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Direct and indirect e� ects of climatic and edaphic variables on plant and fungal richness. 

Line thickness corresponds to the relative strength of the relationships between the variables 

that a� ect species richness. Dashed lines indicate negative relationships. MAP, mean annual 

precipitation; Fire, time since last � re; Dist. equator, distance from the equator; Ca, soil calcium 

concentration; P, soil phosphorus concentration; pH, soil pH. 

RATIONALE: We identified soil-inhabiting 

fungi using 454 Life Sciences (Branford, 

CN) pyrosequencing and through compari-

son against taxonomically and functionally 

annotated sequence databases. Multiple re-

gression models were used to disentangle 

the roles of climatic, spatial, edaphic, and 

floristic parameters on fungal diversity and 

community composition. Structural equa-

tion models were used to determine the 

direct and indirect effects of climate 

on fungal diversity, soil chemistry, 

and vegetation. We also exam-

ined whether fungal biogeo-

graphic patterns matched 

p a r a d i g m s d e r i v e d 

f r o m p l a n t s a n d 

animals—namely, that species’ latitudinal 

ranges increase toward the poles (Rapo-

port’s rule) and diversity increases toward 

the equator. Last, we sought group-specific 

global biogeographic links among major bio-

geographic regions and biomes using a net-

work approach and area-based clustering.

RESULTS: Metabarcoding analysis of 

global soils revealed fungal richness esti-

mates approaching the number of species 

recorded to date. Distance from equator 

and mean annual precipitation had the 

strongest effects on rich-

ness of fungi, including 

most fungal taxonomic 

and functional groups. 

Diversity of most fun-

gal groups peaked in 

tropical ecosystems, but 

ectomycorrhizal fungi and several fungal 

classes were most diverse in temperate or 

boreal ecosystems, and many fungal groups 

exhibited distinct preferences for specific 

edaphic conditions (such as pH, calcium, 

or phosphorus). Consistent with Rapoport’s 

rule, the geographic range of fungal taxa in-

creased toward the poles. Fungal endemicity 

was particularly strong in tropical regions, 

but multiple fungal taxa had cosmopolitan 

distribution.

CONCLUSIONS: Climatic factors, followed 

by edaphic and spatial patterning, are the 

best predictors of soil fungal richness and 

community composition at the global scale. 

Richness of all fungi and functional groups 

is causally unrelated to plant diversity, with 

the exception of ectomycorrhizal root symbi-

onts, suggesting that plant-soil feedbacks do 

not influence the diversity of soil fungi at the 

global scale. The plant-to-fungi richness ra-

tio declined exponentially toward the poles, 

indicating that current predictions—assum-

ing globally constant ratios—overestimate 

fungal richness by 1.5- to 2.5-fold. Fungi fol-

low similar biogeographic patterns as plants 

and animals, with the exception of several 

major taxonomic and functional groups that 

run counter to overall patterns. Strong 

biogeographic links among distant 

continents reflect relatively efficient 

long-distance dispersal compared with 

macro-organisms.  ■ 
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INTRODUCTION: The kingdom Fungi 

is one of the most diverse groups of 

organisms on Earth, and they are integral 

ecosystem agents that govern soil carbon 

cycling, plant nutrition, and pathology. 

Fungi are widely distributed in all terres-

trial ecosystems, but the distribution of 

species, phyla, and functional groups has 

been poorly documented. On the basis 

of 365 global soil samples from nat-

ural ecosystems, we determined 

the main drivers and biogeo-

graphic patterns of fungal 

diversity and commu-

nity composition.

Read the full article 

at http://dx.doi

.org/10.1126/

science.1256688
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Fungi play major roles in ecosystem processes, but the determinants of fungal diversity and

biogeographic patterns remain poorly understood. Using DNA metabarcoding data from

hundreds of globally distributed soil samples,we demonstrate that fungal richness is decoupled

from plant diversity.The plant-to-fungus richness ratio declines exponentially toward the poles.

Climatic factors, followed by edaphic and spatial variables, constitute the best predictors of

fungal richness and community composition at the global scale. Fungi show similar latitudinal

diversity gradients to other organisms,with several notable exceptions.These findings advance

our understanding of global fungal diversity patterns and permit integration of fungi into a

general macroecological framework.

F
ungi are eukaryotic microorganisms that

play fundamental ecological roles as decom-

posers, mutualists, or pathogens of plants

and animals; they drive carbon cycling in

forest soils, mediate mineral nutrition of

plants, and alleviate carbon limitations of other

soil organisms. Fungi comprise some 100,000 de-

scribed species (accounting for synonyms), but

the actual extent of global fungal diversity is esti-

mated at 0.8 million to 5.1 million species (1).

Globally, the biomass and relative proportions

of microbial groups, including fungi, co-vary with

the concentration of growth-limiting nutrients in

soils and plant tissues. Such patterns suggest that

the distribution of microbes reflects latitudinal

variation in ecosystem nutrient dynamics (2–4).

Richness of nearly all terrestrial and marine mac-

roorganisms is negatively related to increasing

latitude (5)—a pattern attributed to the combined

effects of climate, niche conservatism, and rates

of evolutionary radiation and extinction (6). Al-

though morphological species of unicellular mi-

crobes are usually cosmopolitan (7), there is growing

evidence that the distribution ofmicroorganisms

is shaped by macroecological and community as-

sembly processes (8). Only a few of these bio-

geographic processes have been demonstrated

for fungi at the local scale (9). Despite their enor-

mous diversity and importance in ecosystem func-

tion, little is known about general patterns of

fungal diversity or functional roles over large

geographic scales. We used a global data set to

disentangle the roles of climatic, edaphic, floris-

tic, and spatial variables governing global-scale

patterns of soil fungal diversity. We also address

macroecological phenomena and show that fungi

largely exhibit strong biogeographic patterns that

appear to be driven by dispersal limitation and

climate.

Materials and methods

We collected 40 soil cores from natural commu-

nities in each of 365 sites across the world using

a uniform sampling protocol (Fig. 1A and data

file S1). Most plots (2500 m
2
) were circular, but

in steep mountain regions and densely forested

areas, some plots were oblong. We randomly se-

lected 20 trees located at least 8 m apart. In two

opposite directions, 1 to 1.5 m from each tree

trunk, loose debris was removed from the forest

floor. Polyvinyl chloride (PVC) tubes (5 cm in di-

ameter) were hammered into the soil down to

5 cm depth. These soil cores almost always in-

cluded fine roots and comprised both the organic

layer and top mineral soil. Although deep soil

may contain some distinctive organisms adapted

to anoxic conditions or low nutrient levels, our

sampling was limited to topsoil for the following

reasons. First, in the vast majority of soil types,

>50% of microbial biomass and biological activ-

ity occur in the topmost organic soil layer. Second,

deeper sampling was impossible in shallow, rocky

soils or those with high clay concentrations and

hardpans. Third, differences among soil horizons

may be masked by other variables across large

geographic scales (10). The 40 soil cores taken in

each site were pooled, coarse roots and stones

were removed, and a subset of the soil was air-

dried at <35°C. Dried soil was stored in zip-lock

plastic bags with silica gel in order to minimize

humidity during transit. In the laboratory, we

ground dried soil into fine powder using bead

beating.

We extracted DNA from 2.0 g of soil using

the PowerMax Soil DNA Isolation kit (MoBio,

Carlsbad, CA) following manufacturer’s instruc-

tions. We performed polymerase chain reaction

(PCR) using a mixture of six forward primers (in

equimolar concentration) analogous to ITS3 and

a degenerate reverse primer analogous to ITS4

(hereafter referred to as ITS4ngs). We shortened

and modified forward and reverse primers to
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completely match >99.5% of all fungi [except

~60% of Tulasnellaceae that exhibit highly di-

vergent 5.8S ribosomal DNA (rDNA) and Micro-

sporidia that exhibit rearrangements in rDNA]

(table S1). The ITS4ngs primer was tagged with

one of 110 identifiers (multiplex identifiers, 10 to

12 bases) that were modified from those recom-

mended by Roche (Basel, Switzerland) to differ

by >3 bases, start only with adenosine, and con-

sist of between 30 and 70% adenosine and thy-

midine in order to optimize the adaptor ligation

step. The PCR cocktail consisted of 0.6 ml DNA

extract, 0.5 ml each of the primers (20 pmol),

5 ml 5xHOT FIREPol Blend Master Mix (Solis

Biodyne, Tartu, Estonia), and 13.4 ml double-

distilledwater.We carriedoutPCR in four replicates

using the following thermocycling conditions: an

initial 15minat 95°C, followed by 30 cycles at 95°C

for 30 s, 55°C for 30 s, 72°C for 1 min, and a final

cycle of 10 min at 72°C. PCR products were

pooled, and their relative quantity was estimated

by running 5 ml amplicon DNA on 1% agarose

gel for 15 min. DNA samples yielding no visible

band were reamplified by using 35 cycles in an

effort to obtain sufficient PCR product, where-

as samples with a very strong band were re-

amplified with only 25 cycles. It is important to

use as few cycles as possible tominimize chimera

formation and to be able to interpret sequence

abundance in a semiquantitative manner (11).

We used negative (for DNA extraction and PCR)

and positive controls throughout the experiment.

Amplicons were purified with Exonuclease I and

FastAP thermosensitive alkaline phosphatase

enzymes (Thermo Scientific, Pittsburgh, PA). Pu-

rified amplicons were subjected to quantity nor-

malization with a SequalPrep Normalization

Plate Kit (Invitrogen, Carlsbad, CA) following

manufacturer’s instructions. We divided nor-

malized amplicons into five pools that were sub-

jected to 454 adaptor ligation, emulsion PCR, and

454 pyrosequencing by using the GS-FLX+ tech-

nology and Titanium chemistry as implemented

by Beckman Coulter Genomics (Danvers, MA).

Bioinformatics

Pyrosequencing on five half-plates resulted in

2,512,068 readswith amedian length of 409 bases.

The sequences were reassigned to samples in

mothur 1.32.2 (www.mothur.org) based on the bar-

codes and then trimmed (parameters:minlength =

300; maxambigs = 1; maxhomop = 12; qwindo-

waverage = 35; qwindowsize = 50; and bdiffs = 1)

to exclude short and low-quality sequences, re-

sulting in 2,231,188 high-quality sequences. We

used ITSx 1.0.7 (http://microbiology.se/software/

itsx) to remove the flanking 5.8S and 28S rRNA

genes for optimal resolution of ITS2 clustering

and removal of compromised and nontarget se-

quences. As a filter to remove most of the partial

sequences, we retained only sequences >99 base

pairs (bp) in length. Chimera control was exer-

cised through UCHIME 4.2 (www.drive5.com/

uchime). After these filtering steps, 1,397,679

sequences were retained and further clustered

at 90.0% and 95.0 to 99.0% sequence similarity

thresholds (12) as implemented in CD-Hit 4.6.1

(www.cd-hit.org). Clustering revealed 37,387,

59,556, 66,785, 77,448, 94,255, and 157,956 taxa

based on 90.0, 95.0, 96.0, 97.0, 98.0, and 99.0%

sequence similarity thresholds, respectively. The

longest sequence of each Operational Taxonomic

Unit (OTU), based on clustering at 98.0% se-

quence similarity, was selected as the repre-

sentative for BLASTn searches (word size = 7;

penalties: gap = –1; gap extension = –2; and

match = 1) against the International Nucleotide

Sequence Databases Collaboration (INSDC; www.

insdc.org) and UNITE (unite.ut.ee) databases. In

addition, we ran BLASTn searches against estab-

lished reference sequences of all fungi in 99.0%

similarity clusters that include third-party taxo-

nomic andmetadata updates (12) as implemented

in the PlutoF workbench (13). For each query, we

considered the 10 best-matching references to

annotate our global sequences as accurately as

possible. If no reliable taxon name was available,

we ran manual BLASTn searches against INSDC

with 500 best-matching sequences as output. We

typically relied on 90, 85, 80, and 75% sequence

identity as a criterion for assigning OTUs with

names of a genus, family, order, or class, respec-

tively. Sequence identity levels were raised in

subsets of Sordariomycetes, Leotiomycetes, and

Eurotiomycetes, because these taxa contain mul-

tiple genera and families that have unusually con-

served internal transcribed spacer (ITS) sequences.

As a rule, we considered e-values of BLASTn search

results e
−50

reliable to assign sequences to the

fungal kingdom, whereas those >e
−20

were con-

sidered “unknown.”E-values between e
−20

and e
−50

weremanually checked against the 10 bestmatches

for accurate assignment. We followed INSDC for

higher-level taxonomy of eukaryotes (14) and the

Index Fungorum (www.indexfungorum.org) for

species through class-level taxonomy of fungi. Our

group of taxonomic experts assigned each fungal

genus, family, or order to functional categories

(data file S2). If different functional categories
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Fig. 1. Maps of global sampling and interpolated taxonomic richness of all fungi. (A) Map of global

sampling. Circles indicate study sites. (B) Interpolated taxonomic richness of all fungi using IDW

algorithm and accounting for the relationship with mean annual precipitation (based on the best multiple

regression model). Different colors depict residual OTU richness of all fungi accounting for sequencing

depth. Warm colors indicate OTU-rich sites, whereas cold colors indicate sites with fewer OTUs.
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were present within a specific genus, we chose

the dominant group (>75% of species assigned

to a specific category) or considered its ecology

unknown (<75% of species assignable to a sin-

gle category). All Glomeromycotawere considered

to be arbuscular mycorrhizal (AM). Taxa were

considered to be ectomycorrhizal (EcM) if they

best matched any sequences of known EcM line-

ages (15) and exhibited sequence length/BLASTn

scores above lineage-specific thresholds. For sev-

eral taxonomic groups, we constructed phyloge-

netic trees to assess the performance of clustering,

sequence quality of singletons, accuracy of OTU

separation, and taxonomic assignments (fig. S1).

In the course of this project, we provided 10,232

third-party taxonomic reannotations to INSDC

sequences to improve subsequent identification

of fungal sequences and made these available

through the UNITE database.

Statistical analyses

Estimates of the mean annual temperature

(MAT), mean annual precipitation (MAP), soil

moisture, and soil carbon at 30 arc second reso-

lution were obtained from the WorldClim data-

base (www.worldclim.org). Estimates of potential

evapotranspiration (PET) andnet primary produc-

tivity (NPP) at 30 arc minute resolution were

obtained from the Atlas of the Biosphere (www.

sage.wisc.edu/atlas/maps.php). Variation coeffi-

cients for MAT and MAP were computed based

on the average monthly values to represent sea-

sonality of temperature and precipitation. We

also calculated the difference of MAP to PET in

order to evaluate the effect of rainfall surplus or

deficit. On the basis of vegetation type and geo-

graphical distribution, sites were categorized into

biogeographic regions and biomes following the

classification of the World Wildlife Foundation

(http://worldwildlife.org) with a few exceptions:

(i) temperate deciduous forests in the Northern

and Southern hemispheres were treated sepa-

rately; (ii) tropical montane forests (>1500 m

elevation) were separated from the tropical low-

landmoist forests; and (iii) grasslands and shrub-

lands of all geographic origins were pooled. At

each site, we also determined the age of vegeta-

tion, time since the last fire, and EcMplant species

along with their relative contribution to stand

basal area. EcM plants are usually conspicuous

trees or prominent shrubs that are relatively easy

to identify, and their mycorrhizal status is verifi-

able in the field by using root excavation and

microscopy. Complete lists of tree species were

available for <10% of the sites, so we did not

directly include plant community composition

parameters in our analyses.

Concentrations of N, C,
13
C/

12
C, and

15
N/

14
N

were determined from 1 to 20 mg of soil by

using GC-combustion coupled to isotope-ratio

mass spectrometry (16). Concentrations of soil

calcium, potassium, magnesium, and phospho-

rus were determined as in (16). Soil pH wasmea-

sured in 1 N KCl solution.

For analyses of fungal richness, we calculated

residuals ofOTU richness in relation to the square

root of the number of obtained sequences to

account for differences in sequencing depth.

This method outperformed the commonly used

rarefaction to the lowest number of sequences

method, which removesmost of the data (17). We

also calculated the richness of major class-level

taxonomic and functional groups (comprising

>100OTUs).We excluded outlying samples dom-

inatedby a fewOTUsofmolds,whichare indicative

of poor sample preservation (relative abundance

of sequences belonging to Trichocomaceae >5%,

Mortierellaceae >20%, or Mucoraceae >20% that

exceeded three times the mean + SD). Although

these samples were fairly homogeneously distrib-

uted across the world, they had conspicuously

lower fungal richness. We also excluded samples

that yielded less than 1200 sequences per sample.

To determine the relationship between plant

and fungal richness, we relied on co-kriging values

from the global vascular plant species richness

data set (18), which covered 96.7% of our sites.

These scale-free values of plant richness were

then regressed with residuals from the best-fit

models for fungal richness and fungal functional

groups.We further calculated the ratio of relative

plant richness to fungal richness and fitted this

ratio with latitude using polynomial functions to

test the assumed uniformity of plant-to-fungal

richness ratios at the global scale (1, 19, 20). To

account for potential latitudinal biases in plant-

to-fungal diversity estimates, we took into account

the nonuniform distribution of land surfaces by

calculating an inverse distance weighting (IDW)

spatial interpolation of standardized ratios of plant-

to-residual fungal diversity using the “gstat” pack-

age in R (21). We then used IDW to interpolate

total fungal diversity beyond sampling sites by

accounting for MAP as based on the best-fitting

multiple regression model.

Distance from the equator, altitude, age of

vegetation, time since last fire, climatic varia-

bles, and concentrations of nutrients were log-

transformed before analyses in order to improve

the distribution of residuals and reduce nonlin-

earity. To account for potential autocorrelation

effects, we calculated spatial eigenvectors using

SAM version 4 (22). To determine the best pre-

dictors of global fungal diversity, we included

edaphic, climatic, floristic, and spatial variables

in multiple regression models. Because of the

large number of predictors, we preselected 16 can-

didate predictors that were revealed through ex-

ploratorymultiple linear and polynomial regression

analyses based on coefficients of determina-

tion and forward selection criteria. Themost par-

simonious models were determined according to

the corrected Akaike information criterion (AICc),

which penalizes over-fitting. Last, components of

the best models were forward-selected to deter-

mine their relative importance as implemented in

the “packfor” package in R.

To test the direct effects of climatic variables

on richness of fungi and their functional groups,

and indirect climatic effects (via soil nutrients

and vegetation), we used Structural Equation

Modeling (SEM) in Amos version 22 (SPSS Soft-

ware, Chicago, IL). Model fits were explored based

on both c
2
test and root-mean-square error of

approximation (RMSEA). First, we included all

potentially important variables (inferred from

both the multiple regression models and corre-

lations for individual response variables) to con-

struct separate SEM models. We tested all direct

and indirect relations between exogenous and

endogenous variables, including their error terms.

Then, we used backward elimination to remove

nonsignificant links to maximize whole-model

fit. Last, we combined the obtained SEMmodels

in a unified path model, following the same elim-

ination procedure.

In addition to full models, we specifically tested

the relationships between OTU richness and dis-

tance from the equator and soil pHbecause these

or closely related variables were usually among

the most important predictors. For these analy-

ses, we calculated residuals of richness that ac-

counted for other significant variables of the

best models. To address nonlinear relationships,

we fitted up to fifth-order polynomial functions

and selected best-fit models on the basis of AICc

values.

The relative effects of climatic, edaphic, spatial,

and floristic variables on the total fungal com-

munity composition and on particular functional

groups were determined by using Hellinger dis-

similarity (calculated if >90% sites were repre-

sented by >1 shared OTUs), exclusion of all OTUs

that occurred once, and a multistage model se-

lection procedure as implemented in the DISTLM

function of Permanova+ (www.primer-e.com/

permanova.htm). Considering computational

requirements, 15 candidate variables were

preselected based on unifactorial (marginal test

based on largest Fpseudo values) and multifac-

torial (forward selection) models. Spatial eigen-

vectors were not included in these analyses

because they typically were of minor importance

in variation partitioning analyses and to avoid

making the models computationally prohibitive.

Optimal models were selected based on the AICc.

To obtain coefficients of determination (cumula-

tiveR
2
adjusted) and statistics (Fpseudo and P values)

for each variable, components of the best mod-

els were forward selected. In parallel, we pre-

pared Global NonmetricMultidimensional Scaling

(GNMDS) graphs using the same options. Sig-

nificant variables were fitted into the GNMDS

ordination space by using the “envfit” function

in the “vegan” package of R. We also grouped all

climatic, edaphic, spatial, and floristic varia-

bles into a variation partitioning analysis by

integrating procedures in the “vegan” and “pack-

for” packages of R. Besides group effects, varia-

tion partitioning estimates the proportion of shared

variation among these groups of predictors.

For global biogeographic analyses, we excluded

OTUs from the order Hypocreales and family

Trichocomaceae (both Ascomycota) because the

ITS region provides insufficient taxonomic reso-

lution, and known biological species are grouped

together within the same OTU (23). We tested

the differences among fungal taxonomic and func-

tional groups for the occurrence frequency (num-

ber of sites detected) and latitudinal range of

OTUs using a nonparametric Kruskal-Wallis
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test and Bonferroni-adjusted multiple compar-

isons among mean ranks. To test the validity of

Rapoport’s rule in soil fungi, we calculated the

average latitudinal range of OTUs for each site

(24). The average latitudinal range was regres-

sed with the latitude of study sites by means of

polynomial model selection based on the AICc

criterion. This analysis was run with and with-

outOTUs only detected at a single site (range = 0).

Because the results were qualitatively similar, we

report results including all OTUs. To construct

biogeographic relationships amongmajor regions

and biomes, we generated cross-region and cross-

biome networks based on the number of shared

OTUs. We excluded occurrences represented by a

single sequence per site. Ward clustering of bio-

geographic regions and biomes were constructed

by using the Morisita-Horn index of similarity,

which is insensitive to differences in samples size,

by use of the “pvclust” package of R. In this pro-

cedure, P values are inferred for nonterminal

branches based on multiscale bootstrap resam-

pling with 1000 replicates.

Taxonomic and functional diversity

Pyrosequencing analysis of global soil samples

revealed 1,019,514 quality-filtered sequences that

were separated into 94,255 species-level OTUs

(supplementary materials). Altogether, 963,458

(94.5%) sequences and 80,486 (85.4%) OTUswere

classified as Fungi. Most other taxa belonged to

animals (Metazoa, 3.3%), plants (Viridiplantae,

3.1%), alveolates (Alveolata, 2.8%), and amoebae

(mostly Rhizaria, 1.3%). Kingdom-level assign-

ment of 3.8%OTUs remained elusive. The fungal

subset included 35,923 (44.6%) OTUs that were

represented by a single sequence; these were re-

moved from further analyses in order to avoid

overestimating richness based on these poten-

tially erroneous sequences (25). The remaining

44,563 nonsingleton fungal OTUs in our data

set numerically correspond to approximately

half of the described fungal species on Earth

(1). For comparison, there are currently 52,481

OTUs based on 98.0% similarity clustering of

all fungal ITS sequences in publicly available

databases (12). Global soil sampling revealed

representatives of all major phyla and classes

of Fungi. Of fungal taxa, Basidiomycota (55.7%),

Ascomycota (31.3%),Mortierellomycotina (6.3%),

and Mucoromycotina (4.4%) encompassed the
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largest proportion of sequences (Fig. 2), whereas

the most OTU-rich phyla were the Ascomycota

(48.7%), Basidiomycota (41.8%), Chytridiomycota

(2.3%), and Cryptomycota (syn. Rozellida; 2.1%)

(fig. S2 and data file S1). Except for the recently

described phylum Cryptomycota (26), the rela-

tive proportions of major phyla correspond to

the proportional distribution of taxa described

and sequenced to date (www.indexfungorum.

org) (12). Below the phylum level, ~6% of all

fungal OTUs could not be assigned to any known

class of fungi. Further clustering of unidentified

fungal sequences at 70% sequence similarity re-

vealed 14 distinct taxonomic groups comprising

>7 OTUs, suggesting that there are several deeply

divergent class-level fungal lineages that have

not yet been described or previously sequenced.

Our classification revealed that 10,801 (24.2%)

fungal OTUs exhibited >98% sequence similar-

ity, and 33.8% exhibited >97% similarity, to pre-

existing ITS sequences in public databases. This

is consistent with (19), reporting 48% of OTUs

amplified from Alaskan soils with >97% sim-

ilarity to any database sequences. In our study,

only 4353 fungal OTUs (9.8%) were matched to

sequences from herbarium specimens or fully

described culture collections at >98.0% sequence

similarity. Although many type collections are

yet to be sequenced, the paucity of matches to

database entries indicates that a majority of

soil-inhabiting fungal taxa remain undescribed

(19, 20). These results highlight the current lack

of data from understudied tropical and sub-

tropical ecosystems. The phenomenon of high

cryptic diversity and low success in naming

OTUs at the genus or species level have been

found in other groups of soil microbes and in-

vertebrates, emphasizing our poor overall knowl-

edge of global soil biodiversity (27, 28).

The main fungal phylogenetic and functional

groups were present in all ecosystems, but their

relative proportions varied severalfold across

biomes (Fig. 2 and figs. S2 to S4). The ratio of

Ascomycota to Basidiomycota OTUs was highest

in grasslands and shrublands (1.86) and tropical

dry forests (1.64) but lowest in the temperate

deciduous forests (0.88). Chytridiomycota, Cryp-

tomycota, and Glomeromycota were relatively

more diverse in the grasslands and shrublands,

accounting for 4.6, 3.6, and 1.4% of OTU rich-

ness, respectively. The relative OTU richness of

Mortierellomycotina andMucoromycotina (in-

cluding most fast-growing molds but also some

plant symbionts) peaked in the tundra biome

(4.8 and 2.7%, respectively), but their abundance

was lowest in tropical dry forests (1.0 and 0.6%,

respectively). Archaeorhizomycetes, a recently

described class of Ascomycetes from a boreal

forest (29), was most diverse in tropical moist

and montane forests, particularly in northern

South America and New Guinea.

Among all fungal taxa, OTUs assigned to

saprotrophs, EcM mutualists, and plant patho-

gens comprised 19,540 (43.8%), 10,334 (23.2%),

and 1770 (4.0%), respectively (fig. S4). Other

trophic categories contained <1% of remaining

OTUs. EcM fungi contributed 34.1% of all taxa

in the northern temperate deciduous forests

but accounted for a relatively low proportion

(11.9%) in grasslands and shrublands, reflecting

the paucity of host plants in these ecosystems.

Similarly, the proportion of EcM fungal taxa was

lowest in northern South America (8.0%), where

AM trees often dominate. Plant pathogens were

relatively more abundant and diverse in lowland

tropical moist (6.2%) and dry (6.3%) forests.

Predictors of global richness

Structural equationmodels revealed that climate

has both a strong direct effect on plant and

fungal richness and functional groups, but it

also indirectly affects these metrics by altering

edaphic conditions (fig. S5). Both SEM and re-

gression models suggest that the best predictors

of diversity differed among phylogenetic and

functional groups of fungi. Positive effects of

mean annual precipitation (MAP) and soil cal-

cium (Ca) concentration were the strongest pre-

dictors of total fungal diversity, explaining 7.2

and 8.9% of residual richness, respectively (table

S2). Richness of EcM fungi responded positively

to the relative proportion and species richness of

EcMplants (explaining 18.3 and 8.5% of variance,

respectively), as well as soil pH (13.0%). EcM host

species richness (5.9%) and soil pH (20.4%) re-

mained the strongest predictors in the best mod-

el for sites with EcM vegetation, accounting for

>60% of basal area, a critical point above which

the proportion of EcM plants had no further ef-

fect on EcM fungal richness. MAP had a strong

positive effect (14.8%) on richness of saprotrophs.

Diversity of plant pathogens declined with in-

creasing distance from the equator (17.8%) and

soil carbon/nitrogen (C/N) ratio (11.6%). Animal

parasites responded positively to MAP (20.3%),

whereas monthly variation of precipitation (MAP

CV) had a negative impact on richness of myco-

parasites (fungus-parasitic fungi; 8.2%). Richness

of the AM Glomeromycota was negatively related

to the age of vegetation (7.3%) but positively re-

lated to PET (3.5%) and soil pH (4.3%). Of the

major taxonomic groups, the richness of Asco-

mycota in general (18.5%) and that of Archae-

orhizomycetes (21.7%) were negatively related to

distance from the equator in best-fit models.

Climatic variables were the best predictors for

richness of Mortierellomycotina (MAT, nega-

tive effect, 26.1%) and the ascomycete classes

Dothideomycetes (MAT, positive effect, 20.9%),

Lecanoromycetes (MAT, negative effect, 26.7%),

Leotiomycetes (MAT, negative effect, 30.1%),

Orbiliomycetes (MAT, positive effect, 12.8%),

and Sordariomycetes (MAP, positive effect, 33.4%).

The richness of Chytridiomycota and the ascomy-

cete class Pezizomycetes was best explained by a

positive response to soil pH (8.6 and40.5%, respec-

tively). Concentration of soil nutrients or their

ratio to other nutrients were the strongest pre-

dictors for OTU richness of Cryptomycota (N con-

centration, positive effect, 10.1%), Geoglossomycetes

[N/phosphorus (P) ratio, positive effect, 3.7%],

Mucoromycotina (C/N ratio, positive effect, 19.0%),

and Wallemiomycetes (P concentration, negative

effect, 14.9%). The richness of Basidiomycota and

its class Agaricomycetes were best explained by a

positive response to soil Ca concentration (13.5 and

12.8%, respectively).

Although geographical distance per se had

negligible effects on richness (Moran’s I = 0.267),

spatial predictors were included in the best rich-

ness models of nearly all functional and phyloge-

netic groups (except Glomeromycota), indicating

regional- or continental-scale differences in OTU

richness (Fig. 1B). Compared with other tropical

regions, richness of fungiwas conspicuously lower

in Africa, independent of biome type. These re-

sults might reflect the relatively lower MAP in

much of Africa as compared with other tropical

continents. Alternatively, lower fungal richness

could be related to the disproportionately strong

shifts in biomes during the Pleistocene, which

impoverished the African flora (18).

Among edaphic variables, soil pH and Ca

concentration were typically the most impor-

tant predictors of fungal OTU richness. These

variables positively correlated with fungal rich-

ness at the global scale (F1,335 = 290.7; RPearson =

0.682; P < 0.001). The strong positive influence of

soil Ca concentration on richness of fungi, in

particular Basidiomycota, is congruent with a

similar positive relationship found for Ca and

EcM fungal richness associated with Northern

Hemisphere Alnus spp. (30). Exchangeable Ca

is important for many physiological processes

in plants and microorganisms and influences

the turnover rate of soil organic matter (31). In

soil geochemical processes, pH and Ca concen-

tration affect each other and thus may have

both direct and indirect effects on soil biota.

Fungal functional groups were differentially af-

fected by pH. Richness of EcM fungi was greatest

in slightly acidic to neutral soils (fig. S6), whereas

saprotrophs, especially white rot decomposers,

were more diverse in moderately to strongly

acidic soils. Richness of Pezizomycetes peaked

distinctly in neutral soils.

Macroecological patterns

In general agreement with biogeographic pat-

terns of plants, animals, and foliar endophytic

fungi (5, 32), the overall richness of soil fungi

increased toward the equator (Fig. 3A). How-

ever, major functional and taxonomic groups

showed dramatic departures from the general

latitudinal richness patterns (Fig. 3 and fig. S7).

Namely, diversity of saprotrophic fungi, para-

sites, and pathogens increased at low latitudes,

whereas richness of EcM fungi peaked at mid-

latitudes, especially in temperate forests and

Mediterranean biomes of the Northern Hem-

isphere (40° to 60°N) (fig. S8). In contrast,

saprotrophic fungi had a broad richness peak

spanning from ~45°S to 25°N. Richness of

Ascomycota—in particular, that of Archaeorhi-

zomycetes, Dothideomycetes, Eurotiomycetes,

Orbiliomycetes, and Sordariomycetes—peaked

in tropical ecosystems (fig. S7). Conversely, the

ascomycete classes Lecanoromycetes and Leo-

tiomycetes, as well as Microbotryomycetes

(basidiomycete yeasts), Mortierellomycotina, and

Mucoromycotina increased in diversity toward
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the poles, with no noticeable decline in boreal

forests and tundra biomes. Agaricomycetes,

Pezizomycetes, and Tremellomycetes exhibited

distinct richness peaks at mid-latitudes. Richness

of Agaricomycetes was greater in the Northern

Hemisphere, whereas that of Microbotryomycetes,

Tremellomycetes, and Wallemiomycetes peaked

in the Southern Hemisphere temperate ecosys-

tems (fig. S8).

All of these phylogenetic groups originated

>150 million years ago on the supercontinent

Pangaea (33) and have had sufficient time for

long-distance dispersal. However, our data sug-

gest that particular regional biotic or abiotic

conditions (such as soil pH and favorable cli-

matic conditions) have likely stimulated evolu-

tionary radiations in certain geographic areas

and not in others. Adaptation to cold climate in

younger fungal phyla has been suggested to ex-

plain differential latitudinal preferences among

fungal groups (34). However, our global analysis

provided no support for this hypothesis (fig. S9).

Instead, it revealed that ancient lineages are rel-

atively more common in nonwooded ecosystems.

Relation of plant and fungal richness

Plant and fungal richness were positively cor-

related (fig. S10), but plant richness explained

no residual richness of fungi according to the

best regression model (R
2
adj < 0.01; P > 0.05).

These results and SEM path diagrams suggest

that correlations between plant and fungal rich-

ness are best explained by their similar response

to climatic and edaphic variables (covariance)

rather than by direct effects of plants on fungi.

However, when separating functional categories,

trophic groups of fungi exhibited differential

response to plant diversity and relative propor-

tion of potential hosts.

Plant pathogens usually attack a phylogeneti-

cally limited set of host plants (35), suggesting

that plant pathogens have at least partly co-

evolved with their hosts andmay have radiated

more intensively in the tropics, where high plant

diversification and richness permit greater diver-

sification. Strong phylogenetic signals in soil feed-

backs, adaptive radiation, and negative density

dependence (the Janzen-Connell hypothesis) have

probably contributed to the pronounced richness

of both plants and their pathogens at low lati-

tudes (36, 37). However, our analyses revealed no

significant effects of plant richness per se on re-

sidual richness of pathogens in soil. Similarly to

pathogens, richness of AM fungi was unrelated

to the proportion of AM host trees or interpo-

lated host richness, which may result from non-

specific associations with tree and understory

species. Hence, both AM and soil pathogen rich-

ness were unaffected by plant richness. In con-

trast, host richness explained 6% of variation in

EcM fungal richness, indicating either niche dif-

ferentiation of fungi in forests of mixed hosts or

sampling effects (forests with higher host diver-

sity are more likely to include plant species that

harbor high fungal diversity). With a few notable

exceptions, most studies have found low levels of

host preference or host specificity among EcM

fungi (38). We found that relative EcM host

density had a strong influence on EcM fungal

richness, suggesting that greater availability of

colonizable roots in soil provides more carbon

for EcM fungi and thereby yields greater species

density and local-scale richness regardless of lati-

tude. The peak of EcM fungal taxonomic and

phylogenetic richness in northern temperate

biomes coincides with the geographical distri-

bution and dominance of Pinaceae, which is the

oldest extant EcM plant family (15, 39).

The ratio of plant-to-fungal richness decreased

exponentially with increasing latitude because

plant diversity dropped precipitously toward the

poles relative to fungal diversity (Fig. 4). This

finding calls into question present global fungal

richness estimates. These estimates assume sim-

ilar spatial turnover of plant and fungal species

and a constant plant-to-fungus ratio and have

been formulatedmostly based on data from tem-

perate and boreal ecosystems (1, 19, 20). Yet,

local-scale beta diversity of both plants and fungi
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from the equator. (A) All fungi. (B) EcM fungi. (C) Saprotrophic fungi. (D) Plant pathogens. (E) Animal

parasites. (F) Mycoparasites. (G) White rot decomposers. (H) Yeasts. Lines indicate best-fitting linear or

polynomial functions.
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differ among temperate and tropical sites (40, 41),

and there are profound differences in plant spe-

cies turnover depending on propagule size (42).

Natural distribution of very few vascular plant

species encompass several continents, but there

are multiple fungal species with circumpolar or

cosmopolitan distribution (43, 44). Although we

cannot directly compare plant and fungal beta

diversity, spatial turnover of plant species is in-

arguably greater (42). Based on the function of

fungi-to-plant richness ratio to latitude and lati-

tudinal distribution of land, we calculated that

fungal richness is overestimated by 1.5- and 2.5-fold

on the basis of constant temperate (45° latitude)

andboreal (65° latitude) richness ratios, respectively.

Because richness estimates are calculated

based on the frequency of the rarest species,

the reliability of singleton data call into question

biologically meaningful extrapolations (11). In

metabarcoding studies such as ours, sequenc-

ing errors tend to give rise to singleton sequen-

ces, and the number of rare artificial taxa grows

rapidly with increasing sequencing depth (25).

Therefore, despite the size of our data set, it can-

not readily be used to produce reliable taxonomic

richness extrapolations.

Community ecology

Variation partitioning analysis revealed that

climatic, edaphic, and floristic variables (and

their shared effects) are the strongest predic-

tors for community composition of all fungi and

most of their functional groups (fig. S11). How-

ever, the saprotroph community composition

was most strongly explained by purely spatial

variables. More specifically, PET and soil pH

explained 2.4 and 1.5%, respectively, of the var-

iation in total fungal community composition

(table S3 and fig. S12). PET contributed 3.8, 2.8,

and 11.7% to community structure of saprotrophs,

plant pathogens, and yeasts, respectively. Distance

from the equator (1.3%) and soil pH (0.7%) were

the strongest predictors of EcM fungal commu-

nity composition, whereas mean annual temper-

ature (4.0%) was the strongest predictor for

animal parasites, and distance from the equa-

tor (3.5%) was the best predictor for mycopar-

asites (table S3 and fig. S12).

These results indicate that both environmen-

tal and spatial predictors generally have a minor

influence on species-level composition of fungi at

the global scale. Nonetheless, the significant global-

scale pH effect in several groups of fungi is

consistent with the substantial influence of pH

on the phylogenetic structure of soil fungal and

bacterial communities in both local and con-

tinental scales (27, 45). The relatively stronger

climatic and edaphic drivers of richness at the

class and phylum level suggest that phylogenetic

niche conservatism in fungal lineages is similar

to cross-biome distribution patterns in vascular

plants (46) and protists (47).

Global biogeography

Consistent with Rapoport’s rule formulated for

macro-organisms (24) and later applied to ma-

rine bacteria (48), the mean latitudinal range of

fungi strongly increased toward the poles (fig. S13).

These results also suggest that a greater propor-

tion of fungi are endemic within tropical rather

than extratropical ecosystems.

Major taxonomic and functional groups of

fungi differed markedly in their distribution

range (figs. S14 and S15). Animal parasites were

morewidely distributed as comparedwith all other

groups, suggesting that there are many general-

ist OTUs with global distribution. Saprotrophs

and plant pathogens had broader distribution

ranges than EcM and AM root symbionts. Taxa

belonging to Mortierellomycotina, Mucoromy-

cotina, Tremellomycetes, andWallemiomycetes—

groups that include a large proportion of sapro-

trophs and parasites that produce exceptionally

large quantities of aerially dispersedmitospores—

were generally most widely distributed. Besides

the AM Glomeromycota, OTUs belonging to the

ascomycete classes Archaeorhizomycetes, Geo-

glossomycetes, and Orbiliomycetes were detected

from the fewest sites.

The northernmost biogeographic regions (Europe,

West Asia, East Asia, and North America) had

the most similar fungal communities as re-

vealed by shared fungal OTUs (Fig. 5). Accord-

ing to the Morisita-Horn similarity index, the

northern and southern temperate regions clus-

tered together with marginally nonsignificant

support (P = 0.064) (Fig. 6A). In spite of the large

geographical distance separating them, paleo-

and neotropical biogeographic regions clustered

together (P = 0.059). However, biogeographic

clustering of regions deviated markedly in cer-

tain functional groups of fungi (Fig. 6). For in-

stance, EcM fungi in the southern temperate

and tropical regions had greater similarity as

compared with northern temperate ecosystems
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Fig. 4. Relationship between standardized plant richness to fungal richness ratio and distance

from the equator. (A) Interpolated values. (B) Polynomial regression. Residuals of fungal richness are

taken from the best linear regression model accounting for other significant predictors. Warm colors

indicate high plant-to-fungal richness ratio, whereas cold colors indicate low plant-to-fungal richness.
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(P = 0.001). Among biomes, boreal forests, tem-

perate coniferous forests, and temperate decid-

uous forests shared the largest numbers of fungal

OTUs (fig. S16). Fungal OTUs in temperate decid-

uous forests were highly similar to Mediterranean

and tropical montane forests, whereas fungal

OTUs in tropical montane forests were linked

to tropical moist forests, which in turn exhibited

substantial connections with tropical dry forests

and savannas. As a result, cluster analysis sup-

ported separation of tropical and nontropical

biomes (Fig. 6B). Consistent with biogeographic

region-level analysis, lowland tropical biomes,

arctic tundra and boreal forests biomes, and

temperate biomes formed three well-supported

clusters. Tropical montane forests and grasslands

and shrublands were clustered with temperate

biomes according to distribution of all fungi and

most functional groups. However, in EcM fungi,

taxa from southern temperate forests, tropical

montane forests, and grass/shrublands clustered

with tropical lowland and Mediterranean bio-

mes. A relatively large proportion of EcM fungal

taxa were shared across various biomes in

Australia and New Guinea, which explains these

deviating patterns. In contrast, plant pathogens

from tropical montane forests clustered with

tropical lowland biomes rather than with tem-

perate biomes.

Our biogeographic analyses complement the

community-level results, suggesting that both

climate and biogeographic history shape mac-

roecological patterns of fungi. Comigration with

hosts over Pleistocene land bridges (such as

Beringia, Wallacea, and Panamanian) and long-

distance dispersal by spores appear to have

played important roles in shaping current fungal

distribution patterns (30, 43). The relative in-

fluence of climate and biotrophic associations

with host plants of varying extant distributions

probably contribute to differences in the range

and biogeographic relationships among fungal

functional groups (49). In addition, taxon-specific

constraints for dispersal, such as shape and size

of propagules and sensitivity to ultraviolet light,

may differentially affect long-distance dispersal

among taxa (7). For instance, Glomeromycota

OTUs, which form relatively large non–wind-

dispersed asexual spores, had the lowest average

geographical range. In general, region-based dis-

tribution patterns of fungi are somewhat con-

flicting with clustering of plants and animals,

where Holarctic lineages are deeply nested with-

in larger tropical groups (50). Consistent with

macroorganisms, fungi from the Southern Hem-

isphere temperate landmasses cluster together.

Differences observed in macroecological patterns

among fungi, plants, and animals may originate

from the relative strength of dispersal limitation

and phylogeographic history, but exaggeration

from methodological differences among studies

cannot be discounted. The use of homogenous

sampling and analytical methods, as done in this

study, are necessary to confidently comparemac-

roecological patterns among distinct life forms

and to reliably test degrees of consistency among

all kingdoms of life.

Conclusions and perspectives

Climatic variables explained the greatest propor-

tion of richness and community composition in

fungal groups by exhibiting both direct and

indirect effects through altered soil and floristic

variables. The strong driving climatic forces iden-

tified here open up concerns regarding the
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Fig. 5. Connectedness of biogeographic regions by shared OTUs of EcM fungi, saprotrophs, and plant pathogens. Blue, EcM fungi; Black,

saprotrophs; and red, plant pathogens. The width of lines and diameter of circles are proportional to the square root of the number of connections and

sample size (number of sites), respectively. Numbers in circles indicate the number of OTUs found in each region. OTUs with a single sequence per site

and OTUs belonging to Hypocreales and Trichocomaceae (in which the ITS region is too conservative for species-level discrimination) were excluded.
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impact of climate change on the spread of dis-

ease (51) and the functional consequences of

altered soil microorganism communities (52).

The observed abrupt functional differences be-

tween fungal communities in forested and tree-

less ecosystems, despite spatial juxtaposition,

suggests that plant life form and mycorrhizal

associations determine soil biochemical pro-

cesses more than plant species per se. Loss of

tree cover and shrub encroachment resulting from

drying and warming may thus have a marked

impact on ecosystem functioning both above-

and belowground.

In addition to natural mechanisms, such as

long-distance dispersal and migration over past

land bridges, global trade has enhanced the spread

of some non-native soil organisms into other eco-

systems,where they sometimes becomehazardous

to native biota, economy, and human health (53).

Our results highlight how little insight we still

have into natural microbial distribution patterns,

and this undermines our ability to appraise the

actual role of humans in shaping these biogeo-

graphic processes. Even larger-scale sampling

campaigns are needed to provide data for es-

tablishing natural distributions and building

species distribution models (52), which will

enable us to predict the spread and habitat suit-

ability of non-native microorganisms.

REFERENCES AND NOTES

1. M. Blackwell, The fungi: 1, 2, 3 ... 5.1 million species?

Am. J. Bot. 98, 426–438 (2011). doi: 10.3732/ajb.1000298;

pmid: 21613136

2. N. Fierer, M. S. Strickland, D. Liptzin, M. A. Bradford,

C. C. Cleveland, Global patterns in belowground

communities. Ecol. Lett. 12, 1238 (2009).

doi: 10.1111/j.1461-0248.2009.01360.x

3. H. Serna-Chavez, N. Fierer, P. M. van Bodegom, Global

drivers and patterns of microbial abundance in soil. Glob.

Ecol. Biogeogr. 22, 1162–1172 (2013).

doi: 10.1111/geb.12070

4. X. Xu, P. Thornton, W. M. Post, A global analysis of soil

microbial biomass carbon, nitrogen and phosphorus in

terrestrial ecosystems. Glob. Ecol. Biogeogr. 22,

737–749 (2013). doi: 10.1111/geb.12029

5. H. Hillebrand, On the generality of the latitudinal diversity

gradient. Am. Nat. 163, 192–211 (2004). doi: 10.1086/381004;

pmid: 14970922

6. G. G. Mittelbach et al., Evolution and the latitudinal diversity

gradient: Speciation, extinction and biogeography. Ecol. Lett.

10, 315–331 (2007). doi: 10.1111/j.1461-0248.2007.01020.x;

pmid: 17355570

7. B. J. Finlay, Global dispersal of free-living microbial eukaryote

species. Science 296, 1061–1063 (2002). doi: 10.1126/

science.1070710; pmid: 12004115

8. D. R. Nemergut et al., Patterns and processes of microbial

community assembly. Microbiol. Mol. Biol. Rev. 77, 342–356

(2013). doi: 10.1128/MMBR.00051-12; pmid: 24006468

9. K. G. Peay, M. I. Bidartondo, A. E. Arnold, Not every fungus is

everywhere: Scaling to the biogeography of fungal-plant

interactions across roots, shoots and ecosystems. New Phytol.

185, 878–882 (2010). doi: 10.1111/j.1469-8137.2009.03158.x;

pmid: 20356342

10. J. M. Talbot et al., Endemism and functional convergence

across the North American soil mycobiome. Proc. Natl. Acad.

Sci. U.S.A. 111, 6341–6346 (2014). doi: 10.1073/

pnas.1402584111; pmid: 24733885

11. B. D. Lindahl et al., Fungal community analysis by

high-throughput sequencing of amplified markers—A

user’s guide. New Phytol. 199, 288–299 (2013).

doi: 10.1111/nph.12243; pmid: 23534863

12. U. Kõljalg et al., Towards a unified paradigm for sequence-

based identification of fungi. Mol. Ecol. 22, 5271–5277 (2013).

doi: 10.1111/mec.12481; pmid: 24112409

13. K. Abarenkov et al., Evol. Bioinform. 6, 189 (2010).

14. S. M. Adl et al., The revised classification of eukaryotes.

J. Eukaryot. Microbiol. 59, 429 (2012). doi: 10.1111/j.1550-

7408.2012.00644.x; pmid: 22742560

15. L. Tedersoo, M. E. Smith, Lineages of ectomycorrhizal fungi

revisited: Foraging strategies and novel lineages revealed by

sequences from belowground. Fungal Biol. Rev. 27, 83–99

(2013). doi: 10.1016/j.fbr.2013.09.001

16. L. Tedersoo et al., Enzymatic activities and stable isotope

patterns of ectomycorrhizal fungi in relation to phylogeny and

exploration types in an afrotropical rain forest. New Phytol.

195, 832–843 (2012). doi: 10.1111/j.1469-8137.2012.04217.x;

pmid: 22758212

17. I. Hiiesalu et al., Species richness of arbuscular mycorrhizal

fungi: Associations with grassland plant richness and biomass.

New Phytol. 203, 233–244 (2014). doi: 10.1111/nph.12765;

pmid: 24641509

18. H. Kreft, W. Jetz, Global patterns and determinants of

vascular plant diversity. Proc. Natl. Acad. Sci. U.S.A.

104, 5925–5930 (2007). doi: 10.1073/pnas.0608361104;

pmid: 17379667

19. D. L. Taylor et al., A first comprehensive census of fungi in soil

reveals both hyperdiversity and fine-scale niche partitioning.

Ecol. Monogr. 84, 3–20 (2014). doi: 10.1890/12-1693.1

20. H. E. O’Brien, J. L. Parrent, J. A. Jackson, J. M. Moncalvo,

R. Vilgalys, Fungal community analysis by large-scale

sequencing of environmental samples. Appl. Environ. Microbiol.

71, 5544–5550 (2005). doi: 10.1128/AEM.71.9.5544-

5550.2005; pmid: 16151147

21. R Core Team, R: A Language and Environment for Statistical

Computing (R Foundation for Statistical Computing, Vienna

2014).

22. T. F. Rangel, J. A. F. Diniz-Filho, L. M. Bini, SAM: A comprehensive

application for Spatial Analysis in Macroecology. Ecography

33, 46–50 (2010). doi: 10.1111/j.1600-0587.2009.06299.x

23. C. L. Schoch et al.Fungal Barcoding ConsortiumFungal

Barcoding Consortium Author List, Nuclear ribosomal internal

transcribed spacer (ITS) region as a universal DNA barcode

marker for Fungi. Proc. Natl. Acad. Sci. U.S.A. 109, 6241–6246

(2012). doi: 10.1073/pnas.1117018109; pmid: 22454494

24. G. C. Stevens, The latitudinal gradient in geographical range:

How so many species coexist in the tropics. Am. Nat. 133, 240

(1989). doi: 10.1086/284913

25. I. A. Dickie, Insidious effects of sequencing errors on perceived

diversity in molecular surveys. New Phytol. 188, 916–918

(2010). doi: 10.1111/j.1469-8137.2010.03473.x;

pmid: 20854395

26. M. D. M. Jones et al., Discovery of novel intermediate forms

redefines the fungal tree of life. Nature 474, 200–203 (2011).

doi: 10.1038/nature09984; pmid: 21562490

SCIENCE sciencemag.org 28 NOVEMBER 2014 • VOL 346 ISSUE 6213 1256688-9

Fig. 6.Ward clustering of biogeographic regions and biomes based on the Morisita-Horn pairwise

similarity index. Left, biogeographic regions; right, biomes. (A and B) All fungi. (C and D) EcM fungi.

(E and F) Saprotrophs. (G and H) Plant pathogens. Numbers above branches indicate P values.

RESEARCH | RESEARCH ARTICLE



27. C. L. Lauber, M. Hamady, R. Knight, N. Fierer, Pyrosequencing-

based assessment of soil pH as a predictor of soil bacterial

community structure at the continental scale. Appl. Environ.

Microbiol. 75, 5111–5120 (2009). doi: 10.1128/AEM.00335-09;

pmid: 19502440

28. M. S. Robeson et al., Soil rotifer communities are extremely

diverse globally but spatially autocorrelated locally. Proc. Natl.

Acad. Sci. U.S.A. 108, 4406–4410 (2011). doi: 10.1073/

pnas.1012678108; pmid: 21368117

29. A. Rosling et al., Archaeorhizomycetes: Unearthing an ancient

class of ubiquitous soil fungi. Science 333, 876–879 (2011).

doi: 10.1126/science.1206958; pmid: 21836015

30. S. Põlme et al., Biogeography of ectomycorrhizal fungi

associated with alders (Alnus spp.) in relation to biotic and

abiotic variables at the global scale. New Phytol. 198,

1239–1249 (2013). doi: 10.1111/nph.12170; pmid: 23421531

31. P. B. Reich et al., Linking litter calcium, earthworms and soil

properties: A common garden test with 14 tree species. Ecol.

Lett. 8, 811–818 (2005). doi: 10.1111/j.1461-0248.2005.00779.x

32. A. E. Arnold, Understanding the diversity of foliar endophytic

fungi: Progress, challenges, and frontiers. Fungal Biol. Rev. 21,

51–66 (2007). doi: 10.1016/j.fbr.2007.05.003

33. M. L. Berbee, J. W. Taylor, Dating the molecular clock in

fungi—How close are we? Fungal Biol. Rev. 24, 1–16

(2010). doi: 10.1016/j.fbr.2010.03.001

34. K. K. Treseder et al., Evolutionary histories of soil fungi are

reflected in their large-scale biogeography. Ecol. Lett. 17,

1086–1093 (2014). pmid: 24912000

35. G. S. Gilbert, C. O. Webb, Phylogenetic signal in plant

pathogen-host range. Proc. Natl. Acad. Sci. U.S.A. 104,

4979–4983 (2007). doi: 10.1073/pnas.0607968104;

pmid: 17360396

36. X. Liu et al., Experimental evidence for a phylogenetic

Janzen-Connell effect in a subtropical forest. Ecol. Lett. 15,

111–118 (2012). doi: 10.1111/j.1461-0248.2011.01715.x;

pmid: 22082078

37. R. Bagchi et al., Pathogens and insect herbivores drive

rainforest plant diversity and composition. Nature 506, 85–88

(2014). doi: 10.1038/nature12911; pmid: 24463522

38. M. Bahram, H. Harend, L. Tedersoo, Network perspectives of

ectomycorrhizal associations. Fungal Ecol. 7, 70–77

(2013). doi: 10.1016/j.funeco.2013.10.003

39. L. Tedersoo et al., Towards global patterns in the diversity and

community structure of ectomycorrhizal fungi. Mol. Ecol. 21,

4160–4170 (2012). doi: 10.1111/j.1365-294X.2012.05602.x;

pmid: 22568722

40. M. Bahram et al., The distance decay of similarity in

communities of ectomycorrhizal fungi in different ecosystems

and scales. J. Ecol. 101, 1335–1344 (2013). doi: 10.1111/1365-

2745.12120

41. H. Qian, S. Chen, L. Mao, Z. Ouyang, Drivers of b-diversity

along latitudinal gradients revisited. Glob. Ecol. Biogeogr. 22,

659–670 (2013). doi: 10.1111/geb.12020

42. H. Qian, Beta diversity in relation to dispersal ability for

vascular plants in North America. Glob. Ecol. Biogeogr. 18,

327–332 (2009). doi: 10.1111/j.1466-8238.2009.00450.x

43. J. Geml et al., An arctic community of symbiotic fungi

assembled by long-distance dispersers: Phylogenetic diversity

of ectomycorrhizal basidiomycetes in Svalbard based on soil

and sporocarp DNA. J. Biogeogr. 39, 74–88 (2012).

doi: 10.1111/j.1365-2699.2011.02588.x

44. I. Timling, D. A. Walker, C. Nusbaum, N. J. Lennon, D. L. Taylor,

Rich and cold: Diversity, distribution and drivers of fungal

communities in patterned-ground ecosystems of the North

American Arctic. Mol. Ecol. 23, 3258–3272 (2014).

doi: 10.1111/mec.12743; pmid: 24689939

45. J. Rousk et al., Soil bacterial and fungal communities across a

pH gradient in an arable soil. ISME J. 4, 1340–1351 (2010).

doi: 10.1038/ismej.2010.58; pmid: 20445636

46. M. D. Crisp et al., Phylogenetic biome conservatism on a global

scale. Nature 458, 754–756 (2009). doi: 10.1038/

nature07764; pmid: 19219025

47. S. T. Bates et al., Global biogeography of highly diverse

protistan communities in soil. ISME J. 7, 652–659 (2013).

doi: 10.1038/ismej.2012.147; pmid: 23235291

48. W. J. Sul, T. A. Oliver, H. W. Ducklow, L. A. Amaral-Zettler,

M. L. Sogin, Marine bacteria exhibit a bipolar distribution. Proc.

Natl. Acad. Sci. U.S.A. 110, 2342–2347

(2013). doi: 10.1073/pnas.1212424110; pmid: 23324742

49. H. Sato, R. Tsujino, K. Kurita, K. Yokoyama, K. Agata,

Modelling the global distribution of fungal species: New

insights into microbial cosmopolitanism. Mol. Ecol. 21,

5599–5612 (2012). doi: 10.1111/mec.12053;

pmid: 23062148

50. I. Sanmartín, F. Ronquist, Southern Hemisphere biogeography

inferred by event-based models: Plant versus animal

patterns. Syst. Biol. 53, 216–243 (2004). doi: 10.1080/

10635150490423430; pmid: 15205050
51. S. Altizer, R. S. Ostfeld, P. T. Johnson, S. Kutz, C. D. Harvell,

Climate change and infectious diseases: From evidence to a

predictive framework. Science 341, 514–519 (2013).

doi: 10.1126/science.1239401; pmid: 23908230
52. W. H. Van der Putten, M. Macel, M. E. Visser,

Predicting species distribution and abundance responses to

climate change: Why it is essential to include biotic

interactions across trophic levels. Philos. Trans. R. Soc. B 365,

2025–2034 (2010). doi: 10.1098/rstb.2010.0037
53. M.-L. Desprez-Loustau et al., The fungal dimension of

biological invasions. Trends Ecol. Evol. 22, 472–480 (2007).

doi: 10.1016/j.tree.2007.04.005; pmid: 17509727

ACKNOWLEDGMENTS

The sequence data and metadata are deposited in the Short Read

Archive (accession SRP043706) and UNITE databases. Data used for

analyses are available as supplementary materials, data files S1

and S2. We thank A. Corrales, H. Mann, D. Sveshnikov, F. O. P. Stefani,

A. Voitk, and Y. Wu for supplying single soil samples; R. Puusepp,

M. Haugas, and M. Nõukas for sample preparation; H. Kreft for

providing interpolated plant diversity data; S. Jüris for designing the

printed figure; M. I. Bidartondo, K. G. Peay, and three anonymous

reviewers for constructive comments on the manuscript; and relevant

institutions of multiple countries for issuing permissions for sampling

and delivery. The bulk of this project was funded from Estonian

Science Foundation grants 9286, 171PUT, and IUT20-30; EMP265;

Frontiers in Biodiversity Research; European Research Council; and in

part by numerous funding sources that facilitated co-author efforts

in collecting and preprocessing samples.

SUPPLEMENTARY MATERIALS

www.sciencemag.org/content/346/6213/1256688/suppl/DC1

Figs. S1 to S17

Tables S1 to S3

Data Files S1 and S2

29 May 2014; accepted 16 October 2014

10.1126/science.1256688

1256688-10 28 NOVEMBER 2014 • VOL 346 ISSUE 6213 sciencemag.org SCIENCE

RESEARCH | RESEARCH ARTICLE


