
Melatonin and serotonin in flowers and fruits of Datura metel L.

Introduction

Datura metel L., commonly known as �Devil�s Trumpet�
or �Angel�s Trumpet� is a narcotic plant with a long
history of use as a medicine by many cultures from

around the world. In Traditional Chinese Medicine, the
flowers of D. metel are known as �baimantuoluo� and
prescribed for skin inflammation and psoriasis [1]. In
Ayurvedic medicine, seeds of D. metel are used to treat

skin rashes, ulcers, bronchitis, jaundice and diabetes [2].
In Brazil, seeds are prepared in a tea as a sedative and
flowers are dried and smoked as cigarettes [3]. The

anticholinergic activity of flowers and seeds of D. metel
has been described in several cases of accidental poison-
ing with symptoms such as delirium, drowsiness, agita-

tion, hallucination, ataxia, myoclonus jerking, convulsion,
coma, dilated pupils, dry mouth, dry skin, hyperthermia,
sinus tachycardia, cardiac conduction abnormalities, dys-

rhythmia, urinary retention and paralytic illnesses [4].
Chemically, D. metel is a source of tropine alkaloids such
as hyoscyamine, scopolamine, anisodamine, and aniso-
dine as well as megastigmane sesquiterpenes [5] and

recently withanolides [6, 7].
Melatonin has been found to be a potentially active

constituent in medicinal plants [8, 9] and previous

preliminary evidence indicated that melatonin may be
present in Datura species [10] but comprehensive studies
have not been conducted. Recent reviews have high-

lighted the importance of melatonin from the perspectives
of the physiology of the plants and the activity of
phytomelatonin in human physiology [11–13]. The known

physiological functions of melatonin in animals include
the timing of circadian rhythms and signaling of envi-

ronmental changes, neurotransmission, and detoxification
of reactive oxygen species (ROS) and other free radicals
[14–16] but the biochemical role(s) of melatonin in plant

physiology have yet to be clearly elucidated [13, 17].
Further, recent research has indicated that the melatonin
metabolite AFMK (N1-acetyl-N2-formyl-5-methoxyky-

nuramine) and similar related metabolites may provide
plant tissues with additional protection from oxidative
damage through direct radical scavenging [13, 18–20].
Previous workers have hypothesized that melatonin may

serve as an antioxidant [18, 21, 22] or a plant growth
regulator [23, 24] in flower and seed development of
plants.

The current study was undertaken to determine the
presence of melatonin and serotonin in the flower and
fruit tissues of D. metel, to understand the changes in

melatonin content with the maturity of the fruit and
flower tissues and to determine whether environmental
factors could affect the melatonin and serotonin content of

D. metel tissues.

Materials and methods

Plant material

The seeds of D. metel var. fastuosa were obtained from

the Kampong Botanic Garden (Coral Gables, FL, USA)
and aseptic plant cultures were established by germinating
surface sterilized seeds in vitro. Seeds were surface

sterilized by dipping in 70% ethanol for 30 s followed
by sterilization in 20% Clorox with 0.1% Tween-20 for
30 min and three washes in sterile water. Four seeds were
placed in a Magenta box containing 65 mL of MSO
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medium consisting of MS salts [25], B5 vitamins [26],
2.5 g/L gelrite (Sigma Chemical Co., St Louis, MO,
USA), 30 g/L sucrose, and pH adjusted to 5.75 before

sterilization. The cultures were maintained in a culture
room set for 16 h light at 28�C and 8 h dark at 24�C.
The individual plants were clonally maintained through
subculturing of shoot cuttings. Shoot tips with 2–3 nodes

were excised from the in vitro-maintained plants and
transferred to Magenta boxes with fresh MS0 medium.
Three plants from these cultures were transplanted into

pots filled with Promix soil-less mix (Promix BX, Premier
Horticulture Ltd, QC, Canada). The pots were covered
with plastic bags and placed in a growth chamber set for

16 h light at 24�C and 8 h dark at 20�C and 80% relative
humidity. The plastic bag covers were removed after 1 wk
and plants were kept in the growth chamber for another
3 wks before transfer to a regular greenhouse where they

were kept throughout the experiment. Plants were
watered with 20–8–20 fertilizer (Plant Products Co. Ltd,
Brampton, ON, Canada) daily and supplemented with

16 h light (between 6:00 and 22:00 h) in the greenhouse.
Plants started blooming about 2 months after transplan-
tation.

Collection of flower buds and fruits for chemical
analysis

All flower buds used for the chemical analyses were
collected between 06:30 and 08:30 h. Flower buds col-
lected were grouped into 10 classes based on their length

(1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, and 8 cm). About half of
the flowers were immediately frozen in liquid nitrogen
while the other half was placed in plastic bags and kept

at 4�C in the dark for 3 days (cold treatment) before
freezing in liquid nitrogen. Fruits were collected at
various stages of development following anthesis (day 1,

2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45 after anthesis and
dried fruit). Fruits from 10 day and later stages were cut
in half and one half was dissected to flesh and seeds.
Whole ovary and pistils were used from day 10 and

earlier stage fruits. Fruit tissues from all stages were
frozen in liquid nitrogen. All frozen flower buds and
fruit tissues were stored in a freezer at )80�C until

analyzed.

Chemical extraction and analyses

Samples of D. metel flowers and fruits were analyzed for
melatonin and serotonin content using a slightly modified

version of the previously described method [10]. Briefly,
frozen samples were accurately weighed, cut into smaller
pieces and transferred to a 50 mL beaker for extraction.
Methanol (80%) was added on a weight to volume ratio

of 1 g to 10 mL and samples were sonicated in an
ultrasonic bath (Bransonic 1510R-MT, 42KHZ) for
45 min. Sample extracts were then filtered (hydrophilic

PTFE, 0.45 lm syringe filters, Millipore Inc). The
extraction was repeated and the filtrates combined with
the final volume recorded and 10 lL of the final extract

was separated and quantified by HPLC-MS/MS using the
MRM mode.

Chromatography/mass spectrometry

Auxin and indoleamines were identified by comparison to

certified analytical standards of melatonin (N-acetyl-5-
methoxytryptamine), serotonin (5-hydroxytryptamine),
and indole-3-acetic acid (Sigma Chemical Co.). All separa-
tions were performed with an Alliance series High perfor-

mance liquid chromatographic system (Waters Inc.,
Mississauga, ON, Canada) coupled with a Premier series
LCT MS/MS (Waters Inc.) and controlled with a Masslynx

V4.0 Data Analysis System (Waters Inc.) described previ-
ously [10]. Compounds were separated with an Xterra C18
HPLC column (2.1 · 1000 mm, 3.5 lm; Waters Inc.)

heated to 30�C with a gradient of 0.45% formic acid:aceto-
nitrile (0–5 min, 95:5% v/v, 5–6 min, 95;5–0:100% v/v,
6–16 min, 0:100% v/v). The indoleamines were eluted at
0.25 mL/min over a 20 min period and detected within the

MS/MS in ESI positive mode using the MRM mode and
optimized parameters for each metabolite (Fig. 1B; [10]).
The method detection limit (LOD) for melatonin, serotonin

and IAA was defined as the analyte concentration produc-
ing a signal of at least 2 times higher than noise while the
limit of quantification was defined as the inflection point at

the bottom of the linear range. For melatonin, an LOD was
determined as 0.01 ng/mL with an LOQ of 2 ng/mL while
serotonin had an LOD of 0.05 ng/mL and an LOQ of

10 ng/mL. The LOD for IAA was 0.01 ng/mL with an
LOQ of 2 ng/mL. Recovery of melatonin, serotonin and
IAA from the extraction and chromatography was 92%,
92% and 91%, respectively (n = 5).

Results

Fruit and flowers of D. metel are used for the preparation
of many different types of traditional medicines and served
as the source material for these experiments. Flowers

appear as vase-shaped, purple blooms on a black stem in
both greenhouse-grown and garden-grown D. metel
(Fig. 1A). Melatonin, serotonin and the plant growth
regulator indole-3-acetic acid were analyzed by HPLC with

tandem MS/MS and MRM monitoring (Fig. 1B). Auxin
recovery in flower tissues was not sufficient for analytical
quantification whereas serotonin and auxin were not

detected in the seed tissues (Fig. 1B,C).
Flowers were collected during the various stages of

development ranging from a 1 cm long bud to an 8 cm

long, fully developed flower (Fig. 2A). Both melatonin and
serotonin were found throughout the development of the
flowers and were found at the highest concentrations

in young flower buds approximately 1 cm in length
(Fig. 2B,C). Melatonin and serotonin concentrations
declined as the flower buds matured and the levels of both
of these neuroindoles dropped below detection limits when

the flowers reached a length of 7–8 cm. At this size, the
flower buds were fully developed, open and mature
(Fig. 2A). Fruit and developing seeds of D. metel were

collected beginning 1 day after anthesis and collection
continued for 45 days (Fig. 3). At 10 days after anthesis,
the fruit appeared soft, fleshy and purplish (Fig. 3A). Seeds

developed in the fruit around day 20–25 (Fig. 3B). After
about 45 days, the fruit became desiccated and split open
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allowing the seeds to disperse (Fig. 3C). Melatonin was
quantified at several stages in the developing fruits, seeds
and embryos (Fig. 3D). Initial high levels of melatonin in
the fruit declined after the first 10–15 days following

anthesis (Fig. 3D). High levels of melatonin were found
in the developing ovules after 10–15 days corresponding to
the early stages of seed development (Fig. 3D). Very little

melatonin was quantified in the fleshy part of the fruit and
melatonin levels in the intact fruits were not significantly
different from melatonin levels in isolated ovules of the

same age between 30–45 days (Fig. 3D). Serotonin was not
detected in the developing fruit.

The hypothesis that melatonin may function as a

mechanism to protect reproductive plant tissues from
environmental stresses was tested with a 4�C cold treatment
for 3 days. The smallest flower buds of D. metel had the

highest concentrations of both melatonin and serotonin
(Fig. 4A,B). The exposure of the flower buds to a cold
stress significantly increased the concentrations of both
serotonin and melatonin in the youngest buds at

the most sensitive stage of reproductive development
(Fig. 4A,B).

Discussion

Despite a wide spread occurrence of melatonin in plants,

the knowledge of its physiology and functions in plants
remains limited. In general, melatonin in plants has been
shown to mediate photoperiodic responses, root develop-

ment mimicking auxin, and stress caused by environmental
and chemical factors through scavenging the free radicals
[20, 21, 24, 27–30]. Previous studies have shown that
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Fig. 1. Detection and quantification of melatonin, serotonin and auxin (indole-3-acetic acid) in flowers of D. metel. (A) The flower of
D. metel is vase shaped and grows upward from the apex of the black stem of the plant. (B) Chromatogram showing the separation and
identification of standards of melatonin, auxin and serotonin in D. metel by HPLC-MS/MS with MRM monitoring. (C) Chromatogram
showing the detection of melatonin, auxin and serotonin in a seed of D. metel. Note: Serotonin and auxin were not detected in the seed
tissues and auxin recovery in flower tissues was not sufficient for analytical quantification.
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melatonin may act as a plant growth regulator to direct the

differentiation of plant cells into tissues and organs [27–30]
but specific mechanisms of action remain to be discovered.
We analyzed the melatonin and serotonin levels in

developing flower buds and ovules of D. metel and recorded

three interesting observations in this study: (i) the presence
of higher melatonin and serotonin concentrations in young
flower and tissues of D. metel; (ii) enhanced melatonin and

serotonin levels in cold treated, young flower buds; and

(iii) decline in melatonin and serotonin content in progres-

sively differentiated tissues of the fruit. Interestingly, only
the young buds and the early stages of ovule and fruit
development showed a high melatonin and serotonin
content and mature buds or fruit had little of both

compounds. Previous studies with tomatoes have found
higher concentrations of melatonin in the later stages of
fruit development [24] but the mature fruits of D. metel are

desiccated rather than ripe and fleshy. Together these
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Fig. 2. Melatonin and serotonin concen-
trations during flower development of
D. metel. (A) Flower buds were harvested
throughout the development cycle and
separated by size. The exact length of each
individual flower bud was recorded and
flowers were grouped by size for chemical
analysis. (B) Quantification of serotonin in
the flower buds. (C) Quantification of
melatonin in the flower buds.
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results provide support for the hypothesis that the balance

of melatonin and its metabolites may play a protective role
in early stages of the development of reproductive cells and
embryonic tissues [15, 19–21]. This hypothesis is further

supported by the observation that an exposure of buds to a
cold stress resulted in elevated levels of both melatonin and
serotonin, but only in younger buds with insignificant

changes in older buds which contained relatively mature
reproductive tissues.

The process of formation of reproductive tissues is
highly sensitive to potential environmental damage from

abiotic stressors. Stress inducers such as cold tempera-
tures, UV irradiation or exposures to metal ions that can
induce generation of reactive oxygen species (ROS)

leading to the phenomenon of oxidative stress [31, 32]
which may impair the normal development of plant
tissues and organs. A few days of cold treatment of rice

anthers at the young microspore stage induced severe
pollen sterility [33]. In a cytoplasmic male sterile line of
rice the oxidative stress originating in mitochondria was

found to be associated with premature abortion of
microspores in the early stage of pollen development
[34]. As well, the treatment of maize anthers with the
ROS progenitors resulted in abnormal cell divisions and

progeny cell degradation during the development of the
microspores [35]. Similarly, the development of fertilized
egg to an embryo has been found to be sensitive to a

multitude of environmental factors. Arabidopsis plants
under stress showed accumulation of ROS in very early
stages of embryo development beginning with the egg or

central cell and subsequently spreading into other regions

[36]. Given the sensitivity of plant reproductive tissues
during the development of anthers, microspores, ovules
and seeds, the presence of melatonin at relatively high

levels at these early stages may serve to protect the
developing seed [21, 22] or to guide the normal repro-
ductive process [23]. A recent study [37] with transgenic

rice has suggested that serotonin may also play a
protective role against ROS in delaying the process of
senescence. It is likely that serotonin in D. metel acts as
an antioxidant in protecting the young reproductive

tissues either independently or synergistically with mela-
tonin. Absence of serotonin in fruits is suggestive of a
relatively lesser sensitivity of mature tissues to environ-

mental stress.
The original work to investigate melatonin in medicinal

plants hypothesized that the presence of high levels of

melatonin in plants traditionally used in the treatment of
neurological disorders may contribute to the medicinal or
pharmacological efficacy in humans [8]. In the last decade,

many plant species that are neurologically active in humans
have been found to contain melatonin and serotonin as well
as a variety of other neurotransmitters [13, 17]. Recent
research has determined that melatonin consumed in

medicinal plants, nuts and vegetables [38–40] is absorbed
through the human digestion system and metabolites of
plant-based melatonin have been found in urine samples

[39]. Such data indicates that melatonin in our diets and
plant-based medicines can affect our health and may have
an impact in several chronic diseases.
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