- Saxena, D., Flores, S. & Stotzky, G. Insecticidal toxin in root exudates from *Bt* corn. *Nature* 402, 480 (1999).
- 3. Ellstrand, N. C. When transgenes wander, should we worry? Plant Physiol. 125, 1543-1545 (2001).
- Doebley, J. Molecular evidence for gene flow among Zea species—genes transformed into maize through genetic engineering could be transferred to its wild relatives, the Teosintes. *Bioscience* 40, 443–448 (1990).
- Ellstrand, N. C., Prentice, H. C. & Hancock, J. F. Gene flow and introgression from domesticated plants into their wild relatives. *Annu. Rev. Ecol. Syst.* 30, 539–563 (1999).
- White, S. & Doebley, J. Of genes and genomes and the origin of maize. Trends Genet. 14, 327–332 (1998).
- Wang, R.-L., Stec, A., Hey, J., Lukens, L. & Doebley, J. The limits of selection during maize domestication. *Nature* 398, 236–239 (1999).
- Piperno, D. R. & Flannery, K. V. The earliest archaeological maize (Zea mays L.) from highland Mexico: new accelerator mass spectrometry dates and their implications. Proc. Natl Acad. Sci. USA 98, 2101–2103 (2001).
- Iltis, H. From teosinte to maize: the catastrophic sexual transmutation. *Science* 222, 886–894 (1983).
 Matsuoka, T. *et al.* A method of detecting recombinant DNAs from four lines of genetically modified maize. *Shokuhin Eiseigaku Zasshi* 41, 137–143 (2000).
- Gachet, E., Martin, G. G., Vigeau, F. & Meyer, G. Detection of genetically modified organisms (GMOs) by PCR: a brief review of methodologies available. *Trends Food Sci. Technol.* 9, 380–388 (1999).
- by PCR: a brief review of methodologies available. *Trends Foods 261, Technol.* **7**, 500–506 (1999).
 12. Anonymous Development of Methods to Identify Foods Produced by Means of Genetic Engineering EU Project SMT4-CT96-2072 (Bundesinstitut für gesundheitlichen Verbraucherschutz und Veterinär-
- medizin, Berlin, 1999).
 13. Pawlowski, W. P. & Somers, D. A. Transgenic DNA integrated into the oat genome is frequently interspersed by host DNA. *Proc. Natl Acad. Sci. USA* 95, 12106–12110 (1998).
- Hartl, D. L. & Ochman, H. in *Methods in Molecular Biology* (ed. Harwood, A.) 293–301 (Humana, Totowa, New Jersey, 1996).
- Zimmermann, A., Lüthy, L. & Pauli, U. Event specific transgene detection in Bt11 corn by quantitative PCR at the integration site. *Lebensm.-Wiss. Technol.* 33, 210–216 (2000).

Supplementary Information accompanies the paper on *Nature's* website (http://www.nature.com).

Acknowledgements

We thank the Union de Comunidades Zapoteco Chinanteca (UZACHI) for access to their field laboratory, Y. Lara (Estudios Rurales y Asesoría, Oaxaca) for facilitation, A. King for Peruvian maize samples and CIMMYT maize germplasm bank for the historical control.

Competing interests statement

The authors declare that they have no competing financial interests.

Correspondence and requests for materials should be addressed to I.H.C. (e-mail: ichapela@nature.berkeley.edu).

Kranz anatomy is not essential for terrestrial C₄ plant photosynthesis

Elena V. Voznesenskaya*, Vincent R. Franceschi†, Olavi Kiirats†, Helmut Freitag‡ & Gerald E. Edwards†

* Laboratory of Anatomy and Morphology, V. L. Komarov Botanical Institute of Russian Academy of Sciences, Prof. Popov Street 2, 197376 St Petersburg, Russia † School of Biological Sciences, Washington State University, Pullman, Washington 99164-4236, USA

[‡] Morphologie u. Systematik der Pflanzen, Universität Gesamthochschule Kassel, FB19, D-34109 Kassel, Germany

An important adaptation to CO_2 -limited photosynthesis in cyanobacteria, algae and some plants was development of CO_2 -concentrating mechanisms (CCM)¹. Evolution of a CCM occurred many times in flowering plants, beginning at least 15–20 million years ago, in response to atmospheric CO_2 reduction, climate change, geological trends, and evolutionary diversification of species². In plants, this is achieved through a biochemical inorganic carbon pump called C_4 photosynthesis, discovered 35 years ago³. C_4 photosynthesis is advantageous when limitations on carbon acquisition are imposed by high temperature, drought and saline conditions. It has been thought that a specialized leaf anatomy, composed of two, distinctive photosynthesis⁴. We provide evidence that C_4 photosynthesis can function within a single photosynthetic cell in terrestrial plants. *Borszczowia aralocaspica* (Chenopodiaceae) has the photosynthetic features of C_4 plants, yet lacks Kranz anatomy. This species accomplishes C_4 photosynthesis through spatial compartmentation of photosynthetic enzymes, and by separation of two types of chloroplasts and other organelles in distinct positions within the chlorenchyma cell cytoplasm.

CO₂-concentrating mechanisms (CCM) have evolved that increase the level of CO2 at the site of fixation by the C3 photosynthetic pathway via the enzyme ribulose 1,5-bisphosphate (RuBP) carboxylase/oxygenase (Rubisco); these CCMs also negate the counterproductive oxygenase activity of Rubisco. Plants that lack a CCM directly fix atmospheric CO₂ in their photosynthetic cells via Rubisco. They are called C3 plants⁵ because the initial product of fixation is a three-carbon compound, and they show high rates of photorespiration owing to the oxygenase activity of Rubisco. CCM in terrestrial plants occur via a C4 dicarboxylic acid pathway; thus they are called C₄ plants. C₄ plants actively take up CO₂ from the atmosphere and concentrate it around Rubisco for assimilation into organic matter. This requires spatial separation of fixation of atmospheric CO₂ (via phosphoenolpyruvate carboxylase) into C₄ acids, and donation of CO₂ from C₄ acids (via C₄ acid decarboxylases) to RuBP carboxylase of the C₃ pathway.

Photosynthesis has been thought to occur in all terrestrial C_4 plants by the cooperative function of two types of photosynthetic tissue: an inner layer called Kranz or bundle sheath cells, and an outer layer of palisade cells^{4,6}. Whereas the CCM in terrestrial plants occur via a C_4 dicarboxylic acid pathway, cyanobacteria and algae employ different mechanisms¹. Besides C_3 and C_4 plants, some vascular plants fix atmospheric CO₂ at night through a C_4 pathway and further process the carbon via the C_3 pathway during the day (called crassulacean acid metabolism or CAM)⁷. This results in a temporal separation of the process rather than a spatial separation, such as in Kranz anatomy, as occurs in C_4 plants. The process of photosynthesis in C_3 and CAM plants is achieved within a single photosynthetic cell, without Kranz anatomy.

Our evidence that Kranz anatomy is not essential for C_4 plant photosynthesis in terrestrial species is based on studies with the monotypic genus *Borszczowia*. *Borszczowia* aralocaspica Bunge (subfamily Salsoloideae, family Chenopodiaceae) grows in salty depressions of Central Asian semi-deserts. It is a succulent species with unusual chlorenchyma, and its carbon isotope composition is like that of C_4 or obligate CAM plants⁸. The Chenopodiaceae family has the largest number of C_4 species among dicotyledonous plants⁴; it has high diversity in evolution of C_4 photosynthesis, including five variants of Kranz anatomy^{8,9} and two variants of C_4 biochemistry¹⁰⁻¹².

Figure 1 shows the leaf anatomy of *B. aralocaspica*, *Salsola laricina* and *Suaeda heterophylla*, all in subfamily Salsoloideae, family Chenopodiaceae. The general leaf anatomy of *B. aralocaspica* (Fig. 1a), looks similar to the C₄ salsoloid type as demonstrated by the C₄ plant *S. laricina* Pall (Fig. 1b)¹⁰. *S. laricina* has a central, main vein surrounded by water storage parenchyma, and Kranz anatomy with distinctive peripheral layers of palisade and Kranz cells. The Kranz cell chloroplasts have grana and accumulate starch, whereas the palisade chloroplasts have reduced grana and lack starch¹⁰.

However, in contrast, *B. aralocaspica* has only a single layer of unusual palisade-shaped chlorenchyma cells, which are located between the central water storage tissue and the hypodermal cells (Fig. 1a, also see ref. 8). These radially elongated chlorenchyma cells have a large, central vacuole and a layer of peripheral cytoplasm with few chloroplasts in the distal (from the vascular bundle) part of the cell and a high density of cytoplasm with numerous chloroplasts and large mitochondria (the latter observed by electron microscopy) in the proximal position (see arrows in Fig. 1a). Chloroplasts

Figure 1 Light microscopy of leaves (transverse sections). a, Borszczowia aralocaspica; b, Salsola laricina; and c, Suaeda heterophylla. ch, chlorenchyma cell; h, hypodermal cell; k, Kranz cell; p, palisade cell; v, vascular tissue; w, water storage cell. Scale bars, 50 μ m.

in the distal part of the cell lack grana, and are without starch, while those in the proximal part have grana and contain starch (Fig. 1a, also see ref. 8; observations on degree of grana formation were made by electron microscopy, not shown). There are intercellular air spaces between the distal parts, but not the proximal parts, of the chlorenchyma cells.

Thus, this plant has leaf anatomy similar to C_4 Salsola, with one notable exception: it has dimorphic chloroplasts in a single photosynthetic cell instead of in two cell types with Kranz anatomy. For comparison, Fig. 1c shows the leaf anatomy of *Su. heterophylla* (Kar. & Kir.) Bunge, a C_3 species that is also in subfamily Salsoloideae. It lacks Kranz anatomy and has two to three layers of large, palisade-

like mesophyll cells with a large central vacuole and a thin layer of cytoplasm with chloroplasts along the cell periphery, which is common for C_3 photosynthetic cells.

The unique cytological features of *B. aralocaspica* suggest that its photosynthetic cells may be biochemically compartmentalized for carbon assimilation, and represent a new photosynthesis mechanism. We have tested this hypothesis with a number of corroborative techniques. Using immunolocalization techniques, we have demonstrated the compartmentation of important photosynthetic enzymes in the chlorenchyma cells. Rubisco is concentrated in chloroplasts in the proximal part of the cell (Fig. 2a and c). With respect to enzymes of the C₄ pathway, PEP carboxylase is abundant

Figure 2 Immunolocalization of photosynthetic enzymes in leaves of *Borszczowia aralocaspica* by confocal laser scanning microscopy. Immunolocalization of Rubisco (**a**), PEP carboxylase (**b**), higher magnification showing Rubisco in chloroplasts in proximal end of cell (**c**), higher magnification showing PEP carboxylase in cytosol (**d**), pyruvate,Pi dikinase (e) and NAD-malic enzyme (f). Red dots indicate where the enzyme is present. cp, chloroplast; ch, chlorenchyma cell; h, hypodermal cell; n, nucleus; v, vascular tissue; w, water storage cell. Scale bars, 50 μ m.

letters to nature

Table 1 Activities of photosynthetic enzymes						
Species	Enzyme* activity (µmol mg chlorophyll ⁻¹ min ⁻¹)					
	Rubisco	PPDK	PEPC	NAD-ME	NADP-ME	
Suaeda heterophylla (C ₃) Salsola laricina (C ₄) Borszczowia aralocaspica	7.07 ± 0.33 1.13 2.17 ± 0.15	0.25 10.33 8.52 ± 0.42	0.3 ± 0.03 20.5 12.8 ± 0.5	2.80 ± 0.45 12.7 ± 3.1 3.76 ± 0.45	n.d. 0.39 ± 0.12 2.42 ± 0.53	

* PPDK, pyruvate, Pi dikinase; PEPC, PEP carboxylase; NAD-ME, NAD-malic enzyme; NADP-ME; NADP-malic enzyme.

Temperature of assay was 25 °C. n.d., not detected. For methods for assay of enzymes see refs 12 and 24. Standard errors where shown were for two independent replications

throughout the cytosol (Fig. 2b and d), and pyruvate, Pi dikinase (PPDK) is located in chloroplasts in the distal part of the cell (Fig. 2e), whereas NAD-ME (NAD-malic enzyme) is located proximally in the cell (Fig. 2f) in mitochondria (immunogold labelling by electron microscopy, not shown). Water storage and hypodermal cells have a few, small chloroplasts that show labelling for Rubisco, but not for enzymes of C₄ photosynthesis. This indicates the succulent water storage cells are not performing CAM⁷.

Borszczowia aralocaspica has activities of photosynthetic enzymes that are characteristic of C₄ plants¹³, as seen by comparison with the C4 S. laricina (NAD-ME subtype) (Table 1). The activities of enzymes of the C4 cycle, PPDK, PEP carboxylase, and malic enzyme, are high and more than sufficient to support the measured rates of CO2 assimilation (Fig. 3). As we already noted, the immunolocalization results show that NAD-ME is located proximally in the mitochondria in photosynthetic cells in B. aralocaspica.

Figure 3 The response of photosynthesis to varying atmospheric levels of CO₂. a, Suaeda heterophylla (C₃); **b**, Salsola laricina (C₄); and **c**, Borszczowia aralocaspica. The rates of photosynthesis were measured as described²⁶. Conditions were 25 °C, a light intensity of 1,200 μ mol quanta m⁻² s⁻¹, and varying levels of CO₂ (C_a) and O₂, as shown

The mitochondrial NAD-ME may react with both NAD⁺ and (to a lesser extent) NADP⁺ as substrate (Table 1), because no NADP-ME protein was detected on western blots or by immunolocalization (using antibody of NADP-ME from maize). In comparison, Su. heterophylla has activities of Rubisco, PEP carboxylase, PPDK and NADP-ME characteristic of C₃ species. It has significant activity of NAD-ME, a constitutive mitochondrial enzyme that is readily detected in C₃ tissue^{12,14}.

The carbon isotope composition (δ^{13} C) of the three species is given in Table 2. This diagnostic feature can be used to distinguish types of photosynthetic mechanisms based on the carboxylation enzymes operating. C₃ plants have a more negative value of $\delta^{13}C$ because atmospheric CO2 is fixed by Rubisco, which discriminates against ¹³CO₂. C₄ plants have a more positive value because atmospheric CO2 is fixed by PEP carboxylase, which does not discriminate against ¹³CO₂. The CO₂, which is subsequently donated to Rubisco, is compartmentalized and largely fixed with minimal leakage¹⁵. The high δ^{13} C value for *S. laricina* is typical of that of C₄ plants, while the low value for Su. heterophylla is typical of that for C3 plants. Of significance to the hypothesis of operation of a single-cell C4 mechanism, *B. aralocaspica* has δ^{13} C values that are clearly of C₄ origin.

Rubisco is a bifunctional enzyme, where CO₂ and O₂ are competitive substrates for reaction with RuBP¹⁶. Whereas reaction of RuBP with CO2 results in carbon assimilation, reaction with O2 results in photorespiration. This is an apparently counterproductive process that is a significant component of photosynthetic activity in C_3 plants, but not in C_4 plants, owing to the localized CO_2 concentrating effect of the C4 mechanism. Thus, the response of photosynthesis to varying CO₂ and O₂ is also diagnostic for the C₃ versus C4 mechanism of carbon assimilation. Ambient levels of O2 (21%) inhibit photosynthesis in Su. heterophylla at varying levels of CO₂, a characteristic of C₃ plant photosynthesis, whereas photosynthesis in S. laricina is insensitive to O₂, as is typical of C₄ plants (Fig. 3a, b). The response of *B. aralocaspica* is also like that of C_4 plants, in that O₂ does not inhibit photosynthesis (Fig. 3c); in fact, there is some stimulation by O₂ under limiting CO₂, which has been previously observed in some C₄ species¹⁷. Even at the CO₂ compensation point, where there is no net CO₂ fixation, O₂ does not affect photosynthesis. This suggests that photorespiration is restricted, and that, at this point, the rate of CO₂ fixation by Rubisco equals the rate of dark respiration. B. aralocaspica also has substantial rates of respiration in the dark, ruling out the possibility that its growth occurs through fixation of atmospheric CO₂ in the dark through PEP carboxylase via crassulacean acid metabolism (CAM).

Table 2 Comparison of carbon isotope composition (δ^{13} C) of	leaf tissue
--	-------------

Species	Carbon isotope value (δ^{13} C)
Suaeda heterophylla (C ₃) Salsola laricina (C ₄) Borszczowia aralocaspica	-25.34*, -27.28† -14.80‡ -12.37*, -13.78§
10	

The δ^{13} C isotope values were determined as described²⁵

* Original data on leaves from plant material used in current study. † Original data from leaves kindly provided by W. Stichler, average of two replications.

‡ Data from ref. 12.

§ Data from ref. 8

letters to nature

Thus our results prove that C₄ photosynthesis exists in a terrestrial plant without the dual-cell Kranz anatomy system. C4 photosynthesis is accomplished within a single cell by novel cytological features that allow spatial separation of the biochemical events necessary for operation of the C4 mechanism. Until now, the separation of functions in terrestrial C4 plants has been associated only with Kranz-type leaf anatomy. B. aralocaspica has evolved a unique solution for the requirement of spatial separation of these biochemical functions within a single cell. PPDK is positioned at the distal part of the cell, where it can generate PEP, the substrate for PEP carboxylase. PEP carboxylase fixes atmospheric CO₂ supplied to the cell through the adjoining intercellular air spaces. NAD-ME and Rubisco are compartmentalized to the interior of the cells, where CO₂ can be donated from C₄ acids to the C₃ pathway. The C₄type δ^{13} C values and lack of inhibition of photosynthesis by O₂ demonstrate that CO₂ can be concentrated sufficiently around Rubisco through this specialized compartmentation to minimize photorespiration. The physical requirements for C₄ photosynthesis may be met by the existence of a sufficiently high diffusive resistance in the aqueous phase between sites of CO₂ donation to Rubisco in the proximal ends of the cells and sites of fixation of atmospheric CO_2 by PEP carboxylase at the distal ends.

Our results are relevant to the discussion of evolution of C_4 photosynthesis in plants, because the first land plants were C_3 species^{2,4}. C_4 species are an important component of global ecosystems and there is interest in their evolution and the consequences to evolution of mammals^{2,4,18,19}. Palaeorecords have been used to study how long C_4 plants have existed on Earth by finding well preserved fossils that have Kranz anatomy and C_4 -type isotope composition. Now our results indicate that it is possible that plant fossils with a C_4 isotope composition but without Kranz anatomy may be C_4 species (rather than CAM species).

 C_4 plants are also of considerable interest because this mechanism of photosynthesis has an advantage over C_3 plants for conversion of solar energy into biomass in hot, dry and/or saline habitats. Maize, sugarcane and sorghum are important C_4 crop plants, but most agricultural crops, including rice and wheat, are C_3 plants. This has led to interest in genetically engineering C_3 crops to perform C_4 photosynthesis in order to increase productivity^{20,21}. Although this may require alterations in anatomy as well as biochemistry, our results indicate that it would not require development of two photosynthetic cell types.

Methods

Plants were grown under controlled growth conditions with day/night temperatures of 25/18 °C, and a 14/10 h photoperiod, with a stepwise increase and decrease in light intensity during the day to a maximum photosynthetic quantum flux density of 1,100 µmol $m^{-2} s^{-1}$. For immunolocalization studies, samples were prepared as described¹⁰. Antibodies used were anti-spinach Rubisco (LSU) IgG (courtesy of B. McFadden), anti-maize PPDK IgG (courtesy of T. Sugiyama), anti-maize PPDK IgG (courtesy of C. Andreo²²), and anti-*Amaranthus hypochondriacus* mitochondrial NAD-ME IgG, which was prepared against the α subunit with M_{c} 65,000 (courtesy of J. Berry²³). For details of techniques used for immunolocalization by light microscopy see ref. 10. The background labelling with preimmune serum was non-specific and low to nonexistent (results not shown but see ref. 10).

Received 14 August; accepted 18 October 2001.

- Badger, M. R. & Spalding, M H. in *Photosynthesis: Physiology and Metabolism* (eds Leegood, R. C., Sharkey, T. D. & von Caemmerer, S.) 369–397 (Kluwer Academic, Netherlands, 2000).
- Sage, R. F. Environmental and evolutionary preconditions for the origin and diversification of the C₄ photosynthetic syndrome. *Plant Biol.* 3, 202–213 (2001).
- Hatch, M. D. in *Photosynthesis and Photorespiration* (eds Hatch, M. D., Osmond, C. B. & Slatyer, R. O.) 139–152 (Wiley-Interscience, New York, 1971).
- 4. Sage, R. F. & Monson, R. K. C4 Plant Biology (Academic, San Diego, 1999).
- Edwards, G. E. & Walker, D. A. C₃:C₄: Mechanisms, and Cellular and Environmental Regulation, of Photosynthesis (Blackwell Scientific, Oxford, 1983).
- Edwards, G. E., Furbank, R. T., Hatch, M. D. & Osmond, C. B. What does it take to be C₄? Lessons from the evolution of C₄ photosynthesis. *Plant Physiol.* 125, 46–49 (2001).
- 7. Winter, K. & Smith, J. A. C. Crassulacean Acid Metabolism (Springer, New York, 1996).
- Freitag, H. & Stichler, W. A remarkable new leaf type with unusual photosynthetic tissue in a central asiatic genus of Chenopodiaceae. *Plant Biol.* 2, 154–160 (2000).

- Carolin, R. C., Jacobs, S. W. L. & Vesk, M. The structure of the cells of the mesophyll and parenchymatous bundle sheath of the Gramineae. *Bot. J. Linn. Soc.* 66, 259–275 (1973).
- Voznesenskaya, E. V., Franceschi, V. R., Pyankov, V. I. & Edwards, G. E. Anatomy, chloroplast structure and compartmentation of enzymes relative to photosynthetic mechanisms in leaves and cotyledons of species in the tribe Salsoleae (Chenopodiaceae). J. Exp. Bot. 50, 1779–1795 (1999).
- Voznesenskaya, E. V. & Gamaley, Y. V. The ultrastructural characteristics of leaf types with Kranzanatomy. *Bot. Zh.* 71, 1291–1307 (1986) (in Russian).
- Pyankov, V. I. et al. Occurrence of C₃ and C₄ photosynthesis in cotyledons and leaves of Salsola species (Chenopodiaceae). Photosynth. Res. 63, 69–84 (2000).
- Kanai, R. & Edwards, G. in C₄ Plant Biology (eds Sage, R. F. & Monson, R. K.) 49–87 (Physiological Ecology series, Academic, San Diego, 1999).
 - Pyankov, V. I. *et al.* Features of photosynthesis in *Halaxylon* species of Chenopodiaceae that are dominant plants in Central Asian deserts. *Plant Cell Physiol.* **40**, 125–134 (1999).
- Farquhar, G. D. On the nature of carbon isotope discrimination in C₄ species. *Aust. J. Plant Physiol.* 10, 205–226 (1983).
- Laing, W. A., Ogren, W. L. & Hageman, R. H. Regulation of soybean net photosynthetic CO₂ fixation by the interaction of CO₂, O₂, and ribulose 1,5-diphosphate carboxylase. *Plant Physiol.* 54, 678–685 (1974).
- Maroco, J. P., Ku, M. S. B. & Edwards, G. E. Utilization of O₂ in the metabolic optimization of C₄ photosynthesis. *Plant Cell Environ.* 23, 115–121 (2000).
- 18. Cerling, T. E., Quade, J. & Wang, Y. Expansion and emergence of C₄ plants. *Nature* 371, 112 (1994).
- Pagani, M., Freeman, K. H. & Arthur, M. A. Late Miocene atmospheric CO₂ concentrations and the expansion of C₄ grasses. *Science* 285, 876–878 (1999).
- Sheehy, J. E., Mitchell, P. L. & Hardy, B. Redesigning Rice Photosynthesis to Increase Yield (IRRI and Elsevier Science, Makati City, Philippines, 2000).
- Matsuoka, M., Furbank, R. T., Fukayama, H. & Miyao, M. Molecular engineering of C₄ photosynthesis. *Annu. Rev. Plant Physiol. Plant Mol. Biol.* 52, 297–314 (2001).
- Maurino, V. G., Drincovich, M. F. & Andreo, C. S. NADP-malic enzyme isoforms in maize leaves. Biochem. Mol. Biol. Int. 38, 239–250 (1996).
- Long, J. J., Wang, J.-L. & Berry, J. O. Cloning and analysis of the C₄ photosynthetic NAD-dependent malic enzyme of amaranth mitochondria. J. Biol. Chem. 269, 2827–2833 (1994).
- Voznesenskaya, E. V. et al. Salsola arbusculiformis, a C₃-C₄ intermediate in Salsoleae (Chenopodiaceae). Ann. Bot. 88, 337–348 (2001).
- Akhani, H., Trimborn, P. & Ziegler, H. Photosynthetic pathways in *Chenopodiaceae* from Africa, Asia and Europe with their ecological, phytogeographical and taxonomical importance. *Plant Syst. Evol.* 206, 187–221 (1997).
- Dai, Z., Ku, M. S. B. & Edwards, G. E. Oxygen sensitivity of photosynthesis in C₃, C₄, and C₃-C₄ intermediate species of *Flaveria*. *Planta* 198, 563–571 (1996).

Acknowledgements

We thank the Electron Microscope Center of Washington State University for use of facilities and staff assistance. We thank N. Ogar and H. Akhani for supply of viable seeds, and S. Huber, C. A. Ryan and T. Okita for comments on the manuscript. This work was supported by the National Science Foundation (G.E.E.) and the DFG (H.F.).

Correspondence and requests for materials should be addressed to G.E. (e-mail: edwardsg@wsu.edu).

Interactive memory systems in the human brain

R. A. Poldrack*†, J. Clark*, E. J. Paré-Blagoev*†, D. Shohamy‡, J. Creso Moyano‡, C. Myers& M. A. Gluck‡

* Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, and Harvard Medical School, Charlestown, Massachusetts 02131, USA
† Harvard Graduate School of Education, Cambridge, Massachusetts 02138, USA
‡ Center for Molecular and Behavioural Neuroscience; and § Department of Psychology, Rutgers University, Newark, New Jersey 07102, USA

Learning and memory in humans rely upon several memory systems, which appear to have dissociable brain substrates^{1,2}. A fundamental question concerns whether, and how, these memory systems interact. Here we show using functional magnetic resonance imaging (FMRI) that these memory systems may compete with each other during classification learning in humans. The medial temporal lobe and basal ganglia were differently engaged across subjects during classification learning depending upon whether the task emphasized declarative or nondeclarative memory, even when the to-be-learned material and the level of performance did not differ. Consistent with competition between