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Preface

Like any other area in science, both the scope and depth of our knowledge of plant and crop physiology
are rapidly expanding. Plant/crop physiologists are continuously making new discoveries. This phe-
nomenon has resulted in the compilation of a large volume of information since the first edition of the
Handbook of Plant and Crop Physiology was prepared and presented to scientists and professionals. The
abundance of new data has necessitated that this unique, comprehensive source of information be revised
to include all the new discoveries in the field. Like the first edition, the new edition of the Handbook of
Plant and Crop Physiology is a unique, comprehensive, and complete collection of the topics in
plant/crop physiology.

More than two-thirds of the material in the new edition is entirely new; these are included under new
titles. The other one-third has been updated and substantially modified. This new edition consists of 12
parts while the first edition consisted of eight. Overall, about 80% of this book is new and a totally new
volume has emerged.

The Handbook of Plant and Crop Physiology is needed to fill the gap in the available literature. In
addition, it has long been recognized that physiological processes control plant growth and crop yields.
Therefore, this handbook is prepared in a single volume to serve as a comprehensive resource and up-to-
date reference to effectively cover the information relevant to plant/crop physiology that is scattered
among plant/crop physiology books as well as plant physiology journals.

Several difficult decisions must be made when one plans to compile a handbook, such as the extent
of content to include, the information to exclude, the depth to which the topics should be covered, and the
organization of the selected content. I have chosen to include information that will be beneficial to stu-
dents, instructors, researchers, field specialists, and any others interested in the areas of plant and crop
physiology. In order to plan, implement, and evaluate comprehensive and specific strategies for dealing
with plant and crop physiology problems, strategies must be based on a firm understanding of the facts
and the principles.

The topics selected for discussion are those that I believe are relevant, and in which physiology plays
the dominant role. The concepts have been presented to allow both beginning students and specialists of
this discipline an opportunity to expand and refine their knowledge. Certain conclusions provided
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throughout the text are related to the more significant and multifaceted problems of plant and crop phys-
iology. They are presented to provide a concise guide to the most relevant goals of both the students and
the specialists.

This practical and comprehensive guide has been prepared by 76 contributors from 17 countries,
among the most competent and knowledgeable scientists, specialists, and researchers in agriculture. It is
intended to serve as a resource for both lecture and independent purposes—for scientists, agriculture re-
searchers, agriculture practitioners, and both educators and students in agricultural disciplines.

To facilitate the accessibility of desired information, the volume has been divided into 12 parts. Al-
though the parts are interrelated, each serves independently to facilitate the understanding of the material
presented therein. Each part also enables the reader to acquire confidence in his or her learning and use
of the information offered.

Part I, Plants/Crops Growth Responses to Environmental Factors and Climatic Changes, consists of
three chapters addressing these factors in detail. The seven chapters in Part II, Physiology of Plant/Crop
Growth and Developmental Stages, cover plant physiological stages from seed germination to plant
senescence and abscission. Part I1I, Cellular and Molecular Aspects of Plant/Crop Physiology, consists of
five chapters that present in-depth information on cellular and molecular aspects of plant/crop organs.
Part IV, Plant/Crop Physiology and Physiological Aspects of Plant/Crop Production Processes, contains
eight chapters that link plant/crop physiology to production of food, feed, and medicinal compounds and
discuss this relationship in detail. The four chapters in Part V, Plant Growth Regulators: The Natural Hor-
mones (Growth Promoters and Inhibitors) and Plant Genes, address growth promoters, and growth in-
hibitor hormones as well as plant genes.

Since plants and crops, like other living things, at one time or another during their life cycle en-
counter biotic or abiotic stressful conditions, two parts [VI, Physiological Responses of Plants/Crops Un-
der Stressful (Salt, Drought, and Other Environmental Stresses) Conditions and VII, Physiological Re-
sponses of Plants/Crops to Heavy Metal Concentration and Agrichemicals] are devoted to the
physiological responses of plants and crops to stress. Several examples of empirical investigations of spe-
cific plants and crops grown under stressful conditions are presented.

The single—but thorough—chapter in Part VIII, Physiological Relationships Between Lower and
Higher Plants, presents detailed information on this relationship.

The physiology of plant genetics is presented in two parts. Physiology of Lower-Plant Genetics and
Development, Part IX, consists of one chapter that discusses developmental genetics in lower plants. Part
X, Physiology of Higher-Plant/Crop Genetics and Development, contains four chapters that comprehen-
sively review this subject. Part XI, Using Computer Modeling in Plant Physiology, consists of one chap-
ter on computer simulation of plant and Crop allocation processes.

Finally, to extend the subject of plant/crop physiology beyond the earth, I included Part XII,
Plant/Crop Physiology under Controlled Conditions, in Space, and on Other Planets. Its two chapters pre-
sent the most recent available information on plant/crop physiology in controlled environment and per-
spectives for human life support on other planets.

Numerous figures, tables, and illustrations are included in this technical guide to facilitate compre-
hension of the presented materials. The index words further increase accessibility to the information.

It is hoped that an individual with a problem in the area of plant/crop physiology will turn to this prac-
tical and professional reference book and be able to promptly acquire the necessary assistance to solve
that problem.

Like other fields, the area of plant/crop physiology has been growing so rapidly that all plant/crop
physiologists are faced with the problem of constantly updating their knowledge. To grow with their pro-
fession, they will need to extend their interests and skills. In this regard, even a casual reading of the ma-
terial in this handbook will help them to move ahead in the right direction.

Mohammad Pessarakli

MaRrceL DExkER, INc.
270 Madison Avenue, New York, New York 10016

Copyright © Marcel Dekker, Inc. All rights reserved.

)



Acknowledgments

I would like to express my special appreciation for secretarial assistance from Mrs. Elenor R. Loya, De-
partment of Soil, Water and Environmental Science, University of Arizona. Additional assistance by the
secretarial staff of the Department of Plant Sciences, University of Arizona, is also greatly appreciated.

In addition, my sincere gratitude is extended to Mr. Russell Dekker (Chief Publishing Officer, Mar-
cel Dekker, Inc.), who supported this project from its initiation to its completion. Certainly, this job would
not have been completed as smoothly and rapidly without his most valuable support and sincere efforts.
Also, Production Editor Ms. Dana Bigelow’s patience and outstanding efforts in the careful and profes-
sional handling of this volume are greatly appreciated. The precision and accuracy of the copyeditor, Ms.
Mary Prescott, are sincerely acknowledged.

The invaluable efforts of every one of the contributors are deeply appreciated. Their proficiency and
knowledge in their areas of expertise made this significant task possible.

I thank my wife, Vinca, for her support in the completion of this work. Last, but not least, I would
like to express my gratitude to my son, Mahdi, who had great patience and understanding and let me take
time to complete this project that would have otherwise been spent with him.

vii

MaRrceL DExkER, INc.
270 Madison Avenue, New York, New York 10016

Copyright © Marcel Dekker, Inc. All rights reserved.

)



Copyright © Marcel Dekker, Inc. All rights reserved.

MaRrceL DExkER, INc. (ﬂ
270 Madison Avenue, New York, New York 10016 0



Contents

Preface v

Contributors Xiii

PartI Plants/Crops Growth Responses to Environmental Factors and Climactic Changes

1 Time, Plant Growth, Respiration, and Temperature 1
Bruce N. Smith, Lyneen C. Harris, V. Wallace McCarlie, Dorothy L. Stradling,
Tonya Thygerson, Jillian Walker, Richard S. Criddle, and Lee D. Hansen

2 Role of Temperature in the Physiology of Crop Plants: Pre- and Postharvest 13
William Grierson

3 Crop Plant Responses to Rising CO, and Climate Change 35
Joseph C. V. Vu, Leon Hartwell Allen, Jr., and Maria Gallo-Meagher

Part I Physiology of Plant/Crop Growth and Developmental Stages

4 Germination and Emergence 57
Calvin Chong, Bernard B. Bible, and Hak-Yoon Ju

5 Influence of Source Strength on Leaf Developmental Programming 117
Steven Rodermel, Adam Miller, and Martin Spalding

6 Ecophysiological Aspects of the Vegetative Propagation of Saltbush (Atriplex spp.)
and Mulberry (Morus spp.) 127
David N. Sen and Pramila Rajput

ix

MaRrceL DExkER, INc. (ﬂ
270 Madison Avenue, New York, New York 10016 0

Copyright © Marcel Dekker, Inc. All rights reserved.



10

CONTENTS

Fruit Development, Maturation, and Ripening
William Grierson

Dormancy: Manifestations and Causes
Frank G. Dennis, Jr.

Senescence in Plants and Crops
Lola Peiiarrubia and Joaquin Moreno

Abscission
Roy Sexton

Part III  Cellular and Molecular Aspects of Plant/Crop Physiology

11

12

13

14

15

Cell Cycle Regulation in Plants
A. S. N. Reddy and Irene S. Day

Chlorophyll Biosynthesis During Plant Greening
Benoit Schoefs

Structure and Function of Photosynthetic Membranes in Higher Plants
llia D. Denev and Ivan N. Minkov

Bioenergetic Aspects of Photosynthetic Gas Exchange and Respiratory Processes
in Algae and Plants
Klaus Peter Bader and Refat Abdel-Basset

Diffusive Resistances to CO, Entry in the Leaves and Their Limitations
to Photosynthesis
Angelo Massacci and Francesco Loreto

Part IV Plant/Crop Physiology and Physiological Aspects of Plant/Crop Production Processes

16

17

18

19

20

21

22

Mineral Nutrient Transport in Plants
Benjamin Jacoby and Nava Moran

Sodium: A Functional Nutrient in Plants
G. V. Subbarao, Raymond M. Wheeler, Wade L. Berry, and Gary W. Stutte

Nitrogen Metabolism and Crop Productivity
Fred E. Below

Quantifying Immediate Carbon Export from Source Leaves
Evangelos Demosthenes Leonardos and Bernard Grodzinski

Production-Related Assimilate Transport and Partitioning
John E. Hendrix

Phloem Transport of Solutes in Crop Plants
Edmund R. Miranda, Wattana Pattanagul, and Monica A. Madore

Carbohydrate Synthesis and Crop Metabolism
Wattana Pattanagul, Edmund R. Miranda, and Monica A. Madore

MaRrceL DExkER, INc.
270 Madison Avenue, New York, New York 10016

143

161

181

205

229

265

281

299

327

337

363

385

407

421

449

467

Copyright © Marcel Dekker, Inc. All rights reserved.

)



CONTENTS

23

Production of Phytomedicinal Chemicals by Plants
Donald P. Briskin

Part V Plant Growth Regulators: The Natural Hormones (Growth Promoters and Inhibitors)

24

25

26

27

and Plant Genes

Plant Growth Hormones: Growth Promoters and Inhibitors
Syed Shamshad Mehdi Naqvi

The Activation Sequence-1 Cognate Promoter Elements Play Critical Roles in the
Activation of Defense-Related Genes in Higher Plants
Chengbin Xiang

Multilevel Regulation of Glutathione Homeostasis in Higher Plants
Chengbin Xiang and David J. Oliver

Genes Associated with Orchid Flower
Soek Ying Neo and Kwok Ki Ho

Part VI Physiological Responses of Plants/Crops Under Stressful (Salt, Drought, and Other

28

29

30

31

32

33

34

35

36

Environmental Stresses) Conditions

Biology and Physiology of Saline Plants
David N. Sen, Sher Mohammed, and Pawan K. Kasera

Role of Physiology in Improving Crop Adaptation to Abiotic Stresses in the Tropics:
The Case of Common Bean and Tropical Forages
Idupulapati Madhusudana Rao

Adaptive Components of Salt Tolerance
James W. O’Leary

Growth and Physiological Adaptations of Grasses to Salinity Stress
Kenneth B. Marcum

Physiological Mechanisms of Nitrogen Absorption and Assimilation in Plants Under
Stressful Conditions
R. S. Dubey and Mohammad Pessarakli

Induction of Proteins in Response to Biotic and Abiotic Stresses
Timothy S. Artlip and Michael E. Wisniewski

Physiological Responses of Cotton (Gossypium hirsutum L.) to Salt Stress
Mohammad Pessarakli

Calcium as a Messenger in Stress Signal Transduction
A. S. N. Reddy and Vaka Subba Reddy

Regulation of Gene Expression During Abiotic Stresses and the Role of the Plant
Hormone Abscisic Acid
Elizabeth A. Bray

Xi

485

501

527

539

549

563

583

615

623

637

657

681

697

735

MaRrceL DExkER, INc.
270 Madison Avenue, New York, New York 10016

Copyright © Marcel Dekker, Inc. All rights reserved.

)



Xii CONTENTS

Part VII Physiological Responses of Plants/Crops to Heavy Metal Concentration and
Agrichemicals

37 How Plants Adapt Their Physiology to an Excess of Metals
Martine Bertrand, Jean-Claude Guary, and Benoit Schoefs

38 The Negative Action of Toxic Divalent Cations on the Photosynthetic Apparatus
Robert Carpentier

39 Physiological Mechanisms of Herbicide Actions
Francisco F. de la Rosa

Part VIII Physiological Relationships Between Lower and Higher Plants

40 Parasitic Flowering Plants from Genus Orobanche: DNA Markers, Molecular Evolution,
and Physiological Relations with the Host Plants
Ivan N. Minkov and Antoaneta Ljubenova

Part IX Physiology of Lower-Plant Genetics and Development

41 Developmental Genetics in Lower Plants
John C. Wallace

Part X Physiology of Higher-Plant/Crop Genetics and Development

42 Photosynthetic Efficiency and Crop Yield
Da-Quan Xu and Yun-Kang Shen

43 Transpiration Efficiency: Avenues for Genetic Improvement
G. V. Subbarao and Chris Johansen

44  Physiological Mechanisms Relevant to Genetic Improvement of Salinity Tolerance
in Crop Plants
G. V. Subbarao and Chris Johansen

45 Glycine Betaine Accumulation: Its Role in Stress Resistance in Crop Plants
G. V. Subbarao, Lanfang He Levine, Raymond M. Wheeler, and Gary W. Stutte

Part XI Using Computer Modeling in Plant Physiology

46 Computer Simulation of Plant and Crop Allocation Processes
Donna M. Dubay and Monica A. Madore

Part XII Plant/Crop Physiology Under Controlled Conditions, in Space, and on Other Planets

47 Composite Lighting for Controlled-Environment Plant Factories
Joel L. Cuello

48 Plant Growth and Human Life Support for Space Travel
Raymond M. Wheeler, Gary W. Stutte, G. V. Subbarao, and Neil C. Yorio

Index

MaRrceL DExkER, INc.
270 Madison Avenue, New York, New York 10016

751

763

773

789

803

821

835

857

881

909

915

925

943

Copyright © Marcel Dekker, Inc. All rights reserved.

)



Contributors

Refat Abdel-Basset Faculty of Science, Assiut University, Assiut, Egypt

Leon Hartwell Allen, Jr. U.S. Department of Agriculture—Agricultural Research Service, and Agron-
omy Department, University of Florida, Gainesville, Florida

Timothy S. Artlip Appalachian Fruit Research Station, U.S. Department of Agriculture—Agricultural
Research Service, Kearneysville, West Virginia

Klaus Peter Bader Department of Cell Physiology, Faculty of Biology, University of Bielefeld, Biele-
feld, Germany

Fred E. Below Department of Crop Sciences, University of Illinois, Urbana, Illinois

Wade L. Berry Department of Organismic Biology, Ecology, and Evolution, University of California,
Los Angeles, California

Martine Bertrand Marine Science and Technology Institute, Conservatoire National des Arts et
Métiers, Cherbourg, France

Bernard B. Bible Department of Plant Science, University of Connecticut, Storrs, Connecticut

Elizabeth A. Bray Department of Botany and Plant Sciences, University of California, Riverside, Cal-
ifornia

Donald P. Briskin Department of Natural Resources and Environmental Sciences, University of Illi-
nois, Urbana, Illinois

Robert Carpentier Groupe de Recherche en Energie et Information Biomoléculaires, Université du
Québec a Trois-Rivieres, Trois-Rivieres, Québec, Canada
Xiii

MaRrceL DExkER, INc.
270 Madison Avenue, New York, New York 10016

Copyright © Marcel Dekker, Inc. All rights reserved.

)



Xiv CONTRIBUTORS

Calvin Chong Department of Plant Agriculture-Vineland, Ontario Agricultural College, University of
Guelph, Vineland Station, Ontario, Canada

Richard S. Criddle Department of Chemistry and Biochemistry, Brigham Young University, Provo,
Utah

Joel L. Cuello Department of Agricultural and Biosystems Engineering, The University of Arizona,
Tucson, Arizona

Irene S. Day Department of Biology, Colorado State University, Fort Collins, Colorado

Ilia D. Denev  Department of Plant Physiology and Molecular Biology, University of Plovdiv, Plovdiv,
Bulgaria

Frank G. Dennis, Jr. Department of Horticulture, Michigan State University, East Lansing, Michigan

Donna M. Dubay Department of Botany and Plant Sciences, University of California, Riverside, Cal-
ifornia

R. S.Dubey Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi, In-
dia

Maria Gallo-Meagher Agronomy Department, University of Florida, Gainesville, Florida

William Grierson Citrus Research and Education Center, University of Florida, Lake Alfred, Florida
(retired)

Bernard Grodzinski Division of Horticulture, Department of Plant Agriculture, University of Guelph,
Guelph, Ontario, Canada

Jean-Claude Guary Marine Science and Technology Institute, Conservatoire National des Arts et
Métiers, Cherbourg, France

Lee D. Hansen Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah

Lyneen C. Harris Department of Chemistry and Biochemistry, Brigham Young University, Provo,
Utah

John E. Hendrix Department of Bioagricultural Sciences and Pest Management, Colorado State Uni-
versity, Fort Collins, Colorado

Kwok Ki Ho Department of Biological Sciences, The National University of Singapore, Singapore,
Republic of Singapore

Benjamin Jacoby Department of Agricultural Botany, The Hebrew University of Jerusalem, Rehovot,
Israel

Chris Johansen* International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Andhra
Pradesh, India

Hak-Yoon Ju Department of Plant and Animal Sciences, Nova Scotia Agricultural College, Truro,
Nova Scotia, Canada

*Current affiliation: Consultant in Agricultural Research and Development, Dhaka, Bangladesh

MaRrceL DExkER, INc.
270 Madison Avenue, New York, New York 10016

Copyright © Marcel Dekker, Inc. All rights reserved.

)



CONTRIBUTORS Xv
Pawan K. Kasera Department of Botany, University of Jodhpur, Jodhpur, India

Evangelos Demosthenes Leonardos Division of Horticulture, Department of Plant Agriculture, Uni-
versity of Guelph, Guelph, Ontario, Canada

Lanfang He Levine Dynamac Corporation, Kennedy Space Center, Florida

Antoaneta Ljubenova* Department of Plant Physiology and Molecular Biology, University of Plov-
div, Plovdiv, Bulgaria

Francesco Loreto Institute of Plant Biochemistry and Ecophysiology, National Research Council of
Italy, Rome, Italy

Monica A. Madore Department of Botany and Plant Sciences, University of California, Riverside, Cal-
ifornia

Kenneth B. Marcumf Department of Plant Sciences, The University of Arizona, Tucson, Arizona

Angelo Massacci Institute of Plant Biochemistry and Ecophysiology, National Research Council of
Italy, Rome, Italy

V. Wallace McCarlie Department of Botany and Range Science, Brigham Young University, Provo,
Utah

Adam Miller Department of Biology, Division of Science and Math, Lorain County Community Col-
lege, Elyria, Ohio

Ivan N. Minkov Department of Plant Physiology and Molecular Biology, University of Plovdiv, Plov-
div, Bulgaria

Edmund R. Miranda Department of Botany and Plant Sciences, University of California, Riverside,
California

Sher Mohammed Department of Botany, Government Lohia (PG) College, Churu, India

Nava Moran Department of Agricultural Botany, The Hebrew University of Jerusalem, Rehovot, Is-
rael

Joaquin Moreno Department of Biochemistry and Molecular Biology, University of Valencia, Bur-
jassot, Valencia, Spain

Syed Shamshad Mehdi Naqvi Nuclear Institute of Agriculture, Tando Jam, Pakistan

Soek Ying Neo Institute of Molecular and Cell Biology, The National University of Singapore, Singa-
pore, Republic of Singapore

James W. O’Leary Department of Plant Sciences, The University of Arizona, Tucson, Arizona
David J. Oliver Department of Botany, lowa State University, Ames, lowa

Wattana Pattanagul Department of Botany and Plant Sciences, University of California, Riverside,
California

*Current affiliation: University of the North, Sovenga, South Africa
+Current affiliation: Department of Tropical Plant and Soil Sciences, University of Hawaii at Mano’a, Honolulu, Hawaii

MaRrceL DExkER, INc.
270 Madison Avenue, New York, New York 10016

Copyright © Marcel Dekker, Inc. All rights reserved.

)



Xxvi CONTRIBUTORS

Lola Pefiarrubia Department of Biochemistry and Molecular Biology, University of Valencia, Bur-
jassot, Valencia, Spain

Mohammad Pessarakli Department of Plant Sciences, The University of Arizona, Tucson, Arizona
Pramila Rajput Department of Botany, University of Jodhpur, Jodhpur, India

Idupulapati Madhusudana Rao Soils and Plant Nutrition Unit, Centro Internacional de Agricultura
Tropical (CIAT), Cali, Colombia

A. S.N. Reddy Department of Biology and Program in Cell and Molecular Biology, Colorado State
University, Fort Collins, Colorado

Vaka Subba Reddy Department of Biology and Program in Cell and Molecular Biology, Colorado
State University, Fort Collins, Colorado

Steven Rodermel Department of Botany, Iowa State University, Ames, [owa

Francisco F. de la Rosa Department of Plant Biochemistry and Molecular Biology, University of
Seville, Seville, Spain

Benoit Schoefs* Department of Plant Physiology, University of South Bohemia, Budejovice, Czeck
Republic

David N. Sen Department of Botany, University of Jodhpur, Jodhpur, India (retired)
Roy Sexton Department of Biological and Molecular Sciences, Stirling University, Stirling, Scotland

Yun-Kang Shen Laboratory of Photosynthesis, Shanghai Institute of Plant Physiology, Chinese
Academy of Sciences, Shanghai, People’s Republic of China

Bruce N. Smith Department of Botany and Range Science, Brigham Young University, Provo, Utah
Martin Spalding Department of Botany, owa State University, Ames, lowa

Dorothy L. Stradling Department of Botany and Range Science, Brigham Young University, Provo,
Utah

Gary W. Stutte Dynamac Corporation, Kennedy Space Center, Florida
G. V. Subbarao’ Dynamac Corporation, Kennedy Space Center, Florida
Tonya Thygerson Department of Botany and Range Science, Brigham Young University, Provo, Utah

Joseph C. V. Vu U.S. Department of Agriculture—Agricultural Research Service, and Agronomy De-
partment, University of Florida, Gainesville, Florida

Jillian Walker Department of Botany and Range Science, Brigham Young University, Provo, Utah

John C. Wallace Department of Plant Biology, University of New Hampshire, Durham, New Hamp-
shire

*Current affiliation: Laboratoire Plasticité et Expression des Génomes Microbiens, Université Joseph Fourier, Grenoble,
France

"Current affiliation: Japan International Research Center for Agricultural Sciences, Ibaraki, Japan

MaRrceL DExkER, INc.
270 Madison Avenue, New York, New York 10016

Copyright © Marcel Dekker, Inc. All rights reserved.

)



CONTRIBUTORS xvii

Raymond M. Wheeler National Aeronautics and Space Administration, Kennedy Space Center,
Florida

Michael E. Wisniewski Appalachian Fruit Research Station, U.S. Department of Agriculture—Agri-
cultural Research Service, Kearneysville, West Virginia

Chengbin Xiang Department of Botany, Iowa State University, Ames, lowa

Da-Quan Xu Laboratory of Photosynthesis, Shanghai Institute of Plant Physiology, Chinese Academy
of Sciences, Shanghai, People’s Republic of China

Neil C. Yorio Dynamac Corporation, Kennedy Space Center, Florida

Copyright © Marcel Dekker, Inc. All rights reserved.

MaRrceL DExkER, INc. (ﬂ
270 Madison Avenue, New York, New York 10016 5



Copyright © Marcel Dekker, Inc. All rights reserved.

MaRrceL DExkER, INc. (ﬂ
270 Madison Avenue, New York, New York 10016 0



1
Time, Plant Growth, Respiration, and Temperature

Bruce N. Smith, Lyneen C. Harris, V. Wallace McCarlie, Dorothy L. Stradling,
Tonya Thygerson, Jillian Walker, Richard S. Criddle, and Lee D. Hansen

Brigham Young University, Provo, Utah

. INTRODUCTION

The earth is very dynamic and has undergone dramatic changes in its history. All of the elements, in-
cluding those common in living things, were synthesized from primordial hydrogen in the interior of stars
[1]. Supernovas and other stellar instabilities dispersed many elements into space. Because hydrogen and
the noble gases are greatly depleted on earth as compared with their cosmic abundances [2], it is likely
that the chunks of matter giving rise to the protoplanet did not carry with them gaseous shells of their own.
As a result of contraction and redistribution of materials in the developing planet, a hydrosphere and at-
mosphere developed that were highly reduced [3]. The surface of the earth today is much more oxidized,
even to 21% O, in the atmosphere [4]. Was this oxidation linear or have there been fluctuations several
times during the history of the earth resulting in major species extinctions [5]?

Plants have evolved to survive, thrive, and grow by adapting to ever-changing conditions. The sea
was a stable, benign home for life during three fourths of the history of life on earth. Emergence on land
exposed living things to a much greater range of environmental conditions [4]. Increasing biological di-
versity to exploit new environmental opportunities has given us the present distribution of life on earth
[5]. Change continues today at an accelerated pace because of the impact of human activities. This chap-
ter explores ways in which adaptations to environmental changes have occurred and how plant
metabolism can be used to predict and better understand plant growth.

Il. PLANT GROWTH

Plants grow by the process of cell division or mitosis followed by cell enlargement and maturation. Cells
then differentiate into tissues that make up the organs of the plant. Mitosis includes replication of or-
ganelles, synthesis of nuclear material, enzymes, etc. Cell enlargement consists largely of water uptake to
form a large vacuole. Growth may be measured as change in mass, volume, or length of shoot or root.
Crop productivity is often expressed not in biomass but in yield of the desired product: flower, fruit, seed,
root, oil, protein, or specific chemical.

Water, sunlight, carbon dioxide, oxygen, and mineral elements from the soil are well known to be
essential for sustained plant growth. If any of these things are deficient in the environment or present in
excess (toxic amounts), plants may become stressed and even die. But plants have adapted to life in a va-
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2 SMITH ET AL.

riety of conditions [6]. Plants may play a role in modifying their environment and climate [7]. In addition,
plants have complex relationships with other organisms in their communities including herbivores,
pathogens, parasites, symbiotic or free-living nitrogen-fixing bacteria, and mycorrhizae. All of these fac-
tors can affect the rate of plant growth.

Photosynthesis supports all life on earth and in eukaryotes occurs exclusively in chloroplasts. All
green tissues contain chloroplasts, but most photosynthesis, by far, occurs in leaves. C4 plants have a pho-
tosynthetic rate that is two to three times faster than that of C; plants and 100-fold faster than that of Cras-
sulacean acid metabolism (CAM) plants [8], but within each of these groups there is much variability in
photosynthetic rate. Despite much effort to correlate this variation with growth rates, no consistent results
have been obtained [9]. Thus, although photosynthesis is absolutely necessary for plant growth, the rate
of photosynthesis does not predict the rate of plant growth [9]. Insufficient carbon assimilation does not
explain why alpine plants are so small and why biomass accumulation per unit land area is so low [10].
Several investigators have suggested that respiration is a better predictor for plant growth [11].

lll. RESPIRATION

McCree [12] reported that specific respiration rate and specific plant growth rate are linearly correlated
with a positive slope and positive intercept. Thornley [13] then borrowed a model from microbiology [14]
that equates the slope of such a plot to a growth coefficient and the intercept to a maintenance rate. This
is represented in Eq. (1).

R =Rw + Rg (1)

where R is total respiration, Ry is maintenance respiration or that necessary to maintain life processes,
and Rg is the respiration responsible for growth. This model has been widely used for 30 years but pro-
vides only an empirical fit to the data [15-17]. This model cannot predict plant growth rates from
metabolic rates.

This chapter discusses another model linking plant respiratory metabolism with growth [18] that is
testable, based on first principles, allows predictions of growth rates from metabolic rate measurements,
and defines responses to subtle changes in environmental stress. The theory will be presented followed
by several examples of applications.

IV. GROWTH AND RESPIRATION

Consider the overall growth reaction (2).

Csubstrate T X(compounds and ions of N, P, K, etc.) + yO, —

€Citrbiomass T (1 — €)CO,2 + yH,O + heat )
Reaction (2) is the sum of two reactions, that is, the catabolic reaction (3)

Csubstrate T 202 = CO, + heat 3)
and the anabolic reaction (4)

heat + Cgupsirae T X(compounds and ions of N, P, K, etc.) = Cr biomass 4)

that occur in the condition-dependent ratio (1 — &)/e, where ¢ is the substrate carbon conversion effi-
ciency. Reactions (3) and (4) are energy coupled through cyclic production and hydrolysis of ATP and
redox cycling of NADH. Because the ratio of the rates of reactions (3) and (4) varies with conditions, re-
action (3) must always produce an excess of ATP and NADH, as clearly explained in the book Introduc-
tion to the Thermodynamics of Biological Processes [19]. This necessitates both an ability to change the
efficiency of production of ATP through such pathways as the alternative oxidase and a third reaction, the
futile hydrolysis of ATP and oxidation of NADH as in reaction (5).

aATP + bNADH — aADP + aP; + bNAD 5)

Note that a and b must always be greater than zero and that the rate of reaction (5) varies with conditions
because catabolism and anabolism are not stoichiometrically coupled [19].
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TIME, PLANT GROWTH, RESPIRATION, TEMPERATURE 3

For the anabolic reaction (4) the initial system is lower in energy and higher in entropy than the fi-
nal system. In symbolic notation,

AEanabA >0 (6)
and
ASanab. <0 (7)

Thus, the anabolic reaction must extract energy from the catabolic reaction and the catabolic reac-
tion must increase the entropy of the surroundings more than the anabolic reaction decreases the en-
tropy of the system. The system is defined by reaction (2). These conditions can be expressed in equation
form as

AEsystem <0 (8)
and
ASsurL + ASsystem >0 (9)

Note that Eq. (9) is simply a statement of the second law of thermodynamics [19]. The value of AS,,.. is
related to the heat (Q) exchanged between the system and surroundings and the absolute temperature (7)
by Eq. (10).

ASsun: = Q/T (10)

Neglecting pressure-volume work, which is negligible for most terrestrial biological systems [20], allows
equating Q to —AH, the enthalpy change, where the minus sign indicates that heat goes from the system
to the surroundings, and equating AE to AG, the Gibbs free energy change. Substituting and rearranging
in Egs. (8), (9), and (10) provides the result

AGsyslem = AI—Isyslem =T ASsyslem (1 1)

where AGgyqem 18 the total energy change for the energy-coupled anabolic and catabolic reactions and
must be less than zero for growth to occur.

Because the entropies of the products and reactants are nearly equal, the value of T AS,ysem for re-
action (2) is small and can be either negative or positive. Thus, AGyem i negative as required for a spon-
taneous growth process only because AHygem is negative; i.e., metabolic heat must always be exother-
mic. This requires that growing organisms with aerobic metabolism must produce heat energy that is lost
to the surroundings. This metabolic heat, which is absolutely required for growth, is not “wasteful,” is
path (condition) dependent, and should not be confused with the “maintenance rate” that appears as an
energy compartment in the model used in the reviews [15-17].

V. CALORIMETRY

Respiration has usually been measured as the rate of oxygen uptake or carbon dioxide evolution. How-
ever, this is insufficient information [Eq. (11)] to predict growth and/or ability to handle stress from abi-
otic or biotic factors. In addition to gas exchange rate, the energy lost as heat must be measured. In some
instances, where there is little or no change in substrate carbon conversion efficiency (g), it is possible to
predict plant growth from gas exchange measurements alone [Eq. (2)]. But if the efficiency of conversion
of photosynthate to biomass changes, gas exchange measurements by themselves will be of limited util-
ity. Measurements of both gas exchange and heat rates are necessary to determine both rate and efficiency
of growth.

Using modern calorimeters, it is possible to make rapid, isothermal measurements of metabolic heat
rate (g) and respiration rate (Rco,) at several temperatures for small samples (~100 mg fresh weight) of
plant tissues. Much can be learned from these two simple measurements.

Plant tissue (80—-100 mg fresh weight) is placed in each of three ampules of the calorimeter (Hart Sci-
entific model 7707 or Calorimetry Sciences Corporation MCDSC model 4100). After 15-20 min of ther-
mal equilibration at the desired temperature, the metabolic heat rate (¢) is measured for another 15-20
min. The ampules are removed from the calorimeter and a small vial filled with 40 wL of 0.40 M NaOH
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is placed in the calorimeter ampule with the tissue. Again, a 15-20 min thermal equibration is necessary,
followed by measurement of the respiration rate (Rco) for 15-20 min. As the CO, and NaOH react in so-
lution, additional heat is produced (—108.5 kJ mol ! is the heat of reaction for carbonate formation), giv-
ing the rate of CO, evolution (Rco) by the plant tissue. Next, the NaOH is removed and the heat rate (q)
is measured as before. The tissue may then be run at another temperature. The difference in g and 455Rco,
[21] can then be used to predict growth rate changes with temperature [see Eqs. (2) and (4)] under the as-
sumption that carbohydrate is the substrate for reaction (2).

Substrate carbon conversion efficiency &, described in Eq. (2), is related to the ratio g/Rco; as in Eq.
(12) [21].

(8/1 - S)AHB = _Q/Rcoz - (1 - ’yp/4)AH02 (12)

where AHjg is the enthalpy change for the formation of biomass from photosynthate [Eq. (4)], vy, is the
mean chemical oxidation state of the substrate carbon oxidized to CO,, and AH, is Thornton’s constant,
with a value of —455 *+ 15 kJ mol ! of O..

Incorporating Thornton’s constant and assuming carbohydrate substrate with y, = 0, the specific
growth rate of structural biomass (Rsg) is related to the two measured variables as in Eq. (13).

RsgAHg = 455Rco2 — ¢ (13)

VI. CATABOLISM AND ANABOLISM

Photosynthesis transforms energy from sunlight into energy-rich organic matter, i.e., carbohydrates.
This organic matter then serves as the energy source for all life on earth. The energy is partially liber-
ated in glycolysis (fermentation) or in the oxidative pentose phosphate cycle, both in the cytoplasm.
Substrate-level ATP and reduced pyridine nucleotides are produced. This may have been the extent of
energy conservation in anoxic early earth [3]. Once oxygen began to increase, mitochondrial activity
provided a much higher rate of energy turnover, resulting in explosive adaptive radiation [5]. The key
to rapid expansion of life on earth as well as growth of a single plant is rapid turnover of ATP/ADP—
perhaps as much as 50% of the dry biomass of active tissues every 24 hr [22]. If an inhibitor blocks
the cytochrome oxidase pathway or an uncoupler destroys the proton gradient across the inner mito-
chondrial membrane, there is a rapid increase in oxygen uptake and CO, production in response to the
drop in ATP production.

Louis Pasteur showed that yeast cells would produce more CO; in nitrogen than in air. Plant bio-
chemists showed that tissues committed to rapid growth (e.g., germinating seeds, meristematic tissue)
would show the Pasteur effect whereas mature or senescing tissue would not. The control mechanism for
respiration proposed was the ATP/ADP ratio [23]. In growing tissues, oxidative phosphorylation rapidly
produces ATP, which is utilized just as rapidly in anabolic activities. Plants store energy not as ATP but
rather as sucrose, starch, protein, or lipid. Of interest is that chloroplasts do not export ATP but mito-
chondria do. For growth, both ADP and ATP must be present.

Vil. STRESS

Plants are subject to many forms of environmental stress. Some are abiotic, physicochemical, or density
independent, such as temperature, drought, fire, and air pollution. Other sources of stress are biotic or den-
sity dependent, such as competition, herbivory, disease, and parasitism [24]. For each of these environ-
mental factors there is a range or life zone that the plant can tolerate. If the tolerance range for a given
stress factor is exceeded, the plant will suffer stress, and if the stress is severe enough, the plant may die.
Short-term acclimation may be possible, and given enough time, natural selection may result in adapta-
tion to the stress.

At the cellular and molecular level, the common theme of stress is the formation of free radicals—
strong oxidants that can do significant damage to membranes and DNA. Free radicals include superox-
ide, hydrogen peroxide, and superhydroxide [25,26]. Air pollutants may themselves be strong oxidants,
such as ozone, peroxyacetyl nitrate (PAN), and oxides of sulfur and nitrogen [27]. Heavy metals with
more than one possible valence state can also serve as strong electron donors.
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Chemical defences against free radicals include compounds that are strong reductants such as glu-
tathione, phenols, flavonoids, and polyamines [25]. Enzymatic defenses against free radicals include su-
peroxide dismutases, catalase, peroxidases, phenol oxidase, and ascorbic acid oxidase [26]. Excess light
energy trapped by chlorophyll in a high-oxygen environment can do significant damage. The violaxan-
thin-zeaxanthin cycle plays a major role in helping to dissipate that energy [28]. A diminished capacity
to defend against free radicals is thought to play a major role in tissue senescence [29]. Is it possible to
learn from respiratory metabolism the influence of environmental stress before the plant shows visible
symptoms? The answer is yes, as shown in the following sections.

A. Temperature Stress

Cheatgrass (Bromus tectorum L.) is a weedy annual first introduced into the Great Basin of the western
United States in the late 19th century. It germinates in the fall, overwinters as seedlings, grows very
rapidly in the early spring when moisture is abundant, flowers in May, sets seed, and drops them, com-
pleting the life cycle by early June. The dead grass then serves as fuel for wildfires. Cheatgrass seed sur-
vives fire well whereas competing native perennials do not, creating conditions for further spread of the
weed.

Cheatgrass is a highly autogamous species with minimal levels of genetic variation. Nonetheless, ge-
netic differentiation may arise in response to general and predictable differences among habitats that
make a population-level response appropriate [30].

Characteristics of respiratory metabolism were examined in 11 subpopulations from different habi-
tats [31]. Seeds from each subpopulation were germinated and metabolic heat rates and respiration rates
determined calorimetrically at 5°C intervals from 5 to 45°C. From the experimental data, growth rates and
efficiency of carbon conversion were calculated. Results are summarized in Table 1. One might suppose
that the temperature response would follow the large range of altitudes of the 11 populations studied. That
was not the case as the lowest elevation and warmest site, St. George at 850 m, had the lowest optimal
growth temperature (10°C) and the lowest upper limit for growth (16°C). On the other hand, higher ele-
vation sites had higher optimal growth temperatures and higher upper limit temperatures (Table 1). The
explanation is that plants must be adapted to the microclimate in which they must survive. In St. George
at 850 m, cheatgrass can grow only in the winter and very early spring, when temperatures are cool but
water is available. In the dry, hot summer, survival is impossible. By contrast, mountain sites (2000 to
3000 m) have a shorter frost-free period, but water is available in summer when temperatures are often
very warm. Cheatgrass has thus adapted to grow in warmer temperatures at high elevations.

Corn (Zea mays L.) varieties are grown worldwide. Growth rates of some of the cultivars are pre-
dicted to increase at low temperature, go through a maximum in the “normal” growth range, and then de-

TABLE 1 Metabolic Heart Rate (¢) and Respiration Rate (Rco,) Measured Every 5°C from 0
to 45°C for Germinated Cheatgrass (Bromus tectorum L.) Seed from 11 Populations at
Different Elevations®

Temperature response (°C)

Population (altitude, m) Low stress Optimal High stress
St. George (850) 34 10 16 .
Green River (1280) 6 10 and 30 35 E
White Rocks (1450) 34 15 >30 2
Ephraim (1740) 0-3 5 and 20 25 z
Hobble Creek (1800) 2-3 15 and 25 >30 &
Potosi (1850) <0 15 27 E
Castle Rock (1980) 6 15 44 K
Salina (2040) 7 25 32 g
Strawberry (2400) 5 10 40 3
Fairview (2770) 15 20 26 3
Nebo Summit (2850) 5 15 20 g
4 Populations are listed in order of altitude with the low-stress and high-stress temperatures indicated as well ©
as the temperature for optimal growth. ‘—EElj
§
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Figure 1 Rsg AHjg plotted against temperature based on metabolic measurements at 15 and 25°C for 12 cul-
tivars of corn (Zea mays L.). Negative values of Rsg AHp indicate temperatures at which growth does not oc-
cur and tissues are stressed. (From Ref. 32.)

crease with warmer temperatures (Figure 1) [32]. Growth rates of other cultivars are predicted to be
nonexistent or very low at low temperatures, continuing to increase with temperature until tissue damage
occurs (Table 2). Changes in predicted growth rate (Rsg) and efficiency (¢/Rcoz) with temperature are
similar for a given cultivar [32]. The model, together with measurements of ¢ and Rco, at two or more
temperatures, may aid in selection of cultivars and in understanding adaptation of plants to climatic
changes.

Soybean [Glycine max (L.) Merr.] is grown in many countries and climates. Twenty-two North
American soybean cultivars from six different maturity groups were grown from seed under the same
conditions. Measurement of metabolic heat rate of leaf tissue with a scanning calorimeter revealed that
the slope of heat rate versus temperature showed abrupt changes reflecting shifts in metabolism [33]. The
chilling response temperature for all cultivars was near 17.5°C. The maximum tolerable temperature for
all cultivars was near 43.5°C. Differences in response to temperatures between the extremes relate to ma-
turity group, follow latitudinal trends, and represent adaptation to different climates. Selection of culti-
vars of soybean for best growth in different climates has resulted in relatively rapid adaptation to local
temperatures [33].

TABLE 2 Metabolic Heat Rate and Respiration Rate Measured Every 5°C from 5 to
40°C for Corn (Zea mays L.) Seedlings Grown from Seven “Older” Cultivars®

Temperature response (°C)

Cultivar Low stress Optimal High stress
Pula Janku 5 20 32
Santo Domingo <5 20 33
Black Popcorn 5 20 30
Loncho <5 25 38
Black Mexican Sw. <5 25 30
Santa Ana Blue <5 20 40
Minipopcorn <5 20 27

# Low and high stress temperatures are indicated as well as the temperature for optimal growth.
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Artemisia tridentata Nutt. or big sagebrush is one of the most widespread and economically im-
portant shrubs in western North America. Subspecies vaseyana grows at slightly higher, cooler, and
drier sites than does A. t. sp. tridentata. Natural hybrids between the two subspecies are commonly
found, for example, on a single hillside, where the parent populations are separated by 85 m in eleva-
tion and 1.1 km along the transect. In 1993, three gardens were established with seedlings from five
populations along the transect planted in each garden [34]. Measurement of water potential and dark
respiration by gas exchange did show differences [35]. Tissue was collected from plants in each gar-
den at several different times of the year and analyzed using calorimetry, which proved to be more in-
structive. The results are shown in Table 3. All populations seem best adapted to their native environ-
ment and most stressed in environments different from their origin. Acclimation, showing phenotypic
plasticity, occurred with change of season. Thus, metabolic distinctions can be made among closely re-
lated populations of plants grown on a single hillside in environments with only slight differences.

Eurotia lanata (Pursh) Moq. (Winterfat) is a small boreal cold-desert shrub that thrives in dry cli-
mates. Seeds were collected in populations from three different elevations and germinated. Metabolic
rates were determined using calorimetry at temperatures from —10 to +20°C. Optimum temperature for
germination, metabolism, and early seedling growth is about 10°C. Stress was noted near +20 and —5°C
(Figure 2). Acclimation during germination had no effect, Differences between the three populations cor-
related with altitude rather than latitude.

B. Drought

Metabolic response to temperature may also be measured during or following treatment with another en-
vironmental stress such as drought. The relative degree of drought tolerance was studied for six popula-
tions of small burnet (Sanguisorba minor Scop.) and six cultivars of alfalfa (Medicago sativa L.) grown

TABLE 3 Summary of Data Collected on Different Dates in 1998 on Plant Tissue from Gardens in Salt
Creek Canyon (near Nephi, Utah) of Basin Big Sagebrush (Artemisia tridentata Nutt. ssp. tridentata),
Mountain Big Sagebrush (A. tridentata ssp. vaseyana), and Hybrids Between Them?

Temperature response (°C)

Garden-seed source (date) Low stress Optimal High stress

Basin-basin (Feb. 23, 1998) 10 15 30

Basin-basin (April 22, 1998) <5 15-20 30

Basin-basin (July 21, 1998) <10 30-40 >40

Basin-hybrid (Feb. 23, 1998) 10 15 20

Basin-hybrid (April 22, 1998) <5 20-25 30

Basin-hybrid (July 21, 1998) <5 30 35

Basin-mountain (Feb. 23, 1998) 5 15-25 30

Basin-mountain (April 22, 1998) 5 25-30 35

Basin-mountain (July 21, 1998) 10 20-35 >35

Hybrid-basin (Feb. 23, 1998) <5 15-25 30

Hybrid-basin (July 21, 1998) 10 15 30

Hybrid-hybrid (Feb. 23, 1998) 5 10, 25 30 .

Hybrid-hybrid (July 21, 1998) 10 15-25 >35 E

Hybrid-mountain (Feb. 23, 1998) <5 10, 25 35 2

Hybrid-mountain (July 21, 1998) <5 10, 20 >25 z

Mountain-basin (April 22, 1998) <5 5-25 30 2

Mountain-basin (July 21, 1998) <10 10, 15 20 2

Mountain-hybrid (March 11, 1998) 5 10, 25 30 E

Mountain-hybrid (April 22, 1998) 15 20, 25 30 g

Mountain-hybrid (July 21, 1998) <5 10, 30 >40 §

Mountain-mountain (March 11, 1998) 5 10, 25 30 3

Mountain-mountain (April 22, 1998) 15 25-35 40 g

Mountain-mountain (July 21, 1998) <5 10, 25 35 ©

# Calorimetric measurements were made every 5 degrees from 5 to 45°C. ‘—EE?
s
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Figure 2 Metabolic heat rate (g, [J) and respiration rate (455Rco2, A) for winterfat (Eurotia lanata {Pursh}
Mogq.) seedlings from Pinebluffs, Wyoming measured at different temperatures. The data indicate optimal
growth between 0 and 15°C and stress at temperatures below 0°C and above 18°C.

in common gardens under natural conditions and in the laboratory with different levels of moisture.
Metabolic heat rate and respiratory rate were measured weekly. Both species grew best in early spring but
remained green and metabolically active throughout the summer. Small burnet was much more drought
tolerant than alfalfa. Differences among populations and among cultivers were detected in both common
garden and laboratory conditions [36].

Cryptogamic crusts in deserts all over the world are communities composed of lichens, cyanobacte-
ria, algae, mosses, and fungi found on or near the soil surface. Crusts are very susceptible to physical dis-
turbance but if intact appear to play a role in providing nutrients, especially nitrogen, to higher plants [37].
Crusts, if they are present, also appear to increase the water holding capacity of the soil following infre-
quent precipitation events. Using calorimetric measurements of metabolism, we have learned that expo-
sure of crusts to various levels of relative humidity had no effect, but liquid water caused immediate elon-
gation of algal filaments. The temperature optimum for metabolism is about 15°C, indicating growth of
cryptogamic crusts under cool, moist conditions.

C. Salt

Many desert playas are covered with water in the early spring. As the weather becomes warmer and drier,
water evaporates, increasing the salt content of the soil from 7000 to almost 16,000 mM NaCl. Changes
in respiratory metabolism during the growing season of four halophytes characteristic of cold desert
playas were followed using calorimetry. In order of decreasing salt tolerance and metabolic activity, the
species examined were the forbs Salicornia rubra and S. utahensis, the grass Distichlis spicata, and the
shrub Allenrolfea occidentalis. These species are all well adapted to the environment in which they are
found. Highest metabolic activity was found during May and June with lowest activity during the hot, dry
month of August (Figure 3) [38].

Salicornia utahensis was grown in growth chambers in concentrations of NaCl ranging from 0 to 1.8
M. Metabolic rates were measured at temperatures from 5 to 45°C. Predicted growth was best at salt con-
centrations greater than 400 mM NaCl. The best growth was at 1000 mM NacCl but only at temperatures
above 40°C (Figure 4).
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Figure 3 Leaf tissue was cut from Distichlis spicata (L.) Greene growing on a salt playa near Goshen, Utah.
Plant collections were made during May, June, and August of 1997 from soil relatively high and low in NaCl.
Isothermal calorimetric measurements were made at 25°C. (A) Metabolic heat rates (g). (B) Respiration rates
(Rcop)- (C) Ratio of metabolic heat rate to respiration rate (¢/Rcoz) or energy efficiency. Smaller numbers in-
dicate greater efficiency. (D) Predicted specific growth rate (AHgRsg). (From Ref. 38.)
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Figure 4 Salicornia utahensis Tidestr. was grown in several concentrations of NaCl at temperatures ranging
from 5 to 45°C. Specific growth rate, AHgRsg, calculated from metabolic heat and CO, rates is plotted as a

function of the salt concentration in the growth medium.
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D. Manganese

Methylcyclopentadienyl manganese tricarbonyl (MMT) is currently added to gasoline to replace
tetraethyl lead as an antiknock fuel additive. Manganese concentrations in roadside soil and plants are in-
creasing and correlated with distance from the roadway, traffic volume, plant type, and microhabitat.
Radish (Raphanus sativus L.) seedlings were treated for 5 to 35 days with different levels of manganous
chloride (0-1000 ppm). Metabolic heat rates and respiration rates, measured calorimetrically, indicated
severe stress at Mn concentrations between 10 and 100 ppm and at temperatures above 20°C [39].

Vill. CONCLUSIONS

Plants acclimate or adapt to survive and grow in the presence of environmental stresses. The degree of
adaptation to a particular stress can be monitored by measuring the rates of metabolic heat loss (g) and
catabolism of photosynthate (Rco,). Because growth and defense against environmental stresses rely on
energy release from metabolic substrates, subtle degrees of adaptation can be determined using
calorimetry. It is now possible to select rapidly populations or cultivars for growth in a particular mi-
croenvironment. The result may be increased food production and more effective environmental
conservation.
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Role of Temperature in the Physiology of Crop
Plants: Pre- and Postharvest

William Grierson
University of Florida, Lake Alfred, Florida (retired)

. INTRODUCTION

A. Importance of Temperature

Temperature, like the poor, is always with us but, like the poor, it is only too often overlooked. This is un-
fortunate, as temperature is a major factor in all things biological.

To a physicist, temperature is simply a manifestation of the kinetic energy of component atoms, ions,
and molecules.

To a chemist, the role of temperature is epitomized by the “Q 10 rule,” whereby, over some reason-
able range, the rate of a chemical reaction approximately doubles with every 10°C increase in tempera-
ture.

But to a biologist, temperature is the supreme conductor of the orchestra of life, initiating specific re-
actions and modulating, integrating, or suppressing them just as the conductor of a great orchestra calls
upon, modulates, or dismisses the diverse instruments, whose discrete voices are thereby integrated into
one harmonious whole. Regardless of the crop, or of the physiological response being monitored, con-
sideration of the role of temperature can often be the sine qua non in interpreting the phenomena being
investigated. It has been said that “The scientist shows his intelligence . . . by his ability to discriminate
between the important and the negligible” [1]. Only too often, temperature may appear to be a negligible
factor when, unnoticed, it plays some critical role.

B. Scope of This Chapter

Because every physiological and biochemical system of every crop plant is affected by temperature, it
would be impossible to cover all its manifestations in a whole textbook, much less in a single chapter.
Most aspects are, therefore, dealt with superficially. Specific examples are cited to indicate the types of
relationships that invite further study and, when such study does not suffice, may inspire further re-
search.

Citrus fruits, and most particularly the chilling injury (CI) syndrome, are represented in greater depth
because the writer and his colleagues devoted many years to research on citrus, particularly the study of
the basic mechanisms of chilling injury.

13
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C. Definitions

1. Temperature

Temperature per se does not need definition. Not all the work cited, however, deals with the temperature
of the actual plant tissues involved. Often “temperature” refers to that recorded for the immediate vicin-
ity of the plant or organ.

2. Crop Plants

Crop plants are taken to be any grown for profit or pleasure, thus including ornamental plants grown for
either indoor decoration or outdoor landscaping. No attempt has been made to include nondomesticated
species.

Il. ECOLOGICAL ROLE OF TEMPERATURE

Temperature obviously limits the geographical areas in which various crops can be grown. However,
temperature per se is often not the only determinant: the effects of temperature extremes are usually as-
sociated with other factors such as availability of water, prevalence of high winds, and the duration and
intensity of sunlight (insolation). An important aspect, as discussed in the following, is that limitations
imposed by extremes of temperature differ sharply for annual versus perennial crops.

A. Extremes of Temperature

1. High-Temperature Limitations

The limiting effect of high temperatures on crop production takes two principal forms: limitation of veg-
etative growth such as for cereal grains [2] and peanuts [3] and adverse effects on fruit settings [4]. Veg-
etable crops subject to very high transpiration losses, such as asparagus, lettuce, and all the Brassica
species (cabbage, cauliflower, broccoli, brussels sprouts, etc.) are obviously limited by the excessive tran-
spiration concurrent with exposure to extremely high temperatures. Tomato (Lycopersicon esculentum
Mill.) is the quintessential example of a crop for which very high temperatures limit fruit setting. (In this
regard, the small-fruited “cherry tomatoes” are more tolerant than the usual commercial varieties.) Plant
breeders are having limited success in developing more heat-tolerant tomato varieties because heat toler-
ance and cold tolerance in fruit setting have only moderate heritability and such inheritance is complex
[5].

A further complication is that the upper limit for fruit set can be correlated with humidity levels [6].
Successful breeding of truly heat-resistant tomatoes may well turn out to depend on the physiologists and
biochemists more exactly defining the influence of temperature and humidity on the hormonal systems
controlling anthesis, pollen tube activity, ovule receptivity, and, in some instances [5], parthenocarpy. A
press account [7] reported that a major U.S. seed company has developed both a tomato and a zucchini
that set fruit in temperatures as high as 35.6°C (96°F). For commercial purposes, assuming that the report
is correct, this “high temperature fruit set” will have to be incorporated into varieties having commercially
acceptable yield and eating quality.

Very high temperatures can also limit fruit setting of citrus fruits. In this case, intensity of insolation
appears to be another limiting factor, because flowers within the leafy canopy, protected from direct ex-
posure to sunlight, will usually set some fruit [8]. A less subtle effect of extremely high temperatures on
fruit set of citrus is the “burning” or “scorching” of blossoms, particularly on young trees, that is occa-
sionally reported from desert areas such as southern California, Arizona, and the Negev of Israel. Even
without such drastic effects, fruit set of navel oranges is reported to be sharply affected by temperatures
during the bloom period [9].

A high-temperature effect causing no visible symptoms is a cessation of growth even though nutri-
ents and soil moisture are adequate, as reported for citrus trees during very hot weather in Arizona [10].

2. Low-Temperature Limitations

The obvious limitation imposed by low temperature is killing of plant tissues by freezing. Most plant tis-
sues can be destroyed by freezing temperatures suddenly imposed during a period of rapid growth. Some
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plants, given sufficient time under suitable conditions, can adapt themselves to freezing temperatures, and
some cannot. This dichotomy is discussed in Sec. I1I.B.

3. Freezing of Plant Tissues

A more specific effect is the response to brief periods of freezing, or near-freezing, temperatures. The
classical example, feared by fruit growers almost everywhere except in the tropics, is a freeze while the
trees are in full bloom. This is much more drastic for deciduous fruit trees than for evergreen trees such
as citrus. If the blossom-bearing wood is not damaged, such tropical or subtropical trees have a chance to
replace fruit buds within the same bearing season, although yield and fruit quality may be impaired. As
discussed later, this cannot happen with deciduous fruit trees.

A more subtle effect, to which green (English, garden) peas (Pisum sativum) are particularly sus-
ceptible, is low-temperature stunting of young plants. When such peas and snap (wax) beans (Phaseolus
vulgaris) are growing side by side, immature pea plants may be permanently stunted by a brief chilly pe-
riod from which the beans usually recover.

4. Microclimates

It is apparent to even the most casual observer that on a frosty night, cold air can drain into hollows,
thereby sometimes limiting damage to such small “microclimate” areas. In addition, vegetation can be
markedly different on the north and south sides of a steep valley because the exposures to sunlight are
very different. Foehn winds provide striking examples of rather larger microclimates utilized for the
growing of specialized crops. A classic example is the chinook of the Rocky Mountains of Washington
State and British Columbia. Strong winds off the Pacific Ocean are forced to rise on encountering the
coastal range. As the air rises rapidly, moisture condenses, releasing great amounts of latent heat and
forming a bank of clouds (the “foehn wall”) that drenches the western slopes. This sequence of events
provides a mild, moist area ideal for such crops as cane fruits, crucifers, and many ornamentals. By the
time the air mass has crossed the coastal range, it is very dry, and on its leeward descent adiabatic com-
pression warms it rapidly, providing a sudden spring. The resultant microclimate is (provided irrigation
water is available) ideal for the growing of stone fruits. Apricots are particularly well served by this mi-
croclimate because they have a very short rest period, with consequent susceptibility to spring frosts,
which are virtually unknown in inland chinook areas. The chinook occurs on such a grandiose scale as to
almost exceed definition as “microclimate.” But the eponymous foehn winds in the Austrian Alps, the
ghibli in the Tripolitanian Mountains of Libya, and the zonda in the Argentine Andes produce the same
effects on a much more local scale.

The writer’s master’s thesis [11], dated 1940, includes a map of a microclimate area once known as
the “fruit bowl of Canada.” Thirty-five miles (56 km) long at its maximum and varying in width from 5
to 14 miles (8-22 km), the fruit-growing area of the Niagara peninsula once produced most of Canada’s
peaches, plums, cherries, pears, and small fruits and virtually all the wine grapes of eastern Canada. A
high cliff (the Niagara escarpment) shelters this area on the south side. On the north, Lake Ontario mod-
erates the temperature of the north winds in midwinter. In spring, the escarpment protects the orchards
from unseasonable warm south winds that might induce too early a bloom, with consequent risk of a blos-
som freeze. Now, more than 50 years later, it is sad to return to the once overflowing “fruit bowl”: this
precious miracle of microclimate has been largely paved over with factories, shopping centers, and hous-
ing developments that could just as well have been located a few miles to the south, above the escarp-
ment. Such squandering of invaluable microclimates is all too common everywhere.

What might be termed “mini-microclimates” occur within any local microclimate, as indicated by
the surprising range of temperatures recorded within a single lemon orchard [12]. When studying such
fine details as individual leaf temperatures, even heat conduction along thermocouple wires must be con-
sidered [13].

But microclimate effects can also manifest themselves in far more subtle ways, often involving ver-
tical as well as horizontal temperature differences. When air temperatures are favorable for growth, it is
easy to forget that soil temperatures can also be limiting. Soil temperatures, both above and below opti-
mum range, have been shown to limit uptake of soil water by citrus trees to the extent that visible wilting
occurs even when soil moisture is adequate [14]. When water uptake is limited, obviously the uptake of
water-soluble ions can also be affected. Iron deficiency chlorosis of citrus trees has been reported to be
exacerbated by soil temperatures below 12.8°C [15]. Such ion uptake limitation can also be critical in nu-
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trition experiments in which air temperature is ignored. This relationship was confirmed in a controlled
environment experiment with six varieties of spinach (Spinacia oleracea). The nitrate content of six cul-
tivars of spinach grown at temperatures from 5 to 25°C varied significantly, not with whether nitrogenous
fertilizer was applied but with the growing temperature [16].

Hazards from soil pathogens can depend directly on soil temperatures. All Florida citrus seemed to
be doomed by a mysterious “spreading decline” until it was found that the cause was a nematode
(Radopholus similis) that could be cultured only at subsoil temperatures. Because Florida laboratory tem-
peratures normally exceed those of the soil below about 30 cm, cultures from diseased roots processed at
ambient temperatures never indicated that R. similis was the causal agent [17,18].

5. Annual Versus Perennial Crops

Temperature limitations differ sharply for perennial and annual crops. For perennials (largely tree, vine,
and bush crops, various grasses, and other pasture crops), ecological limits are usually set by winter
temperatures. Few species are hardy enough to survive subarctic extremes of winter cold. In the trop-
ics, the need for a cool winter rest period limits the cultivation of pome (e.g., apple and pear) and most
drupe (e.g., peach, plum, cherry, apricot, almond, walnut, pecan olive) fruits. Coconut (which botani-
cally is a drupe with a desiccated mesocarp and liquid endosperm) is a conspicuous exception. Con-
versely, the lack of winter freeze hardiness limits the potential growing areas for purely tropical fruits
(banana, mango, avocado, durian, mangosteen, etc.), tropical ornamentals, and purely tropical grasses,
including sugarcane.

This set of limits is in sharp contrast to those applicable to purely annual crops such as almost all veg-
etables and grains, and annual flowers, for which summer temperatures are critical. All these annual crops
require is about 3—5 months of suitable growing weather. Vegetables grow luxuriantly in the warm, long
summer days in Alaska; the subarctic winters are of no consequence for them.

B. Various Interactions with Temperature

In the years immediately prior to World War II, the writer was a young graduate student in Canada work-
ing on storage and ripening of pears. At that time, it was customary for Canadian housewives to put fruits
on sunny windowsills to ripen them. Because it seemed illogical that light should hasten ripening, I de-
cided to put a row of unripe pears on the laboratory windowsill and cover half of them with a black cloth.
Fortunately, I checked pulp temperatures: those under the black cloth were several degrees warmer. Then
I tried shading with a white-painted board. Better, but still quite a difference. By the time the next year’s
pear crop came in, I was in uniform on the other side of the Atlantic. I never did return to the sunlight-
pear-ripening problem but have ever since been acutely aware that one way or another, temperature can
be an interactant, wanted or not, in a great deal of plant research.

1. The “Day/Degrees” Concept

A very useful concept for expressing heat units is “total day degrees”: that is, the accumulated number of
days (or sometimes hours) above a certain base temperature. Another version is the accumulated sum of
diurnal maximum temperatures times the number of days. For the reverse (cold units), the usual figure is
the total number of hours below a given temperature, such as 40°F or 5°C. The usefulness of such meth-
ods is not helped by overreliance on statistical analysis of findings based on an initial arbitrary decision.
In the United States, for example, 40°F (4.4°C) and 45°F (7.2°C) have been common baseline tempera-
tures for determining chilling hours. As the Fahrenheit scale is abandoned in favor of Celsius, 5 and 7.5°C
are more likely to be used. With such baseline variations, apparent fine statistical differences can be
deceptive.

Peaches afford an excellent example of the use of such methods. Florida peach breeders have very
successfully extended the southern limits for commercial production of peaches by breeding “200 hour”
peaches and nectarines, in contrast to the 400, even 600, hour peaches grown in districts with cold win-
ters [19]. In more northern states, versions of this day/degrees concept are used to forecast blossom freeze
risks for varieties in a given area [20] and date of bloom in others [21]. Readers interested in a highly so-
phisticated discussion of the mathematics involved are referred to correspondence in a 1991 issue of
HortScience [22].
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2. Freezing of Plant Tissues

As depicted in older texts, freeze injury and freeze resistance were simply explained: in freeze-suscepti-
ble tissues, free water froze, forming crystals that disrupted cell membranes, whereas in freeze-resistant
tissues the water was bound in the form of hydrophilic colloids. When this model was subjected to mod-
ern research, however, little if any of it turned out be so simple. Interested readers are referred to two ex-
cellent reviews [23,24]. Freeze-hardy plants have hormonally controlled mechanisms enabling them to
respond to gradual changes in temperature and day length in preparation for winter. Such changes are ob-
vious with deciduous trees, vines, and shrubs, which shed their leaves, often after having displayed dra-
matic changes in leaf color. No such highly visible evidence is afforded by conifers, which, nevertheless,
also need gradual autumnal climatic changes to induce similar hormone-controlled internal adaptation to
prepare for winter [25]. But what of plants that survive a freeze without a prior hardening period? Ex-
pressed very briefly, water in certain woody plants can supercool to a surprising extent, although this pro-
tective mechanism is often negated by the presence of ice-nucleating bacteria [24]. Such bacteria are by
no means ubiquitous, but they are very common and a real factor in freeze injury.

Exposure to freezing but nonlethal temperatures can cause various chemical changes in plant tissue.
Only one is mentioned here. It is very common for oranges that survive a freeze to develop white crystals
clearly visible between the segment membranes. These are hesperidin, the principal flavone in citrus
fruits, and although their presence sometimes causes alarm, they are completely nontoxic. Up to the
1950s, growers placed much credence on estimations of fruit damage as judged by the amount of hes-
peridin crystals. This mindset proved quite fallacious [26].

The once apparently simple field of tissue freezing is further complicated by work with detached
plant parts. Celery pollen has been stored in viable condition at —10°C for as long as 9 months [27]. The
use of “cryoprotectants” has made possible prolonged, very low temperature storage of living tissue for
in vitro tissue culture and propagation. Using such cryoprotectants as polyethylene glycol + glucose and
dimethyl sulfoxide, such living material as apices of brussels sprouts [28] and Rubus [29] have been
rapidly cooled, then held at —196°C until needed for tissue culture propagation.

3. Dormancy, Bud Initiation, and Fruit Setting

Obviously, it is well that autumnal climatic changes prepare perennials of the temperate zone for the
rigors of winter. It might seem that if no winter was to be expected, such plants could grow happily in
eternal summer. Or so thought the planners of the huge (>1 hectare under glass) Devonian Gardens,
located over a large shopping mall in Calgary, Alberta, Canada. Their concept had been to surround the
clientele with familiar summer vegetation in the depths of Calgary’s cold, snowy winter. It was a costly
error. Deprived of their climate-induced cycle, the familiar native plants became spindly and unthrifty
and soon began to die. The thousands of years of evolution that had fitted those plants for the rugged
winter of the Rocky Mountain foothills had produced plants that could not do without it. Instead, the
native plants had to be replaced with (as nearly as possible) “look-alikes” imported from Florida and
California [30].

The dormancy of winter-hardened plants is deceptive. Essential physiological and morphological
changes are progressing and will do so only at the low temperature to which evolution has adapted such
plants. Spring bulbs (tulips, daffodils, narcissi, Easter lilies, etc.), brought indoors and kept in warm tem-
peratures after flowering, will not bloom again. Such bulbs left in the winter ground (or held in correctly
regulated cold storage) undergo histological changes clearly discernible under a dissecting microscope or
even a powerful hand lens. By the time the bulbs are ready to start growing again in the spring, each one
contains all the necessary floral parts, minute but discernible. It is by use of a series of very exact storage
temperatures that today’s scientific flower producers are able to have spring bulbs in bloom timed for such
occasions as Mothers’ Day and Easter. Such imposed temperature regimes are very precise: there are
sharp differences in temperature requirements, not only among genera, but even between individual cul-
tivars [31].

The same thing happens (on a truly microscopic scale) within the fruit buds of deciduous fruit trees
and shrubs. This is why, as horticultural students, we could cut apple boughs in late spring, place them in
water in a warm building, and, apparently miraculously, decorate our Easter dance with apple blossoms.
The same phenomenon explains why a blossom freeze wipes out a deciduous tree fruit crop for a whole
year. Those blossoms came from fruit buds initiated 10 or 11 months before, which had developed while
dormant and apparently inactive during the winter months.
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Even normally hardy plants, such as oak trees, need time to adapt to winter temperatures. A Florida
neighbor of this author grew oak seedlings and shipped them to Michigan in late winter. They were im-
mediately killed by freezing.

In addition to cold hardiness, cold hardening can induce disease resistance [32] in addition to the cus-
tomary physiological effects.

It is very different with citrus fruits. For one thing, fruit buds on deciduous fruit trees are clearly rec-
ognizable to anyone cognizant in such matters. Fruit and leaf buds are indistinguishable on citrus trees
[33], however, and the initiation of fruit bud development takes place only a few weeks before bloom.
The citrus industry and the literature usually speak of “dormant” citrus trees, but such dormancy is in no
way comparable to that of deciduous fruit trees. “Quiescent” is a far better term. Blooming of quiescent
citrus trees is usually initiated by the termination of a long cool spell or drought [34]. The best and most
uniform blooms come when mild stresses from cool weather and drought are relieved simultaneously. A
mild winter, followed by a warm, moist spring, tends to give a straggly bloom, spread over many weeks
or even months, with consequent poor yield, low fruit quality, and difficult harvesting.

When hormonal control of chilling injury was still a very new theory, a colleague and I sprayed a
number of grapefruit trees with various combinations of growth regulators in November. We definitely
affected susceptibility to chilling injury of the fruit harvested in the following fall, although not in any
clearly discernible pattern [35]. What was tantalizing about the test was that with one treatment we got a
highly significant increase in yield, which we felt we could not publish. Temperatures were so mild that
winter that bloom straggled on and on for many weeks—except on one of our growth regulator treatments,
for which the bloom was a “snow bloom,” on schedule in mid-March. The treatment would become use-
ful only if long-range weather forecasts were so precise that each November they could forecast whether
temperatures between November and March would be uniformly, and atypically, mild.

Obviously, the occasional chilly spells so resented by winter tourists initiate the hormonal activity
necessary for a desirably brief, early full bloom.

Even when fruit trees have bloomed satisfactorily, temperature can be a determinant of whether a
good crop will be harvested. Most deciduous fruits need pollination, which is normally done by honey-
bees. It can be very difficult to get the attention of apple or pear growers whose trees are in full bloom if
the temperature suddenly drops below that favored by the bees. If the temperature is not right, the bees
just quit flying, and that can mean a very poor crop indeed. Even if the bees fly and pollen is spread, the
pollen must germinate and the pollen tube grow down to the ovule, a process that can be severely re-
stricted by unseasonably low temperatures [36]. And even when pollination has been successful, growth
of individual grape berries (botanically, grapes are berries) can be restricted by both too high and too low
temperatures [37]. Too high temperatures are more likely to affect fruit set of citrus than of deciduous
fruits. In California, extremely high temperatures after fruit set can cause excessive fruit shedding of navel
oranges [38]. In Florida, trouble is more apt to come from a combination of high temperature and high
humidity, resulting in fungal invasion of the fruitlets [39].

Such problems are not limited to dessert fruits. The buying public having developed an unreasoning
prejudice against seeds in fruits and vegetables of many types, parthenocarpy has become highly desir-
able. For some cucumber varieties, parthenocarpy can be induced with sprayes of chlorfuorenol—unless
the night temperatures are too high. Night temperatures between 16 and 21°C have been reported as fa-
vorable, with parthenocarpy very much reduced when the thermometer reaches 21°C [40].

4. Seed Dormancy and Germination

A very helpful specialist in seed science whom I consulted on the preparation of this chapter sent me, in
addition to various published papers, a page-long list (which he considers incomplete) of textbooks, sym-
posia, and so on dealing with the handling and storage of seeds. With temperature so often a critical fac-
tor in storage and germination of seeds, this account can be only the briefest of introductions for the non-
specialist.

An important temperature-related difference should be noted between seed-bearing plants of the tem-
perate zone and those originating in the tropics or subtropics. In areas that experience killing winter
freezes, seeds must not germinate until the following spring. Exceptions to this principle are seeds of
plants that bloom early enough in the spring to be able to establish mature plants before the onset of win-
ter. The dandelion (Taraxacum officinale) is a familiar, and usually unwelcome, example. Seeds of plants
that evolved in tropical areas need no such protective device and so usually (but not always) can be ger-
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minated immediately on separation from the plant [41]. The lack of true seed dormancy severely limited
the spread of many tropical species when they were first discovered by early European explorers. Even
in modern times, dispersal of such crops as cocoa (Theobroma cacao L.) has been difficult because the
seeds not only are adapted to immediate germination but also are highly susceptible to chilling injury (see
later) if held in cold storage.

A word on terminology: “dormancy” for seeds is used much as it is found in discussions of buds,
bulbs, and so on. Seeds that will not respond to usually effective treatments are said (most appropriately)
to be “recalcitrant.” Some authorities designate as recalcitrant only seeds that do not survive desiccation
[41]. Such distinctions are, however, beyond the terms of reference of this chapter, which is limited to the
effects, direct or indirect, of temperature. “Stratification” is used (not very logically) for chilling treat-
ments to break dormancy. Perhaps this comes from the old custom of filling a box with alternate layers
of sand and seeds from peaches (or other stone fruit) and setting it outside, exposed to the coldest possi-
ble weather.

For some seeds it has been demonstrated that dormancy is purely mechanical, being enforced as long
as the tough impermeable testa is intact [42]. In this regard, it used to be argued that hard freezing only
splits the peach pits, thus mechanically releasing the seed to germinate. Our pomology lecturer at the On-
tario Agricultural College, Guelph, settled this for us more than 50 years ago. At his direction, we com-
pared germination of “stratified” peach pits from the preceding year with that of fresh peach pits we had
carefully cracked. The result was quite fascinating. The seedlings from the stratified seeds were normal.
Those from the fresh, but mechanically cracked, seeds resembled tiny pineapple plants, producing leaves
with no internodes. Prolonged cold temperatures (most effectively between 2 and 6°C) are definitely es-
sential in such “stratification.”

Various treatments (such as presoaking) to encourage emergence of seeds used to be called “vernal-
ization,” presumably because it hastened the effects of spring. The term was brought into disrepute by
claims of permanent genetic changes by the Soviet charlatan Trofim Lysenko [43]. Today, “priming” is
appropriately used for seed treatments (involving temperature, solutes, etc.) in wet or dry media to accel-
erate germination. But if seeds have been primed, subsequent permissible holding temperatures may be
affected. Primed tomato seeds have been reported to retain viability at 4°C, but at 30°C they deteriorated
within 6 months [44]. Similarly, primed tomato seed was reported to retain viability at storage tempera-
tures as high as 20°C for 18 months. However, the seed degenerated at 30°C, particularly when primed
with potassium nitrate rather than with polyethylene glycol (PEG) [45].

Priming does not necessarily overcome adverse weather conditions, as shown by 3 years of unsuc-
cessful trials with primed sugar beet seed in cold Idaho spring weather [46]. Current research develop-
ments, however, promise to overcome these ill effects of too early sowing when they are due to a combi-
nation of moisture imbibition and too low temperature. A review article [47] reported success in such
circumstances when seeds of table beet (Beta vulgaris L.) were primed with PEG.

Imbibitional chilling injury is of particular concern for seeds of plants of tropical origin, such as cot-
ton, corn (maize, Zea mays), tomato, and many legumes, which are susceptible to chilling injury. For their
seeds, the onset of CI is related to rate of water uptake [47]. Treatment with materials (such as PEG) that
delay imbibition can be helpful but is not temperature specific. This problem appears to be surmountable
by use of temperature-sensitive polymeric seed coatings that become permeable to water at specifically
selected temperatures [47,48].

Too hot temperatures can also impede germination. Florida celery growers have been able to sur-
mount this problem by using high-temperature (30°C) priming in a solid matrix of calcined clay [49].

Recalcitrant seeds occur in all climates, and temperature can be a factor in achieving successful ger-
mination. Wild rice (Zizania palustris) is an excellent example. Deeply dormant at harvest, it will not ger-
minate without prolonged cold treatment [50]. It is thus perfectly adapted to self-propagation in the Min-
nesota wetlands and as a food staple for Native Americans, who have depended on it over the centuries.
Some of wild rice’s reputation as a “recalcitrant seed” involves a supposed desiccation intolerance, but
this misjudgment has been related to failure to understand the “novel relationship between seed viability,
temperature, and moisture content” [51].

An interesting form of recalcitrance in tropical seeds is that some, such as kola (Cola nitida), must
be aged for as long as 7-11 months, for which ambient temperatures are satisfactory [52]. This require-
ment accounts for how, for many centuries, the highly valued, but frail, caffeine-rich kola “nuts” (caffeine
being a stimulant not prohibited to Muslims) were traded all over West Africa, wrapped in damp leaves
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and transported for weeks on the heads of slaves [53]. Such aging of tropical seeds is not necessarily com-
pletely temperature independent. Seeds of Plantago ovata (an annual herb grown in India), although com-
pletely recalcitrant at harvest, germinated freely after a single day at 15°C plus treatment with gibberel-
lic acid (GA3) [54].

A record for temperature-related recalcitrance is held by American ginseng (Panax quinquefolius).
It is no wonder that this wild herb has been hard to domesticate: it is reported [55] to need cool-warm-
cool stratification over a period as long as 540 days to 18 months!

Temperature may or may not prove to be important in the storage and germination of a particular type
of seed, but it can never be ignored as a possibly critical factor.

5. Temperature-Induced Ethylene Effects

Ethylene (C,H,) is the universal growth regulator. Until the advent of the gas chromatograph, it was be-
lieved that biosynthesis of ethylene was confined to certain plant tissues (e.g., apples) and was not pre-
sent in others (e.g., oranges). As analytical equipment improved, it became apparent that under various
forms of stress any plant tissue can produce ethylene, and the extent of this effect is temperature depen-
dent [56]. Among the more striking temperature-induced effects of endogenous ethylene are the “fall col-
ors” in deciduous woodlands, which result from the reaction of ethylene with plant pigments.

Bright colors are not only attractive but, as long as consumers insist on relying on their eyes rather
than their taste buds, they can be very valuable. Thus, temperature-modulated ethylene effects become es-
sential tools in the marketing of certain fruits and vegetables. Citrus fruits afford an excellent example.
Citrus fruits grown at sea level in the humid tropics, where the species originated, are all green: no bril-
liant oranges or yellows gleaming amid the jungle foliage.

But for centuries, citrus fruits have been grown in cooler, usually more arid, areas, principally around
the Mediterranean Sea. There, the considerable stress of cool nights on a tropical fruit forces production
of minute amounts of ethylene, with consequent loss of chlorophyll and development of carotenoids.
Thus, we have the obvious “fact” that oranges should be orange and lemons should be yellow. This con-
sumer prejudice presents citrus growers in milder climates such as Florida and Brazil with a very real,
temperature-induced problem. In such districts, early varieties may mature and pass their optimum matu-
rity without ever developing “typical varietal color.”

It has long been axiomatic among Florida citrus growers that their fruit would not change color
without “a week of cool nights” (which in many years comes after the early varieties are over). A 1942
study confirmed this [57]. No significant color break was observed as long as night temperatures were
above 55°F (12.8°C), and a week of nights below 50°F (10°C) resulted in good orange color on early
varieties of oranges. Grapefruit, however, responded to the stress of low night temperatures much less
predictably.

In California, an ingenious experiment studied the effect of temperature on the coloring of Valencia
(late) oranges under controlled conditions. Fruit-bearing branches were grafted onto young potted root-
stocks, and air and soil temperatures were controlled separately [58]. Both variables were found to affect
fruit color, the best orange color being achieved with 7°C soil temperature and 20°C air temperature. In-
ternal analyses found no correlation between fruit color and fruit maturity.

Various attempts by this author to reproduce such temperature-induced color changes with detached
fruit have been unsuccessful. Once the fruit has been detached from the tree, exogenous ethylene must be
supplied and the effect is, again, sharply temperature dependent, but with a relationship quite different
from that observed for attached (nonpicked) fruit. In an early Florida study [59], we found a very sharply
defined optimum for chlorophyll destruction in oranges at 85°F (29.4°C) and a very ill-defined optimum
for grapefruit at approximately the same temperature. Such ethylene “degreening” had no apparent effect
on carotenoids; the degreened oranges were pale yellow. California packinghouses that commonly de-
greened at 75°F (23.9°C) reported development of a deep orange color, but the process took 8—10 days,
a prohibitive period in Florida because of endemic stem-end rot (caused by Diplodia natalensis), which
is strongly stimulated by ethylene.

Nearly 20 years after the Florida work just described, the carotenoid development/chlorophyll de-
struction effect was studied in detail with very much more sophisticated equipment [60]. This time ethy-
lene-induced carotenoid accumulation was shown to be (1) temperature sensitive and (2) inhibited at 30°C
and above. The work was continued and showed that very high levels of specifically identified
carotenoids could be achieved with concentrations of ethylene as low as 0.1 ppm. However, induced
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carotenoid development took weeks, rather than days, hence was commercially unacceptable in a stem-
end rot district.

I still do not know why, prior to picking, cool (below ca. 12°C) temperatures are necessary to destroy
chlorophyll in the peel of citrus fruits, but warm (ca. 30°C) temperatures maximize the rate of ethylene-
mediated chlorophyll disappearance after picking. This paradox does, however, emphasize something
that is too often ignored or forgotten: prior to picking, a fruit is an integral part of the physiology of the
plant as a whole.

6. Temperature and Fruit Quality: Preharvest

There is no point in producing fruits commercially unless they are palatable, and in some instances palata-
bility is strongly related to growing temperatures. Again, a citrus fruit, grapefruit (Citrus paradisi), will
serve as a prime example, not so much because of its place in this writer’s past research but because the
internal and external qualities of grapefruit have been extensively studied. All growing districts base their
quality standards on what they do best [61], and since Florida’s climate is so unsuited to the production
of grapefruit with a bright, colorful exterior, standards have been developed largely based on internal
quality. These are expressed in terms of sugar (as degrees Brix), acid (as ratio of citric acid to Brix), and
juice volume (as cubic centimeters per fruit) [62,63]. Internal quality obviously varies widely among
growing districts, leading to some totally unprofitable studies in day/degree relationships. But even the
most casual observations make it apparent that districts famed for the high quality of their grapefruit (such
as the Rio Grande Valley of Texas and the Indian River district of Florida) are areas with warm winter
nights, during which growth of the tree and of the fruit can continue uninterrupted. A controlled climate
experiment with Redblush grapefruit in Florida confirmed this. Maximum internal quality was found in
fruit from little trees, which were grown where night temperatures were not allowed to drop below 21°C
[64].

The shape of grapefruit is very sharply associated with internal quality: the flatter the fruit, the higher
the internal quality. The influences of day and night temperatures, and of day length, were studied under
controlled conditions [65]. A 32/7°C (day/night) temperature regime produced severely “sheep-nosed”
fruit of very low internal quality. A 32/24°C temperature regime produced flat fruit (axis length < diam-
eter) of high internal quality. No correlation between fruit quality and day length was found.

7. Wound Healing: Temperature X Humidity X Time

Some plant products have considerable ability to heal mechanical lesions after harvest. The ability de-
pends on certain ranges of temperature and humidity, however, and the healing takes several days to com-
plete. It has long been known that both sweet potatoes (Ipomoea batatas) and so-called Irish potatoes
(Solanum tuberosum) can heal damage to their own tissue [66]; for this reason, it is advised that potatoes
be harvested, then held for several days at ambient (or higher) temperature and very high humidity before
being placed in cold storage, because such healing occurs only at high temperatures and humidities [67].
Similarly, when seed potatoes are cut into “planting pieces,” they should be “cured” for several days prior
to planting under the warmest conditions available. During this period of comparatively high temperature,
a layer of suberized cells forms over the wounds.

A much more recent finding is that citrus fruits can heal shallow wounds into the flavedo (colored
part of the peel), but only at very high relative humidity (ca. 95% RH) and temperatures as high as
28-29°C (which, fortunately, are the conditions recommended within Florida citrus degreening rooms).
An unusual aspect of this healing of citrus fruits is that it involves lignification, not suberization, and it is
associated with sharp increases in phenolic compounds and of the enzyme phenylalanine ammonialyase
(PAL) [68].

In both these types of healing, the role of comparatively high temperatures is critical. Such wound
healing should not, however, be confused with drying treatments, which are essentially catabolic rather
than anabolic. The “curing” of onions prior to storage is an example of drying. The curing process aims
at killing the outer layers of cells by heat and desiccation, a form of localized necrosis that would be dis-
astrous with living products of most other types.

Attention is again drawn to the different physiological responses of plant organs on and off the
mother plant. After a Florida hurricane, attached citrus fruits will heal severe wounds and continue to
grow to maturity at normal ambient temperatures although badly scared. Fruits with similar injuries that
become detached from the tree promptly rot. Various forms of squash (Curcubita spp.) carved with a gar-
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dener’s initials when immature will grow to maturity with the initials as prominent scars. Any such
wounds inflicted on detached fruits would cause decay.

C. Temperature x Light Interactions

A factor that is easily overlooked in determining optimum temperature for a given response is light, which
may play either a positive or a negative role.

Modern apple orchards are often based on clonal rootstocks rather than on seedling roots. The root-
stocks must be rooted from cuttings, which is not always easy, and light can be a complicating factor.
Rooting of M-26 clonal rootstocks has been reported to be maximum at 25°C, but only in the absence of
light, which may inhibit rooting [69].

The prospect of establishing life support systems in space has led to the prospect of crop production
under controlled conditions not necessarily corresponding to those in terrestrial horticulture. One such
study with lettuce (Lactuca sativa) found that maintaining a constant day/night temperature at 25°C max-
imized growth, but only with intensified light during the “day” period [70].

Many plants are known to respond sharply to photoperiod (a misnomer: it is the period of unbroken
darkness, not of light, that is controlling). A study of the effect of photoperiod on the growth of West In-
dian mahogany (Swietenia mahagoni), grown in southern Florida as an ornamental, found that its typical
response to photoperiod was inhibited by low temperatures atypical of its native tropics [71]. Flowering
of the annual ornamental Rudbeckia fulgida involves a cold treatment X photoperiod interaction [72], as
is also reported for six herbaceous perennials [73].

The relationship between temperature and photoperiod and flowering of traditional ornamentals such
as Chrysanthemum is now well understood by both professional and amateur growers. (But salable flower
quality also depends on growing temperature [74].) With the increasingly common introduction of exotic
ornamentals, specific responses (to temperature, light, watering, etc.) must be established for the new ar-
rivals. One such exotic is “kangaroo paw” (Anigozanthos manglesii), for which very sharp interactions
between day and night temperatures and between temperature and day length control flowering and even
mortality [75].

Individual species within a genus may respond quite differently to interactions of temperature and
light. A Peperomia species imported to Indiana from the Andean highlands was unable to adapt to the
double change, in summer, of temperature and photoperiod. Another Peperomia species from the low-
lands of Ecuador made the transition successfully [76].

Temperature-light interactions are not limited to higher plants. For example, sporulation of some
fungi, such as the citrus pathogen Diplodia natalensis (Physalospora rhodina), needs not only optimum
temperature but also exposure to light of high intensity (GE Brown, personal communication).

A complicating role for light is always a possibility in the investigation of temperature relationships.

D. Temperature Control in Crop Production

1. Microclimate

Greenhouse (British “glasshouse,” often a misnomer in this plastic age) production is the obvious exam-
ple of microclimate temperature control. But greenhouse production has its own considerable expertise
and literature. Thus, the examples of greenhouse research cited here are included only to illustrate spe-
cific situations in which individual control of air and soil temperatures is important.

Even outdoors, although climate (including temperature) is usually regarded as beyond the control
of man, localized temperature control is sometimes effective on a microclimate scale. Vancouver,
Canada, is a few miles north of the 49th parallel, about 60 miles farther north than Minot, North Dakota,
with its legendary harsh winter temperatures. But constant foehn winds off the Pacific Ocean make Van-
couver winters mild and wet, although sunshine is scant. When I had a garden there in the late 1940s, a
neighbor used to say that I “cheated God” to bring in my lettuce and tomatoes earlier than anyone else.
The bed in which the vegetables grew was banked toward the south at approximately 50 degrees, and the
area between the plants was covered with flat stones, gathered from the nearby beach, to maximize soil
heating from the weak late winter—early spring sun.

This management was, of course, an extreme example of microclimate modification for crop pro-
duction. Nevertheless, it was no more than ingenious growers have done to survive inhospitable climates
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throughout the ages, as with pre-Columbian Andean potato growers. In recent years, the native peoples
of the Andean Altiplano have learned to revive the methods of their ancestors, growing potatoes on high
narrow beds at the foot of mountain slopes. On freezing nights, the cold air settles between the raised beds
without damaging the aerial parts of the plants, whose subterranean portions are protected by the latent
heat of the water accumulated in the troughs between the beds, an ancient example of sophisticated mi-
croclimate control.

Poinsettia is typical of an ornamental grown for a specific date; unless the plants are marketable at
Christmas, their value drops dramatically. Growth of the plants can be sharply reduced by too cool air
temperatures. Maintaining temperatures in a greenhouse in very cold weather is very expensive. How-
ever, it has been found that raising soil temperature to 23°C (which is much cheaper to do) could coun-
teract the adverse effects of air temperature as low as 11.5°C [77].

Sometimes the reverse modification is needed. Flowering of Alstroemeria (lily-of-the-Incas) was
stimulated by cooling the root zone with 10°C circulating water. There was also an interaction with light,
supplementary lighting being essential in winter but harmful in spring and summer [78]. A beneficial low-
ering of root zone temperature explained an anomalous result with azaleas pot-grown outside on either
clamshell mulch or black polyethylene. Placing the pots close together increased growth of azaleas in
black pots but not in white pots. The beneficial effect was traced to a decrease in root zone temperatures
by shading when the plants in black pots were placed close together [79].

Another unexpected root zone temperature effect was traced to the chilling effect of cold greenhouse
irrigation water in winter. The effect was noted with roses and chrysanthemums and was sufficient to af-
fect turgidity, stomate opening, and flowering. Such unforeseen deleterious temperature effects are par-
ticularly easy to overlook when they involve the temperatures of soil rather than air [80].

Root zone heating usually involves use of expensive fuel. This potential cost was halved in an inge-
nious system of pumping comparatively warm water from a well 100 m deep and circulating it through
buried pipes [81].

Temperature, of course, affects more than plant growth. It is sometimes necessary to tread a fine line
between temperatures optimum for growth and those that initiate or increase fungal attack. This can be a
problem for Florida foliage growers in warm weather, as shown in a study of aerial blight (Rhizoctonia
solani) infection of Boston fern (Nephrolepis exalta). Some plant quality had to be sacrificed if potting
medium and air temperatures were to be regulated to restrict development of the pathogen [82].

Given sufficient irrigation water, many deserts will blossom as the rose. But sometimes the desert
sun is too hot, with consequent potential for crop damage. An obvious remedy is to spray the crop with
an overhead irrigation system. The cooling effect of such sprinkling is sharply dependent on initial air
temperature. A California study [83] reported the following (the results have been converted from Fahren-
heit to Celsius):

Macroclimate temperature Lowered by
32°C 2-3°C
38°C =5°C
39°C =7.5°C

In addition to other benefits, the water spray at 39°C was reported as being successful in reducing exces-
sive “June drop” of small fruitlets. But such spraying of water in extremely hot weather can cause local-
ized injury due to the “lens effect” of standing drops of water on the leaves [84]. Lens effect injury can
be avoided, and better temperature reduction obtained, by using nozzles that emit a fine mist instead of
streams of water [85].*

Microclimate is being modified on a very large scale. Whole hectares are commonly covered with
plastic sheeting, which may be black, white, or transparent. Plastic covering may be spread over raised
beds, with the plants inserted through holes in the plastic; it may lie over individual rows secured along
the sides, with or without some form of framing [86]; or it may be used as “floating row covers,” sup-

* A recent report indicates use of such “hot weather misting” to improve color of apples in Washington State.
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ported by the crop itself and rising as it grows [87]. Sometimes such plastic covering serves essentially
for weed and soil moisture control. Often, however, some degree of temperature elevation is sought, and
air and soil temperatures are commonly included in research reports. The elevation of temperature under
plastic film will depend on both the climate and the type of plastic [88]. In sunny climates, temperature
rise may be sufficient to provide effective disinfestation of pathogenic fungi [89].

2. Sunshading

Another form of large-scale microclimate control is by shading. A practice that started as “slat houses”
for orchids and “cloth houses” for high-quality tobacco has developed into very considerable industries,
usually growing ornamentals. A high proportion are foliage plants, grown under coarse-woven plastic
material developed to give certain “percentages” of shade. Obviously, any modification of insolation (ir-
radiance) also modifies temperature. It is remarkable that although research reports commonly pay con-
siderable attention to the expression of the exact degree of shade [90], temperature differences are often
not mentioned. It can be very helpful to include temperature as a variable, as demonstrated in a study of
disease intensity under different levels of shade [91]. Research workers in this field are urged to routinely
measure and report the temperature variations that inevitably accompany any modification of irradiance.

Shade conditions can be expected not only to lower daytime temperatures but also to raise night tem-
peratures, particularly under cold night—clear sky conditions, in which ground-to-sky radiation can cause
a very rapid, possibly harmful, drop in temperature near the ground. Similarly, the use of spectral filters
can be expected to modify not only light quality but also temperature.

3. Freeze Protection

The first, most obvious, and least expensive protection against freeze injury is to select a planting site
where injurious freezing is unlikely to occur. Because this is often not possible, freeze protection mea-
sures may be necessary. Burning fossil fuels should be regarded as a last resort—the fuels themselves are
very expensive, and their use is often environmentally questionable. Only too often, freeze protection
methods are ineffective because of ignorance of the following basic thermodynamic and meteorological
principles.

1. Cold air will roll down a slope until arrested by some physical barrier, which then forms a “frost
pocket.”

Hot air rises vertically. It cannot be made to move up a slope.

3. Radiated heat travels in all directions uniformly but only in line-of-sight (straight) lines. Thus,
to be warmed by irradiation from a heat source (such as an orchard heater), a plant must be able
to “see” the heat source. Because radiated heat, like all forms of radiation, is subject to the in-
verse square law (i.e., intensity decreases proportionately to the square of the distance traveled),
radiation warming decreases sharply with distance from the heat source.

4. The total heat content of a mass of air depends not only on its temperature (sensible heat) but
also on its latent heat, the two together approximating its total energy content or enthalpy. Thus,
total heat content can be very much greater for moist air than for dry air at the same temperature.
Putting this in a different way: air masses at the same atmospheric pressure and conditions of
15°F (—9.4°C) and 100% RH, 20°F (—6.7°C) and 40% RH, and 25°F (—3.9°C) or 0% RH all
have the same heat content of approximately 5.5 Btu per pound of dry air (ca. 3 kg cal kg™ ")
[92].

5. The latent heat of evaporation is approximately 7.5 times as great as the latent heat of freezing.
Thus, when spraying irrigation water for freeze protection (a common practice for Florida straw-
berries and various other crops), it is essential to freeze at least 7.5 times as much water as is evap-
orated [93]. In calm or near-calm weather, this is no problem. Continuing to spray after the onset
of a brisk breeze, however, can be disastrous. An ingenious application of this principle is to use
such evaporative cooling to delay the blooming of fruit trees until the danger of a blossom freeze
is over. The blooming of apple trees was delayed by as long as 17 days by use of thermostatically
controlled sprinkling whenever prebloom temperatures exceeded 7°C (44.6°F) [94].

6. Smoke from burning oil or other fuel does not form a protective shield. It used to be believed
(particularly in California) that “smudge pots” could create a low cloud that reflected heat back
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to the crop below. It is now known that the smoke particles are not in a size range suited to re-
flect infrared emissions. It is, however, possible to generate very fine water fog with droplets of
the appropriate size. An added benefit is that any fog droplets that freeze give off latent heat to
the surrounding atmosphere.

7. Freezes are classified as “convection freezes” or “advection freezes.” Convection freezes occur
with calm air and cloudless skies, conditions in which the earth is radiating heat to the sky, with
consequent rapid cooling of the air near the ground. For orchard crops, it is beneficial to have
bare ground to radiate ground heat to the trees. Weeds or cover crops trap such radiated heat at
the expense of the trees. Convective conditions commonly result in atmospheric inversions, in
which the lower air is colder than that at 10-30 m above the ground. In such conditions, “wind
machines” mounted on tall towers or pylons can be beneficial. Helicopters have sometimes been
used to achieve the same effect, particularly to prevent dangerously cold air from accumulating
in the “frost pocket” hollows.

In an advective freeze, a wind strong enough to disrupt normal convection patterns freezes crops on
the exposed higher ground, with much less freeze injury in the valleys and lowlands. Wind machines are
worse than useless in an advective freeze, but rows of heaters placed at right angles to the wind direction
can benefit crops for a considerable distance downwind.

A deadly interaction among temperature, humidity, and wind speed can occur in an advective freeze.
Tender leaves and shoots can be killed, not by freezing, but by desiccation, if wind speed is high enough
when the temperature approaches the freezing point of plant tissues under conditions of very low humid-
ity (which frequently occur).

For further information on methods and principles of freeze protection, readers are referred to an ex-
tensive chapter on freeze protection [95].

E. Incidental Effects of Temperature

Old Ecclesiastes said, “Of the making of many books there is no end,” and a number of them probably
could be written on the incidental effects of temperature. However, only a very few examples can be cited
here to indicate how often temperature is an unforeseen or unplanned-for variable.

Temperature can move in mysterious ways, its wonders to perform, through its subtle influence on
the activity of growth regulators. As noted earlier, fruit setting in tomato plants is inhibited by too high
temperatures. A role for growth regulators in this high-temperature inhibition is indicated by a report [96]
that relative levels of gibberellin and auxinlike growth regulators were sharply affected at high tempera-
tures.

On a purely physical basis, temperature can be expected to affect gas diffusion rates, hence rates of
photosynthesis and leaf respiration. However, not only can the physical effects of temperature be com-
plicated by the metabolic effects of temperature on rates of photosynthesis and respiration, but such gas
exchange is reported to be affected by an interaction between temperature and humidity [97]. Exact con-
trol of temperature is routine, but equivalent accuracy in control of humidity can be difficult, and exact
simultaneous control of temperature and humidity can be very challenging indeed.

Vegetable transplants usually benefit from hardening by controlled temperature and/or moisture
stress before being planted out in the field [98]. This does not appear to be the case for sweet potato trans-
plants, which are vine cuttings rather than seedlings. Transplants held at 13—18°C were reported to have
greatly increased vitality and ultimately higher yields compared with transplants held at an ambient tem-
perature of 26.7°C [99]. (That “26.7°C ambient” temperature is curiously exact and is possibly a transla-
tion from “ca. 80°F ambient.””)

A particularly intriguing example of an unexpected temperature effect is reported in a study of male
sterility in the common bean (Phaseolus vulgaris L.) [100]. When, in the course of an atypically cool sum-
mer, unexpected fertility was noted in supposedly male sterile plants, research was transferred to growth
chambers. A day/night temperature regime of 30/18°C for an average of 12 days was sufficient to cause
most unstable steriles to produce sterile buds. Day/night conditions of 18/7°C for an average of 14 days
were effective in converting sterile to partially sterile phenotypes. Both temperature-stable and tempera-
ture-unstable genotypes were identified; this is an excellent example of valuable research findings
achieved by following up on a temperature-related anomaly revealed in a field study.
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The literature abounds in such examples. Many mysteries would be elucidated if research work-
ers routinely reported temperatures (whether controlled or not) and included such data in their research
reports. Subsequent research workers, if alert to the multitudinous roles of temperature, will then be
in a position to carry the research further, perhaps with the advantages of better funding or instru-
mentation.

lll. POSTHARVEST ROLE OF TEMPERATURE
A. Handling, Storage, and Shipping Temperatures

It is all too often forgotten that crops are still alive after harvest. No matter how meticulously grown,
most horticultural crops will not realize their full economic or nutritional potential unless handled at
suitable temperatures after harvest. How important this is depends on both the frailty of the crop and
time between harvest and consumption or processing. During this period, the importance of tempera-
ture and humidity depends very largely on the biological maturity of the plant part being harvested
[101]. Temperature control is obviously of more consequence for asparagus than for coconuts. Only a
very brief account of the principles involved can be given here. Attention is drawn to the U.S. Depart-
ment of Agriculture handbook dealing with storage conditions for a very wide range of produce [102].
Most agronomic crops are far less sensitive to postharvest temperatures, but there are exceptions, such
as potatoes (see Sec. I11.D).

1. Fruits

Chapter 7 deals with the development and physiology of fruits, which, botanically, can mean any ma-
tured plant ovary from a grain of wheat to a watermelon. Thus, the comments here are very brief and are
largely confined to temperature relationships of dessert fruits that are sometimes processed but more tra-
ditionally are eaten fresh. Bear in mind, however, that many products considered to be vegetables are
botanically fruits: tomatoes, green (snap) beans, squash, bell peppers, and cucumbers are all botanically
fruits.

Fruits can be classified according to their respiration pattern as climacteric or nonclimacteric [103].
Soon after harvest, climacteric fruits (e.g., apples, pears, bananas) produce ethylene in quantities suffi-
cient to overcome the antidoting effect of internal carbon dioxide [104]. The result is a rapid rise in res-
piration rate, at the conclusion of which the fruit is senescent, overripe, and unpalatable. The useful life
of a climacteric-type fruit is typically ended by senescence rather than by decay. Prompt refrigeration is
thus critical for climacteric-type fruits. The more the climacteric rise in respiration can be suppressed, the
longer the postharvest life of the fruit.

Nonclimacteric fruits (e.g., citrus and grapes) have no climacteric rise in postharvest respiration. At
any constant temperature, their respiration rate remains constant. For such fruits, refrigeration functions
more to prevent or delay the onset of decay than to lower respiration rate. For any type of fruit, one of the
major functions of temperature regulation is to maintain fruit quality. This involves control of desicca-
tion, minimization of flavor and texture loss, and prevention of off-flavors.

Selection of optimum storage temperatures for some fruits can be conditioned by susceptibility to
chilling injury (see Sec. III.C). Particularly for long-term storage, avoidance of chilling injury can over-
ride considerations of respiration rate or decay.

Prevalence of storage disorders such as water core [105] and superficial scald [106] of apples can be
affected not only by storage temperature but also by preharvest growing temperatures. Chemical compo-
sition of Satsuma mandarins varies with growing temperature [107]. Production of high-quality, low-acid
grapefruit depends on uninterrupted warm winter night temperatures [108].

2. Seeds

Storage temperature and thus potential storage life are sharply conditioned by the tolerance of seeds to
desiccation. “Orthodox” seeds that will survive desiccation (and often will desiccate on the plant) can be
stored at very low (subfreezing) temperatures. “Recalcitrant” seeds that cannot survive desiccation are
very difficult to store because they cannot survive low temperatures. These brief remarks oversimplify a
complex situation. Readers needing to know more are referred to a very detailed review article by Ellis
[41].

MaRrceL DExkER, INc.
270 Madison Avenue, New York, New York 10016

Copyright © Marcel Dekker, Inc. All rights reserved.

)



TEMPERATURE IN THE PHYSIOLOGY OF CROP PLANTS 27

3. Other Plant Organs

The urgency of immediate postharvest temperature and humidity control is related to the maturity of the
plant part involved [101]. Grain crops, mature root crops, and cabbage are typical of storage organs that
enter a resting stage preparatory to winter. Their respiration rate is very low, and thus prompt postharvest
refrigeration is of little consequence. Young actively growing tissues, such as asparagus, green peas, and
sweet corn, have very high respiration rates that need to be reduced by refrigeration as soon as possible.
The same is true of cut flowers, an intrinsically ephemeral product.

There is a tendency to forget the economic consequence of unrestricted respiration rate in crops for
processing. Nevertheless, particularly when crops are paid for on the basis of sugar content, excessive res-
piration rates due to prolonged exposure to high temperature (as with truckloads of oranges waiting in the
sun outside a Florida cannery) deplete sugar content, hence the cash value of the product. Even sugarcane
stacked in the sun by the roadside after harvest is losing sugar for which the grower would otherwise be
paid [109].

B. Prestorage “Curing”: Temperature x Humidity x Time

Traditionally, those who handled horticultural crops for shipment or storage were advised to refrigerate as
soon as possible after harvest. It is now known that there are marked exceptions to this general rule. One
such exception is the group of products that need to be “cured” prior to storage to heal mechanical wounds
(see Sec. I1.B.7). The outstanding example is sweet potato, for which Rhizopus decay in cold storage was
often calamitous until is was demonstrated that prior “curing” at ambient (or higher) temperature and very
high humidity for several days healed wounds that otherwise would have been invasion sites for Rhizopus
[110]. The same benefit can occur, although usually to a less marked extent, with other root and tuber crops.

C. The Chilling Injury Syndrome

Perhaps the most intriguing response of plants to temperature is the chilling injury syndrome exhibited by
many plants of tropical origin (which include such familiar crops as cotton, soybeans, tomatoes, citrus,
and cucumbers, commonly grown in the temperate zone). Morphological and biochemical responses of
corn (Zea mays L.) to field chilling conditions have been reported in considerable detail [111]. CI-sus-
ceptible plants (and their detached plant organs) are severely injured by temperatures well above freez-
ing. Critical temperatures vary, but typically injury occurs at temperatures below 10°C. Preharvest chill-
ing injury can occasionally be troublesome, particularly with cotton seedlings [112] and mature, but
unripe, tomatoes [113]. But CI is particularly important after harvest, not only because of the products
lost due to incorrect storage or transit temperatures but also (perhaps more significantly) because of se-
vere limitations on marketing. If Florida grapefruit could be stored and shipped at the same temperatures
as Florida oranges, markets for grapefruit growers would be enormously expanded.

The symptoms of CI can be either superficial or metabolic. Superficial effects are typically various
forms of peel injury, which may be uniform (e.g., the darkening of the peel of a banana held in a house-
hold refrigerator) or highly irregular (e.g., discrete, necrotic sunken areas of grapefruit or cucumbers, sur-
rounded by healthy tissue).

The metabolic origin of CI is so profound that a remarkably precipient study demonstrated a paral-
lel between behavior of mitochondria in CI-susceptible versus nonsusceptible plants and of mitochondria
from poikilothermic (cold-blooded) versus homeothermic (warm-blooded) animals [114].

The tomato is an example of a climacteric-type fruit that is metabolically sensitive to CI. A mature
green tomato that has been chilled will never ripen, even when treated with exogenous ethylene.

The literature on CI is dispersed among many types of plants and journals; moreover, research re-
ports often deal solely with individual reactions or systems isolated from ecological considerations. Much
of this literature up to 1986 has been reviewed [115].

Nevertheless, this account reviews the 25-year-long series of reports on grapefruit (and occasionally
bananas, limes, and avocados, when grapefruit were out of season) at the University of Florida’s Citrus
Research and Education Center in Lake Alfred. There are several reasons for this duplication.

1. Grapefruit is uniquely suited for CI research in that fruit can be harvested from a single bloom
on an individual tree for as long as 8 or 9 months (typically from September to May). Moreover,
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the same plant (tree) can be harvested year after year. In eight seasons (1974-75 to 1981-82),
the same 28 trees were randomly picked (north, south, east and west sides; upper and lower, in-
ner and outer fruit) at 14-day intervals for a total of more than 100 pickings. We know of no com-
parable testbed material for CI research.

2. A reporting method was developed whereby the results of each individual picking were reduced
to a single value, thus greatly facilitating statistical analysis of multiple experiments [116—118].

3. The program both sought immediate commercial results for the Florida citrus industry and
provided training in basic research methods for a series of graduate students. Such training in-
volved rigid adherence to the classical scientific method (i.e., constant testing and evaluation
of hypotheses), evidence of which approach is singularly missing in many published reports
on CI.

The initial hypothesis was that CI involved a breakdown of the respiratory system, resulting in toxic
products of incomplete oxidation (typically acetaldehyde), which in turn caused the distinctive peel le-
sions. (Acetaldehyde was always detectable in the atmosphere around chilled fruit, and application of ex-
ogenous acetaldehyde caused superficially similar lesions). A report that hypobaric (vacuum) storage
greatly prolonged the useful lifetime of various products (at their usual recommended storage tempera-
tures) attributed this effect to the continual removal of endogenous ethylene [119]. So we tried hypobaric
storage of bananas at chilling temperatures. CI was completely controlled, which we attributed to contin-
ual removal of toxic acetaldehyde [120]. The same effect was soon confirmed for limes and mitochon-
drial respiration of CI-susceptible citrus fruits (limes and grapefruit) versus Cl-resistant Florida-grown
Valencia oranges [121].

The hypothesis of the breakdown of the respiratory mechanism appeared to be true. (It still does, but
it is now regarded as a secondary effect). In “micro” respiratory studies with 5-mm peel disks, the banana
disks always chilled. In tissue culture, less than half the grapefruit peel disks chilled, which corresponded
well to the curious pattern of CI-induced peel lesions [122]. An unsolved mystery is why, in fruits such
as grapefruit and cucumber, the cells at the periphery of a necrotic lesion collapse and die while the im-
mediately adjacent cells surrounding the lesion remain healthy. Carbon dioxide (a standard respiratory
depressant) was found to minimize adenosine 5’-triphosphate (ATP) accumulation (apparent evidence for
Cl-induced impairment of the ATP/ADP energy transfer system). There was no correlation with CI and
levels of three enzymes (pectinmethylesterase, polygalacturonase, and cellulase), which had been sus-
pected of involvement in lesion formation [123,124].

Because “controlled atmosphere storage” has long been commercially used for other products, the
effect of CO, in suppressing CI was investigated. Two treatments were tested: a prestorage treatment with
very high levels (e.g., 25%) of CO, and also storage atmospheres developed under differentially perme-
able plastic films [125-127]. Success in suppressing CI was sometimes notable, but with three discon-
certing caveats.

1. The early-season sensitivity to CI, which traditionally had been considered to decrease with in-
creasing fruit maturity, was reappearing in late-season, very mature grapefruit. An alert gradu-
ate student, Kazuhide Kawada, found that such late-season susceptibility to CI had been reported
in some detail for California grapefruit as long as ago as 1936, but researchers had missed the
paper because it had been given an inappropriate title [128].

2. Although extremely effective in early and midseason, CO, had absolutely no protective effect
on grapefruit picked after the new bloom (ca. mid-March).

3. The length of delay between picking and postharvest treatments sometimes had more protective
effect than the treatments being compared.

A new hypothesis was clearly called for, and the one produced was twofold: the tree and the fruit had
to be considered as a whole (fruit off tress in full “growth flush” obviously behaved very differently from
fruit from dormant trees), and the controlling mechanism between tree and fruit had to be growth regula-
tors (GRs). A working hypothesis that CI was promoted by gibberellins and prevented by abscissic acid
(ABA) was largely confirmed [129]. ABA, the protective “stress hormone,” apparently can be developed
either pre- or postharvest. Much of this material has been summarized elsewhere [130]. With this knowl-
edge, it is easy to understand the protective effect of various prestorage treatments, not only for grapefruit
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[131] but for a wide variety of other products such as CI-sensitive Australian oranges [132] and zucchini
squash [133].

D. Anomalous Chilling Injuries

Although the basic principles described above apply to a very wide range of Cl-sensitive crops, there
are other forms of low-temperature injury. Apples are susceptible to a wide range of temperature-re-
lated storage diseases that constitute a field of study outside this discussion, with one exception. Ap-
ples grown in North America generally tolerate storage temperatures close to freezing point (1-2°C).
Apples, even of the same variety, grown in Britain or Northern Europe cannot tolerate such low tem-
peratures, however, and formerly this disadvantage sharply limited their marketing season. Thus “con-
trolled atmosphere” (CA) storage (then called “gas storage”) was developed in England in the early
1930s. Initially, CA relied on raising carbon dioxide levels to suppress the respiratory climacteric. Later
practice favors lowering oxygen to just above a level that would induce anaerobiosis [134]. Such CA
storage has made possible the year-round marketing of apples. I have seen no explanation of why ap-
ples from the two sides of the Atlantic should respond so differently to storage temperatures, but the
effect is real. Similar differences in response to temperature exist for other products from widely
dispersed growing areas. For example, Valencia oranges grown in California and Australia are suscep-
tible to chilling injury during long-term storage and shipment, whereas those from Florida and Brazil
are not.

Potatoes are subject to an important temperature-related storage disorder that can be very costly for
manufacturers of such products as potato chips and frozen ready-to-cook french fries. At temperatures be-
low about 5°C, potatoes undergo reversible starch-sugar hydrolysis, which causes potato products to
darken when the sugar caramelizes upon exposure to high cooking temperatures. Such discolored prod-
ucts are discounted or are unsalable. If chilled potatoes are held at room temperature for several days,
however, the reverse (condensation) reaction will convert the sugar back to starch.

Another anomalous postharvest “chilling” hazard is physical and pathological rather than physio-
logical. Some products, such as leafy vegetables, celery, and peaches, benefit from “hydro cooling” in re-
frigerated water. A marked exception is the tomato, which should never be immersed in water cooler than
product temperature. The skin of the tomato is virtually impervious; gas exchange is through the porous
stem scar. (A drop of molten wax on the stem scar of a green tomato will turn it into a self-contained “con-
trolled atmosphere storage unit,” thereby greatly delaying ripening.) When a warm tomato is immersed
in cool water, contraction of its internal atmosphere draws nonsterile water in through the porous stem
scar, with consequent greatly increased decay hazard [135]. The same problem obviously is possible with
other products.

IV. GLOBAL TEMPERATURE CHANGES

Since this chapter was first written, consideration of global temperature changes has become an interna-
tional concern of quite extraordinary magnitude. Despite objections from many reputable scientists, both
individually [136] and collectively [137], this has generated a popular media-driven controversy with
consequent proposals for economically disastrous measures to reduce emissions of CO, in order to main-
tain the status quo ante for worldwide temperatures [138,139].

Apart from the notable disregard for scientific findings in many fields of endeavor, this is hubris in
the classical Greek sense of arrogance that would challenge the gods.

Nearly a century ago, Svante Arrhenius showed that CO, is a “greenhouse gas” that transmits short-
wave radiation but impedes long-wave (heat) radiation. However, any possibly deleterious effects on
global temperatures from mankind’s generation of CO, are very minor in comparison with the sun’s dom-
inant effects, short term through sunspots [140-143] and longer term due to irregularities in its axis
[144,145]. Added to which is a gradual, but inexorable, change in the tilt of earth’s own axis [146] and
the precession of the equinoxes that so puzzled ancient astronomers [147].

Moreover, the climatic influence of the sun involves other variables, some as obvious as solar flares
[148,149], others as arcane as very minor irregularities in its orbit that mathematical astronomers are only
now beginning to explain.
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Long before modern instrumentation, sunspots could be studied with no more equipment than a piece
of smoked glass, isinglass, or other animal membrane—and the ancient Chinese left written records.
Sunspots come and go, but they persist for long periods. (Galileo used them to time the rotation of the
sun.) Mean earth temperatures vary directly with the number of sunspots. In 1922, an English lady, An-
nie Maunder, correlated sunspot frequency with climatic records [150]. When sunspots almost disap-
peared, a period known as the Maunder Minimum, the Northern Hemisphere suffered the “Little Ice
Age.” From about 1500 to 1900 AD sunspots were few, with intermittent minima during one of which
England’s Thames River froze and another when George Washington’s army had the misfortune to be en-
camped at Valley Forge [151]. Evidence of the Little Ice Age, and also of the “Little Climatic Optimum”
500 years before, still lingers in deep rock temperatures [152].

Within the larger sunspot cycle is a minor, rather consistent, approximately 11 year, cycle. Curious
evidence of this is afforded by the trading records of Canada’s Hudson Bay fur company. Rythmic fluc-
tuations in the populations of prey animals, largely arctic hares and lemmings, are echoed 1 year later in
increases in pelts taken from carnivores, particularly the valuable white fox.

Geological evidence indicates wide variations in mean temperatures and CO, levels in past inter-
glacial [153] and even postglacial, Holocene [154] periods. Some have been correlated with volcanism or
meteor showers [155]. Archeology now indicates that collapse of some major Bronze Age civilizations
was due to droughts associated with volcanic eruptions [156]. When Mount Krakatoa blew up in 1883, it
lowered mean global temperature 0.27°C (0.5°F). The amounts of industrially released CO, are minor
compared with those from such natural forces.

Moreover, global warming is not necessarily harmful [157,158]. During the 11th century sunspot
maximum (the Little Climatic Optimum) Greenland supported a thriving farming community, as did the
Orkney Islands. During the Little Ice Age the Greenlanders died and the Orkney Islanders struggled to
survive. With today’s sunspot plenitude, the Orkneys have become Scotland’s major beef-producing
county [159], although green pastures have yet to return to Greenland.

Supposed scientific calculations and much popular alarmism predict that a few degrees of global
warming will cause disastrous flooding of many coastal areas and complete disappearance of low-lying
Pacific Islands due to melting of the polar icecaps [160]. History shows otherwise. During the 1000-
year cycle that included the Little Climatic Optimum and the Little Ice Age, sea levels did not change
materially [161]. Some ice-freed coasts rose, some coastlines eroded and others accreted, and occa-
sionally coastal subsidence became threatening. London is an example of the latter phenomenon. The
considerable engineering feat of the Thames Barrier has been necessitated by slight, but inexorable,
land subsidence and occasional coincidence of an abnormally high spring tide with a very strong north-
east wind.

Apparently minor temperature changes can have drastic effects due to their influence on the winds.
The El Nifio phenomenon has had much publicity of late, although it is nothing new, as indicated by coral
growth records going back over 100,000 years [143,162] and by ocean and lake sediments [163] for
shorter periods. The apparent warming of hundreds of cubic miles of Pacific Ocean water is not due to
enormous amounts of added heat but to failure of the trade winds that normally push the sun-warmed wa-
ter toward the Philippines and Indonesia, without which they suffer devastating droughts.

Ground-penetrating radar shows that great mountain-fed rivers once transversed the Sahara Desert.
Cave paintings and rock carvings [164] prove that 8000 years ago the Sahara was verdant and teeming
with tropical wildlife. Such a scenario is now impossible with today’s wind patterns.

Obviously, any practices that are deleterious to the environment should be curtailed wherever it is
possible to do so without incurring unacceptable human and economic consequences. However, any cli-
matic effects from emissions of CO, from consumption of fossil fuels are trivial by comparison with na-
ture’s inexorable forces.

Conclusion: There is no foreseeable reason why producers of crops need to modify where or how
they grow them despite grossly exaggerated accounts of hazards from worldwide global warming.

V. CONCLUSION

With virtually any crop, from seed germination, bud sprouting, or anthesis to harvest, and after harvest to
final consumption, temperature plays important, and sometimes unsuspected, roles.
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. INTRODUCTION

The earth’s atmospheric carbon dioxide concentration ([CO,]) has fluctuated between 170 and 300 ppm
over the past 160,000 years. However, since the start of the industrial revolution in Western Europe
(1750-1800), atmospheric [CO,] has increased from 280 to approximately 365 ppm at present [1,2]. The
future [CO,] depends on the degree to which CO, emissions are controlled. However, with the rapid in-
crease in world population and economic activity, a doubling of the present atmospheric [CO,], assum-
ing a mean annual increase rate of 1.5 ppm, which was observed over the decade 1984-1993 [2], could
be expected before the end of the 21st century [1,3,4]. A rise in atmospheric [CO,] may have important
effects on global climate. As CO, is responsible for 61% of global warming [5], a doubling of the atmo-
spheric [CO,] and a rise in other so-called greenhouse gases (methane, nitrous oxide, chlorofluorocar-
bons) would increase the mean global temperature, possibly as much as 4.5 to 6°C [6,7]. In addition, shifts
in regional precipitation patterns as a result of rising atmospheric [CO,] will probably result in decreased
soil water availability in many areas of the world [3,8—-11].

Atmospheric CO, is an essential compound for life on earth. Through photosynthesis plants obtain
carbon for their growth and provide sustenance for other living things, ourselves included. In photosyn-
thesis, solar energy is absorbed by a system of pigments, and inorganic atmospheric CO, is fixed and re-
duced into organic compounds. Reduction of carbon is a major function of photosynthesis and is quanti-
fied by realizing that total plant organic matter is about 45% carbon on a dry weight basis. The
biochemistry of carbon reduction has attracted much research attention since the early 1950s, leading to
recognition of different biochemical pathways for net carbon flow during plant photosynthesis. Hu-
mankind, however, has not devised ways to manipulate or control this process because many foundations
of photosynthesis and knowledge of its regulatory mechanisms under environmental change are still not
fully understood [12,13]. Rising atmospheric [CO,] could benefit many economically important crops,
especially the Cs; however, gains may or may not be realized in long-term growth because of the inter-
action of various environmental factors that complicate the issue [11,14].

This chapter focuses on the photosynthetic responses of crop plants to long-term elevated growth
[CO,]. The physiological, biochemical, and molecular aspects of photosynthetic acclimation to rising at-
mospheric [CO,] and interactive effects of elevated [CO,] with anticipated simultaneous increases in air
temperature and/or decreases in soil water availability on leaf photosynthesis will be discussed. As the
photosynthetic mechanism of a plant species is the major determinant of how it will respond to rising at-
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mospheric [CO,] [14], understanding the mechanisms of photosynthesis acclimation to rising [CO,] and
other environmental stresses could potentially be translated into a basic framework for improving the ef-
ficiency of crop production in a future climate-changed world.

Il. THE MAJOR PATHWAYS OF PHOTOSYNTHESIS

Present understanding of photosynthetic carbon metabolism classifies terrestrial plants into three major
photosynthetic categories: Cs, Cy4, and Crassulacean acid metabolism (CAM). Each category possesses a
unique set of anatomical, physiological, and biochemical features that allows them to adapt to a specific
ecological niche [15]. It is estimated that approximately 95% of terrestrial plant species fix atmospheric
CO; by the C; (i.e., photosynthetic carbon reduction, or PCR) pathway, while 1% fix CO, by the C, path-
way and 4% by CAM [14].

A. The C; (Calvin) Cycle

In mesophyll cells of C; plants, CO, binding to its primary acceptor, ribulose-1,5-bisphosphate (RuBP),
is catalyzed by RuBP carboxylase/oxygenase (Rubisco), and the product of this carboxylation process, 3-
phosphoglycerate (PGA), is converted to other carbohydrates. In addition to the usual carboxylation re-
action, Rubisco catalyzes an oxygenase reaction in which O, reacts with RuBP to give PGA and phos-
phoglycolate, a process known as photorespiration [16]. The oxygenase reaction and associated
metabolism have an adverse effect on the efficiency of photosynthesis in C; plants, which results in a loss
of CO,, energy, and reducing potential [17]. The balance between carboxylation and oxygenation of
RuBP depends on the relative concentrations of CO, and O, at the site of Rubisco in the mesophyll
chloroplasts. A higher atmospheric [CO,] will reduce photorespiration and therefore increase the leaf CO,
exchange rate (CER) of C; plants (Figure 1).

B. The C, Pathway of CO, Fixation

C, plants have developed a biochemical mechanism to overcome the limitations of low atmospheric
[CO,] and photorespiration [15,18-20]. In C,4 plants, atmospheric CO, is first hydrated to bicarbonate by
carbonic anhydrase in the cytosol of mesophyll cells; subsequently, it reacts with the three-carbon phos-
phoenolpyruvate (PEP) to give the C,4 acid oxaloacetate (OAA) in a reaction catalyzed by PEP carboxy-
lase (PEPC). OAA is rapidly converted to malate in the mesophyll chloroplasts by NADP-malate dehy-
drogenase (NADP-MDH) or transaminated to aspartate in the mesophyll cytosol by aspartate

[m) ]
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Figure 1 Photosynthesis of typical C; and C, plants versus ambient CO, concentration. Relative to C; plants,
C, plants have a low CO, compensation point (the intercept on the abscissa), a high carboxylation efficiency
(the initial slope of CO,-response curve), and a near-saturation photosynthetic rate at current atmospheric

[CO,]. (Adapted from Refs. 15 and 31.)
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aminotransferase, depending on the C,4 acid-decarboxylating mechanism of the C4 plant [21]. These C4
compounds are then transported to the bundle sheath cells, where they are decarboxylated to release CO,
by one of the three C4 acid-decarboxylating enzymes: NADP-malic enzyme (NADP-ME), NAD-malic
enzyme (NAD-ME), or PEP carboxykinase [18,19,22].

In the NADP-ME species, which contain crops of global importance including sugarcane, maize, and
sorghum, OAA is reduced in the mesophyll chloroplasts via NADP-MDH to malate, which is then trans-
ferred to the adjacent bundle sheath cells. In the bundle sheath chloroplasts, malate undergoes decar-
boxylation catalyzed via NADP-ME to produce CO, which is reassimilated by Rubisco in the conven-
tional Calvin C; (PCR) cycle. In C4 species in which NAD-ME is the major C, acid-decarboxylating
enzyme (e.g., Atriplex spongiosa, Portulaca oleracea, Amaranthus edulis), aspartate from the mesophyll
cells enters the bundle sheath mitochondria, where it is converted to OAA. OAA is then reduced to
malate, which, in turn, is decarboxylated via NAD-ME, generating CO, to be assimilated by the PCR cy-
cle. In species in which PEP carboxykinase is the primary decarboxylating enzyme (e.g., Panicum maxi-
mum, Chloris gayana, Sporobolus fimbriatus), aspartate from the mesophyll cells is converted to OAA in
the bundle sheath cytosol, and OAA is subsequently decarboxylated producing CO,, which is then as-
similated by the PCR cycle.

Thus, the reactions that are unique to C4 photosynthesis can be considered as an additional step to
the conventional C; pathway. They operate to transfer CO, from mesophyll to bundle sheath cells through
the intermediary of a dicarboxylic acid and consequently increase levels of CO, in bundle sheath cells
specifically for refixation via Rubisco in the C; cycle [19]. Through this additional metabolic pathway,
C, plants are able to concentrate CO, in the Rubisco-containing bundle sheath cells to levels up to 3 to 20
times higher than atmospheric [CO,] [19,23-25]. Photosynthesis by C,4 plants is therefore near saturation
at current atmospheric [CO,], and a rise in atmospheric [CO;] presumably may have little or no effect on
C, photosynthesis (Figure 1).

C. The CAM Pathway

CAM (Crassulacean acid metabolism) is a photosynthetic process, named after the family Crassulaceae,
in which the accumulation of malic acid in the dark, a distinctive property of the process, was first ob-
served [26]. CAM plants are widely distributed in arid and semiarid regions, where their contribution to
community biomass production is significant [26-28]. Although many plants that exhibit CAM belong to
the dicotyledonous Crassulaceae family (Kalanchoe spp., Sedum spp.), this photosynthetic process is also
widespread in plants of other dicotyledonous families (Aizoaceae, Asclepiadaceae, Bataceae, Cactaceae,
Caryophyllaceae, Chenopodiaceae, Compositae, Convolvulaceae, Euphorbiaceae, Plantaginaceae, Portu-
lacaceae, Vitaceae) as well as the monocotyledonous families (Agavaceae, Bromeliaceae, Liliaceae, Or-
chidaceae) and even the Pteridophyte family (Polypodiaceae) [18].

CAM plants normally close their stomata during the day to prevent water loss. At night, the stomata
are open, and atmospheric CO, enters the cytoplasm of chloroplast-containing cells of photosynthetic leaf
or stem tissues and combines with PEP, a product of glucan metabolism, via PEPC to form OAA [18,29].
OAA is subsequently reduced by NAD-malate dehydrogenase to malate, which then accumulates in large
vacuoles that are characteristic of the cells of CAM plants. During the daylight hours, stomata become
closed, and malate is transported back into the cytoplasm, where it is decarboxylated by an NADP-malic
enzyme. The CO, just released enters the chloroplasts, where it is fixed by Rubisco of the conventional
C; cycle. Although CAM plants and C4 plants share the two major carboxylating enzymes PEPC and Ru-
bisco, the carbon reduction catalyzed by these enzymes differs temporally and spatially, respectively, for
these two photosynthetic categories [26,28]. Furthermore, the K, (PEP) value of PEPC from CAM plants
is less than one third that of C, plants [26]. Thus, the effects of elevated atmospheric [CO,] on the uptake
of CO, by CAM plants can be different than for C4 plants [30].

lll. RISING ATMOSPHERIC CO, AND ITS INTERACTIONS WITH
OTHER ENVIRONMENTAL VARIABLES

A. Plant Responses to Rising CO,

Research during the past 20 years on growth, as well as mechanisms and acclimation (down-regulation
or up-regulation) in photosynthetic processes, as a result of long-term exposure to elevated [CO,], has fo-
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cused mainly on Cj species. For C, and CAM plants, the mechanisms and the nature of interactive effects
of elevated [CO,] and other adverse environmental conditions on growth and yield, and their fundamen-
tal physiology, biochemistry, and/or molecular biology, are still not well understood.

1. Cj3Species

The present atmospheric [CO,] limits the photosynthetic capability, growth, and yield of many agricul-
tural crop plants, among which the Cj species show the greatest potential for response to rising [CO,]
[11,14,31-33]. Current atmospheric CO, and O, levels and C; Rubisco specificity factors translate into
photorespiratory losses of 25% or more for C; species [14,34]. The projection that a rise in atmospheric
[CO,] will reduce the deleterious effect of O, on C; photosynthesis but that it has a negligible effect on
C, photosynthesis is indeed supported by experimental growth data. Exposure of C; plants to elevated
[CO,] generally results in stimulated photosynthesis (Figure 1) and enhanced growth and yield
[31-33,35]. A compilation of the existing data available from the literature for C; agricultural crops, in-
cluding agronomic, horticultural, and forest tree species, shows an average enhancement in net CO, ex-
change rates up to 63% and growth up to 58% with a doubling of the present atmospheric [CO,]
[31,32,36-38].

Long-term exposure to elevated [CO,] leads to a variety of acclimation effects, which include
changes in the photosynthetic biochemistry and stomatal physiology and alterations in the morphology,
anatomy, branching, tillering, biomass, and timing of developmental events as well as life cycle comple-
tion [14,33,39,40]. A greater number of mesophyll cells and chloroplasts have been reported for plants
grown under elevated [CO,] [41,42]. With respect to leaf photosynthetic physiology and biochemistry,
acclimation occurs, ranging from species-specific changes in the A/C; (assimilation rate versus intercel-
lular CO,) curves [43—45] to alterations in dark respiration [33] and biochemical components with Ru-
bisco playing the leading role [46]. In terms of dark respiration, exposure of plants to elevated [CO,] usu-
ally results in lowering the dark respiration rate, which can be explained by both indirect and direct effects
[33]. Whereas the mechanism for the indirect (acclimation) effect of elevated [CO,] on dark respiration
may be related to changes in tissue composition, the direct effect appears to be an inhibition of the en-
zymes in the mitochondrial electron transport system [47,48].

Many C; species grown for long periods at elevated [CO,] show a down-regulation of leaf photo-
synthesis [45,49,50], and carbohydrate source-sink balance is believed to have a major role in the regu-
lation of photosynthesis through feedback inhibition [51,52]. Source-sink imbalances may occur during
exposure to elevated [CO,] when photosynthetic rate exceeds the export capacity or the capacity of sinks
to use photosynthates for growth, resulting in an accumulation of carbohydrates in photosynthetically ac-
tive source leaves [52-54]. Under elevated growth CO,, although the extent to which starch and soluble
sugars accumulate largely depends on the species, the increase of starch seems to be greater than that of
soluble sugars in many plants, and a correlation between starch accumulation and inhibition of leaf pho-
tosynthesis has been more frequently observed [54]. Also, for many plant species, longer exposure to el-
evated [CO,] results in a down-regulation of Rubisco [33,44—46,55-66]. Both “coarse” control, through
lowering of the enzyme protein content, and “fine” control, through decreasing the enzyme activation
state, play a role in the down-regulation of Rubisco mediated by elevated [CO,]. Coarse control suggests
a reallocation of nitrogen resources away from Rubisco [14] as well as an optimization of CO, acquisi-
tion with utilization of the fixed carbon [67]. Down-regulation of Rubisco at elevated [CO,], however, is
not a universal phenomenon, and claims of altering the enzyme activity need careful evaluation, as the
basis on which Rubisco activity is expressed may vary or nullify the observation [14].

In addition to Rubisco, there are reports that elevated [CO,] affects the regulation of sucrose phos-
phate synthase (SPS) and acid invertase. In rice, leaf SPS activity, expressed on a leaf total soluble pro-
tein basis, is up-regulated in CO,-enriched plants, suggesting an acclimation response to optimize the ca-
pacity for carbon utilization and export for this crop species [68]. On the other hand, activities of SPS,
expressed on a leaf fresh weight basis, are down-regulated by high [CO,] in bean, cotton, cucumber, plan-
tain, and wheat but up-regulated in pea, soybean, spinach, sunflower, and tomato [69]. Under elevated
growth [CO,], leaf acid invertase activities are down-regulated in cotton, cucumber, parsley, pea, radish,
soybean, spinach, tobacco, and wheat but up-regulated in bean, plantain, and sunflower [69].

Levels of soluble sugars in plant cells have been shown to influence the regulation of expression of
several genes coding for key photosynthetic enzymes [70-75]. The buildup in carbohydrates may signal
the repression, but does not directly inhibit the expression, of Rubisco and other proteins that are required
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TABLE 1 Effect of Long-Term Growth of Plants at Elevated
[CO;] on rbcS Transcript Abundance

rbcS mRNA

Species (% of ambient CO,)* Reference
Arabidopsis 40 [69]
Bean 85 [69]
Cotton 54 [69]
Maize 152 [69]
Parsley 60 [69]
Pea 45-110 [69, 88]
Plantain 125 [69]
Radish 83 [69]
Rice 83-94 [90, 91]
Soybean 73-87 [69, 92]
Spinach 135 [69]
Sunflower 69 [69]
Tobacco 92 [69]
Tomato 40-81 [69, 86]
Wheat 50-61 [61, 89]

* The percentage is expressed relative to the corresponding value for plants
grown at ambient [CO,].

for photosynthesis [52,54,70,71,76]. Although the signal transduction pathway for regulation of the
sugar-sensing genes may involve phosphorylation of hexoses, derived from sucrose hydrolysis by acid in-
vertase, via hexokinase [73-75,77-84], unknown gaps still exist between hexose metabolism and repres-
sion of gene expression at elevated growth [CO,] [54,83]. However, future molecular genetic studies of
Arabidopsis mutants with altered sensitivity to sugars may aid in elucidating steps along this signaling
pathway [75].

Transcription of the Rubisco small subunit (rbcS), and to a lesser extent the large subunit (rbcL), ap-
pears to be strongly repressed by sucrose and glucose [85,86]. Reduced expression of Rubisco genes and
differential response of other photosynthetic genes have been reported for a variety of crops grown at el-
evated [CO,] [61,69,81,83,87-92]. Table 1 shows the influence of long-term growth at elevated [CO,] on
rbcS transcript levels for various crop plants. For many species, the expression level of rbcS transcripts,
however, does not always correlate with the Rubisco protein content at elevated growth [CO,] [69].

In tomato, transcript levels for Rubisco subunits, chlorophyll a/b binding protein (Cab), and Rubisco
activase (Rca) decline with CO, enrichment, whereas those for core proteins in photosystems I and II re-
main unchanged [87,93]. In wheat, transcripts for Rubisco subunits and phosphoglycerate kinase of the
flag leaves are sensitive to elevated CO,, whereas those for sedoheptulose-1,7-bishosphatase and phos-
phoribulokinase are insensitive [89]. For tomato, despite a large accumulation of starch occurring in
leaves of elevated CO,—grown plants, transcript levels for ADP glucose pyrophosphorylase show little
change [87]. Furthermore, although photorespiration decreases under elevated [CO,] [52], responses of
the enzymes and/or transcripts associated with the photorespiratory pathway have not been well investi-
gated [83]. Elevated CO, has little effect on the transcript level of glycolate oxidase in tomato [87] but in-
hibits the accumulation of hydroxypyruvate reductase messenger RNA (mRNA) in cucumber [94].

2. C4 Species

Although C4 plants represent only 1% of the total plant species [14], their economic and ecological sig-
nificance is substantial [95]. Over 100 genera contain plants that utilize the C4 pathway, and about 21%
of gross primary productivity (i.e., annual net CO, assimilation per unit ground area) is provided by Cy4
plants on a global basis [96,97]. In many tropical regions, the food supply is primarily based on C,4 plants,
including grasses providing grains for many tropical diets and pastures and rangelands supplying forage
for livestock [98]. Sugarcane, maize, sorghum, millet, and amaranth are the most widely grown C, crops.
On a land area basis, maize, millet, and sorghum account for 70, 55, and 46% of the cereals grown in
Africa, South America, and North America, respectively [98]. C, plants dominate all tropical and sub-
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tropical grasslands, many temperate grasslands, and most disturbed landscapes in warm regions, and 8 of
the world’s 10 most invasive weeds are Cy4 species [95,99,100].

In C, species, the presence of a CO,-concentrating mechanism has led to a general assumption that
there would be little or no increase in photosynthesis and growth with rising atmospheric [CO;]. How-
ever, examination of the literature reveals a positive growth response to a doubling of [CO,] for a num-
ber of C, plants, although to a smaller extent (~14%) than for C; plants (40-58%)
[31,32,36,37,101-105]. Therefore, it cannot be assumed that C, species will not respond to rising at-
mospheric CO,. In spite of the growth stimulation, these C4 plants often show little or no enhancement
in leaf CER at elevated [CO,], which is in contrast to Cj3 species [31,37,62,105-107]. Chamber-grown
C, maize and sugarcane showed no differences in leaf photosynthetic rates between the ambient CO,—
and double-ambient CO,—grown plants, although leaf area and total plant biomass of the CO,-enriched
plants increased 14% [104]. Also, maize plants grown in controlled chambers under a triple-ambient
CO, atmosphere (1100 ppm) were only 10% higher in light-saturated rates of photosynthesis for ma-
ture leaves but 20 to 23% higher in total biomass and leaf area [108]. In a study conducted in naturally
sunlit temperature-gradient greenhouses to investigate the effects of elevated CO, and high tempera-
tures on growth and photosynthesis of sugarcane (cv. CP 73-1547), [CO;] at 700 ppm increased leaf
area by 31% (Figure 2A), total aboveground dry weight by 21% (Figure 2B), and main stem juice vol-
ume by 83% (Figure 2C) when compared with plants grown at 360 ppm [CO,] [109,110]. Furthermore,
growth of sugarcane plants under both elevated CO, (700 ppm) and temperature (4.5°C above baseline
temperature control, which was 2°C above outside ambient) increased leaf area by 56%, total above-
ground dry weight by 74%, and juice volume by 164% (Figure 2A, B, C). These increases occurred
without an enhancement of leaf CER, measured at the growth [CO,] for the most expanded sections of
the uppermost, fully expanded leaves (Figure 2D).

Causes of the observed growth stimulation by elevated CO, on C4 plants remain uncertain, but fac-
tors that indirectly impinge on Rubisco may be involved in this enhanced growth [32,46]. First, a reduc-
tion in stomatal aperture and conductance is a common response to a doubling of atmospheric growth
[CO,]. This decrease occurs across a variety of C; and Cy4 species, although there are cases of insensitive
stomatal responses [14,33,46]. The reduction in stomatal aperture and conductance explains the reduction
in transpiration observed in plants grown under elevated [CO,]. This results in an improved water use ef-
ficiency (WUE) and tissue water status and a potentially increased growth and/or yield with no additional
penalty in water consumption [33,111]. Under water-shortage conditions, an improvement in WUE in-
duced by elevated CO, could delay soil drying and reduce drought inhibition of C, vegetation and thus
enhance growth, and this has also been suggested as a factor in the improved photosynthesis and increased
biomass of some C,4 species [112—115]. Second, adverse growth conditions such as low nitrogen, high
salinity, or limited soil water availability may undermine the effectiveness of the CO,-concentrating
mechanism by increasing CO, leakage from the bundle sheath, thus making C4 species more responsive
to elevated atmospheric CO, [116,117]. Even a small, but consistent, percent stimulation in the CO, as-
similation rate throughout the growth season could account for the growth enhancement seen in the Cy4
species [37,62]. Third, elevated growth [CO,] can enhance tillering and leaf area, so that total plant pho-
tosynthesis is greater, even without an increase in CO, uptake rate per unit leaf area [14,39,46,118]. In
addition, changes in dark respiration and photosynthate partitioning, which are still poorly understood for
CO;,-enriched C4 species, may explain part of the enhanced growth [37]. In maize, the increased capacity
to synthesize and utilize sucrose and starch to produce extra energy by respiration could contribute to
plant biomass enhancement under elevated growth [CO,] [108].

3. CAM Species

The response of CAM plants to elevated atmospheric [CO,] is less clear because studies examining the
CO;,-enrichment responses of CAM plants are limited, with varying results being reported. Presumably,
minimal response may be expected for plants that are capable of raising their daytime internal CO, lev-
els as high as 10,000 ppm through decarboxylation of the C4 malic acid accumulated during the previ-
ous evening period; however such a presumption is only partially corroborated [14,26]. Under a dou-
bling of atmospheric [CO,], there was no enhancement in leaf CER and leaf area or total plant biomass
for pineapple, an economically important CAM species, but these parameters were 20 to 44% higher
for Aechmea magdalanae [119]. Plants of Agave vilmoriniana responded positively to CO, enrichment
only when water supply during growth was limited [120,121]. Elevated CO, did not enhance either
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Figure 2 Leaf area (A), aboveground dry weight (B), juice volume (C), and leaf photosynthesis (D) of
sugarcane (cv. CP 73-1547) grown in sunlit temperature-gradient greenhouses under [CO,] of 360 and 700 ppm
and temperatures at 2 and 6.5°C above outdoor ambient temperature (Ta). The four treatments were T1 = 360
ppm CO,/Ta + 2°C; T2 = 360 ppm CO,/Ta + 6.5°C; T3 = 700 ppm CO,/Ta + 2°C; T4 = 700 ppm CO,/Ta
+ 6.5°C.

plant biomass accumulation over several months of treatment [120] or leaf CO, assimilation rates mon-
itored over the entire 24-hr diel period when plants were well irrigated [121]. In contrast, phase IV CO,
assimilation that commences in the late daylight period and overall plant growth rates were consistently
higher in the CO,-enriched, water-limited plants [120,121]. Plants of Kalanchoe also did not show en-
hanced rates of CO, uptake under supranormal growth [CO,] [122,123]. For Agave deserti and Fero-
cactus acanthodes, when growth [CO,] was raised 300 ppm above ambient, short-term net CO, uptake
over 24 hr and long-term dry biomass gain over 1 year were enhanced about 30% for both plants [124].
In Opuntia ficus-indica, long-term CO, enrichment increased net CO, uptake, water use efficiency, root
growth, stem thickness, and biomass production but decreased activities of PEPC and Rubisco [30,125].
Doubling the ambient [CO,] also increased levels of glucose, starch, and nocturnal malate production
and enhanced activities of sucrose synthase and soluble starch synthase for this perennial CAM species
[126].
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B. Rising CO, and Climate Warming

There have been a number of reviews regarding the effects of temperature on leaf photosynthesis
[127-129] and the effects of interactions of rising atmospheric [CO;] and temperature on growth, func-
tion, and development in C; plants [4,46,130,131]. Photosynthesis of C5 plants, in addition to CO,, is in-
fluenced by high growth temperature regimes, and Rubisco plays a central role in these responses [130].
Unfortunately, there is little experimental information on possible mechanisms of Rubisco regulation un-
der interacting CO,-temperature growth conditions [4]. Temperature and CO, have interactive effects be-
cause arise in temperature reduces the activation state of Rubisco [64,132,133] (also see Table 2) and de-
creases both the specificity for CO, and the solubility of CO,, relative to O, [130,134,135], resulting in
increased photorespiratory CO, losses as the temperature rises. Consequently, a doubling of atmospheric
[CO,] and the concomitant inhibition of the Rubisco oxygenase reaction could partially offset the adverse
effects of increased global temperature on C; photosynthesis [130]. However, the data in this regard are
equivocal [53], and species-specific differences may be partially accounted for the differing results. In ad-
dition, these photosynthetic gains may or may not be realized in long-term growth and yield because
growth and reproduction reflect the integrated temperature response of metabolism and developmental
processes, not just photosynthesis [46]. In soybean, the enhancement effect on leaf photosynthetic rate
due to doubling the growth [CO;] increased linearly from 32 to 95% with increasing day temperatures
from 28 to 40°C, whereas with rice it was relatively constant at 60% from 32 to 38°C [64]. In addition,
although both elevated [CO,] and temperature reduced Rubisco protein and activity, the reduction by ei-
ther factor was greater for rice than for soybean [64]. Even within the same species, however, plant
biomass and grain yield respond differently to increasing growth temperature. In the case of rice, plants
grown at 34°C accumulated biomass and leaf area faster than plants at 28°C, but grain yield declined by
about 10% for each 1°C rise above 26°C [136-138]. Similar scenarios have been reported for soybean
[139] and wheat [140].

In citrus, the net CER measured at the [CO,] used for growth is substantially enhanced by elevated
[CO,] [141-144]. At elevated growth [CO,], the inhibitory effects of high leaf-to-air vapor pressure dif-
ference and decreased available soil water on citrus CER are lessened, and the CO, assimilation rate does
not exhibit the midday depression commonly observed in trees grown under ambient [CO,] [144,145]. In
addition, elevated [CO,] can compensate for the adverse effects of high temperature relative to the net
photosynthetic rate [142,146], as seen in other crops [64]. In sour orange grown in Phoenix, Arizona, the
mean daily leaf CER under summer conditions was about twofold greater for the elevated (700 ppm) CO,
treatment in comparison with the control at 400 ppm CO, [142]. CO, enrichment enhanced sour orange
leaf CER by 75% at a leaf temperature of 31°C, 100% at 35°C, and 200% at 42°C [146]. These degrees
of enhancement are in the range of the predictions for an idealized C; plant, showing that a rise in tem-
perature from 28 to 40°C increases enhancements in CER from 66 to 190% when atmospheric [CO,] is
raised from 350 to 650 ppm [130]. This is substantially greater than the 32-95% enhancement found with

TABLE 2 Activation of Rubisco Extracted from Leaves of Soybean Plants
Grown at 350 and 700 ppm CO, and Under Varying Day/Night
Maximum/Minimum Air Temperature Regimes®

Temperature [COs] Degree of activation (%)
regime (°C) (ppm) Midday Predawn E
28/18 350 66.3 = 4.7 314 £22 %
700 66.9 = 4.2 39.0 £ 3.1 2
32/22 700 673 =238 31913 Eﬂ
36/26 700 64.7 =39 219*+13 <
40/30 350 63.3 = 4.1 193 £ 1.7 g
700 652 = 1.1 20.1 0.7 g
44/34 700 527 *+34 204 =13 2
48/38 700 415*29 172+ 1.2 3
# Uppermost, fully expanded leaves were sampled at predawn and midday, 48 days after §
planting. Activation is computed as the ratio of the initial to the corresponding total activity ©
of midday-sampled leaves. Values are the mean * standard error. TEE?
Lg;
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soybean when the growth [CO,] was raised to 700 ppm over the same temperature range [64]. The dif-
ference may be partially attributed to the fact that the temperature optimum of 32°C for soybean under
ambient [CO,] is 7°C higher than that of the model (idealized) C; plant [64]. At an afternoon leaf tem-
perature of 46°C, leaf CER of sour orange trees grown at ambient [CO,] declined to near zero, whereas
the CO,-enriched trees still maintained their CER at ~4 wmol/m?/sec [146]. Theoretically, a 300-ppm in-
crease in atmospheric [CO,] could raise the temperature optimum of light-saturated CER of C; plants by
5°C [130].

The interactive effects of elevated [CO,] and temperature for C, species are not well understood. As
discussed earlier, because of their CO,-concentrating capability, it has been generally considered that C4
plants would show little CO, stimulation irrespective of temperature [46,147]. However, with reports
showing stimulation of biomass [32,62,104,107,109,110], the response of C, plants to both CO, and tem-
perature deserves more attention. For the C4 sugarcane, the degrees of enhancement in plant growth pa-
rameters are much greater under long-term exposure to both elevated CO, and temperature than to ele-
vated CO, alone (Figure 2A-C).

For C; and C, plants adapted to similar climates, leaves of C4 plants generally have a higher tem-
perature optimum for photosynthesis as well as a higher overall photosynthetic rate at the temperature op-
timum [11,148-150]. At the current atmospheric [CO,], CERs of C, plants tend to increase with temper-
ature to a greater extent than those of C; plants. Elevated [CO,] increases the temperature optimum of C3
plants, bringing it closer to that of C4 photosynthesis [130]. Besides, factors such as light regime, soil
moisture, nutrient status, and plant developmental stage all modify the interactive responses to elevated
CO; and temperature [4,46,62,151-155].

C. Rising CO, and Limited Soil Water Availability

As atmospheric [CO;] rises, potential shifts in regional scale precipitation patterns could result in in-
creased drought conditions in many areas of the world. Responses of plants to rising [CO,] in water deficit
situations have been reviewed [156]. Despite our understanding of the responses of leaf photosynthesis
to elevated [CO;] as well as to soil water deficit, the interactions of CO, enrichment and drought stress
are still uncertain [11]. In particular, much less is known about the effects of rising [CO,] on the funda-
mental regulatory aspects of leaf photosynthesis in major agricultural crop plants subjected to drought
[14,46,157,158]. A reduction in stomatal conductance is a common response of plants to elevated growth
[CO,]. Observations of a variety of C; and Cy4 species indicate that a doubling of atmospheric [CO;] can
also double the instantaneous WUE [11,156,159]. As the [CO,] is increased, the improvements in WUE
are the results of increased assimilation rate and decreased water loss, with the latter being more impor-
tant under water deficit situations [46]. The increase in WUE as a result of elevated [CO,] is likely to be
more important than the increase in net photosynthesis per se, and the same may be true for drought-
stressed plants grown in a CO,-enriched atmosphere [157].

As soil water becomes less available, the relative enhancement of photosynthesis and growth by
elevated [CO;] tends to be greater, which can alleviate drought stress and delay its onset
[39,40,156,160]. A delay in the adverse effects of water deficit on leaf and canopy photosynthesis by
elevated [CO;] has been reported for a number of C; plants, including soybean [161,162], sweet potato
[163], groundnut [164], and rice [165-167]. Studies conducted on a variety of plant species indicate
that elevated [CO,] may actually prevent plants from succumbing to the rigors of environmental
stresses and enable them to maintain essential growth processes [168]. Soybean plants grown under
high [CO,] transpire less and conserve more soil moisture than plants grown at ambient [CO,] [161].
CO, enrichment also enhances water conservation and midday xylem water potentials in drought-
stressed sweet potato plants [163] and leaf water potentials of soybean [169]. For groundnut, elevated
growth [CO,] has a similar beneficial effect on plants subjected to severe drought stress [164]. In rice,
elevated [CO,] delays the adverse effects of severe drought on rbcS transcript abundance and activities
of Rubisco and permits photosynthesis to continue for an extra day during the drought-stress cycle
[91,166,167].

There is also evidence indicating that, under water deficit conditions, C4 growth can respond as
strongly to elevated CO, as does that of C; species. In the tallgrass prairie ecosystems, C4 species show
increased productivity under elevated CO, in dry years but not in wet years [113]. In drying soil, growth
of maize also responds strongly to CO, enrichment [170].
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D. Rising CO, and Light Intensity

Measurements of CO, enrichment effects on photosynthesis have usually been carried out with relatively
high irradiance. In nature, photosynthesis occurs in both high and low light environments, and light-lim-
ited photosynthesis can account for half of the total carbon gain [33]. Several studies show that C; pho-
tosynthesis is enhanced by elevated [CO,] even under light-limited conditions [62,171-174], and the en-
hancement rises with temperature [33]. Photosynthesis versus solar irradiance response curves show that
soybean leaves grown and measured at 660 ppm CO, have lower light compensation points, steeper ini-
tial slopes, higher apparent quantum yields, and greater CER at light saturation than those adapted to and
measured at 330 ppm CO, [172]. Canopy photosynthesis of soybean increases linearly with increases in
growth [CO;] from 160 up to 990 ppm as a result of improvements in leaf area index, leaf photosynthe-
sis, and quantum yield [173].

Most studies of leaf photosynthetic acclimation to elevated CO, have focused on the most recently
fully expanded, sunlit leaves. This may not reliably predict acclimation of the whole canopy at one spe-
cific crop developmental stage, as a difference in acclimation could occur between the uppermost, fully
developed sunlit leaves and the older, shaded leaves located deeper within the canopy [65,66,89]. Stud-
ies of photosynthetic acclimation in a vertical profile of leaves through canopies of wheat [65,89] and sun-
flower [66] show that even at stages of development at which elevated CO, did not affect the carboxyla-
tion capacity in the uppermost fully expanded leaves, there was a decrease in the lower shaded leaves.

In a crop canopy, photosynthesis is light limited for all of the day for the interior or lower canopy
leaves [33]. For a citrus canopy, although the absolute benefits of elevated CO, are greatest at high light
intensity, the relative benefits are more significant at low light levels [175]. The positive direct effect of
elevated growth CO, on citrus photosynthesis more than compensates for the negative self-shading effect
produced by the high CO,-induced proliferation of leaf area [175].

It is expected that the interaction between different growth CO, concentrations and light intensities
will be different for C; and C, plants, as the C4 photosynthetic pathway requires more energy than the C;
pathway [62]. This extra energy is associated with the regeneration of PEP by the C, pathway in the mes-
ophyll cells [176]. Studies with various species of C4 weed grasses at elevated [CO,] showed that growth
at low light did not increase the growth-enhancing effects of CO, enrichment, whereas elevated [CO,] and
high growth irradiance significantly enhanced their net photosynthesis and early growth [177]. Assimila-
tion-irradiance relationships for plants grown at ambient and elevated [CO,] indicate that CO,-enriched
plants had higher light saturation values and greater rates at high irradiance levels [177]. Studies of Pan-
icum species with different photosynthetic pathways showed that twice-ambient growth [CO,] enhanced
biomass at both low and high irradiance regimes for the C; (P. laxum) grass but only at high light for the
C,4 (P. antidotale) species [62]. The elevated CO,—grown C; plants had more leaves, greater total leaf area,
longer main stems, more nodes, and more tillers than the ambient CO,—grown plants under both low and
high light treatments. These enhancements in biomass were not seen for the elevated CO,—grown Cy4
species under low light regimes. Only under high light did elevated CO, enhance stem elongation and shoot
biomass accumulation in the C, plants [62]. In addition, there was no significant difference in leaf photo-
synthetic rates, measured at respective growth [CO,], between the ambient and elevated CO,—grown plants
for both P. laxum and P. antidotale, although small but nonsignificant enhancements by elevated growth
CO, were observed for the low light—treated C; and the high light—treated C,4 plants [62].

E. Rising CO, and Nitrogen Nutrition

As CO; is just one of many inorganic substrates required by plants, long-term response of plant photo-
synthesis and growth to elevated [CO,] also depends on the availability of mineral nutrients and the way
in which plants utilize them [154]. Most studies of elevated CO, and nutrient interactive effects have fo-
cused on nitrogen (N), because it is a common limitation in many natural and agroecosystems [178].
There have been many reports on the interaction between N nutrition and the response of photosynthesis,
metabolism, and growth to elevated CO, [154,155,179-187]. In plants grown under elevated [CO,], the
overall N concentration usually decreases [55,60,188—190]. This overall N decrease under elevated
growth [CO,] might reflect either a higher N use efficiency due to reallocation of proteins, an ontogenetic
drift leading to accelerated senescence as a result of faster growth, or inadequate N fertilization, uptake,
and/or assimilation [154].
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Acclimation of photosynthesis to long-term elevated growth [CO,], which includes shifts to a de-
crease in the carboxylation capacity; a decline in Rubisco activity, content, and transcript level; an accu-
mulation of nonstructural carbohydrates, especially starch; and a decrease of the N content in the plant, is
usually more marked when the supply of N to plants during growth is limited [51,55,60,61,154,155,
179,185,191,192]. With respect to plant growth, whereas elevated [CO,] typically leads to a marked in-
crease in biomass in well-fertilized plants [46], this response changes with inadequate N fertilization
[154]. However, species-specific differences will be encountered under N-limiting growth conditions. El-
evated [CO,] does not significantly enhance biomass of tobacco [155], rice [185], soybean [193], and sev-
eral woody species [194-196] when the N supply is limited. In other N-limited grown species, elevated
[CO,] still increases plant biomass to some extent, but the stimulation is much less than in well-fertilized
plants [51,55,180,188,192,197-199]. Occasionally, large stimulation of growth by elevated [CO;] under
N-limited conditions has also been observed [117,200].

IV. RISING CO, AND PLANT/LEAF DEVELOPMENTAL STAGE

The effect of elevated [CO,] on plant growth also depends on plant age [154]. Most studies of the accli-
mation response under a CO, enrichment growth regime have focused on mature, fully expanded leaves.
However, there is strong evidence from the literature that there may be interactions between leaf ontogeny
and the degree of the acclimation response to elevated CO, exposure [50,65,93,154,201-205]. Leaves of
dicots, during their ontogeny, undergo two distinct photosynthetic phases: a phase of increasing assimi-
lation rates, which is correlated with import of nutrients and leaf expansion, and a prolonged senescence
phase of declining assimilation rates, with a transient peak of maximal assimilation rates between the two
phases [206]. In tobacco, both ambient (at 350 ppm) and high (at 950 ppm) CO,—grown plants exhibit this
photosynthetic pattern during leaf ontogeny; however, high CO,—grown plants have a temporal shift to
an earlier transition from the first phase of increasing photosynthesis to the senescence phase of declin-
ing photosynthesis [204]. These changes in photosynthetic rates are controlled largely by Rubisco activ-
ity, and the high CO,—grown leaves also enter the stage of photosynthetic decline several days before their
ambient CO,—grown counterparts [204]. Studies of the effects of elevated CO, on photosynthesis and Ru-
bisco in tomato during leaf ontogeny also reveal similar observations [50]. In addition, studies of other
C; annual species also show that long-term exposure to elevated [CO,] leads to an enhancement of the
growth rate in young plants but not in older plants [207-209]. Similarly, for trees, increases in biomass
are mostly due to increased growth rates during the first year of elevated CO, exposure, and growth is en-
hanced less or not at all in the subsequent years [196,210,211]. Therefore, any consideration of elevated
[CO,] effect on plant growth and physiology must also address time-dependent changes in the growth rate
of plants [154].

The expression of C4 photosynthetic characteristics is controlled by factors such as leaf age and leaf
position. In some C, species, the first leaves show the normal Cj type of photosynthesis, and this may
cause such species to be responsive to high CO,, at least in the short term [212]. In Portulaca oleracea,
an NADP-ME C, dicot, there is a shift in the route of CO, assimilation toward a limited, direct entry of
CO, into the PCR cycle in senescent leaves [213]. In Flaveria trinervia, also a C,4 dicot of the NADP-ME
subgroup, an estimated 10 to 12% of the CO, entered the PCR pathway directly in young expanding
leaves. However, CO, is apparently fixed entirely through the C4 pathway in mature expanded leaves, and
this partitioning pattern is attributed to the bundle sheath compartment in young leaves, which have a rel-
atively high conductance to CO, [214].

In maize, an NADP-ME type monocot, pulse-chase experiments with mature and senescent leaf tis-
sues show that the predominant C, acids malate and aspartate differ between the two leaf ages [215]. Af-
ter a 10-sec chase, aspartate is the predominant C, acid in the mature leaves and malate is the major C, acid
in the senescent leaves. In addition, the activity of Rubisco during leaf ontogeny in maize parallels the de-
velopment in activity of this enzyme in C; plants [215]. Furthermore, a high CO, compensation point
(22-24 ppm) is found in senescent leaves of maize, in contrast to values of 0 to 10 ppm for most C, plants
[216]. Also in maize, the "*C-labeling patterns of photosynthetic products in different sections of a devel-
oping leaf suggest that there may be some direct entry of CO, into the PCR pathway in the young tissues
of the basal section, whereas the C4 pathway functions in the more differentiated tissues of the center and
top sections [217]. In addition, the activities of Rubisco and PEPC in maize leaves are found to vary ac-
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cording to leaf position, with activity of PEPC less than that of Rubisco in the lower leaves, whereas the
upper leaves exhibit high levels of PEPC [218]. Moreover, in maize, bundle sheath cell walls of young and
senescent leaves have a relatively high conductance, leading to a low capacity for CO, concentration in
these bundle sheath cells during photosynthesis [219]. In the uppermost fully expanded leaves of sugar-
cane, CER, stomatal conductance, and activities of both PEPC and Rubisco increase from the base to the
tip of the leaf [220]. Analyses of a range of leaf developmental stages in maize also indicate that when leaf
chlorophyll and Rubisco protein contents are below a critical level, i.e., 50% or less compared with those
found in mature leaves, the degree of photorespiration could approach that of C; plants [219].

In C4 monocots and dicots, the vascular system features a radial pattern structure (Kranz type) around
which photosynthetic bundle sheath and mesophyll cells are arranged [23,221,222]. Such compartmen-
talization for metabolic cooperation between mesophyll and bundle sheath cells is essential for the C,
pathway. In C4 dicots, bundle sheath cells generally have centripetally arranged chloroplasts, whereas in
monocots the arrangement of the chloroplasts varies with the C4 acid-decarboxylating enzyme subtype:
centrifugal for NADP-ME species, centripetal for NAD-ME species, and random for PEP carboxykinase
species [23,34]. In maize and sugarcane, chloroplasts of the bundle sheath and mesophyll cells are mor-
phologically similar early in development; i.e., both contain granal stacks [34,223,224]. However, subse-
quent dedifferentiation of bundle sheath cell chloroplasts results in the agranal bundle sheath chloroplasts
as seen in the mature leaves [223,224]. With respect to leaf ontogeny, leaf shape results from distinct pat-
terns of cell division and expansion in both shoot apical meristem and leaf primordium [34]. Leaves of
monocots are derived from the outer two layers of the shoot apical meristem, whereas those of dicots are
derived from the outer three layers of the shoot apical meristem. The shape of monocot leaves is gener-
ated through polarized patterns of cell division and expansion that maintain cells in files. In maize, cell
divisions occur throughout the leaf and become restricted to the leaf base only after initiation of the ligule
at the boundary of leaf blade and leaf sheath. Dicot leaves, which are generally less uniform in shape than
monocot leaves, are generated through less polarized divisions [34].

The expression of C4 genes does not occur until Kranz anatomy has been established, and exclusive
use of the C; photosynthetic pathway may occur prior to the full differentiation of Kranz anatomy [34].
Therefore, one of the proposed explanations for the biomass enhancement observed in C4 plants grown at
elevated CO; is that the “immature” C4 pathway in young C,4 leaves has Cs-like characteristics, and thus
photosynthesis of these young leaves is responsive to increasing CO, above current ambient levels
[32,62,177,212]. This hypothetical explanation, however, may be species specific, as one study argues
against this possibility by showing that the gas exchange parameters in young leaves of Panicum antido-
tale (C4, NADP-ME) and Panicum coloratum (C4, NAD-ME) do not have Cs-like characteristics [225].

V. CONCLUSION

In the 21st century, world agriculture is confronted with unprecedented environmental challenges. Ero-
sion of the protective ozone layer, increased ultraviolet B (UV-B) irradiation, desertification, damage to
long-established ecologies, greenhouse effects of rising atmospheric [CO,] and temperature, and shifts in
regional scale rainfall patterns [12,226] are all environmental concerns that will affect global agriculture
on a scale never before encountered. A change in global climate and a rapidly expanding world popula-
tion accelerate the demand for food, energy, and fresh water and threaten the ability of the world to feed
itself [13,227-229]. As a consequence, the need to enhance the production efficiency of agricultural crops
and their tolerance to warmer, more arid environmental conditions will escalate as competition for arable
land and fresh water increases. However, we do not know what the net consequences of plant responses
to these environmental changes will be, simply because we do not understand enough about how plants
grow and their interactions with the environment to predict the effects of such changes [12,69]. There-
fore, producing crops under climate change conditions will be a growing challenge in world agriculture.

It has been well recognized that increasing crop yields require an increase in photosynthesis, and ge-
netic manipulation of photosynthetic processes has been the primary focus for crop improvement
[13,229-233]. Thorough knowledge of crop growth and development and plant interactions with the en-
vironment, as well as new approaches and ambitious strategies, such as “reengineering” photosynthesis
[13,229,230,233,234], “remodeling” Rubisco for more effectiveness [231], or “supercharging” photo-
synthesis of Cs crop plants with C, genes [235-237], may all be required to improve crop efficiency at
turning atmospheric carbon into food and maintaining world food supplies and nutrition.
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. INTRODUCTION

A seed (zygote) results from the fertilization or union of male and female gametes and is the reproductive
structure of a plant. Thus, the regeneration or multiplication of plants from seed is termed sexual. Plants
are also reproduced by asexual (vegetative) means from bulbs or pieces of stem, root, or other plant part
[1].

A seed is essentially an embryo or young plant in the quiescent or dormant stage. In this state, the
embryo has an extremely low metabolic rate. Most seeds can survive on their stored reserves for pro-
longed periods. The seed is the primary means by which a plant reproduces itself at a later time when con-
ditions are suitable.

During fertilization, the genes controlling plant characteristics regenerate and recombine in many
different ways, resulting in seeds that may or may not mimic their parents. Seeds resulting from self-pol-
lination may produce true-to-type specimens, whereas those resulting from cross-pollination usually do
not. Cross-pollinated seeds provide genetic diversity for breeding and selection of new cultivars (culti-
vated varieties) and are often sources of new or novel plant material.

Some seedling plants are commonly grown as rootstocks for budding or grafting of cultivar fruit
trees, nut trees, and woody landscape plants or to produce superior landscape specimens that are difficult
to propagate asexually or for which asexual methods of propagation are unknown [2]. Regeneration from
seed is the most economical way to grow large numbers of plants. Most forest species, vegetables, and
flowering and other cultivated plants are grown from seeds.

A few species of plants produce seeds without undergoing fertilization. This form of reproduction is
called apomixis and is characteristic of species such as Poa pratensis (Kentucky bluegrass), which rarely
or never produces true seed. A plant grown from an apomictic seed is genetically identical to its parent.

Il. SEED MORPHOLOGY

There are two major classes of seed-bearing plants: angiosperms (flower-bearing), whose seeds are borne
in ovules enclosed within the ovary or fruit, and gymnosperms (cone-bearing), whose seeds are borne in
pairs at the base of scales of the cones. An example of a seed from each of these classes of seed-bearing
plants is illustrated in Figure 1A and B.
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Figure 1 (A) Longitudinal section through seed of an angiosperm, Albizia julibrissin (silktree), 5X. (From
Ref. 3.) (B) Longitudinal section through seed of a gymnosperm, Pinus ponderosa (ponderosa pine), 6 X. (From
Ref. 4.) (C) Hypogeous germination: development of Lindera benzoin (spicebush) 2, 3, and 10 days after
germination. (From Ref. 5.) (D) Epigeous germination: development of Acer platanoides (Norway maple) 1, 3,
7, and 19 days after germination. (From Ref. 6.)

Most seeds consist of three parts: embryo, a miniature plant inside the seed; endosperm, stored food
reserves for the growing embryo; and seed coat (testa), which encompasses and protects the embryo and
endosperm from damage, excess water loss, and other unfavorable conditions.

The embryo has one or more miniature seed leaves (cotyledons), an embryonic stem (plumule or epi-
cotyl), an embryonic root (radicle), and a hypocotyl, the transition zone between the embryonic stem and
root. Among angiosperms, plants that have two cotyledons are classified as dicotyledons and those with
a single cotyledon as monocotyledons. Gymnosperms may have as many as 15 cotyledons.

There are about 250,000 different seed-bearing plants in the world. Each species has its own mor-
phologically unique form of seed, which can be identified by its size, shape, color, and other external fea-
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tures [7]. The endosperm contains stored food reserves composed of carbohydrates, proteins, oils, and
other biochemical substances. All seeds contain stored food reserves. In some, the amount can be quite
small. Generally, the larger the food reserve, the greater the vigor of the seedling. Plump seeds usually
have more food reserves than small, shriveled seeds. Also, food reserves are found in the cotyledons of
some species.

The seed coat may appear dull, highly glossy, smooth, wrinkled or pitted, hard or soft, thick or thin,
or any combination of these characteristics. Many seeds also have attached wings or other appendages. In
seeds having two seed coats, the inner membranous one is usually thin, transparent and physiologically
active; that is, it restricts gaseous exchanges and movement of biochemical substances [8]. The outer seed
coat is hard and thick. A non viable seed may contain an empty seed coat without an embryo or one that
is reduced and shrunken. Seed coverings play an important role in protecting the seed and in influencing
germination.

lll. SEED GERMINATION

Most seeds begin to germinate (resume activity) soon after being exposed to or planted in a moist, warm
soil or germinating medium. The germination process begins with a swelling of the seed as it takes up or
imbibes moisture. Usually, the radicle emerges first from the softened or ruptured seed coat, grows down-
ward, and develops into the primary root system. The plumule grows upward to form the stem. During
early growth, the young seedling derives its nourishment from the seed’s cotyledons and/or endosperm.
Cytokinins—members of the group of plant hormones, including kinetin, that act synergistically with
auxins to promote cell division but, unlike auxins, promote lateral growth—promote the mobilization of
the food reserves toward the developing shoot and to the root, which begins to function and absorb nutri-
ents from the soil or medium.

In some instances, the cotyledon or cotyledons remain beneath the surface of the ground, hypogeous
germination (Figure 1C), although in most species they push above the surface, epigeous germination
(Figure 1D), turn green, and perform the functions of leaves, but are not true leaves. The food reserves
continue to nourish the seedling until photosynthesis occurs at a rate capable of supporting the plant, usu-
ally when the first true leaves are formed. At this stage, germination is completed and, in most cases,
seedlings are capable of independent existence and germination is completed.

IV. PHYSIOLOGICAL AND ENVIRONMENTAL FACTORS

Each species of plant has its own unique requirements for moisture, temperature, oxygen, light, and other
factors.

A. Moisture

The need for moisture is the most important prerequisite for triggering germination. Whereas some seeds
require little moisture for germination, others, such as those from Nymphaea spp. (water lilies) and other
aquatic plants, must be completely submerged in water. Seeds with hard or impermeable seed coats re-
quire special treatment (softening or scarification) to allow efficient uptake of water. Generally, water
reaches the seed through contact with the soil or germinating medium. Once the germination process be-
gins, an adequate moisture level must be maintained as temporary drying can result in death of the seed
or seedling. Too much moisture can cause the soil or germinating medium to become saturated and de-
prive the seed of oxygen, leading to death. Water uptake by seeds during germination has been described
using a three-stage model [9]:

1. Stage I (Imbibition)

Dry seeds have a high negative water potential (—100 to —200 mPa) because of the colloidal properties
of the seed coat. The surfaces of proteins, cellulose, starch, and other substances must first become hy-
drated. The uptake or imbibition of water in stage I is physical, resulting in softening or rupturing of the
seed coat and an increase in the volume of the seed. As the seed imbibes water, its internal water poten-
tial rises.
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2. Stage Il (Active Metabolism and Hydrolysis)

Continuing water uptake activates stored enzymes and stimulates synthesis of new ones. These enzymes
hydrolyze and transform some of the stored reserves into energy and lower molecular weight, soluble
compounds, used for the production of more cells and tissues. These metabolic processes lower the wa-
ter potential of the embryo and surrounding tissues.

Stage Il appears to be a lag phase between uptake and growth. During this stage, the rate of water ab-
sorption is governed by the internal osmotic potential. The duration of the lag phase may represent the
time required for weakening the restraints on embryo enlargement imposed by surrounding tissue to a de-
gree necessary to allow further water uptake by the embryo. During stage II, exogenously applied plant
hormones such as gibberellins or abscisic acid may assist with weakening or strengthening, respectively,
of the tissues surrounding the embryo [10]. The generally slow response to gibberellin treatment is prob-
ably related to the time lag for enzyme synthesis.

3. Stage III (Visible Germination)

Rapid growth of the radicle and shoot defines the third stage. For this process to occur, the water poten-
tial of the external solution should not be lower than —0.2 to —0.3 mPa. Germinating solutions with wa-
ter potentials of —0.45 to —0.80 mPa noticeably slow radicle emergence, and solutions of —1.0 mPa or
lower severely restrict the expansion of radicle cells necessary for radicle protusion.

B. Temperature

When moisture is adequate, the next most important requirement for germination is suitable temperature.
Temperature affects the rate at which water is imbibed as well as the rate of metabolic processes such as
the translocation of nutrients and hormones, cell division and elongation, and other physiological and bio-
chemical processes.

According to Hartmann et al. [8], temperature is the single most important factor in the regulation of
the timing of germination, because of its role in dormancy control and/or release, or climate adaptation.
Generally, high temperatures induce or reinforce dormancy; low temperatures overcome dormancy.

Most seeds can tolerate prolonged hot weather if they are kept dry, and some can withstand even
greater extremes of hot or cold [8]. Seeds of some species, such as forest pines with a very hard seed coat,
germinate only after exposure to intense heat, such as that from a brush fire [8,11]. The heat shock from
the dry heat fractures the seed coat, allowing penetration of water or exchange of gases or freeing the em-
bryo from the physical constraint of the hard seed coat. Seeds are often placed in boiling water to control
disease or to soften the seed coat without affecting seed viability.

Seeds of different species have been categorized into suitable temperature groups: cool-temperature
tolerant, cool-temperature requiring, warm-temperature requiring, and alternating temperature [8,12].

The optimal temperature requirement for germination may be different from that for early seedling
growth. In the greenhouse, propagating nursery, or seed-germinating laboratory, the usual practice is to
shift the seedlings to a lower temperature regime, which makes them sturdy and more hardy for trans-
planting and growing [2,8].

C. Oxygen

Most seeds require an adequate supply of oxygen during germination. Oxygen is required for respiration
to oxidize starches, fats, and other food reserves, and its utilization is proportional to the amount of
metabolic activity [13]. Thus, a germinating medium or seedbed should be loose, friable, and well aer-
ated. Seeds sown in heavy soils may germinate poorly, especially during wet seasons, when the soil be-
comes saturated and often lacks sufficient oxygen. Deep planting is unfavorable to germination because
the oxygen supply may be restricted or seedlings may be unable to reach the surface, especially if the soil
or medium is hard or compacted.

D. Light

Provided moisture and temperature are adequate, most seeds germinate equally well in darkness or light,
particularly seeds of most agricultural food plants, which have been rigorously selected for ease of ger-
mination. Others are partially or completely inhibited by light or require it to germinate. Some species,

MaRrceL DExkER, INc.
270 Madison Avenue, New York, New York 10016

Copyright © Marcel Dekker, Inc. All rights reserved.

)



GERMINATION AND EMERGENCE 61

such as Betulla spp. (birch), respond to long photoperiods and are categorized as “long-day” seeds. Small-
seeded species, including numerous weeds, that are favored by light for germination need only low-in-
tensity light. Photosensitive seeds should be sown upon or near the surface and shaded to prevent exces-
sive moisture loss from the germinating surface. Reaction to light (photosensitivity) is mediated through
phytochrome, a pigment that absorbs either red or far-red light [13].

Phytochrome. The phytochrome pigment system plays a key role in the photosensitivity of seeds
and is of particular significance to many small-seeded species. Phytochrome is converted to Pfr (far-red
light—absorbing form) by 660-nm (red) light and, in turn, can be reconverted to Pr (red light—absorbing
form) by 730-nm (infrared) light.

Much of the phytochrome in quiescent seeds is in the Pfr form. However, within several hours after
seeds are fully hydrated, conversion of Pfr to Pr can occur in the absence of light [14]. Because Pfr ac-
tively promotes germination and lack of Pfr inhibits germination, photosensitive seeds germinate in re-
sponse to exposure to the Pfr-forming 660-nm light.

The ratio of 655-665 nm light to 725-735 nm light varies significantly in nature. Sunlight filtered
through foliage has a low ratio of 655-665 nm light to 725—735 nm light because chlorophyll selectively
absorbs 655—-665 nm light while transmitting 725-735 nm light [15].

The ecological significance of the seed phytochrome system involves allowing shaded, light-sensi-
tive seeds on or near the soil surface to remain dormant until the leaf canopy above the seed disappears
[16]. Of course, even though fully hydrated, buried light-sensitive seeds of weedy species, for example,
will also remain dormant until returned to the soil surface by tillage or other soil disturbances.

Interactions between light and temperature are known for some kinds of seed. For example, photo-
sensitivity may be overcome by alternating high and low temperatures. Externally applied chemicals can
also interact with light and temperature. Many nitrogenous compounds, including cyanide, nitric acid,
ammonium salts, urea, thiourea, and particularly potassium nitrate (1020 mM solutions), have been
found to stimulate the germination of photosensitive seeds [17].

V. ADAPTIVE FACTORS
A. Life Cycle

In the life cycle of every sexually reproduced plant, the seed germinates and the plant makes its vegeta-
tive growth, flowers and bears seeds (physiological maturity), and sooner or later dies. The duration of
the cycle determines the three broad categories of plants: annuals, biennials, and perennials.

In its natural habitat, an annual plant usually lives for only 1 year or one season, a biennial for 2 years,
and a perennial for more than 2 years. A perennial will continue to grow more or less indefinitely and,
once physiologically mature, will annually produce flowers, fruits, and seeds under suitable condition.

The distinction between annual and the other categories is not absolute. A biennial that seed prema-
turely within the first growing season is considered to be an annual by this outcome. An annual or bien-
nial grown year-round in a greenhouse, or outdoors in a warmer climate, becomes a perennial. A peren-
nial that would normally grow indefinitely in a warmer climate may be killed by frost in a colder climate.

Perennials are either herbaceous (having annual tops but perennial roots, crowns, or related under-
ground structures) or woody (having biennial or perennial tops and perennial roots). Woody perennials
consist mostly of trees, shrubs, and vines. These are readily distinguishable from herbaceous perennials,
biennials, and annuals having nonwoody tops and/or roots, which are typically killed by frost in colder
climates. Because of their longer juvenile periods, most woody species grown from seed do not start pro-
ducing flowers and seeds until many years later [18]. These categories describe the pattern of adaptation,
cultural requirements of plants, and, to a great extent also, their seed germination requirements. In gen-
eral, but not always, seeds of woody perennials are more difficult to germinate or may possess more com-
plex germination constraints than those of herbaceous types. Seeds of species within the same plant fam-
ily or genera tend to have similar requirements for germination [19].

B. Dormancy

Germination may be immediate or delayed. Seeds of many flowering garden annuals and trees, such as
Acer saccharinum (silver maple), will germinate within a month after maturing and some with almost no
delay when removed from their protective fruits or seed coverings. Occasionally, germination in some

MaRrceL DExkER, INc.
270 Madison Avenue, New York, New York 10016

Copyright © Marcel Dekker, Inc. All rights reserved.

)



62 CHONG ET AL.

species occurs while the seed is still on the parent plant, apparently because of lack of inhibiting chemi-
cals [20].

The germination of seeds, especially those of many woody trees and shrubs, is complex and erratic.
In nature, every species has one or more mechanisms for preventing germination until the seed has been
dispersed, and failure to germinate seeds in cultivation is often due to our lack of understanding of these
mechanisms [8,21,22].

Dormancy is an all-inclusive term used to describe a “resting” state with reduced metabolic rate [23].
In this condition, a seed will not germinate because of constraints associated with the seed itself (physi-
cal or physiological) or with the external environment. Until a seed dies, it remains metabolically active
even during prolonged storage under dry conditions or extreme temperatures. Dormancy is either primary
or secondary (Table 1). Primary dormancy is an adaptation of the plant species to control the time and
conditions for germination. Secondary or consequential dormancy is a further adaptation that prevents
germination of an imbided or nondormant seed if other environmental conditions are unfavorable [8,24].
Geneve [24] categorized commonly grown small-seeded vegetable and flower species according to their
dormancy type.

VI. TYPES OF DORMANCY
A. Primary

1. Exogenous

Viable seeds, especially of many woody species, may not germinate after considerable lengths of time
even when the germination environment seems to be ideal. In most seeds with delayed germination, this
condition is due to a hard seed coat restricting water absorption and gaseous exchange and/or due to
the actual mechanical constraint by the seed coat or covering to the developing embryo [8]. Seeds from
plants of the Cornaceae, Geraniaceae, Fabaceae, Malvaceae, and Convolvulaceae families are
characterized by this condition [23]. Usually, this condition can be overcome by any method that soft-
ens, scarifies, or removes the seed coat or covering, including chemical or mechanical degradation
(scarification).

2. Endogenous

In many species, delayed germination results from internal conditions of the embryo and food storage tis-
sues, or a portion of these tissues, which must undergo certain developmental (rudimentary or immature
embryos) or physiological changes before seeds will germinate [8,24].

Whereas seeds of many species possess germination inhibitors that are deactivated before germina-
tion occurs, seeds of other species may require “after-ripening,” defined as a short period of dry storage
after seeds are harvested, usually several weeks in duration (nondeep or transitory physiological dor-
mancy) but possibly a few months or even several years for some species [8,24]. During this process,
physiological and mechanical changes occur: growth-promoting hormones and enzymes are synthesized
or activated, inhibiting hormones or related chemicals are deactivated, water is absorbed, and respiration
increases.

The after-ripening requirement is quite common for seeds of herbaceous garden plants and vegeta-
bles but less common for trees and shrubs [21]. Other species may require a period of moist chilling,
which may be moderate (intermediate physiological dormancy) or longer (deep physiological dormancy)
in duration (Table 1). Tables 2 and 3 indicate the chilling requirements for selected flowering herbaceous
and selected woody trees and shrubs, respectively.

3. Double or Combinational

Immature or rudimentary embryos are characteristic of many species of seeds with double dormancy,
such as Ginkgo biloba (Maidenhair tree), Ilex spp. (holly), Taxus spp. (yew), Viburnum spp. (viburnum),
and Fraxinus nigra (black ash). Seeds in this category do not germinate until dormancy related to exter-
nal and internal physiological factors is overcome sequentially. In many other cases, the embryo may be
fully developed and appears to be mature but may be dormant because of various physiological and chem-
ical constraints [8,24]. Specific regions of the embryos may be responsible for this dormancy, such as the
seed coat or a dormant radicle, hypocotyl, or epicotyl (Table 1).
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B. Secondary

Viable seeds of many woody species may not germinate for considerable lengths of time, even when con-
ditions are ideal. This dormancy condition prevents seeds in their natural habitat from germinating in un-
seasonal times. Readily germinable seeds should be stored promptly and properly until sown. This usu-
ally requires keeping the seeds dry and storing them in a refrigerator in sealed plastic bags or other sealed
containers. In unseasonal times, seeds should be sown in a greenhouse or other favorable environment.
When the weather warms sufficiently, seedlings grown inside may be moved to a cold frame for further
growth [8].

VIl. SEED TREATMENTS

The most simple and practical approach to overcoming seed dormancy is to sow in outdoor seed beds, al-
lowing nature and its seasonal cycles to provide the appropriate conditions. Cultural practices, including
good seed bed preparation, appropriate seeding rate and depth, and protection from pests, are all-impor-
tant factors for success [8]. Seedlings are usually allowed to grow from one to two seasons in beds or con-
tainers and then transplanted to more permanent field locations or to larger containers [8]. However, good
cultural practices may not always be reliable or successful.

Because of numerous interactions of the seed’s heredity expression and the effect of environmental
and other internal factors of the seed, the germination of different kinds of seeds, or even of different seeds
of one kind, can be extremely variable [20].

Treatment of seeds may hasten or induce more uniform and greater germination. It is more often re-
quired with seeds of woody trees and shrubs than with those of herbaceous species. Rudolf [26] found
that out of 400 species of woody plants, 33% had seeds that are commonly nondormant, 43% had seeds
with internal dormancy, 7% had seeds with an impermeable seed coat, and 17% had more than one kind
of seed dormancy.

Without treatment, dormant seeds of many woody species may not germinate or may do so sporad-
ically over a prolonged period lasting 2 or 3 years, resulting in plants of irregular size and age in seed beds
or flats. Treatment procedures usually involve one of two types: scarification or stratification. A combi-
nation of both procedures may be required for seeds with more complex dormancy (Tables 2 and 3).

A. Scarification
Scarification is any treatment applied to seed to enhance germination [41].

1. Abrasion

Hard seed coats can be scratched or abraded with a file, sandpaper, or abrasive wheel or cracked with a
hammer or vise grip. A small mechanical tumbler lined with sandpaper or filled with sand or gravel may
be more practical for larger amounts of seed [42]. The quantity of seeds in the tumbler should be suffi-
cient to allow all the seeds to be abraded. For very large quantities of seeds, a concrete mixer containing
coarse sand or gravel may be quite effective. The sand or gravel must be a size that can be easily screened
from the seeds [42].

Commercially designed machines are also available for scarifying large quantities of seed. These
scarifiers usually abrade or scar the seeds between two rubber-faced surfaces or impel seeds against
roughened surfaces such as sandpaper. The severity of the abrasion or impact must be controlled to pre-
vent damage to the seed [34].

2. Acid

Concentrated sulfuric acid (H,SO, commercial grade, specific gravity 1.84) is often used because it is
very effective. Caution is advised when using acid. NEVER ADD WATER TO ACID! Goggles and pro-
tective clothing should be worn. Care must be taken to avoid spilling. Skin that comes in contact with acid
must be washed immediately under running cold water.

Using about twice the volume of acid over the seed in a glass container, stir gently with a glass rod
during treatment. Duration of acid exposure will depend upon seed coat thickness. Fifteen minutes to 3
hr or more of exposure is required, depending on the species. Carefully pour off the acid and rinse seeds
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110 CHONG ET AL.

several times with cold water to remove the acid. Stir the seeds carefully during rinsing. Decant the wa-
ter, spread the seeds uniformly on old newspaper, and allow to dry at room temperature before sowing.

Properly treated seeds are firm as little water is absorbed. The length of time for acid treatment, if
unknown, must be determined empirically to prevent seed injury. Although suitable for a small amount
of seed, acid treatment may not be practical for large quantities because of the hazards of working with
concentrated acid. Treatment with nitric acid or with other chemicals, including potassium or sodium hy-
droxide, sodium hypochlorite, hydrogen peroxide, alcohol, acetone, and various growth-regulating sub-
stances, may be effective for some seeds [2].

3. Hot Water

Soaking in hot water is a treatment commonly used with hard-seeded species. Soaking softens, and some-
times ruptures the seed coat and leaches naturally occurring substances that may inhibit germination.

Pour about five times the volume of hot water (75-100°C) over the seeds and allow them to soak in
the gradually cooling water for 6 to 24 hr. The amount of swelling of the seeds will indicate the degree of
water uptake. Occasionally, seeds are boiled in water for 2-5 min; however, this procedure is apparently
injurious to seeds of most species. Also, seeds may be soaked in running water or by exposing them to
frequent changes of water to leach inhibitors.

Soaking in water may not yield as consistently good results as acid treatment [8,39]. However, soak-
ing is easier to do, is not hazardous, and needs no special equipment. Although damp or wet seeds are
more difficult to sow, they should normally be sown immediately because drying may make the treatment
ineffective.

4. Other Considerations

In temperate climates, abrasion of seeds may occur from soil particles as the soil is alternately frozen and
thawed. In warm climates, seeds are ruptured by swelling. Also, organic acids in the soil or substances
and enzymes excreted by soil microorganisms soften or degrade the seed coat to some degree.

Removal of the fleshy seed coating or passage through the intestine of animals is required to over-
come dormancy of some species [8,11]. Dry heat may cause increased germination of some hard-seeded
species by rupturing the seed coat or by denaturing seed coat inhibitors [11].

Commercial seed companies routinely treat seeds with chemical disinfectants and/or hot water to
prevent infection by surface-borne fungi and bacteria. Hot water appears to be a good disinfectant.

B. Stratification

1. Cold

The term stratification formerly applied to storing alternate layers of seeds with moist sand and subject-
ing them to the cold or, more generally, freezing temperatures [43]. Nowadays, seeds are sown or mixed
in the substrate rather than in layers, although the term is still used. The major requirements for cold strat-
ification (often referred to as moist chilling or cold treatment) are adequate moisture, aeration, low tem-
perature, and time of exposure. During stratification, the levels of growth-promoting substances in the
seeds increase and those of growth-inhibiting substance decrease [44].

In temperate climates, seeds of many species of plants sown directly in seed beds, or in flats kept out-
doors, undergo natural cold stratification during the winter and are ready to germinate in the spring. Seeds
sown in flats or containers, or simply mixed with moist medium, may at any time be “stratified artifi-
cially” in refrigerators or coolers. For small lots, a plastic bag may be used. A moist medium such as sand,
peat moss, vermiculate, or a combination of these ingredients is mixed with seed and placed in the bag,
which is then sealed and placed in a refrigerator. The plastic allows gaseous exchange but keeps in mois-
ture. Once stratification has begun, seeds should not be allowed to dry because drying may reverse the
process. Therefore, the medium should be inspected periodically during the process. Seeds may also be
chilled or frozen without being mixed in a substrate.

Freezing is unessential but is sometimes recommended for certain herbaceous seeds. In general, best
results occur with temperatures from just above freezing to 5°C. Although seeds may require higher strat-
ification temperatures in milder climates, from a practical viewpoint, lower temperatures will help to pre-
vent germination while seeds are being stratified. During stratification, root radicles may emerge from the
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seeds, indicating that they are ready to sprout. Exposure to freezing temperatures at this time may be in-
jurious to the germinating seedlings.

Stratification, if required, varies with each species. The closer the required temperature and duration
are to optimum, the better will be the outcome (Tables 2 and 3). Thus, knowing the proper temperatures
and stratification duration can result in more effective and efficient seedling production. Refrigeration (ar-
tificial stratification) is more predictable than outdoor sowing (natural stratification) and refrigeration
usually provides better and more consistent results.

2. Warm

Some seeds require moist, warm stratification. Seeds with double dormancy, such as those of Taxus spp.
(yew) and Viburnum spp. (viburnum), require both warm and cold stratification, and others with even
more complex dormancy such as Halesia carolina (Carolina silverbell) require cold-warm-cold expo-
sures in this sequence (Tables 2 and 3).

During exposure to warm temperatures, usually between 20 and 30°C but possibly more or less de-
pending on the species, immature or rudimentary embryos develop. If sufficient heat is gained after out-
door summer or fall seeding to satisfy the warm temperature requirement, germination will occur the first
spring after seeding. Otherwise, germination will occur the second spring after seeding. Dormancy of
some seeds is also broken by storage in hot, dry conditions [11].

3. Embryo Culture

The technique of in vitro embryo culture or embryo rescue is used by plant breeders and seed laborato-
ries to obtain seedlings from otherwise nongerminable seeds that are not sufficiently mature when the fruit
is ripe or from seeds with very complex dormancies [2]. The procedure involves aseptically excising the
embryo from the seed and culturing it in a suitable, sterilized nutrient medium. When an immature or rudi-
mentary embryo is cultured in this way, it may bypass the need for warm and/or cold stratification.

C. Growth Regulators

Seed dormancy and germination are believed to be controlled by the balance and interaction of growth-
promoting and growth-inhibiting substances. These regulatory hormones accumulate in seeds during
embryo development, although not necessarily in the embryo itself [8]. Gibberellic acid, in particular,
appears to be essential for seed germination. It mobilizes food sources and stimulates growth of em-
bryonic tissue. Differences in endogenous gibberellin concentrations of some cold-requiring seeds have
been related to the amount of chilling exposure of the seeds [45]. Abscisic acid appears to be a specific
antagonist of gibberellin action to promote germination. It is present in the seed coat, endosperm, or
embryo.

Exogenously applied growth regulators sometimes influence seed germination. Some dormant seeds,
particularly of wild plants that require light or cold for germination, may be induced to germinate by ap-
plying gibberellins. Seeds of these plants typically germinate in pockets of leaf mold where fungal activ-
ity releases gibberellins [21]. Ethylene also breaks dormancy and initiates germination, but its effect is
not as well documented as that of other growth regulators.

According to Bell et al. [11], water-soluble chemical factors from charred wood or smoke may stim-
ulate germination of some seeds. Interestingly, ethylene is a component of wood smoke. Ethylene re-
leased from seeds may also stimulate their germination [12]. Also, applied cytokinins overcome dor-
mancy in many species. Conversely, abscisic acid often inhibits germination when applied to nondormant
seeds. In some instances, the abscisic acid—induced germination inhibition can be reversed by cytokinin.
Gibberellins do not usually reverse abscisic acid—induced germination inhibition. However, the combined
application of gibberellin and cytokinin can induce germination of dormant seeds in a wider range of
species than either chemical administered separately.

D. Priming

Postharvest treatments that improve germination and seedling vigor are termed seed enhancements [46].
Seed priming (osmoconditioning) is a seed enhancement technique that has proved effective for improv-
ing germination, seedling emergence, and yield of many early-planted, small-seeded vegetable and flower
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crops. Priming or controlled hydration refers to conditioning seeds in an aerated solution with a high so-
lute content, which keeps the seed in a partially hydrated state [47]. Polyethylene glycol (PEG), an inert
compound, is often used, although some systems use salt solutions of various compositions (Table 4).
Primed seeds may be sown moist, dried, or even stored for later use.

Seeds treated with osmotic solutions ranging from —1.0 to about —2.0 mPa water potentials may
germinate more rapidly and uniformly under a wider range of temperatures than untreated seeds. The wa-
ter potential of the priming solution, priming temperature, and priming duration are all important [54] if
radicle elongation is to be prevented while at the same time allowing most other germination processes to
proceed.

Priming sometimes improves germination of aged seeds [55]. Reinvigoration of aged seeds during
the priming process is associated with partial reversal of some lipid peroxidation [56]. However, priming
of nonaged seeds ages them faster than untreated counterparts [57].

Osmoconditioning does not affect stage I water uptake (imbibition) because the priming solutions
have much higher water potentials than the water potential of the colloid-like seed tissue. However, the
stage II processes (active metabolism and hydrolysis) occur during the priming treatment. Thus, osmo-
conditioning enables the seed to absorb enough water to become metabolically active and accumulate re-
serves of sugars, amino acids, proteins, and other substances required for germination. The water poten-
tial of the priming solution is insufficient for visible germination to occur.

The primed seeds germinate uniformly and rapidly once the osmotic stress is relieved and the final
phase of seed hydration occurs. The water potential of the osmoconditioning solution varies among os-
motica and species (Table 4). Osmotic priming can substitute for the chilling requirement in certain
species [58].

A more recent improvement of the seed priming technique, referred to as matriconditioning, involves
the use of a protective gel or colloidal agent with a high water absorptive property instead of an osmotic
solution [59,60]. Matriconditioning may be better suited than osmoconditioning for treating large
amounts of seeds.

Seed priming, either osmoconditioning or matriconditioning, may be integrated with use of growth
regulators and with fluid drilling (pregerminated seeds suspended in a protective gel) to improve plant
emergence and performance under field conditions. Different gels are used and growth regulators, fertil-
izers, and pesticides are incorporated into the gels in attempts to increase the effectiveness of the tech-
nique.

TABLE 4 Examples of Successful Seed Osmoconditioning Treatments for Selected Species

Osmoconditioning Osmotica
Temp. Duration Amount (g per Estimated water
Species °O) (days) Chemical per kg of H,O) potential (mPa)?* Reference
Beta vulgaris
Sugar beet 15 7 PEG" 8000 302 —1.22 48
Daucus carota
Carrot 15 28 K5PO4 + KNO;3 21.65 —-15 49
20.6
Daucus carota
Carrot 15 14 K,HPO, + KNO; 18.28 —1.69 49
21.1
Allium cepa
Onion 15 14 PEG 8000 342 —1.55 50
Apium graveolens
Celery 15 14 PEG 8000 273 -1.0 51
Lycopersicum esculentum
Tomato 15 14 K,HPO, + KNO; 15.67 -1.0 49
11.92

Petroselinum crispum
Parsley 15 21 PEG 8000 296 —-1.17 52

“ Water potential estimates for PEG 8000 from Ref. 53.
® PEG, polyethylene glycol.
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E. Other Treatments

The pelleting of seeds has been used for a long time with varied success. Although there are different ways
of pelletizing seeds, in the simplest procedure, seeds are placed in a rotating drum and coated with a liq-
uid binder and dust. The procedure results in uniform-sized, spherical pellets that facilitate more precise
planting and often increased and more uniform germination [2,61].

Grass, vegetable, and flower seeds and sometimes seeds of woody species have been “seeded” in
plastic rolls, tapes, or in water-absorbent, fibrous mats. The seeds are held in position by water-soluble
adhesives [61]. These procedures simplify planting and may result in more uniform germination and
seedling establishment. The roll, tape, or mat serves as a mulch and provides a more uniform germinat-
ing environment. Often fertilizers, inoculants, insecticides, fungicides, and other chemicals are added to
improve the effectiveness of these products [2].

Vill. COLLECTION AND STORAGE

Seed companies and seed banks regularly conduct germination tests in controlled laboratory conditions
to determine the relative viability of seed lots and to maintain quality control. These tests also determine
the temperature and moisture limits for successful storage of each type of seed [8,24].

Each type of seed must be collected, handled, and stored differently. In theory, seeds are ready to har-
vest when there is no further increase in weight. Seeds from different species mature at different times of
the year [39]. Some seeds that appear ripe may in fact contain undeveloped embryos. Fruits have many
different shapes and sizes and may be fleshy or dry, dehiscent or indehiscent. The fleshy coverings of
some fruit may contain substances that inhibit germination and must be removed. Removing such cover-
ings lessens the chance for bacterial or fungal growth, which may effect seed viability. Freshly harvested
seeds of some species may require no treatment, or less stratification time, compared with those that have
been dried and/or stored. The seed coat of Crataegus spp. (hawthorns), although not impermeable when
freshly collected, becomes so after drying (Table 3).

Under normal conditions, many seeds are relatively short lived or lose viability with time. Hellum
[62] reported a 12% reduction in the rate of germination of Pinus balsamifera seeds stored at 7°C for 4
months. Seeds of Acer saccharinum (silver maple) remain viable for only a few days if they are not kept
moist and cool (Table 3). Salix (willow) and Populus (poplar or aspen) seeds are viable for only 4 weeks,
but many other seeds remain viable for several to 15 years and some longer. Because many woody species
do not produce seed abundantly each year, commercial seed companies must collect and store seeds of
these species for many years. Therefore, many different methods of collecting, handling, and storage are
required. These methods have been described by other authors [2,8,34,39,63].

Under proper storage conditions, seeds of most species can be kept viable for 5-year periods. Keep-
ing them dry, usually 5-12% moisture content, and keeping them cool are the most important factors af-
fecting longevity and viability. A temperature range of 0-5°C is usually adequate for most species, al-
though lower temperatures may be acceptable for some. Freeze-drying at temperatures below 1°C with
moisture control appears to offer the best storage conditions [12] but is not an economical way to store
most seeds.

IX. SUMMARY AND CONCLUSION

The geographic location or provenance of a seed can substantially influence its germinability. Seeds col-
lected from different geographic sources may not germinate or perform uniformly under the same condi-
tions. Those from a more southerly location may require a shorter stratification period to overcome dor-
mancy and may result in plants that are less winter hardy in a more northerly location. Because of
preharvest environmental conditions that affect seed maturation or seed-handling procedures and humid-
ity and temperature of storage, which affect the permeability of the seed coat, seed treatments may yield
different results between seed lots of the same species or from year to year. Therefore, treatments and other
requirements (Tables 2 and 3) should be considered as guides and may need to be modified to compensate
for variations in seed condition. Differences in germination requirements have evolved in response to
species adaptation to changing environments or to selection pressure by cultivation and breeding.
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Whereas seeds of most domesticated plants are selected for ease and predictability of germination,

the germination requirements of wild species, or those closer to their wild ancestry, appear to be more
clued to ecological and environmental influences. Because of the complex interactions of the preharvest
and postharvest history of seeds and of the large number of seeds for which germination requirements are
unknown or not fully characterized, germination studies will continue to challenge plant breeders and
propagators.
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. INTRODUCTION

Dicot leaf ontogeny is a complex process that is regulated by a variety of exogenous factors (e.g., light)
and endogenous factors (e.g., hormones, developmental signals) [1,2]. Striking alterations occur in pho-
tosynthetic rates during leaf development, and these changes have been used to monitor the progression
of this process. In general, increasing photosynthetic rates are coincident with leaf expansion; a phase of
maximal rates occurs at full expansion; and finally, a prolonged senescence phase of declining rates takes
place in the fully expanded leaf [3]. The senescence phase is marked by a progressive yellowing of the
leaf, loss of protein (most notably of Rubisco), and the translocation of resources to growing parts of the
plant [4-8].

The changes that occur in photosynthetic rates during leaf ontogeny are reflected in marked changes
in plastid form and function. During leaf expansion, chloroplasts develop from undifferentiated proplas-
tids in the apical meristem and undergo a series of rapid divisions to form mature organelles [9]. Once full
expansion is attained, chloroplasts differentiate into “gerontoplasts.” This differentiation process com-
prises a progressive loss of pigments and organized lamellar structures and an accumulation of lipid-con-
taining plastoglobuli [8]. Because most multimeric protein complexes in plastids are composed of sub-
units encoded by genes in the nucleus and the organelle [10], a central element of leaf developmental
programming involves the integration and coordination of gene expression in the nuclear-cytosolic and
chloroplast genetic compartments. The mechanisms are poorly understood.

A. Carbohydrates and Leaf Development

It has been suggested that carbohydrates play a central role in regulating leaf development [11-15]. Ac-
cording to the “sink regulation of photosynthesis” hypothesis, a decrease in sink demand leads to a
buildup of carbohydrates and an inhibition of photosynthesis in source leaves [16—18]. In some cases this
inhibition occurs as a consequence of decreases in photosynthetic gene expression at the level of tran-
scription [14,16,18-24]. We and others have extended this hypothesis to leaf development and have sug-
gested that feedback inhibition of photosynthetic gene expression by carbohydrates is an important fac-
tor that regulates the initiation of the senescent decline in photosynthesis [12,15,25-28]. General support
for this notion comes from studies showing that plants grown in elevated light intensities have enhanced
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118 RODERMEL ET AL.

rates of leaf senescence [29,30]. Additional support is provided by studies with transgenic plants that have
increased internal sugar levels [11,26,31-35]. These plants have chlorotic or yellow leaves with reduced
rates of photosynthesis.

Il. INCREASED SOURCE STRENGTH: ELEVATED CO, AND THE
“TEMPORAL SHIFT” MODEL

Despite the attractiveness of the “feedback inhibition” hypothesis to explain the patterns of change that
occur in photosynthetic rates during leaf development, very few studies have directly investigated the
impact of carbohydrates on leaf developmental programming. We have previously examined various
photosynthetic parameters during tobacco leaf development under conditions of increased source
strength (carbohydrate production) [28]. In these experiments, individual leaves were examined under
ambient CO, levels (approximately 350 wL/L) or enriched CO, concentrations (950 wL/L). Leaf 10
(counting up from the base) was chosen for analysis because of its large final size. The elevated CO,
regime was initiated at the time of visible leaf emergence, and measurements were made at various time
points until the leaf abscised. As illustrated in Figure 1, ambient CO,—grown leaves exhibited increas-
ing CO, exchange rates (CERs) up to day 12 (coincident with leaf expansion), a transient maximum (at
full expansion), then a steady decline from day 14 onward. The high CO,—grown leaves, on the other
hand, attained a similar photosynthetic maximum, but they reached this maximum significantly earlier.
The patterns of senescent decline in photosynthetic rates were comparable in both sets of leaves inas-
much as the duration of the senescence phase appeared to be unchanged. The major difference was that
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Figure 1 Photosynthetic rates (CERs) during development of tobacco leaves grown under ambient or
elevated CO, conditions (top panel) or compared with developmentally similar leaves from Rubisco antisense
plants (bottom panel). The wild-type and antisense plants were maintained under identical growth conditions.
For the increased source strength studies, wild-type plants were moved into high CO, when leaf 10 reached 1
cm in length. In all cases, day “1” status was assigned when the leaf reached 3 X 5 cm in length. Each point
represents the average (£ SD) of multiple measurements on leaves from at least four different plants. (Adapted
from Refs. 27 and 28.)
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SOURCE STRENGTH AND LEAF DEVELOPMENT 119

CERs reached zero at day 25 in the high CO,—grown leaves versus day 35 in the ambient-grown leaves.
These results suggest that the decline in photosynthetic rates characteristic of senescence is initiated at
an earlier time point in leaves that have an increased source strength; this is consistent with the feed-
back inhibition hypothesis. Interestingly, the onset of senescence in the high CO,—grown leaves oc-
curred while the leaves were still expanding.

An examination of other photosynthetic parameters provided further support for the notion that pho-
tosynthetic rates attain an earlier photosynthetic maximum in the elevated CO,—grown leaves [28]. These
included measurements of chlorophyll concentrations, Rubisco contents, and Rubisco activities. On the
basis of these results, we proposed a “temporal shift model” to explain the phenomenon of “acclimation”
(down-regulation of photosynthesis) that is frequently observed during growth of plants in elevated CO,
[17]. In this model, the lower photosynthetic rates are the result of a shift in timing of the normal photo-
synthetic stages of leaf ontogeny to an earlier onset of senescence. Hence, when fully expanded leaves
from ambient- versus high CO,—grown plants are compared at a given day after leaf initiation (as in a typ-
ical “acclimation” experiment), lower photosynthetic rates are observed in the high CO,—grown leaves
because they are further along the progression of the senescence phase of development. Although there
appear to be species-specific differences, the findings of Miller et al. [28] are in general agreement with
other studies that have examined the impact of elevated CO, on leaf development [36—39].

If source strength has a regulatory role during leaf development, as suggested by the preceding stud-
ies, then it might be anticipated that a decreased source strength condition would have the opposite effect
and delay the initiation of the senescence decline in photosynthesis. To address this question, we exam-
ined leaf development in Rubisco antisense mutants of tobacco [13,27,40,41]. These plants have a de-
creased source strength because of a specific reduction in Rubisco content.

lll. RUBISCO ANTISENSE MUTANTS

The Rubisco holoenzyme is composed of eight large subunit (LS) proteins coded for by single genes
(rbcL)) on each of the polyploid chloroplast DNAs and eight small subunit (SS) proteins coded for by a
small multigene (rbcS) family in the nuclear DNA. To determine whether rbcL expression is responsive
to SS protein concentrations, as suggested by the “cytoplasmic control principle” [42], we used antisense
rbcS RNA to down-regulate the expression of rbcS messenger RNAs (mRNAs) and proteins in tobacco
[43]. For these experiments, tobacco plants were transformed with a highly expressed member of the to-
bacco rbeS gene family cloned in reverse (antisense) orientation behind the cauliflower mosaic virus
(CaMV) 35S promoter. The resulting transgenic plants had reduced rbcS mRNA and SS protein levels.
The reductions in SS protein in these plants were matched by corresponding reductions in the accumula-
tion of LS protein and Rubisco holoenzyme. This lack of overproduction of the LS indicated that there
are stoichiometric alterations in the accumulation of the SS and LS in the mutant plants. In contrast to the
decreases in LS protein, rbcL mRNA levels were unperturbed in the mutants. This indicates that LS pro-
tein amounts are regulated posttranscriptionally in these plants. The various transgenic plants had a range
of Rubisco concentrations from 10 to 90% of normal, and the antisense rbcS RNA gene dosage correlated
inversely with Rubisco content.

To examine the nature of the posttranscriptional defect in LS accumulation, mutant plants were pulse
labeled with 33S-Met [43,44]. LS synthesis was markedly decreased during the pulse, suggesting that the
antisense plants have a defect in rbcL mRNA translation. To pinpoint this defect, we examined polysome
profiles of rbcL. mRNAs [44]. We found that rbcL. mRNAs are associated with fewer than normal
polysomes in the antisense plants, suggesting that less LS accumulates because there is an impairment in
the initiation step of rbcL mRNA translation. This impairment appears to be specific for rbcL mRNAs
and not a general consequence of decreased plastid protein synthesis, inasmuch as the polysome distri-
butions (and abundances) of other plastid mRNAs are not affected in the mutants.

Our current working hypothesis is illustrated in Figure 2. In this figure, the SS (directly or indirectly)
affects the recruitment of ribosomes to rbcL mRNAs. For example, the SS could act as a translational ac-
tivator: increased SS would increase rbcL mRNA translation initiation and thereby increase LS protein
production (positive regulation). Alternatively, the LS (or its degradation products) could repress rbcL.
mRNA translation initiation when the LS is produced in excess of the SS (negative regulation). This
mechanism would be similar to end-product inhibition at the translational level, as observed for some bac-

MaRrceL DExkER, INc.
270 Madison Avenue, New York, New York 10016

Copyright © Marcel Dekker, Inc. All rights reserved.

)



120 RODERMEL ET AL.

EbeS mRNA
o RbcS
i N
pre-55 &

NUCLELS

rheL

SN

T CHLOROPLAST

Figure 2 Models of mechanisms of control of Rubisco subunit accumulation by SS and LS abundance.
Enhanced SS protein levels, either directly or indirectly, positively influence the recruitment of ribosomes onto
rbcL mRNAs (positive regulation). Alternatively, reduced SS levels may inhibit ribosome recruitment, perhaps
via negative feedback by excess LS or LS breakdown products (negative regulation, dashed line extending from
LS protein). As demonstrated in conditions of LS limitation, as in rbcL. mutants [40], LS concentrations influ-
ence SS protein stability (positive regulation). (Adapted from Ref. 44.)

terial genes. As such, it would represent a relic of the prokaryotic nature of the chloroplast and its en-
dosymbiont origins.

IV. LEAF DEVELOPMENT IN THE RUBISCO ANTISENSE MUTANTS

The preceding studies on the Rubisco antisense mutants were conducted on plants growing in tissue cul-
ture medium supplemented with sucrose. Under these conditions, the antisense plants grew at a similar rate
and were morphologically similar to wild-type plants. However, exogenously supplied sugars can result
in altered patterns of growth and development [14]. Therefore, to study leaf development in the antisense
mutants, we grew the plants on soil in the greenhouse [13,27,41]. Under these conditions, the antisense
plants are impaired in their ability to fix carbon and to produce carbohydrates suitable for export [45,46].

A. Whole Plant Development

As a background for the leaf development experiments, we examined whole plant development in anti-
sense plants with up to 80% reductions in Rubisco holoenzyme content [41]. We found that an early,
slow-growth phase of shoot morphogenesis is markedly prolonged in the mutant plants (Figure 3). Leaf
emergence is retarded during this phase, and a higher than normal number of (very small) leaves are pro-
duced. Following this phase, the wild-type and mutant plants have similar fast-growth phases in terms of
leaf emergence rates and numbers, internode distances, leaf sizes, and leaf dry weights. Plant height, to-
tal leaf areas, and shoot dry weights are similar at flowering. Collectively, these data suggest that source
strength regulates the duration of an early phase of tobacco shoot development and the transition to a later
phase. This phase change may occur in response to the attainment of a threshold source strength, which
is delayed in the mutant plants.

B. Canopy Leaf Development

Jiang and Rodermel [13] examined photosynthesis and photosynthetic gene expression in the antisense
plants as a function of leaf nodal position on the plant. All of the leaves on antisense and wild-type plants
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Figure 3 Growth of Rubisco antisense and wild-type (WT) tobacco. Plant height (cm) was plotted as a
function of days after planting. The samples included WT and antisense plants with either 40% (Mutant 1) or
20% (Mutant 2) of WT Rubisco amounts. Arrows signify the beginning of flowering. (Adapted from Ref. 13.)

were sampled just prior to flowering. The leaves were fully expanded (and thus senescing) with the ex-
ception of the youngest ones at the top of the plant. These analyses showed that photosynthetic rates
(CERs) are depressed in the antisense leaves but that the overall patterns of change are similar in the mu-
tant and wild-type plants: after attaining a maximum in young fully expanded leaves, photosynthetic ca-
pacities decline progressively in the older leaves. Alterations in chlorophyll content and in intercellular
CO; concentrations (Ci) did not closely parallel the changes in CER in either the wild type or mutant, sug-
gesting that light harvesting and stomatal conductance do not strongly limit photosynthesis during leaf
development in these plants. By contrast, the patterns of change in CER correlated well with changes in
Rubisco initial and total activities as well as with changes in Rubisco content (Figure 4A). “Initial” Ru-
bisco activities provide an estimate of the amount of activated enzyme in the leaf sample at the time of
harvest, and “total” activities provide a measure of the amount of Rubisco that is capable of being acti-
vated in the sample.

The correlation between initial activities and Rubisco contents suggests that Rubisco activity is pri-
marily a function of holoenzyme concentration in leaves from the antisense and wild-type plants, regard-
less of leaf nodal position. Consistent with this notion, the activation state of the enzyme (the ratio of ini-
tial to total activities) was similar in all of the leaves from both sets of plants. Collectively, these data
suggest that Rubisco is a primary determinant regulating photosynthetic rates during leaf development,
regardless of holoenzyme concentration. This is consistent with flux-control measurements on first fully
expanded leaves of the antisense plants showing that Rubisco activity can explain ~70% of the control on
photosynthetic rates under moderate to high light intensities [47,48].

Jiang and Rodermel [13] also examined the mechanism of Rubisco accumulation in the antisense
plants: is it similar to that in plants growing in tissue culture on sucrose-containing medium? For these
analyses, Rubisco subunit mRNA levels were measured by RNA gel blot analysis as a function of leaf
nodal position (Figure 4B and C). As mentioned earlier, Rubisco concentrations in both sets of plants
are highest in the youngest fully expanded leaves at the top of the plant and decrease progressively to
the oldest leaves at the bottom of the plant (Figure 4A); LS and SS proteins are not present in excess
in either set of plants. The RNA gel blot analyses showed that, in the wild type, the alterations in Ru-
bisco abundance are due primarily to coordinate changes in rbcS and rbcL transcript accumulation. In
the antisense plants, however, Rubisco concentrations appear to be controlled by the abundance of
rbcS, but not rbcL, mRNAs; the levels and patterns of change in rbcL mRNA were normal in the mu-
tants even though they accumulated less LS protein. This suggests that LS accumulation is regulated
posttranscriptionally during antisense leaf development, mirroring the situation in the tissue
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Figure 4 Rubisco, RbcS, and rbcL mRNA abundances during development in the wild-type and antisense
plants. Measurements of relative amounts of Rubisco (A), RbcS mRNA (B), and rbcL mRNA (C) were
performed on all the leaves from wild-type and antisense plants with either 40% (Mutant 1) or 20% (Mutant 2)
of wild-type Rubisco amounts. Leaf 15 is the youngest leaf at the top of plant just prior to flowering, and leaf
6 is the oldest leaf still remaining at the bottom of the plant. Each data point represents the means (= SD) of
three measurements from three different plants; abundances were calculated relative to the maximum value in
the wild type. For the protein assays, soluble proteins were isolated from frozen leaf disks and electrophoresed
through discontinuous 12.5% sodium dodecyl sulfate (SDS) polyacrylamide gels. Proteins were loaded on the
gel on a leaf area basis. The gels were immunoblotted with tobacco SS and LS antibodies, and band intensities
on the filters were quantified by phosphorimage analysis. LS and SS gave similar results; LS data are shown.
To determine transcript abundances, RNAs were isolated from frozen leaf disks and equal amounts were
applied to slot blot filters. The filters were probed with RbcS and rbcL gene-specific probes. The filters were
quantified by phosphorimage analysis. (Adapted from Ref. 13.)
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culture—grown plants. We do not know whether this regulation occurs specifically at the level of rbcL
mRNA translation initiation.

To gain insight into whether rbcL. mRNA expression is limited by rbcL DNA template availability,
Jiang and Rodermel [13] performed genomic Southern blot analyses. In these experiments, equal amounts
of total cell DNA from the wild-type and mutant leaves were blotted onto filters and the filters were
probed with rbcL. DNA sequences. These analyses showed that rbcL DNA levels fall in concert with rbcLL
mRNA as one moves down the canopy. The patterns of change (and the magnitude of the change) were
similar in both sets of plants. Although we do not know whether each of the polyploid chloroplast DNAs
is equally capable of being transcribed in leaves from these plants, these data suggest that developmental
controls on rbcL. mRNA abundance may be exerted, at least in part, by rbcL template availability in both
wild-type and Rubisco antisense tobacco plants.

The decreases in Rubisco appear to have little impact on the accumulation of proteins other than Ru-
bisco [13]. This indicates that leaf developmental programming is generally insensitive to Rubisco con-
centrations. This conclusion is consistent with the observations of others who have examined protein ac-
cumulation in first fully expanded leaves of antisense plants with up to ~80% reductions in Rubisco
content [46,49,50]. The protein accumulation profiles to date have relied on Western immunoblot analy-
ses of relatively few “representative” proteins; it is now possible to conduct detailed proteomics analyses
to confirm this generalization.

C. Development of an Individual Leaf

Miller et al. [27] have recently studied the development of individual antisense and wild-type leaves. In
these experiments, leaves were sampled throughout their ontogeny (similar to the elevated CO, studies).
“Developmentally similar” leaves were used. These were leaves from node 13 in the antisense plants and
from node 10 in the wild-type plants. Both of these leaves emerge during the fast-growth phase of shoot
morphogenesis and have similar characteristics (final size, canopy position, photosynthetic rate) [41]. Be-
cause many of the analyses required destructive sampling, developmentally similar leaves were isolated
from many plants. “Day 1" status was accorded to the leaves when they first attained a size sufficient for
analysis (~3 cm in width and ~5 c¢m in length).

We first examined various photosynthetic parameters in the mutant and wild-type leaves. As illus-
trated in Figure 1, photosynthetic rates increased to a maximum on day 12 in the wild-type plants, then
declined steadily until they fell below zero on day 35; shortly thereafter they abscised from the plant. Al-
though maximal rates were somewhat lower in the antisense leaves, they were relatively constant until
about day 20, after which they declined steadily until day 30. Thereafter, they remained fairly constant
and did not fall below zero, even at day 55. Antisense leaves did not abscise until around day 60. Similar
patterns of change were observed for chlorophyll concentrations, Rubisco contents, and Rubisco activi-
ties. Taken together, these data indicate that the antisense leaves are longer lived than wild-type leaves
and that this increase in longevity is due to a prolongation of the senescence phase of development.

Much of this prolongation appears to be due to alterations in the expression of genes for photosyn-
thetic proteins. During wild-type leaf development, we found that the senescence phase is marked by a
progressive decline in the content of total cell protein, chloroplast rRNA, and chloroplast DNA. These pa-
rameters followed similar patterns of change in the antisense leaves, with the exception that the senescent
declines were markedly prolonged. mRNAs for specific photosynthetic proteins also decreased during the
senescence of wild-type and antisense leaves. For instance, rbcS and rbcL mRNAs decreased in parallel
in the wild type, consistent with the hypothesis that coordinate changes in rbcS and rbcL. mRNA abun-
dance play a central role in determining Rubisco content during wild-type leaf ontogeny. As discussed
earlier, this coordination has been observed in all of our developmental studies on wild-type tobacco
[13,28,40]. By contrast, rbcS and rbcL. mRNAs undergo a longer senescent decline in the antisense
leaves. Also as observed in our earlier studies, the content of the holoenzyme in the antisense leaves ap-
pears to be regulated primarily at the level of rbcS transcript accumulation; i.e., LS protein accumulation
is regulated posttranscriptionally.

V. CONCLUSIONS

Examination of the Rubisco antisense mutants has revealed that decreased source strength regulates the
duration and progression of tobacco leaf senescence. Increased source strength (elevated CO,), on the
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other hand, results in an earlier onset of the senescence phase of leaf development. These findings sug-
gest that leaf developmental programming is broadly responsive to a range of source strength conditions.
This programming includes alterations in the patterns of gene expression that extend beyond photosyn-
thetic gene expression, inasmuch as the abundances of chloroplast rRNA, chloroplast DNA, and total cell
protein are all affected by source strength. On the other hand, source strength does not affect all elements
of tobacco leaf development, as is evident from the similarity in the expansion rates of leaves from wild-
type and antisense plants and leaves exposed to elevated CO, [28].

The mechanism by which source strength is sensed is likely to be complex. One hypothesis is that
hexokinase acts as a sugar sensor, initiating a signal transduction pathway that modulates the expression
of various nuclear genes (reviewed in Refs. 4, 6, 14, and 20). Chloroplast genes for subunits of chloro-
plast multimeric protein complexes (e.g., LS and SS of Rubisco) are also expressed coordinately in re-
sponse to alterations in source strength during leaf development (very likely at the transcriptional level),
and thus sugar sensing must involve regulatory communication between the nucleus and the plastid.
These regulatory circuits are poorly defined (reviewed in Ref. 40). One further complication is that many
other factors, e.g., hormones and light, influence the progression and duration of leaf development. Com-
ponents of signal transduction pathways for all of these factors probably interact and share elements in
common [15,51].

Our studies have shown that carbohydrates are able to regulate leaf developmental programming in a
predictable manner, consistent with the idea of feedback inhibition of photosynthesis (“sink regulation”
hypothesis). We suggest that in some cases a threshold source strength is sensed and that this regulates a
developmental switch, for instance, a phase transition in shoot morphogenesis [41] or the onset of the
senescence phase of leaf development [28]. In other cases, source strength is able to modulate the duration
of development responses once they have commenced, e.g., the senescence phase of leaf development [27].
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Ecophysiological Aspects of the Vegetative
Propagation of Saltbush (Atriplex spp.) and
Mulberry (Morus spp.)

David N. Sen* and Pramila Rajput
University of Jodhpur, Jodhpur, India

. INTRODUCTION

Nature has provided the phenomenon of reproduction to the living world in order to perpetuate species.
The way in which reproduction in the plant kingdom is carried out may be broadly divided into two
categories.

Vegetative propagation
Sexual reproduction

Some plants at times fail to complete their life cycle by means of seeds, yet they survive and perpet-
uate themselves. This is because nature has provided an alternative to sexual reproduction, that is, vege-
tative propagation. The latter is the most common method of propagation because of various advantages,
such as maintenance of particular characteristics of the plants, relative seed in raising samplings in large
numbers for plantation, adaptability to a particular habitat, development of resistance to pests and dis-
eases, and drought tolerance to modify the growth of plant.

Propagation through seeds is mainly done to bring about a varied population for the purpose of se-
lection and hybridization. Rooting of cut pieces of stem is a prerequisite for multiplication and survival.
Trees in many cases fail to produce roots from cuttings and thus present difficulties. Among the factors
affecting rooting of cuttings, the position of the shoot plays an important role.

The multiplication of species by vegetative means is practiced in forestry and horticulture to obtain
plants of a desired genetic constitution for crossing in a breeding program for many reasons (to improve
growth and yield, stem quality, wood quantity, resistance to pests and diseases, or other desirable char-
acteristics and also to maintain the purity of types so evolved for commercial exploitation). This process
has been used for quick multiplication for a number of plant species, which is important for afforestation
purposes in arid zones, where quick growth and development of plants are very much needed.

In easily rooting species, the ability of stem cuttings to root varies considerably with the season. In
many cases, profuse rooting occurs when cuttings are taken from trees in an active season. The seasonal
rooting response of stem cuttings is related to the disappearance of starch. The hydrolytic activity is high
when rooting occurs, but is not detached when cuttings fail to root [1]. Nanda [2] showed that the effec-
tiveness of exogenously applied auxins varies with the season and that these differences may be ascribed
to changes in a plant’s nutritional and hormonal status during its annual cycle of growth.

* retired
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Figure 1 Climatic parameters at Jodhpur during 1992 RH = relative humidity; PER = potential evapotran-
spiration.

Propagation through cuttings is one of the most common methods of perpetuating vegetable species.
It is restricted to varieties that are fully acclimatized to local conditions. Growers select plants that dis-
play the properties chosen for multiplication, such as nutritious leaf, higher yield, quick growth, and re-
sistance to diseases, insect pests, and drought. Resistance to drought is an important property to be asso-
ciated with other desirable characteristics in tropical and semiarid regions. Drought occurs frequently in
semiarid tropical regions, hence crop loss due to scarcity of water also occurs frequently. In addition to
the development of more suitable farming technology, evaluation of drought-resistant varieties is desir-
able.

The arid ecosystem environment offers an adaptive challange to the survival of plants: the only
species that can survive possess adaptive mechanisms that enable them to adjust under strong climatic
fluctuations [3]. According to Sen [3], ecophysiological studies are thus important for judging the ability
of a particular species to adjust under prevailing climatic (Figure 1) and edaphic conditions.

Available soil moisture is used by the roots of annual and perennial plants from the end of the rainy
season until early summer, by which time such moisture has been depleted. Later, a partial or total status
quo is maintained in soil moisture, mainly in the open, with the result that water loss is eliminated by shed-
ding or reduction of leaves by plants [3]. Whatever rainwater is retained by the soil is used by the roots
of annual and perennial species from June—July to November—December [4]. Physiological studies are
helpful in determining the individual and collective influence of different factors on vegetative propaga-
tion.

A. Significance of Vegetative Propagation

Rooting in stem cuttings can be important means of vegetative propagation for afforestation purposes. In
arid zones, quick establishment of plants with ample root systems is a necessity.

In arid regions, water in the form of precipitation is available only in the rainy season, and the plants
must be established in suitable conditions of soil moisture. Therefore, rooted stem cuttings are more use-
ful than seed sowing because rooted cuttings are far better able to survive in the stressful environment of
the desert than delicate seedlings.

MaRrceL DExkER, INc.
270 Madison Avenue, New York, New York 10016

Copyright © Marcel Dekker, Inc. All rights reserved.

)



VEGETATIVE PROPAGATION OF SALTBUSH AND MULBERRY 129

There are various methods of multiplication of mulberry plants. In mulberry species, the stem cut-
tings readily form roots. Both grafting and layering need time for establishment. Hence, propagation of
mulberry through stem cuttings is preferred.

Thimann and Behnke-Rogers [5] showed that the rooting of cuttings of many tree species is stimu-
lated by synthetic growth substances. Bose [6] has developed easier and better methods of vegetative
propagation by the use of growth substances for ornamental and fruit plants. Bose and Mukherjee [7] used
some growth substances to improve rooting in cuttings of Legerstroemia indica. Prasad and Dikshit [8]
obtained maximum success in rooting with cuttings of essential oil-producing plants treated with growth
regulators. Teaotia and Pandey [9] obtained better results in rooting guava stem cuttings with the assis-
tance of growth substances.

B. Factors Affecting Vegetative Propagation

More than 50% of the land surface of the developing countries is located in the arid and semiarid zones.
In many of these countries, in which more than 80% of the population lives with agricultural and animal
husbandry, a tragic and dangerous imbalance is developing between requirements for and available sup-
ply of food, fodder, and fuel [10-12]. Dwindling vegetation cover will adversely affect all facets of rural
life in which trees and shrubs generally serve not only as fuel but also as shade and shelter for man, ani-
mal, and crops. In the long term, depletion of the natural vegetation will increase ecological fragility and
contribute to gradual degradation of the resource base as well as the natural resources themselves [13—-15].

A practice common among peasants is migration of cattle to neighboring states or within the state
wherever fodder is available. This large-scale migration does immense harm to the delicate ecosystem.
Animals usually strip all of the plants from the area; this causes poor regeneration and increased soil ero-
sion, and more areas become barren. This necessitates the utilization of saline wastelands for fodder pro-
duction as crop cultivation is impossible because of the high salt content of the soil. Enumeration of in-
digenous saline species showed that very few plants are palatable and their growth pattern is not at an
acceptable level for fodder production.

Many taxa of the family Chenopodiaceae are indigenous to arid and saline regions of the world. Their
ecological amplitude is very high, and various adaptive features at different levels of the plant life cycle
are observed. Many are shrubs, and they offer a tremendous potential for human benefit in making the
arid and semiarid lands of the world more productive and useful [16].

To revegetate the salt-affected soils and secondary salinized soils, plants that can survive in arid and
saline conditions are needed. Shrubby halophytes of the genus Atriplex are particularly adapted to such
conditions. The genus Atriplex includes several haloxeric fodder species very useful in arid zones. The
primary driving force of all animals is the need to finding the right kind of food and enough of it. Food is
the burning question in animal society, and the whole structure and activities of the community are de-
pendent upon questions of food supply.

Saline and sodic soils are problems of individual localities, and their formation and causes of devel-
opment must be considered before these soils are put to any economic use. Salt-tolerant plants have been
used as forage in arid saline areas for millennia. The recognition of the value of certain salt-tolerant shrub
grass species is reflected in their incorporation in pasture improvement programs in many salt-affected
regions throughout the world. However, reproduction, survival, and multiplication under the inhospitable
conditions of arid saline areas are basic needs for any halophytic or glycophytic species. In many halo-
phytes, germination of seeds is usually retarded by high concentrations of salt in the soil [17-19]. Ger-
mination is the most important stage in the life cycle of any species growing in an arid saline environ-
ment. Seed germination in saline environments occurs mostly with high precipitation, when soil salinity
levels are usually reduced [20-23]. It is also known that when seeds are sown in a saline environment,
there is a decrease in the rate of germination, delaying completion of germination; moreover, there is a
water potential below which germination does not occur [24-27]. In general, it is agreed that salinity af-
fects germination by creating sufficiently low to inhibit water uptake (osmotic effect) and/or by provid-
ing conditions for the entry of ions that may be toxic to the embryo [28,29]. These constraints affect the
different stages of seed germination and seed establishment to varying degrees.

Reduction of germination occurs when halophytes are subjected to salinities above 1% NaCl; in-
creasing salt concentrations also delay germination [30]. Salinity or sodicity and water stress are the most
important factors responsible for limiting seed germination and plant growth. To overcome the present
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environmental stress of saline areas, plants produce a variety of ecological adaptations. Propagation
through vegetative means has been used as a method of multiplication for a number of plant species un-
der arid saline conditions.

Among factors affecting rooting of cuttings, the position of the shoot plays an important role [31]. It
is reported that without auxin treatment and without leaves, no roots were obtained in cutting of red Hi-
biscus and Allamenda cathartica [32].

Vegetative reproduction substitutes for or at least contributes to the reproductive potential of many
plants. This statement is more applicable to various halophytic species that are restricted to narrow eco-
logical limits, either in the production of disseminules or by their germination [33]. Self-layering species
of Atriplex are at an advantage in establishing themselves in salt-affected soil, which they accomplish
faster than other species: the growth of developing roots results in rapid penetration through the upper
salty soil layers. Furthermore, roots developing at different nodes are not dependent on a direct supply of
water from the soil [34,35]. Being well supplied with water by the parent plant, roots can penetrate lay-
ers of extreme salinity.

C. Vegetative Propagation in Saline Plants

The distribution of salinity varies spatially, temporally, qualitatively, and quantitatively. In addition, the
responses of plants to salt stress vary during the life cycle of the individual [36,37]. Phenotype plasticity
involving both morphological and physiological changes in response to episodic events is an important
characteristic associated with the survival of long-lived plants under highly stressful environmental con-
ditions. Transient reductions in yield in response to salinity may be the result of the adaptive reconstruc-
tion of growth habits of a plant. The heterogeneity of saline habitats leads to considerable genetic differ-
entiation among populations as a result of natural selection: an all-purpose genotype capable of growing
in a wide range of saline habitats probably does not exist [38].

The growth and productivity of Atriplex under conditions of low and erratic rainfall are exceptional,
and the adaptation of this species to high salinity makes its introduction very suitable [39]. Agronomic
testing, feeding trials, and development of the best agronomic practices are necessary in the evaluation of
suitable species for introduction and mass propagation [40].

Normal vegetation, except for some halophytes, cannot survive on saline and sodic soils. Thus, ar-
eas having soils of these types are of limited agricultural use unless the salinity is quite mild. Increased
salinity has rendered many lands unfit for cultivation. Plant species that are capable of accumulating large
quantities of sodium in their tissues are the least sensitive to the presence of salt in the soil. The tolerance
of a species to high amounts of absorbed or exchangeable sodium is modified by the pH of the soil and
by the accumulation of CO..

With increasing human and animal populations and the need for greater crop and fodder production,
nonproductive salt-affected lands may be used to grow nonconventional crops of economic value and also
such food crops as pearl millet. It is desirable to choose species well suited to saline habitats and to cal-
culate the most economical means of reclamation to make the salt-affected soils productive. The essen-
tial ingredients of technology for meeting these problems consist of the use of tolerant species, special
planting techniques, and aftercare.

Cultivation of salt-affected areas with palatable halophytes is one of the most promising and eco-
logically safe approaches in the reclamation process. It also helps cattle breeders and farmers to improve
a chronically stagnant economy. Selection of the most suitable halophytic species for introduction into
saline land needs extensive research. Malcolm [41,42] and Sen et al. [43] have produced a guide to the
selection of salt-tolerant shrubs for forage production from saline lands in southwestern Australia and In-
dia, respectively. Important selection parameters include:

Growth and survival for a sufficient period in a representative environment
Reproduction by seed or vegetative means

Acceptable growth form for management use

Production of biomass of sufficient quantity, quality, and acceptability to livestock
Ease of establishment

Persistence under a profitable management system

S e
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7. Effectiveness for erosion control, lowering ground water, and improvement of habitat for
wildlife

In addition, the plant must be evaluated by another set of criteria before attempting its development
on a crop scale.

1. Establishment:
a. Seed germination percentage
b. Vegetative propagation
c. Seedling vigor and root establishment
d. Need for supplemental water and nutrition
2. Hardiness under crop production densities:
a. Insect and disease resistance
b. Intra- and interspecific competition
3. Ecological traits:
a. Ecotype variability from which to select stock for introduction
b. Total genetic plasticity to different ecosystems

Many halophytic species appear to have significant economic potential for desert agriculture. In ad-
dition, the productivity of cultivated halophytes is high. Haloxeric species of the genus Atriplex are
widely used as fodder crops in otherwise unusable saline wastelands in many parts of the world. Many
Atriplex species are promising in the reclamation of the salt-affected lands. Use of salt-affected soils for
uncontrolled grazing, subsistence cropping, or intensive fuel gathering results in degradation of the natu-
ral vegetation cover. This process may take decades to reverse, and the land may never be returned to its
original condition. To slow such deterioration, new economically useful exotic species can be introduced
in these areas. Forage-yielding xerohalophytes such as Atriplex can be suitable candidates for the man-
agement of saline wastelands because these plants can also be irrigated with brackish water. Land recla-
mation and rehabilitation in arid zones can be achieved by using salt-tolerant plant species for a number
of different purposes suited to the local conditions.

Many halophytic species (e.g., Arthrocnemum spp., Nitraria retusa, Salicornia spp.) are capable of
forming adventitious roots on their twigs. This ability varies among species and according to the season
of the year [44]. Vegetative propagation is of great advantage in revegetating salt-affected soils. It favors
more assured establishment in the field than direct seeding or seedling transplantation. Rooted stem cut-
tings of Atriplex are also helpful in raising a large number of plants with such desired properties as fa-
vorable growth habits, regeneration capacity, leafiness, and palatability.

Vegetative propagation of desert shrubs is a means of producing genetically identical individuals in
species whose sexually produced offspring normally exhibit higher variability. Reduced variability of
plant materials can increase experimental precision, and many genetically identical individuals are nec-
essary for varietal testing. Reproduction of desirable parental characteristics such as high seed yield
would be valuable in the establishment of seed nurseries. Vegetative propagation is also a method of pro-
ducing transplants of species whose seeds do not germinate readily.

Il. VEGETATIVE PROPAGATION OF SALTBUSH (Atriplex spp.)

A. amnicola Paul G. Wilson (river saltbush or swamp saltbush) shows a remarkable high growth rate un-
der desert conditions. The seedlings can be transplanted in the first week of October and can be irrigated
with poor quality water. For the first 2-3 months the growth rate is slow, after which fast growth occurs.
Enormous production of side branches during the winter season is a very distinctive feature, and these
newly formed branches (stems) are soft, fleshy, and purplish pink in color. By mid-December plants at-
tain a height of about 60—70 cm and lateral branches measure about 50-60 cm. Plants may show two types
of growth patterns: (1) an erect type and (2) a prostrate spreading type. Two-year-old plants may cover
an area of more than 2—5 m?. These plants grow sideways and cover the ground very rapidly.

Rooted cuttings of Atriplex species are needed to establish a rapid plantation. Some Atriplex species
are subdioecious, with at least three genders [45]. Moreover, rooted cuttings can be used to propagate su-
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perior individual plants for a variety of purposes, including breeding programs and provision of superior
or uniform outplanting stock [46]. Observations made in the field have revealed that A. amnicola plants
have a natural ability to produce rooted cuttings. During the monsoon season, A. amnicola was found to
produce nodal roots from the lateral branches wherever they touched the ground. This ability is of great
importance in binding the loose topsoil. It also helps the plant to recover speedily from grazing pressure
and enables the plant to spread rapidly and multiply. Vegetative propagation is much easier in A. amni-
cola because its nodal root formation helps in the production of a large number of rooted cuttings for field
planting.

The effects of different growth regulators used on stem cuttings for root regulation and axillary shoot
growth in different seasons of the year (Figures 2-5) are described in Secs. A-D.

A. Indole Acetic Acid (IAA)

Observations regarding the effect of indole acetic acid on root and shoot growth are presented in Figure
2. Indole acetic acid did not produce much beneficial effect on root and shoot growth; it promoted roots
only when administered in lower concentrations. In higher concentrations (40 and 50 ppm) [47] during
winter and at all concentrations in rainy seasons, root and shoot growth were affected severely: there was
no root formation. IAA favored root growth only in lower concentrations (10 and 20 ppm) during the win-
ter and summer seasons, respectively. Slight yellowing and drying effects on leaves were seen at higher
concentrations.

B. Naphthalene Acetic Acid (NAA)

Figure 3 shows that compared with other auxins, NAA caused the maximum initiation of roots in cuttings.
Root growth was affected more favorably only at lower concentrations (10 ppm) during winter; at higher
concentrations the roots produced were thinner and had a minimum number of secondary roots. A distinct
effect of NAA on root growth was seen on comparing results from winter and summer. In the rainy sea-
son, the length of the root was less than during the rest of the year. Drastic inhibition of root and axillary
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branch initiation and growth in the rainy season was observed. Interestingly, at almost all concentrations,
very large numbers of roots were also produced on the internodal region.

C. Indole Butyric Acid (IBA)

It is evident from Figure 4 that the effect of IBA on rooting is next to that of NAA; that is, IBA promotes
root growth better at lower concentration (30 ppm) than at higher ones and no distinct difference in the
growth of axillary branches was observed. Root growth was maximum in winter at 30 ppm and with well-
developed secondary roots. Very poor growth of roots and no initiation of axillary branches were ob-
served in plants treated with IBA in summer.

D. Field Transfer and Establishment of Rooted Cuttings

The effect of growth regulators on root and shoot growth was observed by growing the cuttings in
polyethylene bags for 35 days after treatment. It is clear from the results (Figure 5) that root growth was
maximum at the higher concentration (20 ppm) of NAA, followed by IBA (10 ppm), and the least growth
was obtained with IAA (10 ppm) after 35 days. In the control set, the roots were very much shorter than
in the treated cuttings. The maximum development of roots with profuse secondary roots was observed
with NAA and IBA. Whereas IAA suppressed the growth of roots and axillary branches during summer.
NAA and IBA enhanced the growth of axillary branches to a maximum, but the number and the length of
the roots were diminished in comparison with NAA. The maximum number of axillary branches was ob-
served in winter and rainy seasons, the least in summer.

The propagation of stem cuttings of several saltbush species and a few species from other
salt desert shrub genera was studied by Nord and Goodin [48], Wieland et al. [49], Ellern [50], and
Wiesner and Johnson [51]. Although Nord and Goodin [48] and Ellern [50] observed a general trend
for better rooting of saltbush (Atriplex) species in spring than in fall, no data were available for sum-
mer and winter. Nord and Goodin [48] noted better rooting of green stem tips than ripe wood cuttings,
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but Ellern [50] failed to find any difference in rooting of soft, green cuttings and young woody stem
cuttings.

Nanda et al. [52] used IAA, IBA, and NAA to enhance the rooting response of stem cuttings of for-
est trees and investigated the possibility that even seasonal changes in the effectiveness of different aux-
ins are governed by morphophysiological factors. Auxins enhanced the rooting of stem cuttings of Pop-
ulus nigra and Hibiscus rosa-sinensis even during December—February, but these hormones failed to
cause rooting in Ficus infectoria cuttings during the same period. It was observed that auxins enhanced
the rooting more in winter, followed by the rainy season, and least in summer.

Indole acetic acid has been one of the most commonly used auxins, but different workers have ob-
tained varying results [8,9,53,54]. Chatterjee [55] found that Pogostemon potehouli, an essential
oil-yielding plant, responded more favorably to IAA than other auxins. Shanmugavelu [56] also obtained
the maximum percentage of rooting in cuttings of certain shrubby plants with IAA. On the other hand,
NAA gave favorable results in the induction of roots in cuttings of Levendula, Ficus infectoria, and Hi-
biscus rosa-sinensis [57]. The experimental results of our study showed that a large number of roots were
produced at lower concentrations of NAA, IAA, and IBA.

A number of saltbush species may be established from cuttings, including A, amnicola, A. nummu-
laria, A. canescens, A. halimus, A. lentiformis, A. paludosa, and A. polycarpa [58]. The cuttings should
be taken at the peak of spring growth or in the autumn in a Mediterranean climate. The wood should be
about 6 mm thick and 250 mm long, taken from young stems between two leaf axils. A rooting hormone
(e.g., IBA) may be applied to encourage root growth before approximately half the stem is covered with
a moist, sandy soil. The cuttings should root within 6 weeks and should be ready for transplanting in 10
weeks [59]. In our study, IBA also enhanced the rooting in A. amnicola.

According to Richardson et al. [46], fourwing saltbush cuttings could be rooted best in the summer,
but A. amnicola rooted best in winter, followed by the rainy season and summer. According to Sharma
and Sen [60] and Rajput and Sen [61], respectively, winter is most suitable for the vegetative propagation
of Tamarix and Atriplex. The present results also support these views.

The results of field experiments showed that NAA is more effective than IBA and IAA. The increased
appearance of new leaves with an increase in the percentage of rooting also points to better rooting possi-
bilities, with the emergence of more new leaves on the cuttings. The greater number of roots per cutting
and the greater number of leaves may also help the cuttings to survive when sown in natural conditions.

lll. VEGETATIVE PROPAGATION OF MULBERRY (Morus spp.)

Since the dawn of agriculture, one of the principal aims of human beings has been the control and pro-
motion of plant growth to satisfy human needs. These two important aspects of people’s work with plants
in the struggle to increase production are by no means synonymous. Humans soon realized that lush green
growth does not always produce the best crop in the form of fruit and seeds, and hence they were forced
to evolve such well-known cultural methods as pruning, balanced manuring, and use of mineral fertiliz-
ers to regulate the nature and luxuriance of plant growth.

The naturally occurring (endogenous) growth substances are commonly known as plant hormones,
while the synthetic ones are called growth regulators. A plant hormone (synonym: phytochrome) is an or-
ganic compound synthesized in one part of a plant and translocated to another part, where at very low con-
centrations it causes a physiological response. Plant hormones are identified as promoters (auxin, gib-
berellin, and cytokinin), inhibitors (abscisic acid, xanthoxin, and violaxanthin), and ethylene and other
hypothetical growth substances (florigen, death hormone, etc.). They usually exist in plants and crops at
a concentration lower than 1 wM; above this, they are generally considered supraoptimal [62].

Mulberry is propagated either through seeds or vegetatively. The latter is the more common method
of propagation because of such advantages as maintenance of particular properties of the plant, relative
speed in raising saplings in large numbers for plantation, adaptability to a particular habitat, and abilities
to develop resistance to pests and diseases and to modify the growth of plants. Propagation through seeds
has reached certain limitations. For example, triploid plants, which do not produce viable seeds, cannot
be propagated. It is not possible to reproduce true to the type from a seed of biparental origin.

Mulberry is a highly heterozygous plant that is open for cross-fertilization. Therefore, the seeds that
are formed through open pollination are natural hybrids. Seedling populations from such seeds provide
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wider chances for selection of superior types whose characteristics are perpetuated through vegetative
propagation. Generally, the population thus obtained is a mixture of several clones. Each clone is het-
erozygous although homogeneous, and the same genotype is maintained because propagation is vegeta-
tive, Interclonal variations are due to heredity. Depending on climatic and soil conditions, different coun-
tries follow different modes of vegetative propagation. Hamada [63] described the methods used in Japan,
which include (1) bark grafting (Fukurotsugi), (2) veneer grafting (Kiritsugi), (3) simple layers (Mage-
dori), (4) continuous layers (Shumokudori), and (5) division (Shirodasmi), hardwood cuttings (Ko-
jyosashiki), and softwood cuttings (Shinshosashiki), Generally, grafting is used in places where the tem-
perature is 6°C in March and more than 25°C in July, with rainfall of 175 mm. Shirodasmi cottage is
popular in places having temperatures less than 4°C in March and less than 25°C in July with rainfall
lower than 175 mm. Propagation through hardwood and softwood cuttings is common in the northern dis-
tricts and the southern region, respectively, of Japan [64]. In Italy [65], rooted grafting is a popular method
of multiplying Japanese mulberry varieties.

In India, the most common method of propagating mulberry is through cuttings in multivoltine re-
gions (e.g., Karnataka and West Bengal). Exotic varieties that are not established by cuttings are propa-
gated through root grafts. Many of the indigenous varieties and well-acclimatized exotic varieties are
propagated through cuttings. Bud grafting (budding) is used only when scion material is scarce. When-
ever a large number of mulberry plants must be obtained in a shorter time than would be possible if they
were started as a cutting, the method of layering is used. Layering allows the grower to fill in the gaps
formed as a result of the failure to sprout of certain cuttings planted in pits of established plantations.

In univoltine areas (e.g., Kashmir), the mulberry is propagated through seedlings and the exotic va-
rieties through root grafts. In India, the field-scale propagation through cuttings of Japanese varieties of
mulberry is still a problem.

Propagation through seeds is used mainly to bring about a varied population for the purpose of se-
lection and hybridization. Because mulberry flowers are open for cross-pollination, the seeds thus col-
lected serve mainly as sources of stock material for grafting.

In general, a deficiency of hormone must be created experimentally (as by removing young leaves
or using a hormone-deficient mutant) to show that adding a hormone has an effect. In this respect, the
Mitscherlich law of diminishing return can be modified as follows: the increase in plant response pro-
duced by a unit increment of a deficient (limiting) hormone is proportional to the decrement of that hor-
mone from the maximum.

Mulberry varieties that do not ordinarily produce roots from a cutting are induced to root with ap-
plication of the requisite quantity of root hormones. The following chemicals are generally used, but their
efficiency varies from species to species and from variety to variety: (1) IAA, (2) IBA, and (3) NAA.

The objective of using growth regulators is to increase the percentage of cuttings that form roots, has-
ten root initiation, and increase the number of roots per cutting. IBA and NAA have proved to be better
in producing roots than other growth regulators.

The water requirement of mulberry does not differ greatly from species to species or from variety to
variety. The plant must be capable of absorbing water from soils of low moisture regimes. Generally re-
sistant plants should have well-developed root systems, hydrophilic colloids to absorb and hold water by
imbibition, and adaptations to facilitate the lowering of transpiration. In this regard, certain Japanese va-
rieties have a thick cuticle, sometimes a two-layered epidermis, a palisade parenchyma, and other bene-
ficial characteristics.

Although many tropical species root profusely through cuttings, certain temperate varieties do not
ordinarily produce roots. Root induction has been successfully achieved in the latter varieties by the (ar-
tificial) application of the requisite quantity of root hormones. However, the efficacy of the substances
varies from species to species and from variety to variety.

Development of the root primordium depends on the relative amount of natural auxin present in the
plant. Varieties that do not root apparently contain less auxin. The growth regulators act like auxins when
applied in small quantities and move upward in mass translocation through the xylem when the bases of
the cuttings are soaked in their solutions. The objective of treatment is to increase the percentage of cut-
tings that form roots, hasten root initiation, and increase the number of roots per cutting. Indole butyric
acid and naphthalene acetic acid appear to be better at producing roots than other agents [66,67]. The chem-
icals may be applied by various methods, including direct application of a powder, soaking the cuttings in
dilute solutions, dipping the cuttings in concentrated solutions, and application as a paste in lanolin.
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TABLE 1 Effect of Different Concentrations of IAA and NAA on Bud Sprouting (BS), Initiation of Leaves
(L), and Inflorescences (I) on Stem Cuttings of M. alba (Cultivated Variety 92)

Total

Concentration buds on Jan. 25 Feb. 01 Feb. 03 Feb. 11
(ppm) cuttings BS L I BS L I BS L I BS L I
Control 5 1 2 1 3 1 3 3 4 6
TAA

10 5 3 4 1 4 2 5 5 7

20 8 4 5 1 5 1 5 3 4
NAA

10 7 2 5 5 5 3 2

20 9 3 3 3 4 3

The action of many gibberellic acids (GAs) is similar to that of IAA, including elongation, promo-
tion of cambial activity, induction of parthenocarpy, and stimulation of nucleic acid and protein synthe-
sis. The GA3s vary greatly in their biological activity, and GAS5 and GA7 are considered to have the
widest range. In ferns, algae, and fungi, GA3s have also been shown to influence growth and develop-
ment [68].

For the vegetative propagation experiments, mulberry cuttings were collected from both cultivated
and wild varieties at Jodhpur (site Chopasni). Growth regulators used for root initiation in cuttings were
NAA, IAA, IBA, and GA. Shoots of thick branches with well-developed buds were used for rooting ex-
periments. Cuttings taken from parts with a high carbohydrate content have been reported to root more
readily and profusely than cuttings selected from parts rich in nitrogen. Portions of the shoot that were too
tender at the top and overmature at the base were rejected. Cuttings taken from young branches sprouted
rapidly and profusely as compared with those taken from old parts. Cuttings of 7 to 10 cm usually of pen-
cil thickness with three to four well-developed buds were prepared from the central portion of the clone
with a slanting cut.

Table 1, which gives the results of experiments on rooting behavior in mulberry (cultivated variety),
shows that the addition of ITAA and NAA at lower concentrations almost always caused more bud sprout-
ing. Also, the total leaves generally increased, together with the number of inflorescences. Increasing con-
centrations of hormones tended to decrease the values. Slightly higher values of these parameters were ob-
served with 10 ppm than with 20 ppm IAA. Of the two auxins, IAA was more effective than NAA. It is
also clear from Table 1 that in the case of NAA, a lower concentration is more effective than a higher one.

From the observations of the rooting behavior in a wild variety of mulberry (Table 2), we see that the
lower concentration of IAA is more effective than the higher one. The maximum number of sprouting
buds was 11; afterward the values remained constant. However, in the case of NAA, 20 ppm was more
effective than 10 ppm. Comparatively, IAA was more effective than NAA and higher values were ob-
served in the wild than in the cultivated variety.

Cuttings were immersed in different concentrations of growth regulators for 24 hr. During treatment,
cuttings were kept inside the growth room. After this treatment, cuttings were washed in distilled water

TABLE 2 Effect of Different Concentrations of IAA and NAA on Bud Sprouting (BS), Initiation of Leaves
(L), and Inflorescences (I) on Stem Cuttings of M. indica (Wild Variety 92)

Total

Concentration buds on Jan. 25 Feb. 01 Feb. 03 Feb. 11
(ppm) cuttings BS L I BS L I BS L I BS L I
Control 8 4 5 5 6 4 7 6 10
TAA

10 16 9 11 11 9 26 11 8 28

20 16 7 11 11 3 4 11 4 6
NAA

10 30 6 8 9 3 4 9 4

20 18 9 9 9 4 4 9 4 11
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and individually transferred to test tubes filled with water. Three cuttings were used for each set, and each
set was repeated three times for confirmation. The observations were recorded after a definite interval of
time. Measurements of bud sprouting, number of leaves, inflorescence, and root initiation were observed
in the cultivated variety (Table 3).

The lower concentration (10 ppm) of IAA led to a better response than the higher one (20 ppm). At
10 ppm the bud sprouting was 100%, whereas with 20 ppm it diminished to 4. Leaf initiation and inflo-
rescence followed the same trend as the bud sprouting, being 8 and 11, respectively, in 10 ppm, and 8 and
6, respectively, in 20 ppm.

Similar results were obtained in NAA, with 100% bud sprouting in 10 ppm, slightly more than in
TAA, being 5. Leaf initiation and inflorescence were also higher in 10 ppm compared with 20 ppm, being
9,9, 8, and 5, respectively.

TAA again showed a beneficial effect at the lower concentration (10 ppm) as compared with the
higher (20 ppm), producing 7 and 4 buds, respectively. Leaf initiation increased from 7 to 10 with in-
creasing concentration, but the inflorescence did not show any change (Table 4).

The results with NAA showed effects similar to those with IAA. At 10 ppm, 8 buds sprouted out of
8 buds, whereas at 20 ppm the figures were 4 out of 7 buds. Leaf initiation showed a better response at
the lower concentration than at the higher one, and a similar trend was also shown for inflorescence (Table
4).

Growth means an irreversible increase in the weight, area, or length of a plant or a particular tissue
or organ of a plant, while development denotes the changing pattern of organization as growth progresses.
Control over plant growth by the regulated exogenous supply of chemical substances may occur in dif-
ferent ways. It has become clear that total control of plants is vested not in a single hormonal type; rather,
control is shared by a group of several specifically defined auxins, gibberellins, ethylene, and certain nat-
urally occurring inhibitors such as phenols and abscisic acid. Thus, the plant growth regulators provide a
very helpful tool for controlling physiological processes in plants.

NAA was found to be better than IAA in rooting by Jauhari and Rehman [53] in cuttings of sweet
lime. It responded favorably on induction of roots in stem cuttings of many plants [69]. In the present
study IAA was found to be more effective than NAA.

Stem cuttings of Ipomoea pes-caprae and species of Morus showed a large number of roots and buds
in the higher concentration but with maximum suppression of growth, whereas lower concentrations re-
sulted in only improvement in the growth of roots [70]. In our investigation also, the higher values were
observed with lower concentrations of the growth regulators.

Under favorable environmental conditions, during the period of root development, a callus tissue de-
velops at the basal end of a cutting: an irregular mass of parenchyma cells in various stages of lignifica-
tion. Callus growth arises from cells and adjacent phloem, although various cortical and medullar cells

TABLE 3 Effect of Different Concentrations of IAA and NAA on Bud Sprouting (BS), Initiation of Leaves
(L), and Number of Inflorescences (I) on Stem Cuttings of Morus spp. (Cultivated Var.) from Chopasni in
Growth Room (1993)

Total
Concentration buds on Dec. 12 Dec. 21 Dec. 30 Jan. 10

(ppm) cuttings BS L 1 BS L 1 BS L I BS L I
IAA E
10 5 2 302 4 6 9 5 8 11 3
1 1 1 1 1 2 1 1 2 1 g
20 7 2 3 4 6 3 4 8 6 2
1 1 1 1 2 1 1 1 2 2
NAA g
10 5 2 35 3 5 8 7 6 9 9 g
1 1 1 2 1 2 2 1 2 3 2
20 7 2 3 03 1 4 6 4 5 8 5 5
2 2 1 11 1 2 1 1 1 é
Control 4 1 2 2 1 3 o
1 1 1 1 1 Z
£
3
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TABLE 4 Effect of Different Concentrations of IAA and NAA on Bud Sprouting (BS), Initiation of Leaves
(L), and Number of Inflorescences (I) on Stem Cuttings of Morus spp. (Wild Var.) from Chopasni in Growth
Room (1993)

Total
Concentration buds on Dec. 12 Dec. 21 Dec. 30 Jan. 10
(ppm) cuttings BS L 1 BS L 1 BS L 1 BS L 1
1AA
10 7 2 3 1 1 5 4 4 7 8
2 1 1 1 1 1 1 2
20 8 1 1 2 5 4 4 7 6 4 10 8
1 1 1 1 2 1 2 1 1 3
NAA
10 8 3 3 1 5 8 9 6 9 6 8 10 8
1 1 1 1 1 2 2 1 1 2
20 7 2 3 1 1 4 3 2 4 4 3
1 1 1 1 1 1 1 2 2
Control 5 1 2 2 2 3 3 3 3 4 4
1 1 1 1 1 1 1 1 1 1 1

also contribute. Because root development and callus formation occur simultaneously, it is believed that
the formation of callus is essential for root development. In reality, these two are entirely different phe-
nomena. Sometimes roots develop even without callus from the nodes. Callus formation is sometimes
beneficial in varieties that are slow to root because it provides a protective layer, preventing the cutting
from becoming desiccated and decayed. Sometimes the callus interferes with the absorption of water by
the cutting. In our investigations, rooting did not start, instead, callus formation was observed after 1 week
of treatment. The callus was creamy white and had a granular texture.

The rate of sprouting of vegetative buds is of primary consideration in introducing a variety or
species in an area. Mulberry varieties grown in Mysore and West Bengal sprout throughout the year, fa-
cilitating the attempts of sericulturists to rear the silkworms year-round. The axillary buds vary in size,
shape, and position from variety to variety.

Thus the rooted stem cuttings are more useful than seed sowing because the survival of a rooted cut-
ting is far better than that of the delicate seedlings in the stressful environment of the desert.

IV. SUMMARY

In India, propagation through stem cuttings is the most common method. It is restricted to varieties that
are fully acclimatized to local environmental conditions. Plants that have qualities such as a nutritious leaf
for silkworms, higher yield, quick growth for establishment, and resistance to diseases and insect pests
and drought-resistant varieties such as Atriplex are selected.

Plant hormones are identified as growth promoters (auxins, gibberellins, and cytokinins). They usu-
ally exist in plants at a concentration lower then 1 wM, above which they are generally considered
supraoptimal. Mulberry varieties that do not ordinarily produce roots from a cutting are induced to root
with application of root hormones. The chemicals used for this purpose are IAA, NAA, and IBA.

The objective of using growth regulators in mulberry and Atriplex was to increase rooting in cuttings,
hastening root initiation and increasing the number of roots per cutting. IAA and NAA were found better
for producing roots. Atriplex produces the maximum number of roots with NAA, followed by IBA and
least in IAA. The results of field experiments showed that NAA is more effective than IBA and IAA. The
appearance of more new leaves with an increased percentage of rooting also points to better possibilities,
with the emergence of more new leaves on the cuttings. The greater number of roots and leaves per cut-
ting may also help the cuttings to survive when sown under natural field conditions.

These cuttings collected from wild and cultivated varieties dried out in all treatments with growth
regulators in the summer season in both growth room and garden pot experiments. In the rainy season the
experiments in the growth room failed as the cuttings dried without any sprouting, but in the garden pots

MaRrceL DExkER, INc.
270 Madison Avenue, New York, New York 10016

Copyright © Marcel Dekker, Inc. All rights reserved.

)



140 SEN AND RAJPUT

lower concentrations produced better results even during the rainy season. In winter, the growth room ex-
periments showed better responses in the treatments with both IAA and NAA.

Vegetative propagation with various treatments with different growth regulators is based on bud
sprouting, leaf initiation, and inflorescence, as no root initiation was seen in mulberry, which showed only
callus formation. It could be concluded that summer and rainy seasons are not suitable at all, and so veg-
etative propagation of mulberry should be done only in the winter season.
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Fruit Development, Maturation, and Ripening

William Grierson
University of Florida, Lake Alfred, Florida (retired)

I. INTRODUCTION
A. What Is a Fruit?

The biblical phrase “the precious fruits of the earth” can be taken far more literally than the epistle writer
probably imagined. There is very little in agriculture that does not depend on the development of fruits.
By definition, a fruit is the end product of a matured ovary. This end product can vary from being a sin-
gle seed such as a grain of any cereal (e.g., wheat, rice, rye, oats, or barley) to being a fleshy, succulent
structure (e.g., peach, pear, or watermelon). All nut crops, including peanuts (or “ground nuts”), are tech-
nically fruits, as are the products of oil palm, coconuts, rape (canola), flax (linseed), and other plants
grown for extraction of edible or industrial oils. Even many root and pasture crops are dependent on fruit
setting to provide seed for sowing the next crop. Root and tuber crops grown from vegetative propagules
are an obvious exception, but their genetic improvement by plant breeders is dependent on flowering, pol-
lination, and fruit setting to provide seed with which to start improved varieties. It should also be noted
that many “vegetables,” including tomatoes, peas, beans, cucumbers, squash, peppers (capsicums), egg-
plant (aubergine), and okra (lady’s fingers), are botanically fruits.

B. Scope of This Chapter

For the purposes of this chapter, only the products classified horticulturally as fruits are considered for
detailed discussion. In general, these are fleshy products, characteristically high in sugars (the avocado
being a notable exception) and although sometimes processed on a very large scale, traditionally eaten
raw as dessert. Unlike vegetables, most are perennials grown on trees, vines, or shrubs (strawberries are
the fruit of a perennial herbaceous plant). Melons are an exception, being annuals.

Whether annual or perennial, whether classified commercially as a fruit, vegetable, or cereal, it
should always be remembered that until the instant of harvesting, a fruit is an integral part of the parent
plant, participating in a common physiology and subject to the same ecological influences. As pointed out
in Chapter 2, a fruit cannot be considered independent of the growth status of the parent plant or of the
environment in which it was grown. A simpleminded quest for a single recommendation as to optimum
postharvest conditions for a given type of fruit, regardless of growing district and preharvest climatic con-
ditions, is doomed to failure.
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C. Definitions

1. Fruit is the product of a matured ovary.

2.  Maturation is the completion of the development of a fruit to the point at which it is physiolog-
ically mature enough to be separated from the parent plant. Typically, this is the point at which
its seeds are viable. There is no necessary relationship with market maturity, for which imma-
ture fruits may be required (e.g., cucumber, okra) or for which arbitrary legal standards may be
set for external color and/or sugar or acid content (e.g., citrus, grapes).

3. Ripening and maturation can be synonymous for nonclimacteric fruits (e.g., grapes, strawberries,
and citrus) that are edible at the time of picking and have no postharvest ripening cycle. However,
they are quite different for climacteric-type fruits: those that are considered unripe until they have
entered on a distinctive postharvest respiratory rise in which ethylene is evolved, CO, output in-
creases (sometimes as much a tenfold), tissues soften, starch/sugar or acid/sugar changes occur,
and typical external color changes may be involved. Tomatoes, apples, pears, avocados, and ba-
nanas are typical climacteric-type fruits with distinctive postharvest ripening cycles.

4. Berry is used quite differently by plant scientists and by the general public. Botanically, a berry
is the product of a single pistil, fleshy throughout, usually indehiscent, and homogeneous in tex-
ture [1]. Thus a grape is technically a berry, but a strawberry is not.

5. Anthesis is the stage of flowering at which pollination can take place, usually considered to be
the initiation of fruit development.

6. Parthenocarpy in its narrowest sense is defined as the ability of a plant to develop fruit without
sexual fertilization. More broadly, it is the ability to produce fruit without seeds [2].

Readers interested in further details of terminology are referred to two publications: Watada et al. for
general terminology relating to developing horticultural crops [3] and Gortner et al. for the biochemical
basis for terminology used in maturation and ripening of fruits [4].

IIl. PREREQUISITES FOR FRUIT FORMATION

As long ago as several hundred years BC, it was recognized that all fruit came from flowers. The ancient
Greeks named one exception, the fig, “the only fruit not preceded by a flower.” This was because they did
not realize that the fig is an aggregate fruit with many minuscule flowers inside the enlarged, fleshy re-
ceptacle.

Flowers must be preceded by buds specifically differentiated for flower formation. In deciduous
fruits, this starts some 10 or 11 months prior to bloom (i.e., initiation of fruit bud formation for the next
year’s crop starts almost as soon as the new crop is set). A study of the rate of flower bud development in
deciduous fruits indicates that each species follows a sigmoidal growth pattern within a temperature range
specific to that species [5]. In citrus fruits, fruit bud differentiation is initiated only a few weeks prior to
bloom [6]. For both deciduous and citrus fruits, blossom formation occurs on wood at least 1 year old.
(“Fruiting spurs” on apple trees may bear fruit almost every other year for a dozen years or more.) Grapes
are in sharp contrast to this pattern. Skilled grape pruners remove almost all woody growth (canes) from
the previous year, leaving only a few buds (how many depends on the variety, district, and vigor of the
plant). From these few buds grow long canes on which leaf and fruit bud differentiation has to take place
rapidly enough to provide for the current crop. Grape flower development has been described in detail [7].
Bud formation in tropical fruits is controlled mainly by water availability and temperature and thus can
be less predictable than for deciduous fruits. An extreme example is papaya (Carica papaya). Although
basically dioecious, under various temperature, moisture, and nutrient stresses, carpels can metamorpho-
size into stamens, and vice versa [8].

Thus flower bud initiation is a necessary precursor to fruit formation. Particularly after the landmark
1918 paper by Kraus and Kraybill on fruiting in the tomato [9,10], it was believed that flower bud initia-
tion was dependent on the balance between carbohydrates and nitrogenous compounds in developing tis-
sues (the C/N hypothesis). Within the last 50 years, it has been realized that in any plant, flower bud ini-
tiation and hence fruit formation are controlled by growth regulators (GRs). Development of GRs and the
balance between them is, in turn, controlled by environmental forces, notably temperature and light.
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Gibberellins were among the first GRs to become available in commercial quantities, thus greatly fa-
cilitating research showing that for a very wide range of plants, gibberellin could inhibit flower bud for-
mation and sometimes induce parthenocarpy if applied after flower bud initiation [11-17]. For details of
the histology of flower induction in apples, see Buban and Faust [18].

Research on the role of GRs in bud initiation has been facilitated by the finding that tracheal sap
is a convenient source of naturally occurring GRs [19]. Abscisic acid (ABA) is now known to be very
much involved, not only in flower bud formation but also in fruit development [20,21]. Growth regu-
lators control messenger RNA (mRNA), which generates necessary enzymes de novo for fruit devel-
opment following anthesis [15,22,23]. Much research has involved manipulation of bud differentiation
and fruit development using exogenous application of both natural and synthetic GRs [24-26]. But
flower bud initiation, and hence the entire cycle of flowering and fruiting, can be controlled solely by
intelligent manipulation of temperature and light. A 39-week cycle (repeated at 4-week intervals) has
been developed using dark and lighted cold rooms and greenhouse or nursery facilities to provide a
continuous supply of three varieties of container-grown apples for year-round harvesting, a remarkable
feat [27].

Normally, pollination is necessary for fruit set; however, there are notable exceptions. With the
buying public increasingly demanding seedless fruits of various kinds, parthenocarpy has become
highly prized for many types of fruits. This is certainly so for citrus fruits, for which pollination had
long been deemed unnecessary, even undesirable, as it increases the number of seeds in supposedly
“seedless” varieties. That was before the introduction of a number of human-made crosses such as the
tangelos (tangerine X grapefruit). Tangelo varieties that are apparently fruitful when grown in small
trial plots were almost completely barren when planted in large multihectare blocks. Thus it was found
that for some hybrids, such as Orlando tangelo, pollination by some other variety was as necessary as
it is for apples and pears [2]. A remarkable example of parthenocarpy is the navel orange, which has a
small secondary fruitlet at the stylar end and which is always seedless. Fruit set of navel oranges, which
is often uneconomically light in Florida, is sharply affected by ambient temperatures prior to and dur-
ing fruit set [28]. Because seedless table grapes may fetch more than twice the price of seedy grapes,
parthenocarpy is highly valued [29]. In the popular Thompson Seedless variety, fruit set is dependent
on GRs involved in pollen tube development, even though the pollen tube does not reach, and hence
does not fertilize, the ovule [30].

. MORPHOLOGICAL CATEGORIES OF FRUITS

Fruits have evolved so many diverse forms that Soule lists 46 different morphological fruit
types [1]. Although anatomical and taxonomic considerations cannot be ignored completely, only a
few general categories can be considered within this context of fruit physiology. Nondessert fruits are
discussed only insofar as is necessary to establish their place in the wide general category of fruits.
For a detailed histological treatment of the various tissues that can be involved in fruit development,
see Esau [31]. All fruits are the products of matured ovaries. Some, in addition, incorporate other
floral parts. This is particularly true for fruits derived from inferior ovaries (epigyny), that is, fruits
such as apple and pear, in which the other floral parts (stamens, petals, and sepals) are above the
ovary.

A. Achene

An achene is a hard, dry, fully matured simple ovary. Achenes are usually thought of as “seeds” (although
some may contain two seeds). A grain of wheat is an achene, each flower within a head of wheat (inflo-
rescence) having matured individually to form an achene. A grain of corn (maize, Zea mays) is an ach-
ene, corn on the cob being an unusual example of an intact, nondehiscent inflorescence. Achenes are, in
general, nutritious and have been utilized as foods since antiquity, not only in the form of our well-known
cereal grains but also as such lesser known species as the sumpweed (Iva annua), gathered by native
North Americans, and amaranth (Amaranthus caudatus and A. quitensis), a staple of the pre-Columbian
Aztecs, the cultivation of which has persisted in remote Andean valleys and which is currently an inter-
est of “health food” devotees [32].
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B. Typical Fruits from Superior Ovaries (Hypogyny)
1. Grape

The grape is the simplest of hypogynous fruits and one that conforms exactly to the botanical definition
of a berry. Remnants of floral parts other than the ovary are absent or vestigial and the developed ovary
tissue is fleshy, succulent, and homogeneous.

2. Hesperidium

The hesperidium is the highly specialized form of berry specific to citrus fruits. (Etymologically, the term
hesperidium is a misnomer based on the assumption that the “Golden Apples of the Hesperides” in Greek
mythology were oranges. However, citrus, as the etrog. Citrus medica, did not reach the Mediterranean
area until historical times [33].)

The hesperidium (which is derived entirely from the ovary) has several sharply defined tissues (Fig-
ure 1). The usually five-lobed calyx remains attached unless the fruit naturally abscises; then it remains
attached to the bearing branch.

The outer layer, or peel, includes the pigmented flavedo and the white or colorless albedo. The
flavedo (Figure 1A, top left) consists of the epicarp proper, hypodermis, and the outer mesocarp. Em-
bedded in it are the so-called oil glands, containing “essential oils” specific for each citrus species or hy-
brid. These are principally terpenes (mainly d-limonene) and are highly toxic to surrounding tissue if ex-
truded due to rough handling of the fruit. The cells of the single-layered epicarp contain green chloroplasts
that metamorphose into chromoplasts as the fruit degreens. Over the epicarp is the intact cuticle (Figure
1A, lower left), composed largely of cutin, and over it an outer layer of epicuticular wax deposited as eas-

B c

Figure 1 Citrus fruit: (A) transverse section with enlarged views of the flavedo and cuticle on the left and of
the albedo and juice vesicles attached to the outer tangential and radial locule walls on the right; (B) longitudinal
section showing the lunate locules with seeds attached to the inner tangential wall next to the central axis; (C)

separate juice vesicles. (From Ref. 34.)
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ily dislodged platelets. (No citrus fruit is naturally shiny; the shine demanded by retail customers has to
be applied as some form of approved wax or resin after washing, an operation that dislodges much of the
natural nonshiny wax.) The cuticle is penetrated by numerous stomata, except in a narrow (ca. 3 mm) area
around the calyx.

The albedo, or inner mesocarp (Figure 1A, top right), consists of a loose network of parenchyma-
tous cells with large airspaces formed when small, originally spherical albedo cells retained their orig-
inal points of contact as the fruit expanded. Thickness of the albedo can range from as little as 1 to 2
mm in some limes and tangerine hybrids to 2 cm or more in large shaddocks (pummelos, Citrus
grandis).

The edible flesh of a mature citrus fruit is divided into segments, each derived from an ovary locule.
The number of segments varies widely but is typically between 10 and 15. Each segment is surrounded
by a tough endocarp membrane and filled with tightly packed juice sacs or vesicles (Figure 1A, lower
right, and C). Each of these thin-walled juice sacs has a minute oil gland in its center and is attached by a
fine stalk to vascular bundles in the radial segment walls. Except in parthenocarpic fruit, seeds are within
the segments and attached to axial vascular bundles. Despite various varieties being sold as “seedless,”
few except navel oranges and Persian (Tahiti) limes (Citrus latifolia) are truly seedless. Purists prefer the
term “sparsely seeded,” for which citrus dealers show no enthusiasm at all.

The vascular system is a highly ramified network whereby every cell is connected to, or adjacent to,
a cell in contact with a particular sector of the vascular system. In many types of citrus fruits, particularly
seedless grapefruit and tangerines, the central “core” bundles separate as the fruit matures, leaving a con-
siderable cavity in the center of the fruit (a complication in specific gravity separation of freeze-damaged
fruit). For a more detailed discussion of citrus fruit anatomy, see Soule and Grierson [34].

3. Drupe

Drupes start out as though they were going to be berries but then develop their typical hardened “pit.” The
resultant fruit is technically described as a “simple fruit with soft exterior, fleshy, usually indehiscent,
with heterogeneous texture and the center with a hard, bony, or cartilaginous endocarp enclosing the seed
proper” [1].

The most familiar drupe fruits are peach (and its genetic recessive, nectarine), plum, cherry, and apri-
cot, and in the tropics, the mango. In all of these fruits, the edible portion is the fleshy mesocarp. Other,
less obvious drupe fruits are coffee, in which the fleshy mesocarp (though edible) is discarded. It is an
anomalous drupe, having two seeds enclosed in a parchment-like endocarp, the seeds being the “coffee
beans” of commerce. Other drupes grown for their seeds are almond and pistachio. The most atypical of
all drupes is the coconut, in which the dry, fibrous epicarp and mesocarp become the husk (the source of
coir fiber used in brushes, matting, and rope). The large seed has edible white oily flesh and a liquid en-
dosperm (the “coconut milk™).

The epidermal characteristics among drupe species vary widely from the smooth epicuticular wax of
the cherry, mango, or date to the “fuzzy” epidermis of the peach, whose soft “hairs” are extensions of epi-
dermal cells. Particularly striking is the white “bloom” on the surface of some drupes, particularly plums.
Electron microscopy shows this to be formed from an amorphous wax layer adjacent to the cuticle proper,
together with crystalline granules of wax protruding from the surface. It is easily brushed off in routine
handling. This is considered undesirable [35].

Drupe crops can be of purely temperate-zone origin with specific winter-chilling requirements
(peach, plum, cherry, apricot) or purely tropical (mango, date). Intermediate is the pistachio, which has a
brief winter chilling requirement but very limited freeze hardiness [36].

C. Typical Fruits from Inferior Ovaries (Epigyny)

In flowers of epigynous fruits, the other major floral parts, sepals, petals, and stamens, are fused at their
bases and located above the ovary. As such fruits develop, nonovarian tissues become intrinsic parts of
the fruit. It is often very difficult to discern ovarian from nonovarian tissue.

1. Pome Fruits

All the pome fruits are members of the Rosaceae family, for example, apple, pear, quince, medlar,
hawthorn, and the tropical loquat. A pome is defined as a fruit in which the papery or cartilaginous en-
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Figure 2 Development of the apple fruit from the flower stage. (From Ref. 37.)

docarp is embedded in the mesocarp, fused with and completely enveloped by the enlarged fleshy recep-
tacle or the fused base of the sepals; the ripened ovary is only a small part of the total structure [1].

By far, the best known and most widely grown pome fruit is the apple (Malus sylvestris). Its flower
parts are in fives: five sepals, five petals, five stamens, and five carpels making up the deeply embedded
ovary (Figure 2). The parenchyma of the fused bases of the calyx, corolla, and stamens constitutes the ma-
jor portion of the edible tissue of the mature fruit. The nonedible core is largely ovary tissue.

Although parthenocarpy is not unknown in some obscure varieties, fruit development normally starts
at pollination. Because most apple varieties are self-infertile, pollen usually has to come from some other
variety (cultivar). Fruit development is almost invariably dependent on fertilization and resultant seed for-
mation. (Fortunately, the buying public’s prejudice against seedy fruits does not include apples.) The hor-
monal control of fruit development was first indicated by the common observation that when seeds fail to
develop in one or more of the five carpels, the fruit tends to grow lopsided. Most flowers never survive
to form fruits. Only about 2 to 4% of the flowers in a normal bloom need to develop to provide as heavy
a crop as the trees can bear.

The epidermis of the very young fruit is constantly growing, initially with very active cell division.
After 4 or 5 weeks of development, cell division slows down and then ceases. As the fruit continues to
expand, the epidermal cells flatten and elongate. As the fruit matures, these epidermal cells become sur-
rounded by cuticle. The cuticle is covered by a layer of wax that is continuous in varieties with a natural
shine but is deposited as irregular platelets in “nonshiny” varieties such as Golden Delicious and Grimes
Golden. Today, most apples are artificially waxed, partly to retard shrinkage, but more because of the
buying public’s fascination with shine (even for fruits that are not naturally shiny). The edible parenchy-
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matous tissue consists of large, thin-walled cells with a surprising volume, estimated at ca. 25%, taken up
by airspaces [37].

Comment on the Relation Between Fruit Structure and Handling Damage. Because most
apples have a continuous cuticle, they are very resistant to water damage and have even been stored suc-
cessfully under water. If fungal spores enter through a break in the cuticle, fungal hyphae tend to spread
so slowly that it is common to cut out an infected area and consume the rest of the apple. However, ap-
ples and pears have very little resistance to pressure, which can rupture parenchymatous cells. These are
rich in oxidases and surrounded by air in the intercellular interstices. The results is an ugly dark brown
bruise.

Because of its discontinuous waxy coat and occasional still-dividing epidermal cells [38], a citrus
fruit has poor resistance to prolonged submersion in water. The structure of a citrus fruit, with its spongy
albedo and radially oriented juice sacs, is very resistant to pressure from smooth surfaces. It does not
bruise but is very susceptible to damage from sharp objects. Any rupture of epidermal oil cells releases
“peel oil,” toxic to adjacent tissue, with resultant ugly lesions (“oleocellosis”). Any fungal spores intro-
duced into the albedo find a perfect culture medium. The spread of fungal mycelium is almost explosive.

2. Banana (Musa sapientum)

An interesting tropical fruit, the banana, is sometimes classified as a berry, which is clearly erroneous be-
cause nonovary tissue is involved (be it only as the nonedible skin of the fully mature fruit). Banana flow-
ers are dioecious, the male flowers being borne within conspicuous purple bracts at the end of the long,
hanging inflorescence. The female flowers are clustered in groups along the stem of the inflorescence.
These groups of flowers develop into clusters of fruits called “hands,” in which each individual fruit is re-
ferred to as a “finger.” The general tendency is that the more hands there are on a bunch, the more fingers
there are in each hand.

The female flower is inconspicuous and described as a “tepal,” in which the components of the pe-
rianth are so similar in size, form, and coloration that sepals cannot be distinguished from petals [1]. The
inconspicuous perianth is abscised immediately after the flower opens. Thus only ovary and receptacle
remain.

Pollination is necessary for fruit set, but all commercial varieties are, nevertheless, parthenocarpic.
Banana breeders thus have a double problem. When, for example, Panama disease was wiping out Gros
Michel, the major commercial variety of Central America, they had to cross-fertilize with seedy resistant
varieties. With that accomplished, backcrossing was necessary to eliminate the seeds while retaining nec-
essary disease resistance. This was accomplished in a surprisingly short time.

Initially, the peel (which is receptacle tissue) weighs five times as much as the interior pulp. As the
fruit grows, the endocarp develops fleshy protrusions into the locules forming the edible pulp. At full ma-
turity, the edible pulp typically weighs twice as much as the inedible peel. However, few commercial ba-
nanas are allowed to reach full maturity. For long-distance shipment, bananas are picked at stages of de-
velopment known by such terms as “>-full” and “3-full,” terms describing a somewhat angular cross
section. Fortunately, the highly climacteric banana will ripen to good eating quality even when harvested
well short of physiological maturity. It is usual commercial practice for bananas to be shipped green and
ripened in “‘ethylene degreening rooms” at destination. In addition to accelerating the natural climacteric
ripening process, this ensures uniformity in ripening, a convenience in marketing.

D. Aggregate Fruits

Aggregate fruits are compound fruits produced from many pistils in an inflorescence rather than from a
single pistil. Temperate-zone aggregate fruits include strawberry, mulberry, and the various cane and
bramble fruits. As mentioned previously, the fig is an aggregate fruit, with its minuscule flowers inside
the vaselike receptacle and so indiscernible without dissection of the fruit. Among tropical fruits, bread-
fruit, pineapple, and cherimoya are aggregate fruits. Three familiar examples of aggregate fruit are dis-
cussed here.

1. Raspberry (Rubus idaeus)

The raspberry is an intrinsically frail fruit in that, unlike its near relative the blackberry, at picking the re-
ceptacle remains on the plant. The harvested fruit is thus hollow, formed only from adhering drupelets
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(miniature drupes), each from a separate floret within an inflorescence. Improving the inherent structural
weakness of the raspberry has become a challenge for research workers [39,40].

2. Strawberry (Fragaria virginiana X F. chiloensis)

The strawberry is an accessory fruit, one in which the conspicuous fleshy part is composed of tissues ex-
ternal to the pistil. (The Annonas, soursop, sweetsop, and cherimoya are tropical examples of accessory
fruits.) The succulent flesh of the strawberry is receptacle tissue. The “seeds” embedded in its exterior
surface are achenes and thus true fruits.

3. Pineapple (Ananas comosus)

The pineapple is a multiple fruit, one formed from many pistils of an inflorescence. The pineapple fruit
develops from separate lavender-colored flowers distributed around the length of the central axis of the
inflorescence. The entire flowers become incorporated into the fruit, much of the flesh being formed from
the fleshy bracts subtending each flower. Individual varieties are self-infertile; hence pineapples grown
in monocultures of a single variety are always seedless. However, in areas such as the Caribbean, where
small plots of various varieties are common, it is usual to have pineapples with occasional small black
seeds.

IV. PHYSIOLOGICAL DEVELOPMENT

As a general principle, fruit development in terms of weight and volume tends to be sigmoidal. A period
of very rapid cell division, but very little increase in fruit size (stage I), is followed by a period of rapid
increase in size as small, newly differentiated, dense cells develop vacuoles and assume their roles as spe-
cific tissues (stage II). In the final stage, as the fruit reaches physiological maturity, increase in size slows
and may even stop, although biochemical changes may continue (stage III). There are about as many vari-
ations on this pattern as there are different types of fruit, but the sigmoidal mode is usually discernible.
The orange, apple, and apricot are discussed next as typical examples of the development of citrus, pome,
and drupe fruits.

A. Hesperidium, e.g., Orange (Citrus sinensis)

The duration of growth and maturation varies sharply with variety. For early varieties such as Hamlin and
navels, harvesting commonly starts 6 to 7 months after bloom. For the late Valencia variety, harvesting
starts about 12 months after bloom. Harvesting can continue for a “tree storage” period lasting several
months, during which late oranges have two crops on the tree at the same time. Herein lies a critical dif-
ference between citrus and deciduous fruits. The latter must be picked soon after maturation is complete
or they will fall from the tree. Citrus fruits have no such sharply defined abscission period, something that
is frustrating to would-be developers of mechanical harvesting equipment, but an enormous advantage in
marketing the crop over a period of weeks or months in which the crop is “stored on the tree.” Stages of
development are shown in Figure 3.

Stage I lasts a month or less, during which cell division is extremely rapid but fruit enlargement is
trivial. At this stage the cuticle has not yet developed, making the little fruitlets extremely vulnerable to
superficial damage. In growing areas such as Florida, where stage I coincides with the strongest winds of
the year, just brushing against an adjacent leaf causes major “windscars” on the mature fruit. This prob-
lem is exacerbated in areas such as Brazil and Florida, where rains in the postbloom period facilitate su-
perficial infection of such windscars by waterborne spores of the melanose fungus (Diaporthe citri). Al-
though most cell division takes place in this period, some cell division can continue in the peel until
maturation, particularly with navel oranges, making such fruit very vulnerable to water damage [38].

Stage II is the period of cell (and hence fruit) enlargement. The fruit expands rapidly, as does CO,
output per fruit, although CO, evolution per unit weight (the usual way of expressing respiration) declines
sharply (Figure 3). During this period, the juice sacs are enlarging and developing their distinctive solutes.
Increases in whole fruit and pulp radii and whole fruit, pulp, rind, and albedo volume during fruit devel-
opment follow single sigmoidal patterns (four-parameter logistic function, R* = 0.99) [41]. Such solutes
are initially high in organic acids and low in sugars. As the orange matures, sugars increase steadily while
acids decline. Legal maturity standards for citrus fruits are usual in major producing areas. In this, every
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Figure 3 Respiration during fruit development of Valencia orange. (A) Expressed as CO, evolution per unit

fresh weight; (B) expressed as CO, evolution per fruit, a form that more clearly defines the stages of fruit
development. (From Ref. 34.)

district sets its standards according to what they do best [42]. European citrus districts, South Australia,
California, and other districts with Mediterranean-type climates (cool winter nights, bright days, and low
rainfall) can rely almost entirely on external standards to sell their oranges. Florida, with its blossom-pe-
riod winds and humid, subtropical climate, cannot compete on appearance and so relies principally on
standards based on the high sugar content of its oranges. These maturity standards are based not only on
sugar content but also on the ratio of total soluble solids (TSS, mainly sugars) to acids (titratable as citric
acid), with a sliding scale throughout the season [43,44] (Figure 3). At the beginning of the season, Florida
oranges must have 8.0% TSS with a TSS/acid ratio of 10.5:1 (Figure 3). By the end of the season, this ra-
tio may exceed 20:1, but with the proviso that (for fresh fruit sale) acid cannot be below 0.4% lest the or-
anges taste too insipid.

Regardless of growing district, consistent gradients occur within a citrus fruit, particularly in terms
of sugar content. The vascular system extends down the central axis of the fruit, reaching the blossom
(stylar, distal) end first, them ramifies back up the carpels to the stem (calyx, proximal) end of the fruit.
Apparently as a consequence of this distribution of photosynthates, sugars are higher in the blossom end.
A very thorough study reported that the proximal halves of mature California Valencia oranges averaged
7.2 g of sugar per liter of juice as compared with 9.5 g/L for the distal (blossom, stylar) halves, a differ-
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ence clearly discernible by taste [45]. When sharing a grapefruit, canny citrus people give the stem-end
half to their companion, retaining the blossom end half for themselves.

In the jungles of southeast Asia where citrus first evolved, all are still green when mature. The ex-
tent to which the expected orange or yellow colors develop depends on the growing area having cold
enough nights to stress the fruits [46]. In subtropical areas such as Florida and Brazil, early varieties may
mature while still green, necessitating postharvest removal of the green chlorophyll with ethylene [47].

B. Pome, e.g., Apple

The typical growth curve of any main crop apple variety is only slightly sigmoidal. Very early varieties,
such as Early Harvest, Yellow Transparent, and Melba, mature to acceptable eating quality before any de-
celeration of growth (Figure 4). Apples that mature this early are very frail and suitable only for local con-
sumption. The longer it takes an apple variety to reach maturation, the more sigmoidal its growth curve.
In general, the later an apple variety matures, the longer its potential marketing life.

Initially, all cells of the apple are alive. Cell division in the epidermis ceases at the end of stage 1.
Marked elongation and flattening of the epidermal cells occur throughout stage II, during which period
the epidermal cells extrude waxy, cutinous material. In fully mature late-season apples, the epidermal
cells are separated, dead or dying, embedded in the continuous cuticle (a heterogeneous polymer of fatty
acids overlaid with a layer of wax). The cuticle can continue to develop after harvest. During the stage 11
growth period, the epidermis is penetrated by stomata that tend to cork over at full maturity. Under the
epidermis in some varieties is the periderm, a thin layer of cork cambium. If the epidermis is injured early
in stage II growth, as by mechanical abrasion or frost, the periderm develops a protective layer of corky
cells: biologically an excellent protection for the fruit but a “grade-lowering defect” for the packer and
the consumer.

Parenchyma tissue from the fused bases of the calyx, corolla, stamens, and receptacle constitutes the
major part of the edible tissue of the mature fruit. Cell division having ceased at the end of stage I (usu-
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Figure 4 Increase in the volume of Early Harvest, McIntosh, and Rome Beauty apples from full bloom to
maturity. (From Ref. 37.)
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Figure 5 Growth in diameter of fruits of Ne Plus almond, Royal apricot, and Kerman pistachio. (From
Ref. 36.)

ally 3 to 5 weeks after anthesis), the considerable enlargement of the fruit comes from cell enlargement
and their partial separation to form a considerable volume of air-filled intercellular spaces. Except for the
petals (which abscise and fall after fruit set), all the original parts of the flower persist in the fully devel-
oped apple.

C. Drupe, e.g., Apricot (Prunus armeniaea)

The growth curve of the apricot, indeed of all fleshy, succulent drupes, is exaggeratedly sigmoidal (Fig-
ure 5). Stage II growth is interrupted by “pit hardening,” in which the endocarp thickens and lignifies to
form the hard, stony “pit” enclosing the seed. During this period, the fruit ceases to increase in size. Bio-
chemical changes continue, but without cell enlargement. Morphological development in the peach
(which is essentially similar to apricot) has been reported in considerable detail [48].

The apricot pit is smooth and, at maturity, quite free from the edible mesocarp tissue, being attached
only at its proximal end by the persistent vascular system. In other drupes, the pit is seldom so separate,
although in “freestone” peaches the deeply incised pit is nearly free from the edible mesocarp. In “cling-
stone” peaches, the endocarp and mesocarp interfaces adhere.

Such characteristics are of commercial significance. “Freestone” varieties (cultivars) are preferred
for the fresh fruit market. Because of their considerably firmer flesh (mesocarp), clingstone varieties are
preferred by the canneries. (A machine neatly removes the clingstone pits).

In the mango (Mangifera indica), the ultimate example of a “clingstone drupe,” the pit is covered
profusely with tough fibrous “hairs” that usually extend into the edible flesh. The date (Phoenix dactylif-
era), the ultimate “oasis crop,” is a specialized drupe that develops so much sugar that its cells plasmolyze
and ultimately die. Initially, most of the sugar is sucrose, but during maturation, all the sucrose converts
to glucose and fructose. When fully mature, all that is still living is the embryo within the stony seed. Af-
ter harvest, the date is therefore handled as a confection rather than as a fruit.

Very occasionally, a drupe may have multiple seeds within the boney endocarp. One such is the
highly poisonous, but attractive seeming, fruit of the manchineel (Hippomane mancinella), the so-called
poisonous guava.

Two familiar dessert nuts are the seeds of drupes. The almond (Prunus communis) and the pistachio
(Pistacia vera) are drupes in which the mesocarp fails to develop any further after pit hardening, thus re-
sulting in a growth curve that is definitely not sigmoidal (Figure 5).
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V. POSTHARVEST LIFE

It should not be necessary to emphasize that fruits are still alive after harvest. However, a surprising num-
ber of people who make their livelihoods growing, packing, shipping, and selling fruit do not realize that
they are handling living, breathing creatures, subject to specific diseases and the ravages of senescence.
(“Gee, Doc, don’t tell me these things are alive. They’ve been picked!””) Moreover, effective postharvest
handling is not merely a matter of maintaining the state of fruit quality at the time of picking. Properly
handled, many fruits improve in eating quality after harvest. Others degenerate rapidly or slowly, de-
pending on their innate physiology and the postharvest conditions to which they are subjected.

A. Climacteric Versus Nonclimacteric Fruits

The first step in proper postharvest handling of a given type of fruit lies in understanding its type of life
cycle [49]. The climacteric rise in respiration of fruits such as apple, pear, avocado, mango, and banana
represents a rapid depletion of potential postharvest life (Figure 6). For fruits such as pear, banana, and
avocado, experiencing the climacteric is essential to the ripening that makes them truly edible. But it
should be delayed as much as possible until the consumer is ready to eat that piece of fruit. Very prompt
refrigeration is essential for orderly marketing of climacteric-type fruits, to delay or suppress the evolu-
tion of endogenous ethylene that initiates the climacteric rise. As the height of the climacteric is reduced,
its duration is extended proportionately. Immediate temperature and humidity control is the first line of
defense against expensive wastage. Humidity control is important if for no other reason than that a shriv-
eled fruit ceases to be marketable. However, there are other physiological benefits also [50]. Even within
a specific variety, response to such storage techniques as controlled atmosphere storage can be sharply in-
fluenced by cultural and climatic factors [51]. When the peak of the climacteric rise is past, the fruit be-
comes senescent. Although adequate reserves of respiratory substrate may be available, cellular organi-
zation breaks down, the cell membranes lose their integrity, and the fruit dies of old age [52,53]. Thus the
challenge with climacteric-type fruits is to suppress and extend the respiratory rise.

Apples and pears are examples of climacteric-type fruits that have to be harvested within a very brief
period but marketed for as long a period as correct storage procedures permit. Long-storing varieties have
ample reserves of respiratory substrate and resilient respiratory systems. Under near-optimum conditions,
late varieties such as Winesap can be kept year-round. Some, such as Northern Spy and Winter Banana,
improve in eating quality during the first few months of storage.

The avocado (Persea americana) is an interesting climacteric-type fruit. Although strongly climac-
teric, the characteristic respiratory rise will not start until the avocado is picked. For many years research
workers were convinced that when their instrumentation improved sufficiently, they would be able to
identify a preharvest “climacteric inhibitor.” Even with modern equipment, it has been impossible to iden-
tify any such inhibitor [54].
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Figure 6 Climacteric and nonclimacteric life cycles for typical fruits. (From Ref. 34.)
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Most varieties of pears (Pyrus communis) do not ripen to acceptable eating quality on the tree. Once
picked, pears have to be either ripened for immediate use (preferably at 20 to 25°C) or held in cold stor-
age at only a degree or two above their freezing point. Pears, particularly the popular Bartlett variety, will
neither ripen nor store at intermediate temperatures, particularly in the range 8 to 12°C. Instead, they be-
come rubbery in texture and virtually inedible.

This is necessarily an abbreviated and simplified account of the complex physiology of climacteric-
type fruits. The extraordinary development of nonchemical analytical equipment has stimulated much
postharvest research. Some surprising results are being encountered, such as a newly developed thornless
blackberry being strongly climacteric [55]. Those interested in further reading are referred to a 1985 sym-
posium [56], particularly the paper by McGlasson [57].

Handling of nonclimacteric fruits is very much simpler. There are no significant physiological
changes involved in separation from the tree and no postharvest ripening cycle. Those signs along the
Florida highways saying “TREE-RIPENED CITRUS,” although misleading, are legally defensible, all
citrus fruits being “tree ripened.” With no climacteric rise to suppress, nonclimacteric fruits such as cit-
rus of various types, grapes, and certain vegetables that are botanically fruits do not benefit nearly as much
from prompt refrigeration as do climacteric-type fruits. Indeed, for fruits susceptible to chilling injury, de-
layed storage may be beneficial by enabling the fruit to adapt to lower storage temperatures [46]. Sooner
or later, of course, any fruit can be expected to abscise if left on the tree long enough. Modern research
shows this to be a surprisingly complicated biochemical and histological process [58]. Such abscission is
always due to trace amounts of ethylene at the abscission zone. Typically, this is induced by ABA (ab-
scisic acid), the growth regulator produced in response to such environmental stresses as low temperature
or drought. Deciduous fruit trees have deciduous fruits that fall when fully mature. Such natural abscis-
sion can be delayed with “stop drop” sprays, but at a loss of some postharvest shelf life.

Citrus fruits, typical fruits of evergreen trees, have no such programmed abscission, making har-
vesting much more onerous than for deciduous fruits. [Typically, a Valencia orange must be removed
with a pull force of 18 to 22 pounds (8 to 10 kg) as compared to ca. 4 to 5 pounds (1.8 to 2.5 kg) for a
MclIntosh apple.] Research [59] has shown that the abscission-causing ethylene in citrus fruits can also be
triggered by endogenous IAA (indole acetic acid).

B. When to Harvest

This discussion is out of chronological order in terms of the fruit because it is necessary to understand
something of postharvest fruit physiology before dealing with optimum picking dates for various types of
fruits.

1. Citrus Fruits

It is fairly simple to set legal maturity criteria for nonclimacteric fruits such as citrus and grapes. These
undergo no considerable physiological change at harvest, nor do they abruptly abscise and fall. Maturity
standards, either legal or voluntary, can be set in terms of sugar content, sugar/acid ratio, and juice yield.
Moreover, citrus fruits can be “tree stored.” Early tangerine varieties can be picked over a period of sev-
eral weeks, at the end of which period they start to dry out rapidly. Orange varieties, particularly the late,
main crop Valencia variety, can be picked over a period of 2 to 3 months, sometimes more. Grapefruit
from a single bloom can be harvested over a period of 6 months or more. (As this is being written, the
same Florida grapefruit that might have been picked in October 1992 are still being harvested during the
first week of June 1993). This is a great convenience in marketing, provided that the shipper does not try
to extend marketing by storing grapefruit that has already used up its storage potential during prolonged
tree storage [60].

2. Apples (Malus sylvestris)

Deciding on a harvesting date is very much more difficult for climacteric-type, temperate-zone decidu-
ous fruits for which only a narrow window of opportunity is available. “It is exceedingly important that
apples be harvested at the right time. The exact degree of maturity at which a given variety should be
picked depends in large part on what disposition is to be made of the fruit. . . . If apples are picked too
soon and then stored for any length of time they are subject to storage troubles such as bitter pit and scald.
... Almost every measure or index of maturity has to be defined for not only a given variety but for a
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given location, season, and soil type”.[37] That advice was published 50 years ago, and despite consider-
able research, not much has really changed since then. In the search for a reliable criterion (or combina-
tion of criteria) as a guide to optimum picking date for apples, research workers have investigated days
from full bloom, ground color, pull test (ease of separation), pressure test (with various modifications of
the original 1925 Magness-Taylor pressure tester [61]), soluble solids, iodine-starch pattern, seed color,
and corking of lenticels. No criterion has proved consistent across varieties, growing districts, cultural
methods, and seasonal variations in climate. This is in sharp contrast to maturity standards for noncli-
macteric fruits such as grapes and citrus. Such variability makes legal maturity standards for climacteric
fruits difficult to enforce legally, e.g. [62]. Rootstocks can have a significant effect on maturity criteria
[63], as can use of spur-type scion selections. But it is nice to note that organic cultural methods are re-
ported as not significantly affecting maturity criteria [64]. Harvesting criteria for each particular apple va-
riety in each district still have be based largely on local experience and judgment. A user-friendly com-
puter program has been developed to help growers and packers select optimum harvest dates [65].

A further complication is that “stop-drop sprays” have been used for many years to extend the pos-
sible harvesting season for apples [66]. Such prolonging of the harvesting period can be expected to re-
duce potential storage life. This is particularly true for the highly colored strains that usually have been
selected from chance sports regardless of other fruit quality criteria. (This writer has grown weary of at-
tending meetings at which nursery owners and produce merchandisers proclaim that their aim is to “Give
the lady what she wants,” a policy that all too often sacrifices eating quality for appearance.) Now it ap-
pears that the selection of the culturally profitable spur-type strains may also sometimes be at the expense
of keeping quality [67].

3. Pears (Pyrus communis)

The situation for pear harvesting is no more promising. Over 50 years ago, this writer was a graduate stu-
dent participating in a massive 5-year project involving five pear orchards throughout Canada’s Niagara
Peninsula. A major objective was to establish a reliable maturity standard for harvesting Bartlett pears,
particularly for research in a then very new and experimental controlled atmosphere storage. (This
method was then called “gas storage,” later renamed “controlled atmosphere” by Bob Smock of Cornell
University.) As well as pressure test, starch-iodine pattern, and so on, this program included measuring
respiration immediately after picking. Although variation among seasons and orchards excluded all other
criteria, one remained consistent. The best quality and longest storage life were always from the picking
at the nadir of fruit respiration on the tree [68]. Because that can only be determined retroactively, it can-
not be used as an indication of when to pick for maximum quality. Developments such as growing pears
with apple interstocks and on clonal apple roots [70] further complicate the prospect of finding generally
applicable criteria to determine optimum picking time for pears. Localized growing areas, particularly in
irrigated districts, may use some standard (pressure test is most common), but it seems unlikely that
statewide legal maturity standards will ever be established such as have long been enforced for citrus
fruits [43,44].

VI. SOME ECONOMIC CONSIDERATIONS

A few fruits, such as Tung Nut (Aleurites fordii), are grown for industrial use. Most, however, are grown
for food or drink. When fruits are to be processed into food products or beverages, external appearance is
of no consequence. But for fresh market sale “eye appeal” can be critical to profitability. Unfortunately,
most customers “taste with their eyes” and usually will not purchase unattractive looking fruit. [Kiwi fruit
(Actinidia deliciosa) is a conspicuous exception. ]

A. Color

The public preference for highly colored fruits has led to considerable varietal selection for high color,
regardless of internal quality. (The Delicious apple is a conspicuous example.) However, for the discern-
ing buyer, background color can be a useful indicator of maturity of many fruits such as the Bartlett
(Williams, Bon Chretien) pear. The change in background color from dark green to pale green or yellow
indicates incipient ripening to edible quality.
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TABLE 1 Thermodynamic Data for Citrus Fruits®

Parameter Oranges Grapefruit Lemons
Specific gravity 0.98 0.88 0.95
Specific heat (BTU/Ib/°F) 0.86 0.88 0.89
Thermal diffusivity (sq ft/hr) 0.0049 0.0047 0.0049
Thermal conductivity:

BTU/hr/ft*/°F/in. 2.95 3.00 2.85

kcal/sec/cm?/°C/cm 1.1 0.78 1.05
Heat of respiration (BTU/ton/day) at:

32°F 0°C 900 500 580

40 4.5 1400 1100 800

50 10.0 1300 1500 2300

60 15.5 5000 2800 3000

70 21.0 6200 3500 4100

80 27.5 8000 4200 6200

90 32 9900 6000 8000

# Values listed as means of data from various sources. Values vary with horticultural variety (cultivar), district,
maturity, size of fruit, etc.
Source: Ref. 69.

B. Shape

Regardless of edibility, the buying public rejects misshapen fruits. But in some cases fruit shape can be a
useful indicator of eating quality.

Mango, a strongly climacteric fruit, develops an irregular shape as it matures on the tree, one “shoul-
der” becoming considerably higher than the other. The more marked this irregularity, the more mature the
mango and so the better chance that, once picked, it will ripen to good eating quality.

Grapefruit typically bloom irregularly, the first major bloom being followed by later blooms at ir-
regular intervals of days, weeks, or even months. Grapefruit from the first bloom tend to be oblate with
the axis often considerably less than the diameter. Such fruit are of superior eating quality. Successive
blooms result in increasingly spherical fruit of decreasing internal quality. “Sheep-nosed” grapefruit (axis
considerably longer than diameter) are avoided by discerning buyers.

More usually, market grades based on fruit shape are quite unrelated to organoleptic quality. That a
banana should be curved and a cucumber should not epitomizes the illogic of many market grades.

C. Thermodynamic Properties

Increasingly, modern fruit distribution involves the use of refrigeration. (Physiological responses of fruit
to low temperature are dealt with in Chapter 2.) Refrigeration can be inefficient or unnecessarily expen-
sive when the refrigeration system used does not take into account the thermodynamic properties of the
product, in this case fruits. Such data are curiously hard to find, being scattered among horticultural and
engineering publications. Such data have been compiled for citrus fruits; see Table 1. The values for heat
of respiration at various temperatures of such highly climacteric fruits as apples, pears, mangos, and ba-
nanas can be several times as high as for citrus fruits.

Vil. CONCLUSIONS

There is very little in agriculture that one way or another is not dependent on successful fruit develop-
ment. Among those who make their livelihoods growing and marketing dessert fruits, there are many who
could profit from improved understanding of the complex biology of these gracious additions to our diet.
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8
Dormancy: Manifestations and Causes

Frank G. Dennis, Jr.

Michigan State University, East Lansing, Michigan

. IMPORTANCE OF DORMANCY

During their life cycles, plants are exposed to periods of stress caused by low or high temperatures,
drought, or other environmental factors. In the course of evolution, complex defense mechanisms have
developed for protection against such stresses. One such mechanism is dormancy. Simply defined, dor-
mancy is the inability of an otherwise viable seed, whole plant, or meristem (a bud, apex, etc.) to grow.

Many plants adapted to the tropics do not become dormant; shoot growth occurs whenever environ-
mental conditions permit. However, growth often occurs in flushes, and certain branches may be grow-
ing while others are not. In the dry topics, rainy seasons alternate with dry ones; here plants are adapted
to growing when water is available, but growth slows or ceases during the dry season. Where cold and
warm seasons alternate, as in the temperate zones, continuous growth is similarly impossible. Plants stop
growing in the late summer or autumn, then resume growth again in the spring. In both the temperate and
the polar regions another adaptation has occurred—plants develop resistance to low temperatures, or
“cold hardiness,” to permit survival at temperatures as low as —40°C or below. Perennial plants may be
deciduous or evergreen; in the former the leaves abscise before winter begins, in the latter the leaves are
functional throughout the year.

Tropical annuals will grow in any climatic zone where the growing season is long enough to allow
them to mature. Thus green beans and marigolds can be cultivated from the equator to the arctic circle. In
contrast, woody perennials will not survive outdoors if grown in an area where winters are too cold. Peach
trees adapted to the temperate zone will grow poorly, or not at all, in the tropics for lack of “chilling” (see
later), whereas mangos will not survive the low winter temperatures characteristic of the temperate zone.

Seed physiology may reflect the environmental conditions in the area of origin of the species. The
seeds of plants native to the humid tropics need no dormancy provided that conditions are favorable for
germination year-round. In contrast, seeds of plants adapted to the temperate zone often exhibit some de-
gree of dormancy. If seeds shed at the end of the growing season were to germinate immediately, they
would not survive the winter. Some species have circumvented this problem by having an abbreviated pe-
riod of fruit development, permitting the shedding of seeds in early summer (silver maple, dandelion). In
others, termed winter annuals, seeds germinate in late summer/early fall, and the seedlings develop suf-
ficient cold hardiness to survive the winter and produce seed early the following year. Such seeds are dor-
mant when shed but become capable of germination in the fall (see later).
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Even when climatic factors do not dictate a need for seed dormancy, the characteristic provides a
safeguard for survival. If all seeds germinated immediately, cataclysmic events such as fires and late
freezes could destroy entire species, at least in local areas. Differing levels of dormancy in a seed popu-
lation permit germination over a period of several years or even longer, depending on seed longevity.

Il. TYPES OF DORMANCY

Numerous types of dormancy exist. The many types of dormancy exhibited by plant organs have created
problems in terminology and definition. This problem was summarized for seeds by Simpson [1]: “A pre-
cise definition of dormancy cannot be used in the general sense to apply to all seeds, but can only be given
for each individual seed considered in the context of a precisely defined set of environmental conditions.”
Nevertheless, Lang et al. [2,3] and Lang [4] have attempted to classify the many types of dormancy into
three main categories, based on the controlling factor(s): ecodormancy, when growth is prevented by en-
vironmental conditions, such as low or high temperature; paradormancy, when growth is prevented by
conditions outside the meristem but within the plant; and endodormancy, when growth is prevented by
conditions within the meristem itself. Examples of these types of dormancy are the failure of buds of trees
to expand in the late winter, when low temperatures prevent growth (ecodormancy); their failure to grow
in early winter, even when held in a warm greenhouse, because they have not been exposed to sufficient
“chilling hours” (see later) to permit growth (endodormancy); and the failure of lateral buds to develop in
an herbaceous or woody plant when the terminal bud is growing rapidly (paradormancy). In the buds of
perennials, dormancy progresses gradually from paradormancy, also called apical dominance, through
endodormancy to ecodormancy as the seasons progress from summer to fall to winter and spring.

These definitions are more applicable to whole plants or shoots than they are to seeds, and seed sci-
entists have been less receptive to their use [5]. Is a dry bean seed, which exhibits no dormancy, ecodor-
mant just because it will not grow without water? Does paradormancy exist in a seed? Does a single type
of dormancy prevent growth, or are control mechanisms more complex? As we will see, dormancy is in-
deed a complex phenomenon in many systems.

I have spoken of dormancy in seeds and whole plants, but dormancy can occur in other structures as
well. Bulbs, tubers, and corms—all organs that permit plants to survive unfavorable environmental con-
ditions—also exhibit dormancy. This dormancy can be likened to bud dormancy, for all three structures
contain buds, and bud development is the primary indication of the ending of their dormant period. In some
respects the structures represent intermediates between whole plants and seeds in that they are more com-
pact than the former but less compact than the seed, which has in addition a seed coat surrounding the em-
bryo and closely associated parts. Most of the remainder of this chapter deals with seed and bud dormancy.
Given the many aspects of dormancy, I will not address apical dominance in detail. Several reviews [6,7]
provide information on this topic. Khan [8,9], Bewley and Black [10,11], and Bradbeer [12] provide thor-
ough coverage of seed dormancy; Saure [13], Powell [14,15], and Martin [16] have reviewed many aspects
of bud dormancy; and Dennis [17] and Lang [18] offer additional information on dormancy in general.

lll. SEED DORMANCY
A. Induction of Dormancy

Some seeds do not become dormant until fully mature. The percentage germination of barley seeds in-
creases with maturation up to a certain point, then declines (Table 1). Germination is further reduced
when mature seeds are held at room temperature for 1 week, but it is stimulated by a brief exposure of
moist seeds to low temperature [19]. Breeders sometimes take advantage of this by harvesting fruits be-
fore they reach maturity, when seeds or embryos can germinate without special treatment. Considerable
research has focused on the physiological basis for the inability of immature seeds to germinate. Kermode
[20] provides an analysis of the problem.

B. Types of Seed Dormancy

Early investigators recognized that many factors could be responsible for the failure of seeds to germi-
nate. One obvious cause of such failure is a nonviable embryo. Death of the embryo can occur during seed
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TABLE 1 Effect of Stage of Development and Cold
Treatment on Germination of ‘Cape X Coast’ Barley

Stage Germination (%)
Milk stage 5
Yellow-ripe 60
Mature 36
Mature + stored 1 week 1
Mature + stratified for 2 days 64

Source: Ref. 19.

development (abortion) or after shedding of the mature seed. Some seeds (silver maple, citrus) are very
short-lived; if germination does not occur within a few weeks, the seed does not survive. Other seeds, in-
cluding many nuts, as well as avocado and cacao, lose viability rapidly when dried; if stored, a high rel-
ative humidity should be maintained. Information on methods of evaluating and prolonging seed viabil-
ity are available elsewhere (e.g., Bewley and Black [10]) and will not be discussed here.

By definition, a seed that is dormant has the potential to germinate (is viable) but requires exposure
to certain treatments or environmental conditions before germination can occur (Table 2). Some fruits
contain inhibitors that prevent seed germination. Seeds of tomato and cucumber, for example, will not
germinate within the fruit; the pulp must be removed and the seeds washed before germination can occur.
In other species (e.g., peach, cherry), the presence of a hard pit (endocarp or inner ovary wall) may limit
germination. Although such seeds can germinate following the breaking of endodormancy by chilling
(see later), germination is improved by endocarp removal. Neither of these conditions represents true seed
dormancy, as control is external to the seed, but they are often discussed in relation to seed dormancy.
Some of the conditions that break seed dormancy are given in Table 3.

Like the endocarp, the seed coat itself can prevent germination in some species, especially legumes
such as alfalfa, locust, and redbud. The structure of the seed coat (testa) prevents the entry of water and its
absorption by the embryo (imbibition); thus the embryo cannot germinate. The seed coat must be weak-
ened, either naturally by abrasion or by exposure to fire or to HCI during passage through the gut of an an-
imal, or artificially by scarification before imbibition can occur. Ground fires damage hard seed coats,
thereby permitting germination of seeds that might otherwise remain dormant [31]. Scarification can be
either mechanical, by rotating seeds with gravel or filing the seed, or chemical, by brief exposure to con-
centrated H,SO,. “Heat shock” by immersing seeds briefly in boiling water can be more effective than me-
chanical scarification in some species. For example, Bell et al. [31] reported that germination of seeds of

TABLE 2 Types of Seed Dormancy, Conditions That Break Dormancy, and Specific Examples

Cause of dormancy
A. Control outside the seed

Conditions that break dormancy Species

1. Inhibitors in the fruit
2. Hard endocarp

Seed removal, washing
Acid treatment, endocarp removal

Tomato, cucumber
Stone fruits

B. Control by seed coat
1. Coat impermeable to H,O Acid or mechanical scarification, fire Some legumes
2. Coat impermeable to O, Seed coat removal? ?
C. Morphologically immature Warm-moist storage Ginkgo, coconut
embryo Cool-moist storage Cowparsnip
D. Physiologically immature
embryo

1. “Shallow” dormancy
2. “Deep” dormancy

Light, alternating temperature, dry storage
Cool, moist storage

Lettuce, celery, oats
Apple, peach

a. Epicotyl dormancy Cool, moist storage Tree peony
b. Double dormancy Cool, moist storage Trillium
C + D. Hard seed coat plus deep Scarification, followed by cool, moist Redbud

dormancy?

stratification

# Some authors use the term double dormancy for this phenomenon.
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TABLE 3 Optimum Conditions for Seed Germination in Selected Species

Conditions during germination

Temperature

Pretreatment Light Low High Alternating Species Ref.
None + Bean, tomato —
+ + Birch (B. pubescens) 10

+ Lettuce 10

+ Broadleafed dock 21

+ + Lythrum salicaria, tobacco 22

+ (25°C) Pinus lambertiana 23

Dry storage Wild oats 24
Rice 25

Scarification Black locust 26

Chilling Apple, Pinus lambertiana 27,23

+ Pinus strobus 28

+ + Delphinium ambiguum 29

Scarification + chilling Redbud 30

Acacia divergens averaged 11, 28, and 90% for no treatment, mechanical scarification, and boiling in wa-
ter for 30 sec, respectively. The coats of some seeds are impermeable to oxygen. In this case, scarification
allows oxygen to penetrate to the embryo. Tran and Cavanagh [32] reviewed the structural aspects of seed
dormancy, emphasizing seed coat impermeability and methods of increasing it. Microscopic examination
of seeds indicated [33] that treatment with boiling water or fire did not soften the seed coat but affected the
structure of the “lens” (strophiole) near the hilum, thereby allowing entry of water. In some species the
seed coat, although permitting entry of water and oxygen, is a mechanical barrier to germination; on its re-
moval the embryo germinates readily. The seed coat may also contain chemicals that inhibit germination.

Many factors can affect germination. Because of the many interactions possible, Karssen [34] cau-
tioned that “an absolute requirement for any stimulatory factor hardly occurs.” Therefore, one must be
cautious in discussing any one factor in isolation. Nevertheless, several factors, light and temperature in
particular, have pronounced effects.

C. Temperature and Seed Dormancy

Dormancy is often temperature dependent. In some cultivars of lettuce and celery, for example, germina-
tion occurs readily between 10 and 20°C but declines to nil as temperature increases to 30°C (Figure 1A).
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Figure 1 Effect of temperature and light on germination of seeds of (A) lettuce and (B) Betula pubescens.

‘Grand Rapids’ lettuce seeds were tested immediately after harvest (“fresh”) or after storage at about 18°C for
18 months (“after-ripened”). Birch seeds were tested in darkness (M), under a 20-hr photoperiod (A), or were

exposed to red light for 15 min each day (O). (From Ref. 10.)
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Figure2 Effects of constant and alternating temperatures on germination of seeds of signal grass (Brachiaria
humidicola). Seeds were held at indicated temperatures for 40 days. Percentage germination is indicated at
points where lines intersect perimeter of square, and is proportional to density of stippling. (From Ref. 35.)

In contrast, seeds of birch germinate better in darkness at high than at low temperature (Figure 1B), but
exposure to light can markedly affect response. Other seeds germinate best when temperature is alternated
on a daily cycle (Table 3). For example, when seeds of signal grass [Brachiaria humidicola (Rendle)
Schweickerdt] are germinated at constant temperatures ranging from 13 to 38°C, germination does not
exceed 2%, whereas daily alternation between 13 and 32°C results in 60% germination (Figure 2). Baskin
and Baskin [36] reported that freshly harvested seeds of curled dock (Rumex crispus L.) remained “non-
dormant” for 2 years when buried 7 cm deep in moist soil. However, the seeds germinated in the light at
alternating temperatures. Few seeds (<1%) germinated while buried. Therefore, the seeds would proba-
bly have remained dormant had they been held in darkness at constant temperature.

Seeds of certain species require prolonged exposure to relatively high temperatures before germina-
tion can occur. Chickweed (Stellaria media L.) and other “winter annuals” remain vegetative in the win-
ter, then flower and produce seeds in the early summer. Such seeds remain dormant until fall, then ger-
minate and repeat the cycle. Experiments have demonstrated that the periods at warm temperatures break
dormancy, provided that the seeds are subsequently exposed to appropriate conditions, especially alter-
nating temperatures and light [37]; temperatures below 20°C are ineffective in breaking dormancy re-
gardless of subsequent treatment.

Exposure of such seeds to low soil temperatures in the autumn reintroduces dormancy (see Sec.
III.H), so that they once again become incapable of germination. A seasonal pattern thus develops, with
periods of high germinability in autumn alternating with periods of low germinability in the summer. The
behavior of such seeds contrasts with that of seeds of summer annuals, such as Polygonum persicaria
[38], in which chilling is essential for breaking secondary dormancy (see later) and which germinate read-
ily in the late winter and spring but poorly in the summer and fall (Figure 3). Chilling temperatures are
required for breaking dormancy in other seeds (see Sec. IILE).

D. Light and Seed Dormancy

Seed response to light has been studied intensively in ‘Grand Rapids’ lettuce. Seeds of this and a num-
ber of other cultivars of lettuce and celery germinate readily in the light at 25°C but fail to germinate
in the dark (Figure 1A). A brief exposure of moist seeds to white or red light (660 nm) induces subse-
quent germination in darkness. The time of exposure required varies with species (Table 4). A brief ex-
posure is effective only at high temperatures in birch, whereas a long exposure time is effective at all
temperatures from 10 to 25°C (Figure 1B). However, if the brief red light treatment is followed by a
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Figure 3 Germination of Veronica hederofolia (A) and Polygonum persicaria (B) seeds at alternating
temperatures following burial in the field for varying periods of time. Arrows indicate dates of burial. Veron-
ica seeds were held at 4/10°C for 16/8 hr per day in darkness; Polygonum seeds were held at 12/22°C for 12/12
hr per day and were exposed to light during 12 hr at 22°C. (Adapted from Ref. 10, based on data of Karssen
[38] and Roberts and Lockett [39].)

similar brief exposure to far-red light (730 nm), the effect of the red light treatment is nullified (Table
5). Alternating red with far-red light leads to germination or dormancy, depending on the wavelength
of last exposure. This is a classic case of a phytochrome-controlled response. Cone and Kendrick [41]
provide a thorough review of the role of phytochrome in seed germination. Certain chemicals, espe-
cially gibberellic acid, can substitute for red light treatment (see later). In seeds of some species, shade
from a plant canopy can reduce germination, relative to seeds held in darkness, by reducing the ratio
of red to far-red light [42].

E. Shallow Versus Deep Dormancy

Seeds that will germinate in response to environmental cues (light, alternating temperatures) are consid-
ered to have a shallow dormancy; those that require prolonged exposure to certain conditions (e.g., moist
chilling) are considered to have a deep dormancy. Certain seeds will not germinate immediately after har-
vest but do so after several weeks or months of dry storage (“after-ripening”) at room temperature (Table
6). This characteristic provides a safeguard against premature germination. In genotypes that do not pos-
sess this characteristic, germination can even occur on the plant, provided that moisture is abundant or
rain occurs. This is an example of viviparity (Latin vivus = alive, plus parere = to give birth). The length
of the dormant period in rice seeds is shortened as storage temperature is raised from 27 to 57°C [43].
Plotting the log of mean dormancy period (y) versus storage temperature (x) gives a straight line with neg-
ative slope (Figure 4). The depth of dormancy declines even at very low temperatures (—75°C) in seeds
of orchard grass (Dactylis glomerata), although the rate of change is extremely slow [44].

TABLE 4 Time of Illumination Required to Break Dormancy in
Seeds of Selected Species

Time required Species

Seconds or minutes ‘Grand Rapids’ lettuce (Lactuca sativa)
Several hours Lythrum salicaria

Days Kalenchoé blossfeldiana

Long photoperiods Begonia (Begonia evansiana)

Short photoperiods Hemlock (Tsuga canadensis)

Source: Adapted from Ref. 10.
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TABLE 5 Reversible Effects of Brief Exposures
to Red (R = 580 to 680 nm) and Far-Red

(FR > 700 nm) Radiation on Germination of
Lettuce Seed, cv. ‘Grand Rapids’, in Darkness

Sequence Germination (%)
Darkness 8.5

R (640-680 nm) 98

R-FR 54
R-FR-R 100
R-FR-R-FR 43
R-FR-R-FR-R 99
R-FR-R-FR-R-FR 54
R-FR-R-FR-R-FR-R 98

Source: Ref. 40.

TABLE 6 Time at Room Temperature for Dry After-Ripening of Seeds of Selected Species

Time required (months) Species Alternative method

1 Brome grass (Bromus secalinus) Chilling

2-3 Rice (Oryza sativa) —

12-18 Lettuce (Lactuca sativa) Light, chilling

60 Curled dock (Rumex crispus L.) Light, chilling, alternating tempeature

Source: Adapted from Ref. 10.

200

100

Mean dormancy period, days

i | , ! X ! 1
30 40 50 60

Storage ternperature, °C

Figure 4 Effect of storage temperature on mean dormancy period in rice. Each line represents a different cul-
tivar. (Adapted from Ref. 43.)
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If seed coat removal does not allow germination under favorable conditions, control obviously lies
within the embryo (exalbuminous seeds) and/or endosperm (albuminous seeds). Albuminous seeds are
composed primarily of endosperm; the embryo is relatively small. Warm, moist conditions for a period
of 2 to 4 months following seed dispersal are usually required for coconut and ginkgo embryos to enlarge
to the point where they are capable of germination. Some species [e.g., cowparsnip (Heracleum sphon-
dylium L.)] require chilling for embryo development [45]; embryos develop very slowly at 15°C.

In exalbuminous seeds, the embryo is fully developed at maturity. However, many such embryos will
not germinate, or germinate only sluggishly, when the seed coat is removed. Exposure to moisture and
low temperatures (0 to 10°C) for periods of 1 to 20 weeks (cool, moist stratification) is often required to
permit germination. Little or no growth of the embryo occurs during this time; the treatment alters the em-
bryo’s metabolism without affecting its morphology.

F. Epicotyl Dormancy

Some seeds [e.g., tree peony (Paeonia suffruticosa Haw.)] germinate readily without special treatment,
but the epicotyl (shoot) will not elongate unless chilled [46]. Chilling prior to germination is ineffective.

G. Double Dormancy

More than one mechanism may prevent the germination of a seed. Certain legumes [e.g., redbud (Cercis
canadensis)] not only have hard seed coats but their embryos must be chilled before germination can oc-
cur (Table 3). Scarification, followed by moist chilling, breaks their dormancy. In other seeds (e.g., Tril-
lium erectum) the radicle and the epicotyl both require chilling, but the periods at low temperature must
be sequential. The first period permits radicle protrusion, the second shoot emergence [47].

H. Thermodormancy and Secondary Dormancy

All of the types of dormancy just described are examples of primary dormancy, in which germination is
prevented by conditions within the seed at the time it matures on the plant. Thermodormancy can be in-
duced by exposure of seeds that are capable of germination at low temperatures (10 to 15°C) to high tem-
peratures (25 to 30°C). This can occur in lettuce, for example, when soil temperatures are very high. Sec-
ondary dormancy is induced when a seed that is not dormant when shed, or whose dormancy has been
partially broken, is exposed to unfavorable conditions, such as high temperature or drying. In seeds that
are chilled for less than the required time, for example, premature exposure to high temperature can elim-
inate the effects of prior chilling.

IV. BUD DORMANCY

Following bud break in the spring, shoot growth is relatively slow at the beginning of the season, accel-
erates with time, then slows and eventually stops. This pattern tends to occur even at constant tempera-
ture. As noted before, growth tends to be cyclical. Even in the humid tropics flushes of growth occur in a
more or less random fashion; one shoot on a tree may be growing rapidly while growth of another is neg-
ligible or nil. In contrast, growth of perennials in the temperate zone is synchronized. Growth ceases in
mid- to late summer and the plants pass through a dormant period lasting for several months.

Fuchigami et al. [48] have described this pattern of growth as a sine wave (degree growth stage
model), with 0° representing the end of ecodormancy/beginning of active growth; 90°, the end of active
growth (maturity induction point = beginning of paradormancy); 180°, “vegetative maturity” (beginning
of endodormancy); 270°, the time of deepest endodormancy; and 315°, the end of endodormancy/begin-
ning of ecodormancy (Figure 5). Note that phase transition is gradual rather than abrupt; endodormancy
does not end one day and ecodormancy begin the next; rather, there is a gradual transition from one phase
to the next. During the early part of the summer, removal of the shoot apex and/or defoliation relieves api-
cal dominance and permits growth of the lateral buds. This is true not only in woody plants but in many
herbaceous ones as well. Horticulturists remove the apical portion (“pinch”) chrysanthemums and petu-
nias to force branching and thereby create more attractive plants. Arboriculturists use the same practice
to stimulate the formation of lateral branches. At this time, the axillary buds are paradormant (see ear-
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Figure 5 Degree growth state model representing stages in the annual cycle of growth in woody plants. Five
sequential growth stages [spring budbreak (SBB), maturity induction point (MI), vegetative maturity (VM) (=
onset of endodormancy), maximum endodormancy (MR), and end of endodormancy (ER)] occur at 0, 90, 180,
270, and 315°C, respectively. (From Ref. 48.)

lier)—they are prevented from growing by the presence of the apex rather than by conditions within the
buds themselves. As the summer progresses, the ability of the buds to grow following apex removal de-
clines; paradormancy is gradually becoming endodormancy as control shifts from the apex to the buds
themselves. By the end of the season, the buds no longer respond to apex removal; endodormancy is now
fully established.

Many woody perennials (e.g., birch) exhibit a marked response to photoperiod, growing rapidly un-
der long photoperiods, slowly or not at all under short photoperiods. This response is truly photoperiodic
rather than being a function of total time of exposure to light per se and is an example of ecodormancy.
When plants are grown under short days but the long night is interrupted by a brief period of light, they
continue their growth. Under natural conditions, the effects of long days are often masked by other envi-
ronmental limitations, such as water supply or competition among growing points. Thus mature trees of
birch stop growth in midsummer, even though daylength is near its maximum.

Chilling temperatures appear to be required for buds to become fully endodormant. In some areas of
the tropics and subtropics where temperatures never fall below 20°C, the buds of peaches, grapes, and ap-
ples can be forced to grow by defoliation soon after harvest. This permits production of two or more crops
per year. The longer the interval between harvest and defoliation, the poorer the response. Trees that are
not defoliated may eventually become endodormant; in the absence of chilling, they cease growth entirely
and eventually die.

Endodormancy is normally broken by exposure to chilling temperatures. Optimum temperatures
vary with species but generally range from 0 to 10°C; temperatures below 0°C have little or no effect.
Considerable research has been done to determine the chilling requirements of fruit tree species and cul-
tivars, and several models have been developed to predict when these requirements have been satisfied.
For example, according to the Utah model [49], the number of chill units required for ‘Elberta’ peach and
‘Delicious’ apple are 800 and 1234, respectively [50]. A chill unit is defined as 1 hr of exposure to a tem-
perature of 6°C; higher and lower temperatures between 0 and 13°C are less efficient, and temperatures
above 13°C are inhibitory; thus adjustments must be made in calculation (Figure 6). This model, devel-
oped in the north temperate zone, may not apply in regions where diurnal temperature fluctuations are
greater. Israeli scientists have therefore developed a “dynamic” model in which temperatures alternating
between about 6 and 13-14°C are considered to have a greater effect than continuous cold in breaking
dormancy [52]. Temperatures above 15°C are inhibitory unless the exposure time is less than a critical
length. This model was more effective than the Utah model in predicting end of rest when used in Israel
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Figure 6 Curve used in estimating chill unit accumulation, based on the Utah model, for the breaking of bud
dormancy in deciduous tree fruits. Effective chilling temperature is the mean of the two temperatures measured.
Positive values are assigned to temperatures between —2 and 13°C, negative values to higher temperatures.
(From Ref. 51.)

[52]. Species and cultivars vary greatly in the number of chilling hours required. For example, the chill-
ing requirements of peach cultivars grown in Florida should not exceed 300 hr, whereas those grown in
the northernmost parts of the United States may require 800 hr or more.

Bud dormancy is not confined to woody plants. Many herbaceous perennials must be chilled before
growth can resume in the spring. Ornamental bulbs such as tulips and daffodils are planted in the fall.
Cold soil temperatures provide the chilling required to allow normal stem elongation the following spring.
If such bulbs are planted indoors, the flower stalks are much shorter and the flowers themselves may
abort. Florists meet the demand for these flowers out of season by artificially chilling the bulbs, then forc-
ing them in a warm greenhouse. Note that this period of cold temperature stimulates elongation of preex-
isting inflorescences and therefore differs from vernalization, in which chilling stimulates the initiation
of flowers. In some species, however, including Dutch iris (Iris spp.) and Easter lily (Lilium longiflorum),
vernalization indeed occurs. Although the rate of sprout development in onion bulbs is greater at 15°C
than at higher or lower temperatures [53], Abdalla and Mann [54] established that the time required for
sprouting was independent of storage temperature prior to transfer to 15°C. Thus onion differs from tulip
in not requiring chilling for floral stalk elongation.

Similarly, some tubers (e.g., Jerusalem artichoke) must be chilled before buds can grow normally.
This, of course, is not the case with crops, such as the potato, that originated in the tropics. Although
potato has no chilling requirement, the tubers are dormant at harvest. Dry storage at room temperature for
several weeks permits bud development; this parallels the response of seeds of several grains to “after-
ripening” (see earlier).

V. METHODS FOR BREAKING OR PROLONGING DORMANCY

Dormancy or lack thereof can be troublesome to the plant grower. Waiting 6 to 10 weeks or more for seeds
to be after-ripened or buds to be chilled may not be inconvenient in areas where cold temperatures pre-
vent winter production but can reduce profitability in areas where crops can be grown year-round. In the
latter areas, multiple cropping is practiced, with two or more crops being harvested each year. Thus yields
will be maximized if no dormant periods intervene.
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As noted earlier, in some areas of the tropics or subtropics, peach, apple, and grape can be multiple
cropped, although a brief dormant period intervenes between foliations. The leaves must be removed to
stimulate bud break, and chemicals, such as sodium chlorate, copper sulfate, or urea, are often applied to
injure the leaves and induce premature abscission. In areas where multiple cropping is impossible, but
chilling inadequate to completely relieve dormancy, other chemicals, such as combinations of dinitro-O-
cresol and oils, are used to hasten bud break and concentrate the bloom period. Hydrogen cyanamide
(H,NCN), which releases HCN within the tissues, is a relatively new compound that has similar effects
and has been extensively tested for this purpose [55,56].

In arid regions bud dormancy of some species can be broken by withholding water for several weeks,
then irrigating. Asparagus growers in California and Peru can produce crops year-round using this
method. Irrigation is also used in combination with rest-breaking chemicals and/or defoliation of decidu-
ous fruit trees in tropical regions [57].

In areas where chilling is adequate but spring freezes often damage flowers and/or fruits, delaying
bloom could provide protection. Evaporative cooling by misting with water can delay bloom; delays of 3
weeks or more are possible in arid climates [58,59]. However, side effects, such as poor fruit set, have
limited commercial application. This method has also been tested in warm climates for cooling buds dur-
ing the winter [60], thereby hastening the breaking of dormancy; again, commercial application has been
limited.

Methods of weakening the integuments of seeds with hard seed coats to allow water to penetrate have
already been discussed, as well as the effects of light and temperature on seeds with “shallow” dormancy.
Several growth regulators, including both gibberellins (GAs) and cytokinins, promote germination in dor-
mant or partially dormant seeds. GA is effective in stimulating germination in seeds with a shallow dor-
mancy. Light-sensitive lettuce seeds, for example, will germinate in darkness when supplied with GA.
Cytokinin, although generally effective in stimulating dark germination, can overcome the inhibitory ef-
fects of high temperatures. Abscisic acid (ABA) blocks germination in many seeds, regardless of envi-
ronmental conditions. Khan [61] tested the effects of all three hormones and their combinations on the
germination of light-sensitive lettuce seeds. The action of GA was blocked by ABA, but cytokinin coun-
teracted the effect of ABA, thereby permitting germination when all three hormones were applied. From
these data, Khan [62] proposed that the roles of GA, ABA, and cytokinin were primary, preventive, and
permissive, respectively; GA is the primary stimulus, with cytokinin being essential only when ABA is
present. Khan and others [63,64] have confirmed and extended these observations by using inhibitors of
GA synthesis to block germination and demonstrating that in some cases, cytokinin and/or ethylene is re-
quired, in addition to GA, to overcome the inhibitory effects of stress caused by water deficit, salinity,
and other conditions.

GA will also stimulate germination in some cold-requiring seeds, although some chilling is usually
required before maximum response is obtained. Cytokinins are usually less effective. Both GA and cy-
tokinins can hasten release from dormancy in buds of woody plants, as well as overcoming apical domi-
nance during the early growing season. A combination of GA,/; and benzyladenine, for example, is cur-
rently available commercially to stimulate growth of lateral buds of conifers used for Christmas trees,
thereby providing a more pleasing form.

Ethylene promotes germination in some weed species [e.g., redroot (Amaranthus retroflexus) and
lamb’s quarters (Chenopodium album)], but many species are not responsive [65]. Gibberellins and cy-
tokinins have more general effects. A few cases are known in which ethylene breaks bud dormancy, but
again, response is species dependent.

Several chemicals are effective in prolonging bud or seed dormancy. Potato tubers are regularly
fumigated with 1-methyl-3-chlorophenylcarbamate (CIPC) to delay their sprouting during storage.
Scientists are testing naturally occurring compounds as potential substitutes. Andean natives store pota-
toes in pits together with leaves of muiia (plants of the genera Minthostachys and Satureja) to delay
sprouting and reduce both weight loss and insect injury [66]. Trials with volatile components of read-
ily available essential oils demonstrated that 1,8-cineole, found in eucalyptus oil, has promise in in-
hibiting both sprouting and fungal growth [67]. Application of maleic hydrazide to the foliage of onion
plants several weeks before harvest inhibits sprouting of the stored bulbs [68]. The naturally occurring
plant growth inhibitor ABA inhibits seed germination in many species [10], although its cost prohibits
commercial use. It is less effective on buds, perhaps because of limited penetration and/or rapid
metabolism.
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Inhibitors of respiration, or more specifically, of cytochrome oxidase, can break dormancy in some
seeds, including rice [69,70], barley [71], and lettuce [72], as well as in isolated apple embryos [73]. Ap-
ple embryos also respond to anaerobiosis; holding them in nitrogen for 2 weeks or longer permits subse-
quent germination in air [74]. Other reports indicate that high oxygen tension relieves dormancy in sev-
eral grains [71,75-77]. The similar effects of these conditions that restrict versus promote respiration
suggest that different mechanisms control dormancy at different times and dictate that caution be used in
assigning causal effects to various external factors that influence dormancy. (See Roberts and Smith [78]
for a hypothesis to explain these effects.)

VI. PHYSIOLOGICAL BASIS OF DORMANCY

Despite much effort by scientists, the mechanisms that control dormancy in plants remain a mystery. How-
ever, numerous theories have been proposed to account for the phenomenon. All physiological processes
are ultimately controlled by genes, and progress is being made in identifying genes associated with dor-
mancy. Seeds of Arabidopsis thaliana require dry storage to break dormancy, but mutants have been iso-
lated that produce nondormant seeds [79,80]. The ability of such seeds to germinate has been associated
with single-gene differences in their ability to synthesize ABA or GA (see later). In maize, genes have been
identified that are responsible for preventing premature germination (viviparity) [81,82]. Again, these genes
appear to regulate the synthesis of, or sensitivity to, ABA [83-86]. Skriver and Mundy [87] and Thomas
[88] have reviewed the effects of these and related genes during embryo development. Single-gene control
of dormancy has also been demonstrated in hazel (Corylus avellana) [89] and in peach (Prunus persica)
[90], although no data are yet available on the mechanisms involved. More comprehensive information on
genetic and molecular approaches to dormancy may be found in Lang [18] and King [91].

Although control of dormancy ultimately lies within the genome, such control must be exerted via
physiological mechanisms. The many theories advanced to explain dormancy can be grouped into three
general categories: nutritional/metabolic deficiencies, blocks to membrane permeability, and excesses or
deficiencies of hormones. Briefly stated, these theories propose that the failure of a seed or bud to grow
results from (1) deficiency of a nutrient(s) or of an enzyme(s) able to metabolize such a nutrient, (2) the
inability of nutrients to reach shoot and/or root apices within the dormant organ, or (3) an excess of a
growth inhibitor(s), a deficiency of a growth promoter(s), or an improper balance between the two within
the meristem and/or adjacent tissues. In general, more attention has been devoted to hormone studies than
to the other two areas of research. Seeds are more convenient for studying dormancy than are buds, for
they are small, self-contained, and thus more easily manipulated.

A. Metabolic Aspects of Dormancy

As Bewley and Black [10] emphasized, “Dormancy cannot be equated with overall metabolic in-
activity. . . .” Respiration rates of hydrated, dormant seeds of lettuce and cocklebur differ little from those
of nondormant seeds prior to germination, and activity of hydrolytic enzymes is unlikely to be crucial, for
little mobilization of reserves occurs prior to radicle emergence [10]. Nevertheless, many studies have
compared the metabolism of dormant versus nondormant seeds and several investigators have proposed
that dormant tissues are deficient in specific enzymes required for metabolism of carbohydrates, fats,
and/or proteins.

1. Nutrient Supply

Stokes [92] differentiated between two types of seed dormancy, with embryo dormancy (“true dor-
mancy”’) being responsible for the first and lack of nutrients for the second (nonresting embryo). In the
former, interruption of chilling by exposure to high temperature can negate the effect of previous chilling
by inducing secondary dormancy, and the effects of two or more periods of chilling are less than additive.
In the latter, the effects of chilling are additive and irreversible; interruption by high temperature does not
negate the effects of prior exposure to low temperature.

The response of seeds of the second type is easier to explain, superficially, at least. The embryo is
very small and grows at the expense of the surrounding seed tissues (endosperm and/or nucellus). Chill-
ing stimulates the activity of enzymes that hydrolyze stored reserves, which the embryo cannot otherwise
utilize, to compounds that can be used for growth. Thus in seeds of cowparsnip (Heracleum spho-
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ndylium), embryos of seeds held at 15°C elongate for approximately 6 weeks, then stop growing when
approximately half their full size [45]. Although the initial rate of growth is slower in seeds held at 2°C,
elongation of the embryo continues logarithmically for 9 weeks. Parallel changes occur in the endosperm,
but in reverse (i.e., the endosperm of seeds held at 2°C is consumed by the embryo, while that in seeds
held at 15°C is not). If lack of suitable nutrients were responsible for the failure of embryos to develop at
15°C, one would expect that growth of excised embryos in vitro at 15°C could be stimulated by supply-
ing appropriate nutrients. Stokes [93] observed that arginine and glycine concentrations in the endosperm
were higher in seeds held at 2°C than in those held at 20°C. When embryos cultured in vitro at 20°C were
supplied with glucose plus various sources of nitrogen, arginine and glycine were the most effective
amino acids in supporting growth, although KNO; was the best source of nitrogen. From these and other
data, Stokes [93] concluded that exposure to 2°C stimulated embryo growth by increasing the quantities
of arginine and glycine available to the embryo.

A similar situation occurs in both black ash (Fraxinus nigra) [94] and European ash (F. excelsior)
[95,96], except that chilling is not essential for embryo enlargement but is required for germination once
embryos have reached full size. Stokes [92] provides other examples of seeds with similar requirements.
Axes from dormant hazel embryos will grow in vitro when supplied with inorganic salts and sucrose [97],
suggesting that failure of the intact embryo to germinate is due to inability to mobilize nutrients from the
cotyledons [98,99]. Application of GA3 both breaks embryo dormancy and permits mobilization of re-
serves, suggesting that gibberellin biosynthesis following chilling has a similar effect (see later).

2. Protein Metabolism

A group of proteins termed “late-embryogenesis-abundant” (Lea) proteins accumulates as seeds mature
and become dehydrated (see Ref. 87). These appear to bind water, thereby protecting macromolecules
such as nucleic acids (?) from dehydration and resultant denaturation. Lea proteins disappear during ger-
mination.

Several facts, summarized by Quatrano [100], suggest that such proteins play a role in dormancy: (1)
embryos of viviparous mutants do not synthesize these proteins if cultured on a medium containing ABA;
(2) dehydration of immature embryos induces the production of the proteins, possibly by stimulating the
synthesis of ABA; and (3) treating mature seeds with ABA prevents both germination and the loss of Lea
proteins.

Most studies of Lea proteins have involved species whose seeds either are nondormant or have a
shallow dormancy, and no studies are known involving species with deeply dormant seeds. Therefore, the
connection between such proteins and dormancy remains tenuous. ABA blocks germination while in-
ducing or maintaining the synthesis of Lea proteins, but these two responses may be unrelated.

Protein metabolism has also been implicated as a factor in the breaking of dormancy. As already
noted, holding Heracleum sphondylium seeds at 2°C permits the hydrolysis of reserve proteins and their
transfer to the embryo, whereas holding them at 20°C does not [45]. In apple embryos, however, hydrol-
ysis of reserve proteins occurs at both 5 and 20°C [101]. Furthermore, no proteolysis is observed in seeds
held in the fruit at 0°C, although this treatment also breaks embryo dormancy. Similarly, Chen and Varner
[102] reported that dormant and nondormant seeds of wild oats (Avena fatua L.) synthesize protein at sim-
ilar rates.

Lewak et al. [103] suggested that an insufficient supply of amino acids may prevent germination in
dormant apple seeds. Protease activity increases with chilling, reaching a maximum after 7 weeks, then
declines to the level observed in nonchilled seeds. The authors suggested that germination is dependent
on a supply of amino acids released by hydrolysis of proteins. However, they presented no data on the ef-
fects of amino acids on germination of dormant embryos.

Subsequent work (see later) emphasized the effects of dormancy-breaking treatments on the con-
centrations of specific proteins or polypeptides. The rationale for much of this work is that regardless of
what substances control induction or breaking of dormancy, enzymes (proteins) must be synthesized be-
fore such compounds can be produced. Therefore, changes in protein content should precede changes in
other compounds, be they carbohydrates or hormones. Protein analysis involves electrophoretic separa-
tion of extracted proteins, together with the use of radiolabeled amino acids as markers for newly syn-
thesized polypeptides. Although no significant changes were observed in total soluble protein content of
pear [104] or apple embryos [105] during chilling, Eichholtz et al. [105] observed an increase in the con-
centrations of four peptides in the embryonic axes of apple embryos held at 5°C. No changes were evi-
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dent in the cotyledons at 5°C or in either axes or cotyledons at 20°C. The authors suggested that protein
reserves might be mobilized to the axis during the breaking of dormancy.

Despite much research in this field, the picture remains confusing. Some workers have suggested that
proteins found in dormant, but not in nondormant, seeds inhibit germination [106—108]. Mahhou and
Dennis [109] reported reduced levels of large proteins (36 and 41 kDa) in the cotyledons of peach seeds
stratified at 5°C, even when the embryonic axis was excised. These changes did not occur at 20°C. In
some tissues, chilling increases the content of certain proteins (e.g., Ref. 110); in others, some proteins
increase during chilling while others decrease [111-113]. Ried and Walker-Simmons [114] have pre-
sented evidence for heat-stable proteins in embryonic axes of dormant wheat seeds that are induced by
treatment with ABA. Much higher concentrations of ABA are required to produce similar levels of pro-
teins in nondormant embryos, suggesting that sensitivity to ABA may play a role in dormancy.

3. Synthesis of Nucleotides

The limited ability of dormant tissues to convert adenosine to nonadenylic nucleotides (NTP = sum of
triphosphates of guanidine, cytosine, and uridine) has been suggested as a possible cause of dormancy.
Correlations between the ability to convert adenosine to NTP and the dormant state have been reported in
Jerusalem artichoke (Helianthus tuberosum L.) tubers [115], in apple embryos [116], and in buds or sub-
apical tissues of ash [117], willow, and hazel [118].

B. Permeability Changes

Several investigators have proposed that changes in membrane permeability are responsible for dor-
mancy. To test this hypothesis, tissues are incubated with a weak acid [5,5-dimethyl-2,4-oxazolidinedione
(DMO)]; only the undissociated form can pass through the cell membrane. Use of radioactive DMO per-
mits determination of the ratio of the concentration of DMO within the cell (C;) to the concentration in
the intercellular spaces (C.). Relative membrane permeability parallels the Ci/C, ratio. Using this method,
Gendraud and Lefleuriel [119] observed a higher Ci/C, ratio in dormant than in nondormant tubers of
Jerusalem artichoke. This implies less movement of nutrients to the meristematic tissues of dormant tu-
bers. In similar studies, Ben Ismail [120] compared Ci/C. ratios in bud versus shoot tissues of apple dur-
ing the dormant period. Higher ratios occurred in shoots than in buds during the fall and early winter, sug-
gesting limited movement of solutes from shoots to buds. Thereafter, the ratio in the buds rose to levels
higher than those observed in the shoots. Although the results parallel the expected response of intact trees
or isolated shoots, bud development in single-node cuttings exposed to laboratory conditions was reduced
only in samples collected in November.

C. Role of Hormones

The role of hormones in seed dormancy is supported primarily by the effects of applied hormones in both
inhibiting the germination of nondormant seeds (ABA) and stimulating the germination of dormant seeds
(cytokinins, GAs). However, effective concentrations are often much higher than those found in the seeds
themselves, and the response is seldom as great as one might expect. Although treatment with GA is ef-
fective in breaking dormancy in lettuce seeds, germination of peach seeds can be maximized only after
some chilling has occurred [121]. Even then, the symptoms of insufficient chilling (abnormal leaves, etc.)
are not eliminated. Furthermore, despite early reports to the contrary, few good correlations have been es-
tablished between content of endogenous hormones and dormancy status.

Several hypotheses have been proposed regarding the role of hormones in seed dormancy. Germi-
nation is prevented by:

1. High concentrations of growth inhibitors, (e.g., ABA)

2. Inhibitory concentrations of auxin [indole-3-acetic acid (IAA)]

3. Insufficient concentrations of growth promoters (GA, cytokinins)
4. Both (1) and (3)

Modifications of these hypotheses propose that:

5. Promoters are synthesized in seeds requiring chilling only following their return to warm tem-

peratures [122].
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6. High levels of promoters are required only temporarily at the beginning of the “trigger” phase
that ends dormancy [123].

7. ABA blocks the action of GAs; if both are present, cytokinin must also be present to permit GA
to act [61,62].

1. Auxin

Nikolaeva [124] determined the content of presumed IAA (wheat coleoptile segment and mustard seed
germination assays) in seeds and/or embryos of several tree species before, during, and after cold strati-
fication. Activity (promotion of coleoptile section growth, inhibition of germination) declined as stratifi-
cation was prolonged. Inhibitor activity in nondormant seeds was approximately half of that observed in
dormant seeds. Nondormant seeds treated with the naturally occurring auxin IAA produced seedlings
with symptoms similar to those of seedlings from insufficiently chilled seeds. From these and other data
she concluded that high levels of IAA prevented germination of nonchilled seeds, and that chilling re-
duced the TAA concentration to the levels found in seeds that did not require chilling. Subsequent inves-
tigators have found little support for the role of auxin in dormancy. Most later research on hormones has
focused on GAs and ABA.

2. Gibberellins

Amen [123] proposed that seed dormancy could be divided into four phases. During the induction phase,
levels of growth promoters decline and/or the seed coat becomes impermeable to oxygen; therefore, the
seed becomes dormant. During the ensuing maintenance phase, germination is prevented by endogenous
inhibitors. In the trigger phase, a factor that elicits germination but whose continued presence is not es-
sential (the trigger, e.g., light) induces the production of a germination agent, whose continued presence
is required for germination. In the final phase (germination), the germination agent [growth promoter(s)]
provides the stimulus for radicle protrusion.

Much of the evidence for this scheme is based on the effects of exogenous growth regulators on
germination; only a few studies have supported the hypothesis in terms of actual increases in seed hor-
mone content following action by “triggers,” including chilling, and light. In one such study, Williams
et al. [122] could detect little change in GA content of hazel seeds during moist chilling at 5°C. How-
ever, levels rose rapidly once dormancy had been broken, provided that the seeds were returned to
20°C.

The gibberellin (GA4) content of apple seeds rises during chilling but is no higher in fully chilled
seed than in nonchilled seed [125]. This could, of course, be interpreted as supporting a “trigger” role for
GA. Similar roles for both GA and cytokinin have been suggested in maple seeds [126].

3. Abscisic Acid

Considerable effort has been directed toward elucidating the role of ABA in controlling dormancy in
seeds. The ABA content of immature seeds of several species, including wheat [127] and rapeseed [128],
rises to a maximum, then falls as the seeds mature and dry out. Although the concentration of ABA in the
mature seed is low, desiccation reduces water content, thereby preventing germination.

The effects of ABA in preventing the germination of immature embryos in vitro plus the evidence
for the role of ABA in viviparity, noted above, strongly imply that ABA is one of the factors preventing
embryo germination. Seeds of the species investigated in these studies (e.g., maize, rapeseed) are non-
dormant or have only a shallow dormancy at harvest; similar relationships may not apply in seeds that ex-
hibit deep dormancy.

In ash (Fraxinus) seeds, ABA content is low in F. americana relative to that in F. ornus [129]. Seeds
of the former are nondormant, whereas the latter require moist chilling to break their dormancy. This dor-
mancy again is correlated with ABA content. While the ABA content of seeds of three species of Rosa is
negatively correlated with their germinability [130], the ABA content of seeds of several species of pear
bears no relationship to depth of dormancy [131], nor does the ABA content of immature or mature seeds
of Avena fatua (dormant) differ from that of seeds of A. sativa (nondormant) [132]. Differences in sensi-
tivity to ABA could, of course, explain some of these discrepancies but have seldom been tested experi-
mentally. Early results indicated that the levels of ABA or ABA-like inhibitors fell during moist chilling
of ash [129] and several other species, including apple [133]. However, subsequent investigations indi-
cated that ABA content either did not decline during low-temperature stratification [134] or that the de-
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cline was not temperature-dependent [135]. The concentration of ABA declines during soaking of lettuce
seed, regardless of their germination capacity [136].

In many of these studies the entire seed was extracted. Karssen et al. [79] proposed that the GA
and/or ABA content of the embryo may be more important than that of the whole seed. Using selected
mutants of Arabidopsis thaliana, they demonstrated that embryos recessive for ABA production were
nondormant even when the seed coat contained high levels of ABA. Later work with GA-deficient mu-
tants led Karssen et al. [80] to propose that GA content is the critical factor in germination. The seeds of
genotypes that cannot synthesize GAs remain dormant regardless of their ABA content.

Inhibitor content of buds has also been quantified in relation to dormancy. Again initial results were
promising; the inhibitor content of buds of several species, as measured by bioassay, appeared to rise
when plants were transferred from long to short photoperiods [137,138]. This work led to the identifica-
tion of ABA by Ohkuma et al. [139] and Cornforth et al. [140]. As analytical instruments have become
more sensitive and experiments more critical, however, the negative correlation between ABA content
and growth response has not been confirmed [141,142]. In fact, one laboratory reported [143,144] that
rapidly growing apices contained more ABA than did subapical tissues.

Coleman and King [145] reported a positive correlation between ABA content of tubers of 10 potato
cultivars following 2 months of storage at 10°C and the time to 50% sprouting at 20°C. However, ABA
content of three other cultivars actually increased during storage at three temperatures (2, 10, and 20°C),
yet dormancy was broken in all cases, often when ABA content was near maximal.

D. New Approaches to the Understanding of Dormancy

Relatively little is known about how genes control seed and bud dormancy, but research in molecular bi-
ology is beginning to open the “black box.” Studies of apical dominance, for example, are under way us-
ing transgenic plants that differ in the relative amounts of IAA and cytokinin synthesized. Plants with high
TAA/cytokinin ratios exhibit strong apical dominance, and vice versa [146,147], suggesting that these hor-
mones may indeed be responsible for this phenomenon. Genes for hormone synthesis in plants that ex-
hibit seed and/or bud dormancy have been identified and can now be cloned. Once these can be inserted
in the same or other species, rapid progress may be expected in elucidating the roles of such compounds
in controlling dormancy.

Vil. SUMMARY

Dormancy serves a protective function in permitting plant survival under extremes of temperature, water
deficit, and other environmental stresses, and species differ in their manifestations of dormancy. Several
types of dormancy are known, with control sometimes residing within the dormant organ, sometimes out-
side the organ. As would be expected, the conditions required to break dormancy differ with the type of
dormancy exhibited and vary from changes in light intensity or photoperiod to exposure to low or alter-
nating temperatures. Many theories have been proposed to explain the physiological basis of dormancy,
but none has proved valid in accounting for all the facts known. New approaches, especially molecular
biology, should provide new information in this important field.
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ADDENDUM

The review of literature for this chapter was completed in the early 1990s, and the information has not
been updated. In the intervening years, major advances have been made toward a better understanding of
the mechanisms controlling dormancy, particularly in the area of molecular biology. At least two sym-
posia have been devoted entirely to dormancy (Lang, 1996; Viemont and Crabe, 2000), and the many
papers in the published proceedings are valuable contributions to the literature. In addition, several book
chapters and reviews have appeared (e.g., Crabbe, 1994; Faust, et al., 1997; Fuchigami and Wisniewski,
1997; Li and Foley, 1997).

Lang’s [18] review (see above) of molecular approaches to studying dormancy is a source of refer-
ences to early work in this area. More recent work has dealt with gene insertion into woody plants (Rhode,
etal., 1996), as well as herbaceous ones. Genetic studies have also provided new insights, including those
of Foley and Fennimore (1998), of Chen, et al. (2000) with Populus, and of Koornneef, et al. (2000) with
Arabidopsis. Numerous papers on methods of modeling the effects of environmental factors that regulate
the breaking of dormancy have also appeared, e.g., Seeley (1996), and Haakinen (1999).

Some of these publications are listed below to supplement those in the original list of references.

1. Chen THH, Davis J, Frewen BE, Howe GT, Bradshaw HD Jr. In J-D Viemont, J Crabbe, eds. Dormancy in Plants:
From Whole Plant Behaviour to Cellular Control, Wallingford, Oxon, UK: CABI Publishing, 2000, p 319.

. Crabbe J. Encyclop Agr Sci 1:597, 1994.

Faust M, Erez A, Rowland LJ, Wang SY, Norman HA. HortScience 32:623, 1997.

. Foley ME, Fennimore SA. Seed Sci Res 8:173, 1998.

. Fuchigami LH, Wisniewski M. HortScience 32:618, 1997.

. Geneve RL. Seed Technol 20:236, 1998.

. Haakinen R. Tree Physiol 19:613, 1999.

. Koornneef M, Alonso-Blanco A, Bentsink L, Blankestijn-de Vries H, Debeaujon I, Hanhart CJ, Leon-Kloost-
erziel KM, Peeters AJM, Raz V. In Viemont J-D and Crabbe J, eds. Dormancy in Plants: From Whole Plant Be-
haviour to Cellular Control. Wallingford, Oxon, UK: CABI Publishing, 2000, p 365.

9. Lang GA, ed. Plant Dormancy: Physiology, Biochemistry and Molecular Biology. Wallingford, Oxon, UK: CABI
Publishing, 1996.

10. Rhode A, van Montagu M, Boerjan W. For Sci, 49:183, 1996.

11. Li B, Foley M. Trends in Plant Sci 2:384, 1997.

12. Seeley SD. In GA Lang, ed. Plant dormancy: Physiology, Biochemistry, and Molecular Biology. Wallingford,

Oxon, UK: CABI Publishing, 1996, p 361.
13. Viemont J-D, Crabbe J, eds. Dormancy in Plants: From Whole Plant Behaviour to Cellular Control. Wallingford,
Oxon, UK: CABI Publishing, 2000.
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. INTRODUCTION

Senescence has been defined as the endogenously controlled deteriorative changes that are natural causes
of death in cells, tissues, organs, or organisms [1]. The differences from the term aging are well estab-
lished, aging being all the degenerative changes that occur in time without reference to death as a conse-
quence. Aging takes place during the entire life span of an organism, whereas senescence is considered
the final developmental phase that culminates in death [1-3]. On the other hand, apoptosis or pro-
grammed cell death refers to an intracellular process by which the cell promotes a set of genetically de-
termined self-destructive activities (including specific proteolysis and nuclear chromatin fragmentation)
leading to its own death (i.e., death results from internal activity of the cell and not from ambient injuries).
It is now accepted that many features of stress response and senescence at the cellular and molecular level
are achieved through the operation of programmed cell death [4].

Senescence is a natural developmental process that may be considered as terminal differentiation be-
cause it usually takes place at the end of the life cycle of an organ or organism. However, different kinds
of environmental stress, as well as pathogenesis (i.e., biotic stress), can induce senescence at any stage of
the plant life cycle [5]. In general, the main biochemical changes associated with stress-induced senes-
cence are almost identical to those of natural senescence. Accordingly, gene expression patterns are fre-
quently coincident [6-8], or differ at the relative levels of isoenzymatic activities [9,10], but some par-
ticular genes may display specific expression in senescence processes induced by different factors
(reviewed in Ref. 11). In any case, this differential expression does not usually result in significant vari-
ation at the physiological level. This may be due to the fact that all senescence responses result from trig-
gering the same adaptive mechanisms (most of them aimed at the mobilization and transport of nutrients
out of the decaying tissues) that are constitutively present in plants. These induced adaptive responses
(collectively known as the senescence syndrome) are the hallmark of senescence, whatever the circum-
stances (aging, stress, or pathogen attack) that originated them.

Even if senescence is essentially a degenerative process, it is far from being a chaotic breakdown. On
the contrary, senescence occurs as an orderly loss of functions and structures, comprising an array of bio-
chemical and physiological processes whose ultimate goal is the efficient removal of nutrients from the
decaying tissues. The sequence of events constitutes the senescence syndrome and includes the turnover
of macromolecules and lipids and the transport of mobilized nutrients out of the senescing structures to-
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ward other parts of the plant, be these either growing organs, such as fruits or young leaves, or special-
ized storage tissues, such as the bark of deciduous trees. In this regard, it is not paradoxical that senes-
cence promotes the rise of both degradative and protective enzymatic activities because the ordered dis-
mantling needed for optimal exploitation of nutrients requires both specific degradation and protection
against uncontrolled agents, an unavoidable by-product of breakdown.

Fruit ripening is another physiological process that is usually associated with senescence because it
shares with truly senescent processes several metabolic features, especially the dismantling of chloro-
plastic components and structures. However, fruit ripening also has many particular metabolic character-
istics, and its final goal as a physiological process is different from that of senescence, being the devel-
opment of physicochemical and organoleptic properties that facilitate the spreading of seeds. This
teleological difference is reflected in the fact that fruits usually continue to act as a sink of nutrients dur-
ing ripening, whereas other senescing organs behave as a source. We will not consider the particular fea-
tures of fruit ripening in this chapter.

Despite the inherent diversity of senescence, three broad phases or stages may be distinguished in a
typical senescent process. First, there is a phase of selective degradation of certain molecules whose ly-
sis does not cause a major impairment of the physiological function of the senescent structure. Therefore,
the mobilized molecules may be thought as nutrient storage materials, and this stage may be termed stor-
age mobilization. In some cases, senescence may be reversed during this phase by suitable changes in the
environmental conditions. The second stage is characterized by the extension and generalization of
breakdown to components that are central in maintaining the physiological function, which is conse-
quently lost. Somewhere along this phase, which might be called generalized breakdown, the senescent
process becomes irreversible and the cells are definitively targeted to death. Finally, once the senescent
structure has been emptied of profitable nutrients, there is a third stage of abscission (i.e., shedding of the
senescent part from the rest of the plant) and death. Abscission, a biochemically and physiologically com-
plex process, is studied in another chapter and will not be discussed further here. Although exceptions or
overlapping of stages may be found in many particular senescent processes, the preceding three-phase
scheme may serve as a developmental outline that emphasizes the strategy of senescence.

Senescence of crop plants is of special interest because it encompasses phenomena of economic im-
portance that occur both in the field and during storage and handling of plant products of commercial
value. Moreover, on the basis of the current knowledge of the genetic control of senescent proce