its involvement in

processes such as growth, rhizogenesis, and photosynthesis seems evident. The

multiple changes in gene expression caused by melatonin point to its role as a

multiregulatory molecule capable of coordinating many aspects of plant

development. This last aspect, together with its role as an alleviating-stressor

agent, suggests that melatonin is an excellent prospect for crop improvement.
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Introduction

Melatonin (N-acetyl-5-methoxytryptamine) is a pleiotropic
molecule with numerous cellular and physiological actions

in diverse kingdoms. Discovered in the bovine pineal gland
in 1958 [1], it acts as a neurohormone, secreted by the
pineal gland into the cerebrospinal fluid and to the blood-
stream. This indoleamine makes a relevant contribution to

the regulation of many physiological events, such as circa-
dian rhythms, sleep, mood, body temperature, appetite,
sexual behavior, retina physiology, and immunological

system, among others [2–6]. Additionally, melatonin is
involved in numerous cellular actions as an antioxidant,
possessing excellent in vitro and in vivo properties as free

radical scavenger [7–12].
Since the simultaneous discovery of the presence of mel-

atonin in higher plants in 1995 by Dubbels et al. [13] and

Hattori et al. [14], successive studies have led to an accu-
mulation of information about the presence of melatonin
in plants and its possible physiological functions, as well
as on methods for its extraction and assessment adapted

to plants. The evolution in the number of articles (papers
and others) published on melatonin in plants is curious.
Since the first articles published in 1995, only 37 articles

were published on this topic up to 2005 (an average of 3.4
per year) (Fig. 1). Since 2006, the publications on melato-
nin in plants have shown an exponential increase, reaching

a maximum in 2014, with 38 articles. It is expected that in
the current year, this number may well be exceeded since

only up to April 2015, a total of 28 articles were pub-

lished. To date, a total of 235 publications (papers and
others) have appeared on this topic. Of these, most have
been published in Journal of Pineal Research (~40%),

although in recent years, other journals specializing in
plant physiology or food chemistry have shown great
interest in sharing the many attractions that plant melato-
nin offers as a scientific subject of research.

Since the discovery of melatonin in plants, several issues
have arisen, mainly in the last 10 yrs. Plant melatonin,
also called ‘phytomelatonin’ by some authors [15], was ini-

tially studied as an interesting natural antioxidative mole-
cule. Its presence in foodstuff of plant origin at
considerable concentrations (up to mg/100 g FW) and

their subsequent incorporation in the human bloodstream
after the intake make it an excellent nutraceutical for
humans [16–21]. Also, more recently, the possible use of

melatonin-rich plants as a recovery-bioagent for chemi-
cally contaminated soils has been suggested as an innova-
tive phytoremediation practice [22–25]. However, this
review will confine itself to the most recent and relevant

studies of melatonin related with plant physiology. Thus,
the roles of melatonin related with diverse aspects, such as
its protective role against abiotic and biotic stressors, its

function as plant regulator in rooting, growth, and other
morphogenetic features, changes in melatonin levels that
undergo biological rhythms, and its action as a gene

expression modulator, are extensively discussed. These
lines also should serve to express our appreciation to those
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pioneering groups who suggested that melatonin may play

an important role in the physiology of plants: the groups
of Drs. Kol�ar and Mach�ackov�a in the Czech Republic
[26–29], Drs. Saxena and Murch in Canada [30–33], and
Drs. Reiter and Tan in USA [34–39], to which we add our
first paper on the physiological role of melatonin in lupin
published in 2004 [40–42].

Melatonin as an abiotic antistressor

The excellent properties of melatonin as an antioxidative

molecule have been widely demonstrated in vitro and
in vivo, mainly in animal studies. Melatonin acts as an
effective free radical scavenger against hazardous reactive

molecules such as hydroxyl radical, superoxide anion, sin-
glet oxygen, hydrogen peroxide, hypochlorous acid, nitric
oxide, peroxynitrite anion, peroxynitrous acid, and lipid

peroxyl radical, among others. Therefore, melatonin
behaves as a generous scavenger of reactive oxygen and
reactive nitrogen species (ROS and RNS). Furthermore,
melatonin acts as a regulator of many redox enzymes in

animal tissues, upregulating antioxidant enzymes such as
catalases, peroxidases, and superoxide dismutases, and
downregulating pro-oxidant enzymes such as nitric oxide

synthases and lipoxygenases, all of which contribute to its
action as an anti-inflammatory, anticancerigen, and gero-
protecting agent, among others pathological dysfunctions

[5, 7–12, 24, 43–47].

Exogenous application of melatonin to plants

In light of its antecedents described in animals and after
the detection of melatonin in plants, the possible effects
that the treatment of exogenous melatonin might have in

different abiotic stress situations were soon studied. The
pioneering and most recent and relevant studies in this
regard are discussed below.

From the initial studies in carrot culture cells (Daucus ca-
rota) where the presence of exogenous melatonin attenuated

cold-induced apoptosis [48], the possible protective role of

melatonin in plants against abiotic stressors was postu-
lated. Thus, many stress situations have been analyzed. Of
highlight are the studies in pea plants (Pisum sativum),

where the application of exogenous melatonin to copper-
contaminated soil enhanced the tolerance and survival of
plants [23]. Also, the pretreatment of seeds with melatonin

reduces copper toxicity in red cabbage seedlings (Brassica
oleracea rubrum) [49]. Cucumber seeds pretreated with
melatonin improve their germination rate during chilling
stress with respect to untreated seeds [50]. Also, melatonin

improved the survival of cryopreserved callus of the Cras-
sulaceae Rhodiola crenulata, a traditional Tibetan herb
that grows in extreme conditions of cold, low oxygen, high

altitude, and intense UV radiation [51]. In another case,
water-stressed cucumber plants treated with melatonin
showed a clear increase in the seed germination rate and

root growth, which indicates that the application of mela-
tonin minimizes induced water stress [52].
When apple seedlings (Malus hupehensis) pretreated

with melatonin were subjected to salt stress, shoot height,

leaf number, chlorophyll content, and electrolyte leakage,
the plants were less affected by the saline stress compared
with untreated plants. Interestingly, hydrogen peroxide

levels were halved, ROS-metabolizing enzymes (ascorbate
peroxidase, catalase, and peroxidase activities) were
induced, and Na+ and K+ transporters (NHX1 and

AKT1) were upregulated, which would help to alleviate
saline-induced inhibition [53]. The protective role of exoge-
nous melatonin was also observed in mung bean (Vigna

radiata) meristem cells after chilling [54]. Similarly, the
presence of melatonin in both preculture and regrowth
media enhanced the growth of frozen shoot explants of
American elm (Ulmus americana), demonstrating the use-

fulness of melatonin for the long-term storage of germ-
plasm for plant cell culture [55]. In a recent study of
Arabidopsis treated with melatonin and grown at 4°C, mel-

atonin-treated plants had significantly greater fresh weight,
primary root length, and shoot height compared with

Fig. 1. Evolution of the number of
articles related with melatonin in plants
since its discovery in 1995. For 2015, the
data are based on an extrapolation of the
data available to date (first 4 months).
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untreated plants, the effect being both time and concentra-
tion dependent [56]. Treating Arabidopsis with melatonin
upregulated the expression of some cold-signaling genes:
the C-repeat-binding factors (CBFs), which control the

expression of ~100 genes, providing freezing tolerance to
the plants; COR15a, a cold-responsive gene regulated by
CBFs; CAMTA1, a transcription factor involved in freez-

ing- and drought-stress tolerance, which is related to the
Ca2+/calmodulin proteins (well known in melatonin treat-
ment in animal cells); and ZAT10 and ZAT12, two key

transcription activators of ROS-related antioxidant genes.
Thus, these data point to a role for melatonin in the
upregulation of specific cold-responsive genes, supporting

the hypothesis that melatonin plays a protective role
against abiotic stresses [57].
Similar data were obtained in a recent study with soy-

bean (Glycine max) plants. Seeds imbibed with melatonin

optimized parameters such as seedling growth, leaf size,
plant height, biomass and pod and seed number. Melato-
nin treatment improved the salt and drought tolerance of

plants, demonstrating the significant potential of melato-
nin for improving field crops, also in this species [58]. Sim-
ilar results were obtained with the widely used turfgrass,

bermudagrass (Cynodon dactylon), which was actively pro-
tected by exogenous melatonin against salt-, drought-, and
cold-stress situations compared with untreated plants.
Stressed melatonin-treated plants showed a lower ROS

burst, electrolyte leakage, and cell damage and higher
plant height/weight, high levels of amino acids, organic
acids, sugars, sugar alcohols than untreated plants, clearly

affecting the carbohydrate and nitrogen metabolism,
mainly solutes involved in the osmotic-stress response [59].
Recently, similar data were obtained in Citrus aurantium

seedlings [60]; in roots, seedlings, and cotyledons of sun-
flower [61]; in cucumber seeds [62]; and in Chara australis
cell cultures [63], all in salt-stressed plants; also in cucum-

ber seedlings under high temperature stress [64], in Vitis
vinifera cuttings under water-deficient stress [65], and in
tomato plants under alkaline stress [66].
The effect of melatonin on the photosynthetic process

deserves special consideration. In the pioneering work of
Arnao et al. [67], exogenous melatonin retarded induced
senescence in barley leaves and delayed the loss of chloro-

phylls compared with untreated leaves. This effect of mela-
tonin was contrasted with the inductive effect of the
hormone abscisic acid (ABA) and the retardant effect of

kinetin (a synthetic cytokinin with plant hormone activity)
on foliar senescence. Later, this was confirmed in other
species such as apple [68–70], Arabidopsis [71], cucumber
[52], rice [72, 73], and cherry [74]. Interest centered on how

melatonin was able to prevent the loss of chlorophylls in
stress situations, thus optimizing the photosynthetic pro-
cess. Exogenous melatonin delayed dark-induced senes-

cence in apple leaves (Malus domestica) through the
enhancement of some ROS scavenging enzyme activities,
which contributed to the elimination of the H2O2 excess

generated in stressed leaves, while maintaining the ascorbic
acid and glutathione content higher than in control leaves
[68]. Also, in the long-term application of melatonin to

1-yr-old apple trees under drought conditions, leaf
senescence was delayed and accompanied by a significant

reduction in chlorophyll degradation. Suppression of the
upregulation of the senescence markers, senescence-associ-
ated gene 12 and senescence 4 transcripts, and of the
monooxygenase senescence-related pheophorbide a oxy-

genase (PaO) clearly indicated a role for melatonin as a
regulating factor in induced-foliar senescence [69]. These
data were recently confirmed in Arabidopsis, where chloro-

phyllase and PaO were both downregulated by melatonin
[71]. More recently, one of the ubiquitin-mediated degra-
dation of auxin/indole-3-acetic acid (AUX/IAA) protein,

the auxin resistant 3/indole-3-acetic acid inducible 17, was
downregulated by exogenous melatonin, providing a direct
link between melatonin and natural leaf senescence in Ara-

bidopsis [75].
In addition to the protective role of melatonin against

leaf senescence, melatonin may also increase photosyn-
thetic efficiency in plants. Melatonin contributed to a bet-

ter efficiency of photosystem II under dark and light
conditions in apple trees, alleviating the inhibition in pho-
tosynthesis caused by drought stress and also allowing the

leaves to maintain a higher capacity for CO2 assimilation
and stomatal conductance [69]. Similar data were obtained
in water-stressed cucumber seedlings. Melatonin treatment

reduced chlorophyll degradation, increased the photosyn-
thetic rate and the activities of ROS scavenging enzymes,
reversing the adverse effect of water stress [52]. Also, in
shoot tip explants of cherry rootstock PHL-C (Prunus avi-

um 9 Prunus cerasus), the application of exogenous mela-
tonin at low concentrations slightly enhanced the content
of photosynthetic pigments, total biomass, and total car-

bohydrates, while reducing the proline content of roots,
indicating a role for melatonin in the plant stress metabo-
lism [74]. Also, in salt-/drought-stressed soybean, exoge-

nous melatonin promoted plant growth and seed yield,
improving tolerance to abiotic stresses. Transcriptome
analysis revealed that melatonin upregulated the expres-

sion of genes related to photosynthesis, carbohydrate/fatty
acid metabolism, and ascorbate biosynthesis. More partic-
ularly, some interesting genes upregulated by melatonin
include two subunits of photosystem I (PsaK and PsaG),

two elements (PsbO and PsbP) related to the oxygen-
evolving complex of photosystem II (oxygen-evolving
enhancer proteins), the ferredoxin gene PetF, and the

VTC4 gene, which encodes the L-galactose 1-P phospha-
tase involved into ascorbate biosynthesis [58].
Some preservative effects of melatonin on the chloro-

phyll content have also been described previously in the
macroalga Ulva sp. [76] and in the freshwater C. australis,
where a clear increase in the efficiency of the reaction cen-
ters of photosystem II was observed [77]. Recently, similar

data have been obtained concerning the protective role of
melatonin on the photosynthetic pigments in cold-stressed
wheat [78]; salt-, cold-, and water-stressed bermudagrass

[59]; salt-stressed citrus [60]; salt-stressed sunflower [61];
and tomato plants under alkaline stress [66].
In some cases, a clear relationship between the beneficial

effects resulting from exogenous melatonin and changes in
morphology and leaf anatomy have been described. Thus,
in grape cuttings under water-deficiency stress, melatonin

alleviates the oxidative damage by reducing the ROS
burst, decreasing malondialdehyde content, and increasing
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the activity of antioxidative enzymes (catalase, SOD, per-
oxidase). In addition, the levels of antioxidant metabolites
such as glutathione and ascorbic acid increased, as was the
proline content [65]. Melatonin-treated plants maintained

chlorophyll levels and the efficiency of photosystem II at a
similar level as nonstressed plants. Anatomically, water-
deficiency stress leads to greater leaf thickness, with

thicker cuticles and smaller stomata, especially in mature
leaves; this was accompanied by a significant deformation
of the palisade and spongy tissues. In melatonin-treated

grape plants, greater stomatal pore length and width was
correlated with a higher degree of stomata opening. The
thickness of leaves, cuticles, palisade, and spongy tissues

was also higher than in stressed plants, although not as
high as in well-watered plants. Melatonin promotes the
high osmotic metabolites levels (as proline), low cell osmo-
tic potential, high cell turgor, and optimal stomata open-

ing, all of which increase CO2 availability, optimizing the
photosynthetic process. Also, in water-stress conditions
chloroplast morphology is seriously affected: Chloroplast

length decreased and the width increased, giving them a
round in shape; chloroplast membrane systems were dam-
aged; starch grains disappeared; and thylakoids were

dilated, loosened, and distorted. Chloroplasts of melato-
nin-treated plants showed a very well-preserved internal
lamellar system, and all the damage and destructuration
were seriously mitigated [65].

Also under drought conditions, melatonin improves the
functioning of the stomata. In two Malus species, melato-
nin pretreatment led to longer and wider stomata and with

larger apertures, in both control- and drought-stressed
plants. The exogenous application of melatonin through
roots optimizes several parameters in leaves such as the

relative water content, electrolyte leakage, chlorophyll
contents, photosynthetic efficiency, stomatal conductance,
hydrogen peroxide levels, and antioxidant enzyme activi-

ties. Interestingly, in leaves under drought pretreated with
melatonin, ABA level was approximately half those in
drought melatonin-untreated leaves. Melatonin downregu-
lates 9-cis-epoxycarotenoid dioxygenase (NCED), a key

enzyme in ABA biosynthesis in plants, and upregulates
two CYP707 monooxygenases, key catabolic enzymes
implicated in the ABA metabolism under drought condi-

tions. According to the authors [79], the lower ABA and
H2O2 levels in melatonin-treated plants improved stomatal
performance, counteracting the stressor conditions.

In a particular interesting paper, the proteomic changes
that occur during leaf senescence were studied [80]. Such
studies provide a large amount of data and bring to light
many of the actions that melatonin can exert in the physio-

logical processes of plants. Melatonin applied to roots for
2 months delayed leaf senescence in apple (M. hupehensis)
[80]. The proteomic data showed that 622 proteins were

altered by the natural senescence process and 309 after mel-
atonin treatment. As a general conclusion, melatonin
altered many proteins involved in the senescence process

and led to the downregulation of proteins that are normally
upregulated during natural senescence. This proteomic
study agreed with the same author’s data that showed that

melatonin treatment provoked higher photosynthetic acti-
vity, higher chlorophyll and nitrogen levels, higher total

soluble protein and Rubisco contents, in addition to higher
levels of total carbohydrates, sorbitol, and starch, com-
pared with control apple leaves [70]. In particular, proteins
involved in photosynthesis are strongly regulated during

natural senescence. Melatonin mainly upregulated three
chloroplastic ATP synthases, two Rubisco small subunits,
one Rubisco-interacting protein, and one photosystem I

reaction center subunit, which correlates with better photo-
synthetic activity. Also, melatonin downregulated PaO
(related with chlorophyll degradation), one senescence

dehydration-associated protein, four dehydrins, and two
heat-shock proteins (related to abiotic stress), two a-amy-
lases, one pullulanase (a debranching starch enzyme), two

a-glucans, and one a-glucano-transferase. All these are
related with starch granule breakdown, which is related to
a reduction in photosynthesis and marked starch degrada-
tion during leaf senescence, a process that is alleviated by

melatonin. Several proteins involved in protein folding and
post-translational modifications, such as some MAP kinas-
es, serine/threonine protein kinases/phosphatases, among

others (many of which are involved in senescence and stress
responses), are downregulated by melatonin [80].

Changes in endogenous melatonin levels by abiotic
stressors

As indicated above, many data point to the protective role

that the addition of melatonin can have in plants. However,
only recently have data clearly demonstrated that endoge-
nous melatonin levels change according to environmental

conditions. In the study of Glycyrrhyza uralensis, roots
multiplied their endogenous melatonin content to about
80 lg/g FW after UV-B radiation treatment, an approxi-

mately 7-fold increase over control plants [81]. These strik-
ing data suggest that melatonin is accumulated in the plant
tissues as a protective molecule in response to different

environmental abiotic stressors, such as cold, UV radiation,
the light–dark cycle, chemical agents, and water deficit.
Barley and lupin plants treated with different chemical

stressors such as zinc salt, hydrogen peroxide, and sodium

chloride showed an increase in endogenous melatonin lev-
els [82, 83]. Such induction of melatonin biosynthesis was
time and concentration dependent, zinc salt being the best

inducer in roots, where it multiplied melatonin levels 6-
fold in barley and 12-fold in lupin. In the same study,
lupin plants grown at 6°C showed a 2.5-fold increase in

their melatonin content compared with plants grown at
24°C [83]. Also in lupin, water restriction during seedling
growth provoked a 4-fold increase in endogenous melato-
nin compared with well-irrigated plants. The global influ-

ence of environmental factors on the melatonin levels of
plant organs was clearly demonstrated in tomato and
lupin plants by Arnao & Hern�andez-Ruiz [83, 84]. In both

cases, plants grown in field conditions contained 10-fold
(in tomato) and 3-fold (in lupin) more melatonin than
those grown in artificial conditions (culture chambers).

The influence of environmental factors on melatonin levels
was later demonstrated in water hyacinth plants [36],
grape berry skin [85], and cherry fruits [86].

More recently, melatonin levels in sunflower seedlings
under salt-stress conditions have been determined [61].
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Disregarding the very high melatonin quantification (on
the order of lg/g FW), seedlings grown in the presence of
NaCl showed up to 2-fold more melatonin in roots than
untreated plants and up to 6-fold more in cotyledons.

Serotonin levels were also higher in the salt-treated plants.
The immunohistochemical localization study showed that
the differentiated regions of seedling roots subjected to

NaCl treatment exhibit increased accumulation of seroto-
nin and melatonin, in the symplastic zone. Serotonin
appeared in the endodermis, pericycle, and vascular bun-

dle of primary roots, while melatonin accumulation was
evident in cortical cells, vascular bundles, and exodermis
of primary roots. Both indoleamines were detected in the

oil body containing cells of cotyledons. So, in salt-stressed
seedling cotyledons, the enzyme activity of hydroxyindole-
O-methyltransferase (HIOMT), the last step in the melato-
nin biosynthesis pathway (Fig. 2), was induced. This effect

correlated with an rise in melatonin level in sunflower cot-
yledons [61]. In rice, treatment with the herbicide butafe-
nacil provoked an increase in the transcripts of three of

the enzymes acting in the melatonin biosynthesis pathway,
tryptophan 5-hydroxylase (T5H), tryptophan decarboxyl-
ase (TDC), and HIOMT [87]. Also in rice leaves treated

with cadmium, the endogenous melatonin level increased
6-fold over the level of control plants. This cadmium-
induced synthesis of melatonin was accompanied by the
upregulation of TDC, T5H, and HIOMT. However, the

expression of serotonin N-acetyltransferase (SNAT), the
penultimate gene in melatonin synthesis, was downregulat-
ed [88]. Similarly, in two Malus species, expression of the

four melatonin biosynthesis genes, TDC, T5H, SNAT,
and HIOMT, was upregulated by drought conditions [79].
All the data available to date showed more evidence as the

abiotic stressors induce melatonin biosynthesis and its role
as a signal intermediate in the abiotic stress responses. The
recent paper on bermudagrass (C. dactylon) also points to

the effect that several abiotic stressors have on endogenous
melatonin levels. Treatment with NaCl, drought, or cold
provoked significant melatonin increases (2-, 2.6-, and 3-
fold, respectively). These data, together with the effect that

exogenous melatonin has on alleviating the cell damage
induced by abiotic stress in bermudagrass (mentioned
above), led the authors to propose a model involving a

possible role for melatonin as a modulator of metabolic
homeostasis in the photorespiratory and carbohydrate/
nitrogen metabolism [59].

The protective role of melatonin treatment in cold con-
ditions or freezing tissues has been demonstrated [50, 51,
55, 56, 59, 83]. In contrast, a limited number of data have
been obtained with heat stress. Thermosensitive Phacelia

tanacetifolia seeds treated with melatonin reversed the
inhibitory effect of high temperature on germination [89].
Also, exogenous melatonin significantly increased the

activities of nitrogen metabolism-related enzymes, increas-
ing the nitrate content and restricting the ammonium con-
tent at high temperatures, improving the resistance of

cucumber seedlings against heat stress [64]. Temperature-
dependent melatonin synthesis was closely associated with
an increase in both SNAT and HIOMT activities, with

high catalytic activities at 55°C. Thus, the daily melatonin
levels in field-grown rice plants were unaffected as the

positive effect of the relatively high temperature during the

day was counteracted by the negative effect of high light
[90]. The impact of high temperatures on endogenous mel-
atonin level and thermotolerance factors in Arabidopsis

was recently studied [91]. Heat stress (37°C) provoked a 2-
to 5-fold increase in the endogenous melatonin content of
Arabidopsis seedlings. Also, exogenous melatonin treat-

ment (20 lM) enhanced the survival rate (~50%) of plants
subjected to heat stress (45°C, 120 min) compared with
melatonin-untreated plants (survival rate 5%). Heat-shock
transcription factors (HSFs) are the major regulators of

heat stress-responsive genes. The HSFA1 subtype and
some heat-responsive genes (HSFA2, HSA32, HSP90, and
HSP101) were upregulated by heat stress and exogenous

melatonin, conferring relevant thermotolerance to Arabid-
opsis [91].
With the aim of studying the possible roles of melatonin

at physiological level, a variety of transgenic plants
expressing ectopic genes, mainly melatonin biosynthesis
genes of animal origin, have been used. Table 1 shows the
studies on melatonin that have been published with bio-

chemical and physiological objectives using transgenic
plants. The most commonly used ectopic genes were those
which codify SNAT and HIOMT enzymes (Fig. 2) from

different sources, including human and sheep. However,
the first to be used was the SNAT gene from Chlamydo-
monas reinhardtii [92]. Some studies have been made with

other melatonin biosynthesis genes, such as T5H and
TDC. Rice plants have been the most widely used receptor
of these ectopic genes, and many rice transgenic plants

have been obtained to study the melatonin metabolism
(Table 1). Tomato and Nicotiana sylvestris plants have
also been used. In general, SNAT/HIOMT overexpressing

TRYPTOPHAN

5-HYDROXY-TRYPTOPHAN

SEROTONIN
(5-Hydroxy-tryptamine)

N-ACETYL-SEROTONIN

MELATONIN
(N-Acetyl-5-methoxy-tryptamine)

TRYPTAMINE

N-ACETYL-TRYPTAMINE

T5H
TDC

T5H

T5H

TDC

SNAT

SNAT

HIOMT

5-METHOXY-TRYPTAMINE

SNAT

HIOMT

Fig. 2. Biosynthetic pathway of melatonin from tryptophan in
plants. The enzymes of the respective steps are as follows: T5H,
tryptophan 5-hydroxylase; TDC, tryptophan decarboxylase;
SNAT, serotonin N-acetyltransferase; and HIOMT, hydroxyin-
dole-O-methyltransferase. Dotted lines represent alternative reac-
tions described in particular cases.
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plants showed a net increase in endogenous melatonin lev-
els as a response. Also, the levels of other related indoles
changed in transgenic plants with respect to untrans-
formed plants. Some phenotypic changes are to be

expected. For example, the increase in melatonin in over-
expressing rice plants was related with greater resistance to
butafenacil, a singlet oxygen-generating herbicide [87].

Also, overexpression of apple HIOMT in Arabidopsis
resulted in a higher endogenous melatonin level, low ROS
content, increased biomass and, overall, a greater toler-

ance to drought treatment compared to wild-type plants
[93]. As a rule, a higher resistance to abiotic stress condi-
tions such as drought, cold, and UV-B can be observed in

melatonin-rich overexpressing plants compared with wild-

type plants. These results demonstrate that the endoge-
nous melatonin, even at very low concentrations (pico- or
nanograms per gram of fresh weight), is critical for ROS
scavenging and serves as a first line of defense against

stressors. Also, a higher root growth rate, robustness, and
biomass were observed in the transgenic modified plants
(Table 1).

Melatonin as a biotic antistressor

Melatonin can act as a biocide against some fungi and bac-
teria, although conclusive data on its action mechanism do
not exist. Low doses of melatonin show in vitro antimicro-

bial activity against antibiotic-resistant gram-positive and

Table 1. Melatonin-related transgenic plants

Ectopic enzyme
gene-modified plant

Melatonin level in
transgenic lines Other levels Physiological response Ref.

SNAT from Chlamydomonas
reinhardtii
Overexpressed (OE) in
transgenic tomato

↑ up to 8.7-fold – No significant morphological
changes were observed

[92]

Human SNAT OE in
transgenic rice

↑ up to 7-fold ↑ NAT (up to 9-fold)
↑ Chl (up to 2.5-fold)

Increased cold resistance
Increased growth of
roots and leaves

[94]

Human SNAT/HIOMT
OE in Nicotiana sylvestris

From not detected
in WT to 50 lg/g
DW in a transgenic
line

– Increased resistance to
UV-B radiation

[95]

Sheep SNAT OE in rice ↑ up to 8-fold ↑Chl
↓MDA, ROS
↑SOD, CAT, APX
↑TDC, T5H, EHIOMT

Increased resistance to
herbicide butafenacil
Decreased necrotic tissue

[87]

Sheep SNAT OE in rice ↑ up to 4.9-fold - Increased root growth
Increased biomass

[96]

Sheep SNAT OE in
micro-tom tomato
Sheep HIOMT OE in
micro-tom tomato

↑ up to 2.3-fold

↑ up to 6-fold

↓IAA (up to 7.1-fold)

↓IAA (up to 1.6-fold)

Loss of apical dominance
Branching phenotype
Increased resistance
to drought

[97]

Sheep SNAT OE in
transgenic rice

↑ up to 3-fold – Increased lustiness
Increased biomass
Decreased seed yield
Retarded flowering

[98]

Rice HIOMT isogenes
OE in rice

↑ up to 1.5-fold – HIOMT-transcripts
upregulated by abscisic
acid and jasmonic acid

[99]

Segicuchi Rice Mutant
(lack of T5H)

↓ up to 280-fold ↑Tryptamine (up to 400-fold)
↑NAc-Tryptamine
(up to 245-fold)
↓Serotonin (up to 240-fold)

– [100]

Rice TDC isogenes
OE in rice

↑ up to 31-fold ↑Tryptamine (up to 135-fold)
↑Serotonin (up to 62-fold)
↑NAc-serotonin
(up to 4-fold)

– [101]

Apple HIOMT OE in
Arabidopsis

↑ up to 4-fold ↓IAA (up to 1.4-fold) Lower intrinsic ROS
Increased lateral roots
Increased biomass
Greater tolerance
to drought

[93]

Rice indoleamine
2,3-dioxygenase
OE in tomato

↓ up to 4-fold – Decreased lateral leaflets
Leaflets more
flattened/less serrated

[102]
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gram-negative pathogen strains [103], while concentrations
much higher showed antibacterial activity against ten dif-
ferent human pathogenic bacteria [104]. Their use as
in vivo antibiotic has also been suggested, for example, in

human newborns suffering from septicemia [105]. In our
preliminary studies, different concentrations of melatonin
showed growth inhibition activity against several plant

fungal pathogens such as Alternaria spp., Botrytis spp.,
and Fusarium spp. growing in standard media (Fig. 3, pan-
els A and B). Also, melatonin was capable of decreasing

the rate of infection in plant–pathogen attack. In nonsteril-
ized Lupinus albus seeds, a low rate of fungal infection
(≤40%, compared with a control, unpublished data) was

reached when seeds were pretreated with melatonin during
the germination process (Fig. 3, panels C–E).
Exogenous melatonin treatments improved resistance

against several fungal/bacterial infections, causing plants

to develop the diseases at a lower extent. Thus, Yin et al.
[106] improved resistance of Malus prunifolia against the
fungus Diplocarpon mali (Marssonina apple blotch), treat-

ing trees through their roots by irrigation with melatonin
at different concentrations (from 50 to 500 lM). At
20 days, melatonin-treated apple trees showed a lower

number of damage leaves, with a higher chlorophyll con-
tent, a more efficient photosystem II and a less defoliation
that infected-untreated trees. The authors affirmed that
exogenous melatonin induces and maintains phenylalanine

ammonia-lyase activity and the expression of the protector
pathogenesis-related proteins, chitinase, and b-1,3-glucan-
ase, contributing to greater resistance to fungal infection

in those treated plants, reducing lesions, inhibiting

pathogen expansion, and alleviating disease damage [106].
Moreover, melatonin was capable of reducing 10-fold the
multiplication of the virulent bacterial pathogen Pseudo-
monas syringae (Pst DC3000) following infection of Ara-

bidopsis thaliana leaves. Thus, in Arabidopsis and
Nicotiana benthamiana leaves pretreated with exogenous
melatonin (10 lM), the induction of various pathogenesis-

related genes and other elements of the plant defense
response related with salicylic acid (SA), jasmonic acid
(JA), and ethylene have been described. Of note was the

rapid induction of the defense genes (only 0.5 hr), which
reached a peak 3 hr after melatonin treatment [107].
Recently, the same authors demonstrated that increased

pathogen susceptibility in a SNAT knockout Arabidopsis
mutant was correlated with a reduction in endogenous
melatonin level due to SNAT gene inactivation. Also, a
decrease in SA level and a strong inhibition of defense

genes, including pathogenesis-related proteins PR1, PR5,
and defensin 1.2, were observed in mutant lines compared
with wild type. Melatonin also induced the nuclear locali-

zation of the SA receptor (NPR1), a key factor in the sig-
naling pathway [108]. The data obtained with diverse
Arabidopsis mutants showed that melatonin acts upstream

of the defense genes signaling pathway, inducing the bio-
synthesis of SA, JA, and ethylene, which, together, elicit
disease resistance in a well-known co-action [109]. The
emergence of an oxidative burst during the early stage of

plant–pathogen interaction seems to increase endogenous
melatonin level [107, 108].
The scarce data available in this respect show that mela-

tonin (and perhaps serotonin [110] and N-acetylserotonin

Control 20 μM MEL 70 μM MEL

(A)

(D) (E)

(C)

(B)

Fig. 3. Effect of melatonin on plant
fungal pathogens. Panels A–B:
fungitoxicity in in vitro assay of
melatonin on Alternaria spp. grown in
potato dextrose agar (PDA) plates. (A)
Control; (B) 4 mM melatonin. Panels C–
E: in vivo fungal infection assay on lupin
seeds in germination. (C) Nonsterilized
lupin seeds germinated on vermiculite
substrate previously imbibed with water
(Control) or with melatonin at 20 and
70 lM. (D) Detail of fungal infection
(Penicillium spp.) in control seeds. (E) No
fungal infection could be observed in
melatonin pretreated seeds.
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[107], to a lesser degree) triggers the defense responses, act-
ing as a signal molecule (elicitor) capable of inducing
several defense genes related with pathogen resistance.
Some plant fungi which establish a mutualistic endophytic

relationship with several plant species present higher mela-
tonin levels than are found in plants. In this sense, the
possible relationship between plant–pathogen/beneficial
fungi and their respective melatonin levels may be an
interesting line of study. All the data point to the increase
in ROS (oxidative burst) being the common factor

between the abiotic and biotic stresses responsible for the
increase in melatonin level observed in these situations
(Fig. 4).

Melatonin as a biological rhythm regulator

The role of melatonin as a regulator of light–dark cycles

has been clearly established in mammals [111–113]. In
plants, the circadian oscillator is able to adjust the phase
of a variety of biological processes, such as gene and meta-

bolic regulation, protein stability, among others, to
coincide with daily and/or seasonal cycles. Thus, circadian
regulation increases photosynthesis and growth rates and

may affect flowering and seed yield in crops and biotic/abi-
otic stress responses [114–117]. This role as chronoregula-
tor was the starting point for research into melatonin in
plants and, more specifically, its possible involvement as a

regulatory molecule in circadian rhythms and in aspects
connected with photoperiodicity. In 1997, Kolar et al. [27]
demonstrated the presence of melatonin in cultivated 15-

day-old Chenopodium rubrum plants and observed an
oscillating behavior of melatonin levels in 12:12-hr light/
dark cycles. Low or undetectable levels of melatonin were

found during the light period and a considerable increase
(reaching maximum levels of ~250 pg/g FW) in darkness
(Fig. 5, panel A). This increase in melatonin during the

dark period was similar to that observed in mammals. In
plants exposed to different photoperiodic cycles, no rela-
tionship between the photoperiod applied and the dura-
tion of melatonin increase was observed [118]. The authors

concluded that, although the maximum of melatonin
always occurred after lights off, melatonin biosynthesis
was not directly light-regulated, but showed a circadian

rhythm, as in mammals. In Pharbitis nil seedlings, van
Tassel et al. [119] indicated that no differences in the mela-
tonin content appeared with respect to the light/dark cycle

applied.
In a significant study by Reiter group’s working with

water hyacinth (Eichhornia crassipes) [36], plants grown in
natural conditions presented maximum levels of melato-

nin, with a peak occurring late in the light phase of the
light–dark cycle (Fig. 5, panel B). Also, the catabolite

N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK),
determined for the first time in plants, showed a similar
rhythm. Interestingly, when the plants were cultivated in
artificial light, melatonin levels were considerably lower,

indicating the importance of the quality of light for the
melatonin biosynthetic capacity of plants [120]. Similarly,
the macroalga Ulva sp. presented a melatonin rhythm,

with a maximum at night in long-photoperiod day (16 hr
light: 8 hr dark) [76].
An oscillating behavior of melatonin levels was

observed in the berry skin of V. vinifera cv Malbec, during
the night/day cycle and under field conditions [85]. The
grape skins presented a melatonin peak of 158 ng/g FW at

sunrise, decreasing in the next 4 hr to undetectable values
both at noon and during the afternoon (Fig. 5, panel C).
During the night, melatonin reached their lowest levels
~10 ng/g FW. The author’s interpretation was that mela-

tonin levels were probably controlled by the circadian
clock and that the decrease in melatonin during the light
period would be due to ‘melatonin consumption’ in grapes

as an antioxidant response against solar radiation. More
recently, two peaks of melatonin production, at 5:00 and
14:00 hr during a 24-hr period, in two sweet cherry culti-

vars, have been described (Fig. 5, panel E). This double-
peak matched TDC (Fig. 2), suggesting that it acts as a
rate-limiting enzyme in melatonin synthesis in plants [86].
Also two peaks were described in apple (Malus zumi)

leaves, at 14:30 and 5:30 hr (Fig. 5, panel D), slightly after
malondialdehyde peaks, suggesting that oxidative stress
can induce melatonin biosynthesis [93], as also was pro-

posed in sweet cherry [86]. Our data obtained for lupin
and barley are very similar to those for sweet cherry and
apple leaves, in which two peaks of melatonin appeared

(Fig. 5, panels F and G). In both cases, melatonin peaks
were higher in roots than in leaves or cotyledons. The
results of the studies cited above (Chenopodium, Eichhor-

nia, Vitis, Malus, Prunus, Lupinus, and Hordeum) indicate
that the time of day at which the sample is taken seems to
be relevant for melatonin levels in plant tissues, since,
depending on the time of day or night, differences of sev-

eral orders of magnitude are recorded. Whatever the case,
a circadian rhythm of melatonin seems to exist in plants.
However, the decisive influence of abiotic factors on

endogenous melatonin levels and the wide range of mela-
tonin concentrations observed in different plant organs
mean that much more rigorous studies need to be

performed on this topic.

Melatonin as a plant (hormone) regulator

One of the first roles proposed for melatonin in plants was
its possible action as a growth regulator. The structural

Fig. 4. Scheme of melatonin action as positive effector on several physiological processes. Abiotic and biotic stressors provoke an increase
into endogenous melatonin level through the upregulation of melatonin biosynthetic genes. Both abiotic and biotic stress effects are medi-
ated by an oxidation burst, ROS induction being the first cellular signal. Stressors act as negative effectors in many cellular and physiolog-
ical processes such as photosynthesis and membranes integrity (panel A). Endogenous melatonin can change the expression of many
genes and regulation factors that attenuate or reverse the negative effects of biotic/abiotic stressors on physiological processes, acting as a
positive effector against stress (panels B and C). Also, melatonin can act directly as free radical scavenger (direct antioxidant) on reactive
oxygen and reactive nitrogen species, lipid peroxides, and toxic chemicals, controlling relevant aspects such as membrane integrity and
the proper functioning of the redox network.
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similarity and the common biosynthetic pathway between

IAA and melatonin led to suggestions of possible func-
tional similarities between these two indolic molecules
[121]. In 2004, the action of melatonin as a growth pro-

moter was demonstrated in etiolated Lupinus albus [40].
Similar to IAA, exogenous melatonin induces active
growth of hypocotyls at micromolar concentrations, while

having an inhibitory effect at higher concentrations. As in
the case of IAA, endogenous melatonin showed a concen-
tration gradient distribution in tissues, probably related

with the different growth potential of hypocotyls and

roots: The most apical zone, being the most actively grow-
ing zone, had the highest melatonin content. This relation-
ship has also been described, for the gradient observed

between auxin and melatonin [122]. The growth-promot-
ing effect of melatonin was also demonstrated in several
monocots. Curiously, the effect of exogenous melatonin

was tissue-selective, promoting growth in coleoptiles but
inhibiting it in roots, at similar concentrations, which
resembles the behavior of IAA [41, 123]. These promoting/

(A)

(B)

(C)

(D)

(E)

(F)

(G)

Fig. 5. Changes in melatonin level during
a photoperiodic cycle of 12 hr light/12 hr
darkness. The approximate data are
taken from the respective works cited in
the text.
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inhibitory, concentration-dependent effects of melatonin
have also been described in red cabbage [49] and in mus-
tard [124]. Also in transgenic overexpressing sheep SNAT
rice plants (Table 1), the increase in endogenous melatonin

level was correlated with the high growth rate of roots [94,
96]. Possibly, melatonin (and also serotonin) restored
growth-promoting activity in salt-stressed sunflower seed-

lings, perhaps making up for the deficiency in IAA caused
by disruption of the auxin gradient in primordial roots
provoked by salts [61]. More recently, the positive effect of

exogenous melatonin on root/shoot growth has been
clearly demonstrated in several species such as Arabidopsis
[56, 57], soybean [58], bermudagrass [59], and Citrus [60].

To date, the limited number of studies that exist indicate
that actions on the growth process of IAA and melatonin
could run in parallel, although any specific relationship
between IAA and melatonin is still far from being demon-

strated. For example, there are insufficient data on how
IAA and melatonin affect mutual endogenous levels, bear-
ing in mind that both indoles share common precursors in

the biosynthetic route, tryptophan, and tryptamine [125].
Another action in which auxinic substances are involved

is rhizogenesis. Melatonin is able to induce root primor-

dials from pericycle cells in lupin, generating new adventi-
tious or lateral roots [126]. This rhizogenic effect has also
been studied in other species such as rice [96], cherry [74,
127], Arabidopsis [93, 128, 129], cucumber [52], and pome-

granate [130]. Based on the data obtained, melatonin
began to be considered as a plant regulator in the forma-
tion of adventitious roots. The potentiating effect of mela-

tonin on rooting, when acting together with other auxin
such as IAA or indole-3-butyric acid (IBA) is of great
interest, especially in recalcitrant species to auxin action

[131].
Meanwhile, few advances have been made in under-

standing the role of melatonin in cultured cells. Since the

studies of Saxena group’s with Hypericum perforatum (St.
John’s wort) [33] and with Echinacea purpurea (purple
coneflower) [132], where it was postulated as a potential
plant regulator, independent of IAA, in organogenic pro-

cesses (rhizo- and caulogenesis); and the study of in vitro
shoots of Vaccinium corymbosum (highbush blueberry),
where the morphogenic potential of melatonin was com-

pared with that of IAA and IBA [133], no new studies
have appeared. There is great interest that melatonin
might have as a dual agent, as cell protector (antioxidant

activity), and as plant morphogenic regulator, in in vitro
applications. Only recently, an interesting study has been
published on the use of melatonin in Agrobacterium-medi-
ated plant transformation methods. The presence of exog-

enous melatonin significantly reduced tissue browning
and cell death, without affecting T-DNA integration,
increasing the stable transformation frequency of plants

[134].
Until now, there is no clear evidence that melatonin

may replace IAA in its effect on apical dominance. Oka-

zaki work’s with transgenic tomato plants overexpressing
the rice indoleamine 2,3-dioxygenase gene, which encodes
an enzyme that cleaves the indolic ring, points to a rela-

tionship between low endogenous melatonin level and
some morphological changes in transgenic tomato leaves,

with more flattened and more serrated leaflets than tomato
wild-type leaves (Table 1) [102]. More recently, also in
transgenic tomato plants but overexpressing sheep SNAT
and HIOMT enzymes (see Fig. 2 and Table 1), higher

endogenous melatonin levels were correlated with a sub-
stantial decrease in endogenous IAA levels in leaves and
stems and with a branching phenotype, which suggests

that melatonin does not replace IAA in the apical domi-
nance function [97]. Similar findings were obtained in
transgenic Arabidopsis overexpressing apple HIOMT

(Table 1), where an increased melatonin level was matched
by an increase in new roots and a strongly decreased levels
of endogenous IAA. This last effect indicates that melato-

nin and IAA probably acts in the same physiological
action, but in parallel [93].
Related with plant hormones, the changes induced in

gene expression by melatonin are worthy of comment.

Thus, with respect to auxin, root primordial induction by
melatonin treatment was independent of IAA-signaling
activation. This particular effect of melatonin on rhizogen-

esis was also observed with other auxin, 1-naphthaleneace-
tic acid (NAA), a synthetic root-promoting plant regulator
widely used in agronomic and biotechnological applica-

tions. In both cases, IAA and NAA were able to activate
the auxin-inducible gene expression marker DR5:GUS in
Arabidopsis, but not with melatonin, which also activates
the generation of lateral roots [128, 129]. In a whole-tran-

scriptome sequencing (RNA-seq) analysis in cucumber
roots, the expression of 121 genes were significantly upreg-
ulated and 196 downregulated in roots treated with mela-

tonin, which activated rhizogenesis. Several superfamilies
of transcription factors such as MYB (plant orthologs of
Myb proto-oncogene), MRKY (plant protein which bind

at specific DNA sequence through the WRKYGQK pep-
tide), and NAC (no apical meristem/ATAF1-2/cup-shaped
cotyledon proteins) are involved in responses related with

biotic/abiotic stresses, plant development, hormonal signal
transduction, and disease resistance, among others. Some
members of these transcription factors and also some eth-
ylene-transcription factors (ERFs) have the ability to neg-

atively regulate root-related genes and therefore suppress
root formation. Many of these factors were downregulated
by melatonin, allowing new root formation [135]. Curi-

ously, the expression pattern of auxin-related genes exhib-
ited minimal changes in melatonin-treated Arabidopsis
plants with respect to those that are untreated. Only an

IAA-amino synthase was upregulated, with no change in
the expression of auxin biosynthetic genes [71].
Auxin-influx carrier protein-1 (AUX1) which belongs to

a small gene family comprising four highly conserved

genes, AUX1 and LIKE-AUX1 (LAX) (amino acid/auxin
permease superfamily), was severely downregulated in
response to melatonin treatment in Arabidopsis. Of the

four AUX/LAX genes, AUX1 regulates lateral root devel-
opment, root gravitropism, root hair development, and
leaf phyllotaxy. These preliminary data show that melato-

nin can interfere in the action of auxin through changes in
auxin carriers that modify local IAA gradients [71, 136].
Thus, except for these last data and the existence of com-

mon biosynthetic precursors (tryptophan and tryptamine),
a direct connection between IAA and melatonin has not
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yet been found, attending to their similar physiological
actions.
In the case of gibberellins (GA) and ABA, the levels of

both plant hormones were altered by melatonin treatment.

Thus, melatonin upregulated GA biosynthesis genes such
as GA20ox and GA3ox in cucumber seedlings in saline
conditions, contributing to a high level of activates GAs

as GA4, promoting salt-inhibited germination process [62,
135]. Also, melatonin treatment provoked the upregulation
of ABA catabolism genes (two CYP707 monooxygenases)

and downregulated 9-cis-epoxycarotenoid dioxygenase
(NCED), a key enzyme in ABA biosynthesis, which
resulted in a rapid decrease in ABA level during seed ger-

mination under salt stress [62]. Similar data were obtained
in apple leaves in drought conditions, where melatonin
pretreatment halved the ABA content through regulation
of the same ABA biosynthesis and catabolism enzymes, as

mentioned above [79].
A novel study on the effect of exogenous melatonin on

ethylene metabolism, postharvest ripening, and the quality

of tomato fruit showed that tomatoes treated with 50 lM
melatonin for 2 hr manifested substantial changes in their
fruit ripening parameters, such as lycopene levels, fruit

softening, flavor, ethylene signaling, and biosynthesis
enzymes with respect to untreated tomatoes [137]. Exoge-
nous melatonin slightly increased ethylene generation and
further timing of climacteric peak through the upregula-

tion of 1-aminocyclopropane-1-carboxylic acid (ACC) syn-
thase expression. Also, the ethylene receptor genes NR
and ETR4 and the transducing elements EIL1, EIL3, and

ERF2 genes were upregulated. The only known data in
this respect were provided in a congress communication in
which melatonin produced a strong inhibition (up to 65%

in roots, compared with a control) in the rate of ethylene
production in etiolated seedlings of lupin [138]. This inhib-
itory effect on ethylene production manifested itself in veg-

etative tissues as a regulation by auxin, in which IAA was
capable of inducing ACC synthase expression, but also
blocked the induction of ACC oxidase expression by ethyl-
ene, in accordance with the model of Kang’s group in

mung bean hypocotyls [139]. Also, in Arabidopsis melato-
nin-treated plants, two ACC synthases were upregulated,
one being ACC synthase, which is auxin-inducible accord-

ing to the above model [71]. Possibly, this opposite effect
was due to the differences in the auxin-mediated response
between vegetative and reproductive tissues. Also, exoge-

nous melatonin treatment provoked the upregulation of
genes related with lycopene biosynthesis-, aroma/flavor-,
cell wall structure, and aquaporin in tomatoes, leading to
the conclusion that melatonin promotes postharvest

tomato fruit ripening through increased ethylene produc-
tion and signaling [137]. Nevertheless, different effects
could appear in vegetative tissues.

With regard to SA and JA, both plant regulators are
involved in biotic stress responses, as mentioned above.
Also, in the extensive genetic functional analysis of Ara-

bidopsis treated with exogenous melatonin, most genes in
the ABA, SA, JA, and ethylene pathways were upregulat-
ed, confirming that melatonin alters the expression of

stress response genes involved in all the steps of the path-
way, from receptors through transcription factors. These

results confirm the critical roles of melatonin in defense
against both biotic and abiotic stresses in plants [71, 108].
In contrast, in a recent work the treatment of rice leaves
with different plant hormones (IAA, GA3, JA, SA, and

ethylene, at a fixed concentration) did not provoke the
induction of melatonin biosynthesis and only a low level
was measured in response to ABA, suggesting that melato-

nin production is not linked to plant hormone responses
[88].

Conclusions and future challenges

Fig. 4 summarizes the most relevant aspects concerning

abiotic/biotic stressors and melatonin. Both abiotic and
biotic stress effects are mediated by an oxidative burst,
ROS induction being the first cellular signal. This ROS
burst is probably responsible for the increase in endoge-

nous melatonin levels through upregulation of melatonin
biosynthetic genes (at least three of the four enzymes
involved). Stressors acts as negative effectors in many cel-

lular and physiological processes, such as photosynthesis
and membrane integrity (Fig. 4, panel A). Endogenous
melatonin can change the expression of many genes and

regulation factors that attenuate or reverse the negative
effects of biotic/abiotic stressors on physiological pro-
cesses, acting in this way as a positive effector against
stress (Fig. 4, panels B and C). Also, melatonin may act

directly as free radical scavenger (direct antioxidant) on
ROS/RNS, lipid peroxides, and toxic chemicals, control-
ling relevant aspects such as membrane integrity and the

proper functioning of redox network. Thus, melatonin
acts as a first barrier against the ROS burst and, in a sec-
ond line of defense, changes the expression of many

responsive stress genes. Clearly, the action of melatonin
becomes more evident and concise in challenging physio-
logical situations, when plants are subjected to stressful

environments or aggressive conditions such as severe
stress and/or pathogen infections. Although there are
many aspects that remain to be investigated, a role for
melatonin as common effector in biotic and abiotic stres-

ses has been proposed, suggesting that melatonin may
play a relevant role in the growth/defense balance as
modulator [140–143].
As regards to future challenges, all aspects of melatonin

metabolism must be considered to be of great interest.
Although many considerations on biosynthetic enzymes

and their regulation are beyond the scope of this review,
much information on the kinetic properties and cellular
localization of the enzymes involved in plant melatonin bio-
synthesis (T5H, TDC, SNAT, and HIOMT) has recently

become available (Fig. 2), almost all in rice plants [90, 99,
101, 144–148], but some in Arabidopsis [93, 149, 150]. It is
necessary to extend the studies to other species. With

respect to melatonin degradation, melatonin is catabolized
into various metabolites, including 4-hydroxymelatonin, 2-
hydroxymelatonin, cyclic 3-hydroxymelatonin, melatonin

dioxetane, AFMK, and N1-acetyl-5-methoxykynuramine
(AMK) in the kynuric pathway [24, 151, 152] and 6-hy-
droxymelatonin, 6-sulfatoxymelatonin, 5-methoxytrypta-

mine, 5-methoxytryptophol, and 5-methoxyindolil-3-acetic
in the indolic pathway [24, 151, 153, 154]. Only AFMK has
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been reported in the water hyacinth [36]. Practically every-
thing in this respect remains to be studied in plants,
although some recent studies detected 2-hydroxymelatonin
as the main product of degradation of melatonin in rice [88,

148, 155]. Related to this, the detection of some melatonin
isomers, mainly in plant-fermented beverages (wine, fruit
juices) [156, 157], generated some confusion until the

unequivocal identification of the main isomer was identified
as tryptophan ethyl ester [158–160]. Nevertheless, the pres-
ence of melatonin conjugated with carbohydrates and/or

amino acids can be expected in plant extracts, in a similar
way to the metabolism of other plant hormones (e.g.
auxin). As regards the origin of melatonin, the most recent

data suggest that it is generated in the mitochondria and
chloroplast [147–149, 161]. Nevertheless, data exist that
show that roots have the highest melatonin content of the
whole plant, presumably being synthesized in the leucoplas-

tid of roots, this remains to be confirmed. Also, the detec-
tion of melatonin in xylem and/or phloem elements/vessels
should be investigated.

The physiological actions of melatonin through gene
regulation will probably involve their interaction with a
receptor. Although the hormone/receptor interaction in

plants is much more complex than in animals, the detec-
tion and characterization of potential melatonin receptor
(s) in plants is also a primary objective. Undoubtedly, the
extensive knowledge we have on its receptors and antago-

nists in vertebrates may help in this respect [162]. Also, in
the interplay between ROS and plant hormones, melato-
nin should be taken into account [140]. In fact, recently

melatonin has began to be considered by experts in plant
hormones [131].
Despite the absence of conclusive data, much informa-

tion is already available about the role of melatonin in
relevant aspects of the physiology of plants, such as root-
ing, photosynthesis, and resistance to stressful environ-

ments. This should be corroborated, verifying its role as a
biostimulator and stress-protective molecule in field trials.
Possibly, for an overview of the physiological processes in
which melatonin is involved, it will be necessary to under-

stand its relation with circadian rhythms. Available data
on circadian changes in melatonin levels should be con-
trasted with the influence of melatonin on the central regu-

latory elements of the biological clock in Arabidopsis as
CCA1, LHY, and TOC1 [163]. In animals, melatonin
plays an important role as a chronobiological agent, acting

as a darkness signal providing information to the brain
and peripheral organs, regulating circadian phases, and
maintaining rhythm stability. Recently, the role of melato-
nin as a proteasome inhibitor in a feedback clock gene

regulation mechanism has been proposed in animals [164].
The similarity in pacemaker architecture (feedback regula-
tion) and the influence of environmental factors (synchro-

nization) in the circadian clock (in animal and plant)
mean that much of what is known about melatonin in
animals might be studied in plants [165].

To conclude, the potential of melatonin to strengthen
plants subjected to multiple abiotic/biotic stressors has
opened up an interesting area of study for this natural

substance, especially for crop improvement and pathogen
protection.
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