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There is increasing evidence that nitric oxide (NO), which was

first identified as a unique diffusible molecular messenger in

animals, plays important roles in diverse (patho)physiological

processes in plants. NO functions include the modulation of

hormonal, wounding and defence responses, as well as the

regulation of cell death. Enzymes that catalyse NO synthesis

and signalling cascades that mediate NO effects have

recently been discovered, providing a better understanding of

the mechanisms by which NO influences plant responses to

various stimuli. Additionally, growing evidence suggests that

NO signalling interacts with the salicylic acid and jasmonic

acid signalling pathways.
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Abbreviations
ABA abscisic acid

cADPR cyclic ADP-ribose

GC guanylate cyclase

GDC glycine decarboxylase complex

HR hypersensitive response

iNOS pathogen-inducible NOS

JA jasmonic acid

NO nitric oxide

NOS nitric oxide synthase(s)

NR nitrate reductase

PAL phenylalanine ammonia lyase gene

PCD programmed cell death

PR pathogenesis-related gene
SA salicylic acid

sGC soluble GC

TMV tobacco mosaic virus

Introduction
As recently as 1987, nitric oxide (NO) was widely con-

sidered to be just a toxic gas. By the early 1990s, however,

overwhelming evidence argued that NO was an integral

part of normal physiological processes in animals. This

discovery led to a major revolution in biomedical research

[1,2]. By the late 1990s, NO was identified as an important

messenger in plant defence signalling against microbial

pathogens [3,4]; it was subsequently shown to be a crucial

player in the regulation of normal plant physiological

processes, including stomatal closure, growth and devel-

opment [5��,6,7�]. In this review, we discuss recent pro-

gress that has deepened our understanding of NO

synthesis and signalling functions in plants, with special

emphasis on hormonal and defence signalling.

NO synthesis
In animals, NO is generated primarily by nitric oxide

synthase(s) (NOS), a group of evolutionarily conserved

cytosolic or membrane-bound isoenzymes that convert

L-arginine to L-citrulline and NO [2,8]. In plants, although

NOS-like activity has been reported widely, it has not

been possible to identify corresponding plant proteins

using antibodies against mammalian NOS(s) [9]. Re-

cently, however, two unrelated groups of NOS-like

enzymes have been identified in plants: a pathogen-

inducible NOS from Arabidopsis thaliana and tobacco

(iNOS; [10��]) and a hormone-activated NOS from A.
thaliana (AtNOS1; [5��]). The pathogen-inducible NOS

is a variant of the P protein of the glycine decarboxylase

complex (GDC) [10��]. It displays typical NOS activity

and requires the same co-factors as its mammalian coun-

terparts (Table 1). However, as only a few of the con-

served domains required for NO synthesis by animal/

microbial NOS are evident in this enzyme, iNOS prob-

ably uses distinct chemistry to generate NO. iNOS was

shown to produce NO in A. thaliana plants that were

resisting infection by turnip crinkle virus [10��], and in

tobacco plants treated with tobacco mosaic virus (TMV)

or the fungal elicitor cryptogein [10��,11]. Furthermore,

iNOS is a key enzyme for the maintenance of basal

resistance to Pseudomonas syringae in tomato [12�]. The

hormone-activated NOS was cloned on the basis of its

sequence similarity to a protein implicated in NO synth-

esis in the snail Helix pomatia [5��]. AtNOS1 does not

share sequence identity with either mammalian NOS or

the plant iNOS, and surprisingly, displays a flavin-, heme-

and tetrahydrobiopterin-independent NOS activity

(Table 1). AtNOS1 has been implicated in NO produc-

tion in response to abscisic acid (ABA) [5��]. Moreover,

because an AtNOS1-knockout mutant showed reduced

growth and fertility, it is probable that AtNOS1 catalyses

NO production in response to a wide range of hormonal

and other signals.
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Nitrate reductase (NR) is another enzyme that is capable

of producing NO in plants [13,14]. It catalyses the

NAD(P)H-dependent reduction of nitrite to NO

(Table 1). Genetic evidence indicates that NR-mediated

NO synthesis is required for ABA signalling in A. thaliana
[15�], a function also assigned to AtNOS1 [5��]. In addi-

tion, because NR gene expression is induced at the

transcriptional and protein levels in potato tubers treated

with either Phytophthora infestans or an elicitor derived

from this oomycete pathogen, NR may synthesise NO

during plant defence [16].

NO production may involve not only other currently

unidentified enzyme activities but also non-enzymatic

principles (Table 1; [17]). For instance, recent work has

shown that a non-enzymatic reduction of nitrite to NO

occurs in the apoplast of barley aleurone layers [18�]. This

NO production required an acidic pH and was accelerated

by reducing agents such as phenolic compounds. Further-

more, apoplastic non-enzymatic NO synthesis was

observed in response to gibberellin and ABA, two hor-

mones that rapidly acidify the apoplastic medium. The

physiological significance of this non-enzymatic NO pro-

duction is currently unknown.

cGMP, cADPR and Ca2R: three second
messengers mediating NO signalling
Soluble guanylate cyclase (sGC) is a crucial component

of NO signalling in animals. NO binds to sGC heme,

thereby activating the enzyme and increasing the level of

the second messenger cGMP. cGMP, in turn, transiently

activates various cGMP targets. A similar transduction

system appears to function in plants. Treatment of

tobacco leaves or suspension cultures with NO induces

a transient increase in endogenous cGMP concentrations

[4]. Furthermore, sGC inhibitors block NO-induced acti-

vation of phenylalanine ammonia lyase gene (PAL)

expression and PAL enzyme activity in tobacco [4], as

well as NO- and auxin-mediated root development in

cucumber [6]. However, major components of the NO/

cGMP pathway, including NO-sensitive guanylate

cyclase (GC) and the cGMP targets, have yet to be

identified.

In addition to cGMP, NO may exert its functions through

cyclic ADP-ribose (cADPR) and Ca2þ mobilisation. In

animal and plant cells, cADPR functions as a second

messenger to stimulate Ca2þ release through intracellular

Ca2þ-permeable ryanodine receptor channels (RYR). In

animals, NO activates cADPR synthesis via a cGMP-

dependent pathway [8]. Growing evidence suggests that a

comparable NO-regulated signalling cascade operates in

plants. In tobacco, cADPR induced the expression of the

PAL and pathogenesis-related (PR)-1 genes through a

signalling cascade that is sensitive to RYR inhibitors

(Figure 1; [4]), whereas the cADPR antagonist 8-

Br-cADPR suppressed the induction of PR-1 expression

by NO [19]. Furthermore, NO promoted increased levels

of cytosolic Ca2þ in Vicia faba guard cells [20�]. In these

cells, as in tobacco [4,19], NO appears to act through

cGMP and cADPR to activate intracellular Ca2þ-perme-

able channels. NO also plays a role in elevating free

cytosolic Ca2þ in tobacco cells that are responding to

hyperosmotic stress or cryptogein [11,21]. In addition,

NO, along with cGMP and cADPR, mediates ABA-

induced stomatal closure in guard cells [7�,22]. Ca2þ is

also implicated in this process: the NO scavenger 2-(4-

carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-

oxide (cPTIO) prevented ABA-induced inactivation of the

inward-rectifying Kþ channel and activation of the out-

ward-rectifying Cl� channel, two Ca2þ-dependent events

that are essential for stomatal closure (Figure 1; [20�]).

It should be noted that NO affects the expression of

numerous plant genes in addition to PAL and PR-1
(Table 2). The NO-dependent intracellular signalling

pathway(s) that lead to the activation or suppression of

these genes have not yet been defined. As Ca2þ appears to

Table 1

Enzymatic and non-enzymatic sources of NO in plants and animals.

Substrate Co-factors Cellular localisation Physiological process affected Reference(s)

aAnimal NOS L-Arg Heme, NADPH, Cytosol, PM bound, Neuro-transmission, immune [2,8]

FAD, FMN, H4B, calmodulin GM bound, mitochondria response, vasodilation

Plant iNOS L-Arg Heme, NADPH, FAD, H4B,
calmodulin

Chloroplasts(?) Defence responses
to pathogens

[10��,11,12�]

Plant AtNOS1 L-Arg NADPH, calmodulin ND ABA signalling, growth and

development, fertility

[5��]

Plant NR Nitrite NAD(P)H Cytosol ABA signalling, defence

responses(?), photoinhibition

[13,14,15�,16]

Plant Ni-NOR Nitrite Cytochrome c PM bound ND [39]

Non-enzymatic Nitrite Phenolics, acidic pH Apoplast ND [18�]

NO production

aFor details of the enzymology of animal NOS, the reader is referred to [2]. Abbreviations: H4B, tetrahydrobiopterin; GM, Golgi membrane; ND, not

determined; Ni-NOR, a 310-kDa plasma-membrane-bound enzyme that catalyses the reduction of nitrite to NO; PM, plasma membrane;
(?), suggested but not demonstrated.
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play a central role in mediating NO/redox-sensitive pro-

cesses in plants, however, the NO-induced regulation of

at least some of these genes probably involves the mod-

ulation of intracellular Ca2þ levels via the Ca2þ modula-

tors cGMP and cADPR.

Cross-talk among NO, salicylic acid and
jasmonic acid
Several lines of evidence point to an inter-relationship

between NO and salicylic acid (SA) in plant defence

(Figure 1). Treatment of tobacco and A. thaliana leaves

with NO induces a substantial increase in endogenous SA

[4,23]. In tobacco, this increase is required for PR-1
expression and probably involves NO-dependent induc-

tion of the PAL gene [4]. In addition, NOS inhibitors and

a NO scavenger attenuate SA-induced systemic acquired

resistance (SAR) [24]. Although these results suggest that

NO is involved in both SA biosynthesis and action, other

studies have indicated that NO function requires SA.

In transgenic tobacco, the ability of NO donors to reduce

the size of TMV-induced lesions was abolished by the

expression of the bacterial gene nahG, which encodes the

SA-degrading enzyme salicylate hydroxylase [24].

Recent evidence suggests that NO also plays a role in

the wounding/jasmonic acid (JA) signalling pathway

(Figure 1). In tomato, NO donors inhibited both wound-

ing-induced H2O2 synthesis and wounding- or JA-

induced expression of defence genes [25]. This inhibition

was independent of SA, which has been shown to antag-

onise JA synthesis and/or activity. Thus, NO may interact

directly with the wounding/JA pathway at a point down-

stream of JA synthesis and upstream of H2O2 generation.

Consistent with this possibility, NO donors delayed and/

or reduced wounding-induced generation of H2O2 and

expression of the JA-inducible ipomoelin gene in sweet

potato [26]. Additional evidence that NO cross-talks with

the wounding/JA pathway comes from the demonstration

that wounding- and/or JA treatment induces NO produc-

tion in sweet potato and A. thaliana epidermal cells

[23,26], and that exogenous NO induces all of the genes

that are required for JA biosynthesis (Table 2). The

Figure 1
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NO functions in ABA, defence and wounding signalling. In guard cells, both NR and AtNOS1 have been proposed to catalyse ABA-induced NO

synthesis. NO activates intracellular Ca2þ-permeable channels through a cGMP/cADPR-dependent pathway. The resulting increase in free

cytosolic Ca2þ concentration leads to the inactivation of inward-rectifying Kþ channels (IK), which suppresses Kþ influx, and to the activation

of Cl� channels (ECl), which allows anion efflux. The resulting large efflux of anions would result in long-term depolarisation of guard cells, which

in turn activates outward-rectifying Kþ channel currents, leading to a reduction of turgor pressure and therefore stomatal closure. In response to

pathogens or other elicitors of plant defences, NO is produced by iNOS, a variant of the P protein of the glycine decarboxylase complex.

NO utilises at least four pathways, whose interconnections are not well understood, (a) to elevate free cytosolic Ca2þ through a signalling

cascade similar to that reported in guard cells, (b) to induce the HR/cell death in cooperation with H2O2, (c) to induce SA production, which in

turn enhances NO levels and facilitates local resistance and the development of systemic acquired resistance (SAR), and (d) to induce the

expression of defence genes through SA- and Ca2þ-dependent pathway(s), and perhaps also through SA- and Ca2þ-independent pathway(s).

NO also has been associated with wounding responses. Both wounding and JA induce NO synthesis through an enzyme that has not yet been

characterised. Conversely, in A. thaliana, NO activates genes that encode biosynthetic enzymes involved in JA production. NO-induced synthesis
of JA was only observed in SA-deficient plants, however, suggesting the existence of a self-amplifying JA–NO loop that is negatively regulated

by SA. SA also may repress NO-induced expression of JA-responsive genes. In species other than A. thaliana, including tomato and potato,

NO downregulates JA- and wounding-responsive genes.
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relationship between these pathways remains unclear,

however, because NO treatment did not increase JA

levels and the wounding-induced expression of JA-form-

ing enzymes was independent of NO [23]. Interestingly,

NO treatment of SA-deficient NahG plants resulted in the

activation of JA-responsive genes and JA production,

suggesting that SA negatively regulates NO-mediated

JA synthesis in wildtype plants.

NO and cell death
Evidence that NO plays a role in plant cell death

is accumulating. Treating suspension-cultured Citrus
sinensis cells with NO donors induces cell death. This

cell death shares similarities with programmed cell death

(PCD) in animal cells, including chromatin condensa-

tion and loss of mitochondrial membrane electrical

potential [27]. Moreover, mammalian NOS inhibitors

reduced the PCD that occurred during the hypersensi-

tive response (HR) in A. thaliana plants that were chal-

lenged by avirulent P. syringae [3]. Similarly, tobacco

plants and alfalfa root cultures that over-produced hae-

moglobin, which can act as an NO scavenger, exhibited

reduced cell death after inoculation with avirulent

pathogens [28] or under hypoxic conditions [29], respec-

tively. In soybean cells, increased levels of NO are not

sufficient to trigger cell death in the absence of other

reactive oxygen species (ROS) [30]. In animal cells,

PCD is mainly mediated by peroxynitrite (ONOO�)

that is formed from NO and superoxide (O2
��). In

contrast, HR-associated cell death in soybean cells

appears to be mediated by the relative level of NO

and H2O2 that is formed by dismutation of O2
�� [30].

Consistent with this conclusion, only the simultaneous

increase of NO and H2O2 in tobacco cells induced cell

death that had typical cytological and biochemical

features of PCD [31].

These studies suggest that NO regulates HR cell death,

but NO synthesis may not be a prerequisite for initiating

the PCD signalling pathway. NO production in P. syr-
ingae-inoculated A. thaliana did not precede the HR, but

rather occurred concurrently with HR [32]. Because NO

was first detected in the extracellular spaces, and then in

the cytoplasm of nearby cells that died soon afterwards, it

was proposed that NO facilitates the cell-to-cell spread of

the HR.

NO also has been shown to display anti-apoptotic proper-

ties. NO protects barley aleurone layers against gibber-

ellin-induced cell death [33] and wheat seedlings from

drought [22]. The mechanisms through which NO exerts

its plethora of effects are not well understood, but several

studies indicate that NO protects cells from ROS-

mediated cellular damage and cytotoxicity by increasing

the levels of cyto-protective proteins, including catalase,

superoxide dismutase, gluthatione S-transferase and

alternative oxidase (Table 2; [33,34�,35�]). Furthermore,

by abrogating O2
��-mediated cytotoxic effects through

the conversion of O2
�� into ONOO�, NO might provide

protection against oxidative stress [30].

To summarise, NO appears to be a bifunctional mod-

ulator of plant cell death that is capable of either stimulat-

ing or inhibiting this process, as has been previously

documented in animal systems. The data discussed

here strongly suggest that the cross-communication of

Table 2

Classes of NO-regulated genes in plants.

NO-regulated genes aEffect on expression NO source Reference(s)

Enzymes involved in JA synthesis þ Gaseous NO [23]

JA-responsive genes � NO donors, gaseous [25,26]
bþ NO [23]

Enzymes involved in ethylene synthesis þ NO donor [34�]

þ Cryptogein [11]

Proteins involved in ethylene signalling þ NO donor [35�]

PR genes þ NO donors [4,34�,35�]

þ TMV [19]

Enzymes of the phenylpropanoid pathway þ NO donors [4,35�]

þ P. syringae [3]

Anti-oxidant and other protective proteins þ NO donors [34�,35�,40]

þ Cryptogein [11]

Signalling proteins þ or � NO donor [35�]

Proteins involved in photosynthesis þ NO donor [35�]

Proteins involved in cellular trafficking þ NO donor [35�]

Putative cell death proteins þ NO donor [35�]

Proteins for basic metabolism þ or � NO donors [34�,35�]

Auxin-responsive proteins þ NO donor [34�]

Ferritin þ NO donor [41]

Genes of unknown function þ NO donors [34�,35�]

aþ, upregulation by NO; �, downregulation by NO. bOnly in SA-deficient NahG transgenic Arabidopsis.
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NO with other pro-oxidants or anti-oxidants critically

influences the fate of cells that are challenged by cell-

death mediators.

Conclusions and future perspectives
Studies on the function of NO in hormonal and defence

signalling, as well as in the modulation of cell death, have

revealed important new biochemical and molecular

information about this essential physiological mediator

(Figure 1). The observation that NO regulates the

expression of many genes (Table 2) suggests that it

affects numerous physiological processes in plants.

The recent discovery of two plant NOS that have little

sequence similarity to each other or to their mammalian

counterparts, together with the demonstration that NR is

an important source of NO in some physiological pro-

cesses, argues that although both plants and mammals

use multiple enzymes for NO production, the chemistry

of NO synthesis in plants differs from that in mammals.

The evidence presented to date suggests that crucial

players in animal NO signalling also operate in plants.

These include two major direct targets of NO in animals,

GC and aconitase [36], and the second messengers

cGMP, cADPR and Ca2þ. Given these similarities, it

is likely that plant NOS and the downstream NO effec-

tors, like those in mammals, are part of macromolecular

complexes in which NO functions within highly localised

environments. Such spatial contiguity may determine

the efficiency and specificity of signal propagation.

The major challenges ahead are to determine which of

the three (or more) NO-producing enzymes in plants

participates in a particular physiological process, and how

the correct specific response is evoked despite shared use

of the NO signal and, in some cases, its downstream

second messengers. We anticipate that specificity may

involve the differential subcellular localisation of iNOS,

AtNOS1 and NR (and perhaps also the NO targets),

channelling of the signal (perhaps via macromolecular

complexes), and differences in the amplitude and/or

duration of the NO signal.

Another crucial area that has received little attention is

the identification and characterisation of the direct tar-

gets of NO. These are likely to include not only GC and

aconitase but also intracellular Ca2þ-permeable chan-

nels and proteins that mediate pro-/anti-apoptotic pro-

cesses. The identification of new NO targets will not be

easy; however, this strategy has proven fruitful for

addressing questions concerning the effects of NO in

animals [1]. Given the dramatic increase in our appre-

ciation of the role of NO in plants over the past half

decade, and the myriad effects of NO that have been

documented in animals since its discovery as the

endothelium-derived relaxation factor 17 years ago

[37,38], we clearly have just begun to tap an immense

well of knowledge that should provide a deeper under-

standing of the biology of plants.
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