PLANT SYSTEMATICS
I wish to dedicate this book to three mentors I was very fortunate to know: Albert Radford, who taught critical thinking; P. Barry Tomlinson, who taught the fine art of careful observation; and Rolf Dahlgren, whose magnetic personality was inspirational. I also wish to thank my many students who have provided useful suggestions over the years, plus three writers who captured my interest in science and the wonder of it all: Isaac Asimov, Richard Feynman, and Carl Sagan.
CONTENTS

PREFACE .. IX

ACKNOWLEDGMENTS .. XI

UNIT I SYSTEMATICS

CHAPTER 1 PLANT SYSTEMATICS: AN OVERVIEW ... 3

CHAPTER 2 PHYLOGENETIC SYSTEMATICS .. 17

UNIT II EVOLUTION AND DIVERSITY OF PLANTS

CHAPTER 3 EVOLUTION AND DIVERSITY OF GREEN AND LAND PLANTS ... 51

CHAPTER 4 EVOLUTION AND DIVERSITY OF VASCULAR PLANTS ... 69

CHAPTER 5 EVOLUTION AND DIVERSITY OF WOODY AND SEED PLANTS .. 97

CHAPTER 6 EVOLUTION OF FLOWERING PLANTS .. 121

CHAPTER 7 DIVERSITY AND CLASSIFICATION OF FLOWERING PLANTS: AMBORELLALES, NYMPHAEALES, AUSTROBAILEYALES, MAGNOLIIDS, CERATOPHYLLALES, AND MONOCOTS ... 137

CHAPTER 8 DIVERSITY AND CLASSIFICATION OF FLOWERING PLANTS: EUDICOTS .. 227

UNIT III SYSTEMATIC EVIDENCE AND DESCRIPTIVE TERMINOLOGY

CHAPTER 9 PLANT MORPHOLOGY ... 347

CHAPTER 10 PLANT ANATOMY AND PHYSIOLOGY ... 409

CHAPTER 11 PLANT EMBRYOLOGY .. 437

CHAPTER 12 PALYNOLOGY .. 453

CHAPTER 13 PLANT REPRODUCTIVE BIOLOGY ... 465

CHAPTER 14 PLANT MOLECULAR SYSTEMATICS ... 477

UNIT IV RESOURCES IN PLANT SYSTEMATICS

CHAPTER 15 PLANT IDENTIFICATION .. 495
Plant Systematics is an introduction to the morphology, evolution, and classification of land plants. My objective is to present a foundation of the approach, methods, research goals, evidence, and terminology of plant systematics and to summarize information on the most recent knowledge of evolutionary relationships of plants as well as practical information vital to the field. I have tried to present the material in a condensed, clear manner, such that the beginning student can better digest the more important parts of the voluminous information in the field and acquire more detailed information from the literature.

The book is meant to serve students at the college graduate and upper undergraduate levels in plant systematics or taxonomy courses, although portions of the book may be used in flora courses and much of the book could be used in general courses in plant morphology, diversity, or general botany.

Each chapter has an expanded Table of Contents on the first page, a feature that my students recommended as very useful. Numerous line drawings and color photographs are used throughout. A key feature is that illustrated plant material is often dissected and labeled to show important diagnostic features. At the end of each chapter are (1) Review Questions, which go over the chapter material; (2) Exercises, whereby a student may apply the material; and (3) References for Further Study, listing some of the basic and recent references. Literature cited in the references is not exhaustive, so the student is encouraged to do literature searches on his/her own (see Appendix 3).

The book is classified into units, which consist of two or more chapters logically grouped together. Of course, a given instructor may choose to vary the sequence of these units or the chapters within, depending on personal preference and the availability of plant material. There is a slight amount of repetition between chapters of different units, but this was done so that chapters could be used independently of one another.

Unit 1. Systematics, gives a general overview of the concepts and methods of the field of systematics. Chapter 1 serves as an introduction to the definition, relationships, classification, and importance of plants and summarizes the basic concepts and principles of systematics, taxonomy, evolution, and phylogeny. Chapter 2 covers the details of phylogenetic systematics, and the theory and methodology for inferring phylogenetic trees or cladograms.

Unit 2. Evolution and Diversity of Plants, describes in detail the characteristics and classification of plants. The six chapters of this unit are intended to give the beginning student a basic understanding of the evolution of Green and Land Plants (Chapter 3), Vascular Plants (Chapter 4), Woody and Seed Plants (Chapter 5), and Flowering Plants (Chapters 6-8). Chapters 3-5 are formatted into two major sections. The first section presents cladograms (phylogenetic trees), which portray the evolutionary history of the group. Each of the major derived evolutionary features (apomorphies) from that cladogram is described and illustrated, with emphasis on the possible adaptive significance of these features. This evolutionary approach to plant systematics makes learning the major plant groups and their features conceptually easier than simply memorizing a static list of characteristics. Treating these features as the products of unique evolutionary events brings them to life, especially when their possible adaptive significance is pondered. The second section of Chapters 3 through 5 presents a brief survey of the diversity of the group in question. Exemplars within major groups are described and illustrated, such that the student may learn to recognize and know the basic features of the major lineages of plants.

Because they constitute the great majority of plants, the flowering plants, or angiosperms, are covered in three chapters. Chapter 6 deals with the evolution of flowering plants, describing the apomorphies for that group and presenting a brief coverage of their origin. Chapters 7 and 8 describe specific groups of flowering plants. In Chapter 7 the non-eudicot groups are treated, including basal angiosperms and the monocotyledons. Chapter 8 covers the eudicots, which make up the great majority of angiosperms. Numerous flowering plant families are described in detail, accompanied by photographs and illustrations. Reference to Chapter 9 and occasionally to Chapters 10-14 (or use of the comprehensive Glossary) may be needed with regard to the technical terms. Because of their great number, only a limited number of families are included, being those that are commonly encountered or for which material is usually available to the beginning student. I have tried to emphasize diagnostic features that a student might use to recognize a plant family, and have included some economically important uses of family members. The Angiosperm Phylogeny Group II system of classification is...
used throughout (with few exceptions). This system uses orders as the major taxonomic rank in grouping families of close relationship and has proven extremely useful in dealing with the tremendous diversity of the flowering plants.

Unit 3, Systematic Evidence and Descriptive Terminology, begins with a chapter on plant morphology (Chapter 9). Explanatory text, numerous diagrammatic illustrations, and photographs are used to train beginning students to precisely and thoroughly describe a plant morphologically. Appendices 1 and 2 (see below) are designed to be used along with Chapter 9. The other chapters in this unit cover the basic descriptive terminology of plant anatomy (Chapter 10), plant embryology (Chapter 11), palynology (Chapter 12), plant reproductive biology (Chapter 13), and plant molecular systematics (Chapter 14). The rationale for including these in a textbook on plant systematics is that features from these various fields are described in systematic research and are commonly utilized in phylogenetic reconstruction and taxonomic delimitation. In particular, the last chapter on plant molecular systematics reviews the basic techniques and the types of data acquired in what has perhaps become in recent years the most fruitful of endeavors in phylogenetic reconstruction.

Unit 4, Resources in Plant Systematics, discusses some basics that are essential in everyday systematic research. Plant identification (Chapter 15) contains a summary of both standard dichotomous keys and computerized polythetic keys and reviews practical identification methods. The chapter on nomenclature (Chapter 16) summarizes the basic rules of the most recent International Code of Botanical Nomenclature, including the steps needed in the valid publication of a new species and a review of botanical names. A chapter on plant collecting and documentation (Chapter 17) emphasizes both correct techniques for collecting plants and thorough data acquisition, the latter of which has become increasingly important today in biodiversity studies and conservation biology. Finally, the chapter on herbaria and data information systems (Chapter 18) reviews the basics of herbarium management, emphasizing the role of computerized database systems in plant collections for analyzing and synthesizing morphological, ecological, and biogeographic data.

Lastly, three Appendices and a Glossary are included. I have personally found each of these addenda to be of value in my own plant systematics courses. Appendix 1 is a list of characters used for detailed plant descriptions. This list is useful in training students to write descriptions suitable for publication. Appendix 2 is a brief discussion of botanical illustration. I feel that students need to learn to draw, in order to develop their observational skills. Appendix 3 is a listing of scientific journals in plant systematics, with literature exercises. The Glossary defines all terms used in the book and indicates synonyms, adjectival forms, plurals, abbreviations, and terms to compare.

By the time of publication, two Web sites will be available to be used in conjunction with the textbook: (1) a Student Resources site (http://books.elsevier.com/companion/0126444609), with material that is universally available; and (2) an Instructor Resources site (http://books.elsevier.com/manualsprotected/0126444609), with material that is password protected. Please contact your sales representative at <textbooks@elsevier.com> for access to the Instructor Resources site.

Throughout the book, I have attempted to adhere to W-H-Y, What-How-Why, in organizing and clarifying chapter topics: (1) What is it? What is the topic, the basic definition? (I am repeatedly amazed that many scientific arguments could have been resolved at the start by a clear statement or definition of terms.) (2) How is it done? What are the materials and methods, the techniques of data acquisition, the types of data analysis? (3) Why is it done? What is the purpose, objective, or goal; What is the overriding paradigm involved? How does the current study or topic relate to others? This simple W-H-Y method, first presented to me by one of my mentors, A. E. Radford, is useful to follow in any intellectual endeavor. It is a good lesson to teach one's students, and helps both in developing good writing skills and in critically evaluating any topic.

Finally, I would like to propose that each of us, instructors and students, pause occasionally to evaluate why it is that we do what we do. Over the years I have refined my ideas and offer these suggestions as possible goals: 1) to realize and explore the beauty, grandeur, and intricacy of nature; 2) to engage in the excitement of scientific discovery; 3) to experience and share the joy of learning. It is in this spirit that I sincerely hope the book may be of use to others.
ACKNOWLEDGMENTS

I sincerely thank Andy Bohonak, Bruce Baldwin, Lisa Campbell, Travis Columbus, Bruce Kirchoff, Lucinda McDade, Kathleen Pryer (and her lab group), Jon Rebman, and several anonymous reviewers for their comments on various chapters of the book and Peter Stevens for up-to-date information on higher level classification of angiosperms. As always, they bear no responsibility for any mistakes, omissions, incongruities, misinterpretations, or general stupidities.

Almost all of the illustrations and photographs are the product of the author. I thank the following for additions to these (in order of appearance in text):

The Jepson Herbarium (University of California Press) gave special permission to reproduce the key to the Crassulaceae (Reid Moran, author) in Figure 1.7.

Rick Bizzoco contributed the images of *Chlamydomonas reinhardtii* in Figures 3.2C and 3.3A.

Linda Graham contributed the image of *Coleochaete* in Figure 3.6A.

Figure 4.11A was reproduced from Kidston, R. and W. H. Lang. 1921. Transactions of the Royal Society of Edinburgh. vol. 52(4):831–902.

Figure 5.10 was reproduced and modified from Swamy, B. G. L. 1948. American Journal of Botany 35: 77–88, by permission.

Figure 5.15A,B was reproduced from: Beck, C. B. 1962. American Journal of Botany 49: 373–382, by permission.

Figure 5.15C was reproduced from Stewart, W. N., and T. Delevoryas. 1956. Botanical Review 22: 45–80, by permission.

Figure 5.23B was reproduced from Esau, K. 1965. Plant Anatomy. J. Wiley and sons, New York, by permission.

Mark Olsen contributed the images of *Welwitschia mirabilis* in Figure 5.24E,G.

Figure 6.5 was based upon Jack, T. 2001. Relearning our ABCs: new twists on an old model. Trends in Plant Science 6: 310–316.

Figure 6.18A C was redrawn from Thomas, H. H. 1925. Philosophical Transactions of the Royal Society of London 213: 299–363.

Figure 6.18D was contributed by K. Simons and David Dilcher (); Figure 6.18E was contributed by David Dilcher () and Ge Sun.

Stephen McCabe contributed the images of *Amborella* in Figures 7.3A,C.

The Arboretum at the University of California-Santa Cruz contributed the image of *Amborella* in Figure 7.3B.

Sandra Floyd provided the image of *Amborella* in Figure 7.3D.

Jeffrey M. Osborn and Mackenzie L. Taylor contributed the images of the Cabombaceae of Figure 7.5.

Jack Scheper contributed the image of *Illicium floridanum* in Figure 7.6A.

Figure 7.16 was reproduced from Behnke, H.-D. 1972. Botanical Review 38: 155–197, by permission.

Constance Gramlich contributed the image of *Amorphophallus* in Figure 7.23C.

Wayne Armstrong contributed the image of a flowering *Wolffia* in Figure 7.23G.

John Kress contributed the Zingiberales drawing of Figure 7.53.

Figure 8.11B was reproduced from Behnke, H.-D. 1972. Botanical Review 38: 155–197, by permission.

David G. Smith contributed the images of *Phryma leptostachya* in Figure 7.81.

Figure 9.12 was redrawn from Hickey, L. J. 1973. American Journal of Botany 60: 17–33, by permission.

Darren Burton prepared several illustrations in Chapter 9.

Figure 13.4A was redrawn from Weberling. 1989. Morphology of Flowers and Inflorescences. Cambridge University Press, Cambridge, New York, by permission.

Figure 13.4B was redrawn from Kohn et al. 1996. Evolution 50:1454–1469, by permission.

Jon Rebman contributed the images of Figure 13.7D,E.

Figure 14.4 was redrawn from Wakasugi, T., M. Sugita, T. Tsudzuki, and M. Sugiiara. 1998. Plant Molecular Biology Reporter 16: 231–241, by permission.

The Herbarium at the San Diego Natural History Museum contributed the images of Figure 17.2.

Jon Rebman contributed the image of the herbarium sheet in Figure 18.2.

Dinna Estrella contributed the stippled line drawing of Appendix 2.
I
SYSTEMATICS
This Page Intentionally Left Blank
1

PLANT SYSTEMATICS:
AN OVERVIEW

This book is about a fascinating field of biology called plant systematics. The purpose of this chapter is to introduce the basics: what a plant is, what systematics is, and the reasons for studying plant systematics.

PLANTS

WHAT IS A PLANT?
This question can be answered in either of two conceptual ways. One way, the traditional way, is to define groups of organisms such as plants by the characteristics they possess. Thus, historically, plants included those organisms that possess photosynthesis, cell walls, spores, and a more or less sedentary behavior. This traditional grouping of plants contained a variety of microscopic organisms, all of the algae, and the more familiar plants that live on land. A second way to answer the question What is a plant? is to evaluate the evolutionary history of life and to use that history to delimit the groups of life. We now know from repeated research studies that some of the photosynthetic organisms evolved independently of one another and are not closely related.

Thus, the meaning or definition of the word plant can be ambiguous and can vary from person to person. Some still like to treat plants as an unnatural assemblage, defined by the common (but independently evolved) characteristic of photosynthesis. However, delimiting organismal groups based on evolutionary history has gained almost universal acceptance. This latter type of classification directly reflects the patterns of that evolutionary history and can be used to explicitly test evolutionary hypotheses (discussed later; see Chapter 2).

An understanding of what plants are requires an explanation of the evolution of life in general.

PLANTS AND THE EVOLUTION OF LIFE
Life is currently classified as three major groups (sometimes called domains) of organisms: Archaea (also called Archaebacteria), Bacteria (also called Eubacteria), and Eukarya or eukaryotes (also spelled eucaryotes). The evolutionary relationships of these groups are summarized in the simplified evolutionary tree or cladogram of Figure 1.1. The Archaea and Bacteria are small, mostly unicellular organisms that possess circular DNA, replicate by fission, and lack membrane-bound organelles. The two groups differ from one another in the chemical structure of certain cellular components. Eukaryotes are unicellular or multicellular organisms that possess linear DNA (organized as histone-bound chromosomes), replicate by mitotic and often meiotic division, and possess membrane-bound organelles such as nuclei, cytoskeletal structures, and (in almost all) mitochondria (Figure 1.1).
Some of the unicellular bacteria (including, e.g., the Cyanobacteria, or blue-greens) carry on photosynthesis, a biochemical system in which light energy is used to synthesize high-energy compounds from simpler starting compounds, carbon dioxide and water. These photosynthetic bacteria have a system of internal membranes called thylakoids, within which are embedded photosynthetic pigments, compounds that convert light energy to chemical energy. Of the several groups of eukaryotes that are photosynthetic, all have specialized photosynthetic organelles called chloroplasts, which resemble photosynthetic bacteria in having pigment-containing thylakoid membranes.

How did chloroplasts evolve? It is now largely accepted that the chloroplasts of eukaryotes originated by the engulfment of an ancestral photosynthetic bacterium (probably a cyanobacterium) by an ancestral eukaryotic cell, such that the photosynthetic bacterium continued to live and ultimately multiply inside the eukaryotic cell (Figure 1.2). The evidence for this is the fact that chloroplasts, like bacteria today (a) have their own single-stranded, circular DNA; (b) have a smaller sized, 70S ribosome; and (c) replicate by ssion. These engulfed photosynthetic bacteria provided high-energy products to the eukaryotic cell; the host eukaryotic cell provided a more beneficial environment for the photosynthetic bacteria. The condition of two species living together in close contact is termed symbiosis, and the process in which symbiosis results by the engulfment of one cell by another is termed endosymbiosis. Over time, these endosymbiotic, photosynthetic bacteria became transformed structurally and functionally, retaining their own DNA and
the ability to replicate, but losing the ability to live independently of the host cell. In fact, over time there has been a transfer of some genes from the DNA of the chloroplast to the nuclear DNA of the eukaryotic host cell, making the two biochemically interdependent.

The most recent data from molecular systematic studies indicates that this so-called primary endosymbiosis of the chloroplast likely occurred one time, a shared evolutionary novelty of the red algae, green plants, and stramenopiles (which include the brown algae and relatives; Figure 1.1). This early chloroplast became modified with regard to photosynthetic pigments, thylakoid structure, and storage products into forms characteristic of the red algae, green plants, and browns (see Figure 1.1). In addition, chloroplasts may have been lost in some lineages, e.g., in the Oomycota (water molds) of the Stramenopiles. Some lineages of these groups may have acquired chloroplasts via secondary endosymbiosis, which occurred by the engulfment of an ancestral chloroplast-containing eukaryote by another eukaryotic cell. The euglenoids and the dinoflagellates, two other lineages of photosynthetic organisms, may have acquired chloroplasts by this process (Figure 1.1). The final story is yet to be elucidated.

LAND PLANTS

Of the major groups of photosynthetic eukaryotes, the green plants (also called the Chlorobionta) are united primarily by distinctive characteristics of the green plant chloroplast with respect to photosynthetic pigments, thylakoid structure, and storage compounds (see Chapter 3 for details). Green plants include both the predominately aquatic green algae and a group known as embryophytes (formally, the Embryophyta), usually referred to as the land plants (Figure 1.3). The land plants are united by several evolutionary novelties that were adaptations to making the transition from an aquatic environment to living on land. These include (1) an outer cuticle, which aids in protecting tissues from desiccation; (2) specialized gametangia (egg and sperm producing organs) that have an outer, protective layer of sterile cells; and (3) an intercalated diploid phase in the life cycle, the early, immature component of which is termed the embryo (hence, embryophytes; see Chapter 3 for details).

Just as the green plants include the land plants, the land plants are inclusive of the vascular plants (Figure 1.3), the latter being united by the evolution of an independent sporophyte and xylem and phloem vascular conductive tissue (see Chapter 4). The vascular plants are inclusive of the seed plants (Figure 1.3), which are united by the evolution of wood and seeds (see Chapter 5). Finally, seed plants include the angiosperms (Figure 1.3), united by the evolution of the ovary, including carpels and stamens, and by a number of other specialized features (see Chapters 6-8).

For the remainder of this book, the term plant is treated as equivalent to the embryophytes, the land plants. The rationale for this is partly that land plants make up a so-called natural, monophyletic group, whereas the photosynthetic eukaryotes as a whole are an unnatural, paraphyletic group (see section on Phylogeny, Chapter 2). And, practically, it is land plants that most people are talking about when they refer to plants, including those in the field of plant systematics. However, as noted before, the word plant can be used by some to refer to other groupings; when in doubt, get a precise clarification.

WHY STUDY PLANTS?
The tremendous importance of plants cannot be overstated. Without them, we and most other species of animals (and zoof my other groups of organisms) wouldn't be here. Photosynthesis in plants and the other photosynthetic organisms changed the earth in two major ways. First, the fixation of carbon dioxide and the release of molecular oxygen in photosynthesis directly altered the earth's atmosphere over
CHAPTER 1 PLANT SYSTEMATICS: AN OVERVIEW

billions of years. What used to be an atmosphere deficient in oxygen underwent a gradual change. As a critical mass of oxygen accumulated in the atmosphere, selection for oxygen-dependent respiration occurred (via oxidative phosphorylation in mitochondria), which may have been a necessary precursor in the evolution of many multicellular organisms, including all animals. In addition, an oxygen-rich atmosphere permitted the establishment of an upper atmosphere ozone layer, which shielded life from excess UV radiation. This allowed organisms to inhabit more exposed niches that were previously inaccessible.

Second, the compounds that photosynthetic species produce are utilized, directly or indirectly, by nonphotosynthetic, heterotrophic organisms. For virtually all land creatures and many aquatic ones as well, land plants make up the so-called primary producers in the food chain, the source of high-energy compounds such as carbohydrates, structural compounds such as certain amino acids, and other compounds essential to metabolism in some heterotrophs. Thus, most species on land today, including millions of species of animals, are absolutely dependent on plants for their survival. As primary producers, plants are the major components of many communities and ecosystems. The survival of plants is essential to maintaining the health of those ecosystems, the severe disruption of which could bring about rampant species extirpation or extinction and disastrous changes in erosion, water flow, and ultimately climate.

To humans, plants are also monumentally important in numerous, direct ways (Figures 1.4, 1.5). Agricultural plants,
Figure 1.4 Examples of economically important plants.

A–E. Vegetables.

A. *Ipomoea batatas*, sweet potato (root).

B. *Daucus carota*, carrot (root).

C. *Solanum tuberosum*, potato (stem).

D. *Lactuca sativa*, lettuce (leaves).

E. *Brassica oleracea*, broccoli (flower buds).

F–I. Fruits, dry (grains).

F. *Oryza sativa*, rice.

G. *Triticum aestivum*, bread wheat.

H. *Zea mays*, corn.

I. Seeds (pulse legumes), from top, clockwise to center: *Glycine max*, soybean; *Lens culinaris*, lentil; *Phaseolus aureus*, mung bean; *Phaseolus vulgaris*, pinto bean; *Phaseolus vulgaris*, black bean; *Cicer arietinum*, chick-pea/garbanzo bean; *Vigna unguiculata*, black-eyed pea; *Phaseolus lunatus*, lima bean.

J. *Musa paradisiaca*, banana.

K. *Ananas comosus*, pineapple.

L. *Malus pumila*, apple.

M. *Olea europaea*, olive.
CHAPTER 1 PLANT SYSTEMATICS: AN OVERVIEW

Figure 1.5 Further examples of economically important plants. A–D. Herbs. A. Petroselinum crispum, parsley. B. Salvia of cinalis, sage. C. Rosmarinus of cinalis, rosemary. D. Thymus vulgaris, thyme. E. Spices and herbs, from upper left: Cinnamomum cassia/zeylanicum, cinnamon (bark); Vanilla planifolia; vanilla (fruit); Laurus nobilis, laurel (leaf); Syzygium aromaticum, cloves (ower buds); Myristica fragrans, nutmeg (seed); Carum carvi, caraway (fruit); Anethum graveolens, dill (fruit); Pimenta dioica, allspice (seed); Piper nigrum, pepper (seed). F. Flavoring plants, from upper left, clockwise. Theobroma cacao, chocolate (seeds); Coffea arabica, coffee (seeds); Thea sinensis, tea (leaves). G. Wood products: lumber (Sequoia sempervirens, redwood), and paper derived from wood pulp. H. Fiber plant. Gossypium sp., cotton (seed trichomes), one of the most important natural bers. I. Euphoric, medicinal, and ber plant. Cannabis sativa, marijuana, hemp; stem bers used in twine, rope, and cloth; resins contain the euphoric and medicinal compound tetrahydrocannabinol. J. Medicinal plant. Catharanthus roseus, Madagascar periwinkle, from which is derived vincristine and vinblastine, used to treat childhood leukemia.
most of which are flowering plants, are our major source of food. We utilize all plant parts as food products: roots (e.g., sweet potatoes and carrots; Figure 1.4A, B); stems (e.g., yams, cassava/manioc, potatoes; Figure 1.4C); leaves (e.g., cabbage, celery, lettuce; Figure 1.4D); and fruits and seeds, including grains such as rice (Figure 1.4F), wheat (Figure 1.4G), corn (Figure 1.4H), rye, barley, and oats, legumes such as beans and peas (Figure 1.4I), and a plethora of fruits such as bananas (Figure 1.4J), tomatoes, peppers, pineapples (Figure 1.4K), apples (Figure 1.4L), cherries, peaches, melons, kiwis, citrus, olives (Figure 1.4M), and others too numerous to mention. Other plants are used as flavoring agents, such as herbs (Figure 1.5A–D) and spices (Figure 1.5E), as stimulating beverages, such as chocolate, coffee, tea, and cola (Figure 1.5F), or as alcoholic drinks, such as beer, wine, distilled liquors, and sweet liqueurs. Woody trees of both conifers and flowering plants are used structurally for lumber and for pulp products such as paper (Figure 1.5G). In tropical regions, bamboos, palms, and a variety of other species serve in the construction of human dwellings. Plant fibers are used to make thread for cordage (such as sisal), for sacs (such as jute for burlap), and for textiles (most notably cotton, Figure 1.5H, but also linen and hemp, Figure 1.5I). In many cultures, plants or plant products are used as euphorics or hallucinogenics (whether legally or illegally), such as marijuana (Figure 1.5I), opium, cocaine, and a great variety of other species that have been used by indigenous peoples for centuries. Plants are important for their aesthetic beauty, and the cultivation of plants as ornamentals is an important industry. Finally, plants have great medicinal significance, to treat a variety of illnesses or to maintain good health. Plant products are very important in the pharmaceutical industry; their compounds are extracted, semisynthesized, or used as templates to synthesize new drugs. Many modern drugs, from aspirin (originally derived from the bark of willow trees) to vincristine and vinblastine (obtained from the Madagascar periwinkle, used to treat childhood leukemia; Figure 1.5J), are ultimately derived from plants. In addition, various plant parts of a great number of species are used whole or are processed as so-called herbal supplements, which have become tremendously popular recently.

The people, methods, and rationale concerned with the plant sciences (defined here as the study of land plants) are as diverse as are the uses and importance of plants. Some of the fields in the plant sciences are very practically oriented. Agriculture and horticulture deal with improving the yield or disease resistance of food crops or cultivated ornamental plants, e.g., through breeding studies and identifying new cultivars. Forestry is concerned with the cultivation and harvesting of trees used for lumber and pulp. Pharmacognosy deals with crude natural drugs, often of plant origin. In contrast to these more practical fields of the plant sciences, the pure sciences have as their goal the advancement of scientific knowledge (understanding how nature works) through research, regardless of the practical implications. But many aspects of the pure sciences also have important practical applications, either directly by applicable discovery or indirectly by providing the foundation of knowledge used in the more practical sciences. Among these are plant anatomy, dealing with cell and tissue structure and development; plant chemistry and physiology, dealing with biochemical and biophysical processes and products; plant molecular biology, dealing with the structure and function of genetic material; plant ecology, dealing with interactions of plants with their environment; and, of course, plant systematics.

Note that a distinction should be made between botany and plant sciences. Plant sciences is the study of plants, treated as equivalent to land plants here. Botany is the study of most organisms traditionally treated as plants, including virtually all eukaryotic photosynthetic organisms (land plants and the several groups of algae) plus other eukaryotic organisms with cell walls and spores (true fungi and groups that were formerly treated as fungi, such as the Oomycota and slime molds). Thus, in this sense, botany is inclusive of but broader than the plant sciences. Recognition of both botany and plant sciences as fields of study can be useful, although how these fields are defined can vary and may require clarification.

Systematics

Systematics is defined in this book as a science that includes and encompasses traditional taxonomy, the description, identification, nomenclature, and classification of organisms, and that has as its primary goal the reconstruction of phylogeny, or evolutionary history, of life. This definition of systematics is not novel, but neither is it universal. Others in the field would treat taxonomy and systematics as separate but overlapping areas; still others argue that historical usage necessitates what is in essence a reversal of the definitions used here. But words, like organisms, evolve. The use of systematics to describe an all-encompassing field of endeavor is both most useful and represents the consensus of how most specialists in the field use the term, an example being the journal Systematic Botany, which contains articles both in traditional taxonomy and phylogenetic reconstruction. Plant systematics is studied by acquiring, analyzing, and synthesizing information about plants and
plant parts, the content and methodology of which is the topic for the remainder of this book.

Systematics is founded in the principles of evolution, its major premise being that there is one phylogeny of life. The goal of systematists is, in part, to discover that phylogeny.

EVOLUTION

Evolution, in the broadest sense, means change and can be viewed as the cumulative changes occurring since the origin of the universe some 15 billion years ago. Biological evolution, the evolution of life, may be defined (as it was by Charles Darwin) as descent with modification. Descent is the transfer of genetic material (enclosed within a cell, the unit of life) from parent(s) to offspring over time. This is a simple concept, but one that is important to grasp and ponder thoroughly. Since the time that life first originated some 3.8 billion years ago, all life has been derived from preexisting life. Organisms come to exist by the transfer of genetic material, within a surrounding cell, from one or more parents. Descent may occur by simple clonal reproduction, such as a single bacterial cell parent dividing by fission to form two offspring cells or a land plant giving rise to a vegetative propagule. It may also occur by complex sexual reproduction (Figure 1.6A), in which each of two parents produces specialized gametes (e.g., sperm and egg cells), each of which has half the complement of genetic material, the result of meiosis. Two of the gametes fuse together to form a new cell, the zygote, which may develop into a new individual or may itself divide by meiosis to form gametes. Descent through time results in the formation of a lineage, or clade (Figure 1.6B,C), a set of organisms interconnected through time and space by the transfer of genetic material from parents to offspring. So, in a very literal sense, we and all other forms of life on earth are connected in time and in space by descent, the transfer of DNA (actually the pattern of DNA) from parent to offspring (ancestor to descendant), generation after generation.

The modification component of evolution refers to a change in the genetic material that is transferred from parent(s) to offspring, such that the genetic material of the offspring is different from that of the parent(s). This modification may occur either by mutation, which is a direct alteration of DNA, or by genetic recombination, whereby existing genes are reshuffled in different combinations (during meiosis, by crossing over and independent assortment). Systematics is concerned with the identification of the unique modifications of evolution (see later discussion).

It should also be asked, what evolves? Although genetic modification may occur in offspring relative to their parents, individual organisms do not generally evolve. This is because a new individual begins when it receives its complement of DNA from the parent(s); that individual’s DNA does not change during its/his/her lifetime (with the exception of relatively rare, nonreproductive somatic mutations that cannot be transmitted to the next generation). The general units of evolution are populations and species. A population is a group of individuals of the same species that is usually geographically delimited and that typically have a significant amount of gene exchange. Species may be defined in a number of ways, one definition being a distinct lineage that, in sexually reproducing organisms, consists of a group of generally intergrading, interbreeding populations that are essentially reproductively isolated from other such groups. With changes in the genetic makeup of offspring (relative to parents), the genetic makeup of populations and species changes over time.

In summary, evolution is descent with modification occurring by a change in the genetic makeup (DNA) of populations or species over time. How does evolution occur? Evolutionary change may come about by two major mechanisms: (1) genetic drift, in which genetic modification is random; or (2) natural selection, in which genetic change is directed and nonrandom. Natural selection is the differential contribution of genetic material from one generation to the next, differential in the sense that genetic components of the population or species are contributed in different amounts to the next generation; those genetic combinations resulting in increased survival or reproduction are contributed to a greater degree. (A quantitative measure of this differential contribution is known as fitness.) Natural selection results in an adaptation, a structure or feature that performs a particular function and which itself brings about increased survival or reproduction. In a consideration of the evolution of any feature in systematics, the possible adaptive significance of that feature should be explored.

Finally, an ultimate result of evolution is speciation, the formation of new species from preexisting species. Speciation can follow lineage divergence, the splitting of one lineage into two, separate lineages (Figure 1.6D). Lineage divergence is itself a means of increasing evolutionary diversity. If two, divergent lineages remain relatively distinct, they may change independently of one another, into what may be designated as separate species.

TAXONOMY

Taxonomy is a major part of systematics that includes four components: Description, Identification, Nomenclature, and Classification. (Remember the mnemonic device: DINC.) The general subjects of study are taxa (singular, taxon), which are defined or delimited groups of organisms. Ideally, taxa should have a property known as monophyly (discussed
FIGURE 1.6
A. Diagram of descent in sexually reproducing species, in which two parents mate to form new offspring.
B. Gene flow between individuals of a population.
C. A lineage, the result of gene flow over time.
D. Divergence of one lineage into two, which may result in speciation (illustrated here).
The purpose of these descriptive character and character state terms is to use them as tools of communication, for concisely categorizing and delimiting the attributes of a taxon, an organism, or some part of the organism. An accurate and complete listing of these features is one of the major objectives and contributions of taxonomy.

Identification is the process of associating an unknown taxon with a known one, or recognizing that the unknown is new to science and warrants formal description and naming. One generally identifies an unknown by first noting its characteristics, that is, by describing it. Then, these features are compared with those of other taxa to see if they conform. Plant taxa can be identified in many ways (see Chapter 15). A taxonomic key is perhaps the most utilized of identification devices. Of the different types of taxonomic keys, the most common, used in virtually all floras, is a dichotomous key. A dichotomous key consists of a series of two contrasting statements. Each statement is a lead; the pair of leads constitutes a couplet (Figure 1.7). That lead which best fits the specimen to be identified is selected; then all couplets hierarchically beneath that lead (by indentation and/or numbering) are sequentially checked for fit until an identification is reached (Figure 1.7).

Nomenclature is the formal naming of taxa according to some standardized system. For plants, algae, and fungi, the rules and regulations for the naming of taxa are provided by the International Code of Botanical Nomenclature (see Chapter 16). These formal names are known as scientific names, which by convention are translated into the Latin language. The fundamental principle of nomenclature is that all taxa may bear only one scientific name. Although they may seem difficult to learn at first, scientific names are much preferable to common (vernacular) names (Chapter 16).

The scientific name of a species traditionally consists of two parts (which are underlined or italicized): the genus name, which is always capitalized, e.g., *Quercus*, plus the specific epithet, which by recent consensus is not capitalized, e.g., *agrifolia*. Thus, the species name for what is commonly called California live oak is *Quercus agrifolia*. Species names are known as binomials (literally meaning two names) and this type of nomenclature is called binomial nomenclature, first formalized in the mid-18th century by Carolus Linnaeus.

Classification is the arrangement of entities (in this case, taxa) into some type of order. The purpose of classification is to provide a system for cataloguing and expressing relationships between these entities. Taxonomists have traditionally agreed upon a method for classifying organisms that utilizes categories called ranks. These taxonomic ranks are hierarchical, meaning that each rank is inclusive of all other ranks beneath it (Figure 1.8).

As defined earlier, a taxon is a group of organisms typically treated at a given rank. Thus, in the example of Figure 1.8, Magnoliophyta is a taxon placed at the rank of phylum; Liliopsida is a taxon placed at the rank of class; Arecaceae is a taxon

Figure 1.7 Dichotomous key to the genera of the Crassulaceae of California, by Reid Moran, *The Jepson Manual* (1993, Hickman, ed., University of California Press, Berkeley), reprinted by special permission.
placed at the rank of family; etc. Note that taxa of a particular rank generally end in a particular suffix (Chapter 16). There is a trend among systematic biologists to eliminate the rank system of classification (see Chapter 16). In this book, ranks are used for naming groups but not emphasized as ranks.

There are two major means of arriving at a classification of life: phenetic and phylogenetic. Phenetic classification is that based on overall similarities. Most of our everyday classifications are phenetic. For efficiency of organization (e.g., storing and retrieving objects, like nuts and bolts in a hardware store) we group similar objects together and dissimilar objects apart. Many traditional classifications in plant systematics are phenetic, based on noted similarities between and among taxa. Phylogenetic classification is that which is based on evolutionary history, or pattern of descent, which may or may not correspond to overall similarity (see later discussion, Chapter 2).

PHYLOGENY
Phylogeny, the primary goal of systematics, refers to the evolutionary history of a group of organisms. Phylogeny is commonly represented in the form of a cladogram (or phylogenetic tree), a branching diagram that conceptually represents the evolutionary pattern of descent (see Figure 1.9). The lines of a cladogram represent lineages or clades, which (as discussed earlier) denote descent, the sequence of ancestral-descendant populations through time (Figure 1.9A). Thus, cladograms have an implied (relative) time scale. Any branching of the cladogram represents lineage divergence, the diversification of lineages from one common ancestor.

Changes in the genetic makeup of populations, i.e., evolution, may occur in lineages over time. Evolution may be recognized as a change from a preexisting, or ancestral, character state to a new, derived character state. The derived character state is an evolutionary novelty, also called an apomorphy (Figure 1.9A). Phylogenetic systematics, or cladistics, is a methodology for inferring the pattern of evolutionary history of a group of organisms, utilizing these apomorphies (Chapter 2).

As cited earlier, cladograms serve as the basis for phylogenetic classification. A key component in this classification system is the recognition of what are termed monophyletic groups of taxa. A monophyletic group is one consisting of a common ancestor plus all (and only all) descendants of that common ancestor. For example, the monophyletic groups of the cladogram in Figure 1.9B are circled. A phylogenetic classification recognizes only monophyletic groups. Note that some monophyletic groups are included within others (e.g., in Figure 1.9B the group containing only taxa E and F is included within the group containing only taxa D, E, and F, which is included within the group containing only taxa B, C, D, E, and F, etc.). The sequential listing of monophyletic groups can serve as a phylogenetic classification scheme (see Chapter 2).

In contrast to a monophyletic group, a paraphyletic group is one consisting of a common ancestor but not all descendants of that common ancestor; a polyphyletic group is one in which there are two or more separate groups, each with a separate common ancestor. Paraphyletic and polyphyletic groups distort the accurate portrayal of evolutionary history and should be abandoned (see Chapter 2).

Knowing the phylogeny of a group, in the form of a cladogram, can be viewed as an important end in itself. As discussed earlier, the cladogram may be used to devise a system of classification, one of the primary goals of taxonomy. The cladogram also can be used as a tool for addressing several interesting biological questions, including biogeographic or ecological history, processes of speciation, and adaptive character evolution. A thorough discussion of the principles and methodology of phylogenetic systematics is discussed in Chapter 2.

WHY STUDY SYSTEMATICS?
The rationale and motives for engaging the field of systematics are worth examining. For one, systematics is important in
Figure 1.9 Example of a cladogram or phylogenetic tree for taxa A–F. A. Cladogram showing lineages and apomorphies, the latter indicated by thick hash marks. B. Cladogram with common ancestors shown and monophyletic groups circled.
providing a foundation of information about the tremendous diversity of life. Virtually all fields of biology are dependent on the correct taxonomic determination of a given study organism, which relies on formal description, identification, naming, and classification. Systematic research is the basis for acquiring, cataloguing, and retrieving information about life’s diversity. Essential to this research is documentation, through collection (Chapter 17) and storage of reference specimens, e.g., for plants in an accredited herbarium (Chapter 18). Computerized data entry of this collection information is now vital to cataloguing and retrieving the vast amount of information dealing with biodiversity (Chapter 18).

Systematics is also an integrative and unifying science. One of the fun aspects of systematics is that it may utilize data from all fields of biology: morphology, anatomy, embryology/development, ultrastructure, paleontology, ecology, geography, chemistry, physiology, genetics, karyology, and cell/molecular biology. The systematist has an opportunity to understand all aspects of his/her group of interest in an overall synthesis of what is known from all biological specialties, with the goal being to understand the evolutionary history and relationships of the group.

Knowing the phylogeny of life can give insight into other fields and have significant practical value. For example, when a species of *Dioscorea*, wild yam, was discovered to possess steroid compounds (used first in birth control pills), examination of other closely related species revealed species that contained even greater quantities of these compounds. Other examples corroborate the practical importance of knowing phylogenetic relationships among plant species. The methodology of phylogenetics is now an important part of comparative biology, used by, for example, evolutionary ecologists, functional biologists, and parasitologists, all of whom need to take history into account in formulating and testing hypotheses.

The study of systematics provides the scientific basis for defining or delimiting species and infraspecific taxa (subspecies or varieties) and for establishing that these are distinct from other, closely related and similar taxa. Such studies are especially important today in conservation biology. In order to determine whether a species or infraspecific taxon of plant is rare or endangered and warrants protection, one must first know the limits of that species or infraspecific taxon. In addition, understanding the history of evolution and geography may aid in conservation and management decisions, where priorities must be set as to which regions to preserve.

Finally, perhaps the primary motivation for many, if not most, in the field of systematics has been the joy of exploring the intricate complexity and incredible diversity of life. This sense of wonder and amazement about the natural world is worth cultivating (or occasionally rekindling). Systematics also can be a challenging intellectual activity, generally requiring acute and patient skills of observation. Reconstruction of phylogenetic relationships and ascertaining the significance of those relationships can be especially challenging and rewarding. But today we also face a moral issue: the tragic and irrevocable loss of species, particularly accelerated by rampant destruction of habitat, such as deforestation in the tropics. We can all try to help, both on a personal and professional level. Systematics, which has been called simply the study of biodiversity, is the major tool for documenting that biodiversity and can be a major tool for helping to save it. Perhaps we can all consider reassessing our own personal priorities in order to help conserve the life that we study.

REVIEW QUESTIONS

PLANTS

1. What is a plant? In what two conceptual ways can the answer to this question be approached?
2. What are the three major groups of life currently accepted?
3. Name and define the mechanism for the evolution of chloroplasts.
4. Name some chlorophyllous organismal groups that have traditionally been called plants but that evolved chloroplasts independently.
5. Draw a simplified cladogram showing the relative relationships among the green plants (Chlorobionta), land plants (embryophytes), vascular plants (tracheophytes), seed plants (spermatophytes), gymnosperms, and angiosperms (flowering plants).
6. Why are land plants treated as equivalent to plants in this book?
7. List the many ways that plants are important, both in the past evolution of life on earth and in terms of direct benefits to humans.
CHAPTER 1 PLANT SYSTEMATICS: AN OVERVIEW

SYSTEMATICS

8. What is systematics and what is its primary emphasis?
9. Define biological evolution, describing what is meant both by descent and by modification.
10. What is a lineage (clade)?
11. Name and define the units that undergo evolutionary change.
12. What are the two major mechanisms for evolutionary change?
13. What is a functional feature that results in increased survival or reproduction called?
14. Name and define the four components of taxonomy.
15. Define character and character state.
16. Give one example of a character and character state from morphology or from some type of specialized data.
17. What is a dichotomous key? a couplet? a lead?
18. What is a scientific name?
19. Define binomial and indicate what each part of the binomial is called.
20. What is the difference between rank and taxon?
21. What is the plural of taxon?
22. Name the two main ways to classify organisms and describe how they differ.
23. Define phylogeny and give the name of the branching diagram that represents phylogeny.
24. What does a split, from one lineage to two, represent?
25. Name the term for both a preexisting feature and a new feature.
26. What is phylogenetic systematics (cladistics)?
27. What is a monophyletic group? a paraphyletic group? a polyphyletic group?
28. For what can phylogenetic methods be used?
29. How is systematics the foundation of the biological sciences?
30. How can systematics be viewed as unifying the biological sciences?
31. How is systematics of value in conservation biology?
32. Of what benefit is plant systematics to you?

EXERCISES

1. Obtain definitions of the word plant by asking various people (lay persons or biologists) or looking in reference sources, such as dictionaries or textbooks. Tabulate the various definitions into classes. What are the advantages and disadvantages of each?
2. Take a day to note and list the uses and importance of plants in your everyday life.
3. Pick a subject, such as history or astronomy, and cite how the principles of taxonomy are used in its study.
4. Do a Web search for a particular plant species (try common and scientific name) and note what aspect of plant biology each site covers.
5. Peruse five articles in a systematics journal and tabulate the different types of research questions that are addressed.

REFERENCES FOR FURTHER STUDY

Systematics Agenda 2000: Charting the Biosphere. 1994. Produced by Systematics Agenda 2000. [This is an excellent introduction to the goals and rationale of systematic studies, described as a global initiative to discover, describe and classify the world's species. A vailable through SA2000, Herbarium, New York Botanical Garden, Bronx, New York 10458, USA]
As reviewed in Chapter 1, a phylogeny is commonly represented in the form of a cladogram, or phylogenetic tree, a branching diagram that conceptually represents the best estimate of phylogeny (Figure 2.1). The lines of a cladogram are known as lineages or clades. Lineages represent the sequence of ancestral-descendant populations through time, ultimately denoting descent.

Thus, as previously reviewed, cladograms have an implied, but relative, time scale. Any branching of the cladogram represents lineage divergence or diversification, the formation of two separate lineages from one common ancestor. (The two lineages could diverge into what would be designated separate species, the process of forming two species from one termed speciation.) The point of divergence of one clade into
two (where the most common ancestor of the two divergent clades is located) is termed a **node**; the region between two nodes is called an **internode** (Figure 2.1).

Evolution may occur within lineages over time and is recognized as a change from a preexisting **ancestral** (also called **plesiomorphic** or **primitive**) condition to a new, **derived** (also called **apomorphic** or **advanced**) condition. The derived condition, or **apomorphy**, represents an evolutionary novelty. As seen in Figure 2.1, an apomorphy that unites two or more lineages is known as a **synapomorphy** (syn, together); one that occurs within a single lineage is called an **autapomorphy** (aut, self). However, either may be referred to simply as an **apomorphy**, a convention used throughout this book.

Cladograms may be represented in different ways. Figure 2.2 shows the same cladogram as in Figure 2.1, but shifted 90° clockwise and with the lineages drawn perpendicular to one another and of a length reflective of the number of apomorphic changes.

Why study phylogeny? Knowing the pattern of descent, in the form of a cladogram, can be viewed as an important end in itself. The branching pattern derived from a phylogenetic analysis may be used to infer the collective evolutionary changes that have occurred in ancestral/descendant populations through time. Thus, a knowledge of phylogenetic relationships may be invaluable in understanding structural evolution as well as in gaining insight into the possible functional, adaptive significance of hypothesized evolutionary changes. The cladogram can also be used to classify life in a way that directly reflects evolutionary history. Cladistic analysis may also serve as a tool for inferring biogeographic and ecological history, assessing evolutionary processes, and making decisions in the conservation of threatened or endangered species.

The principles, methodology, and applications of phylogenetic analyses are described in the remainder of this chapter.

TAXON SELECTION

The study of phylogeny begins with the selection of **taxa** (taxonomic groups) to be analyzed, which may include living and/or fossil organisms. Taxon selection includes both the group as a whole, called the study group or **ingroup**, and the individual unit taxa, termed **Operational Taxonomic Units**, or **OTUs**. The rationale as to **which** taxa are selected from among many rests by necessity on previous classifications or phylogenetic hypotheses. The ingroup is often a traditionally defined taxon for which there are competing or uncertain classification schemes, the objective being to test the bases of those different classification systems or to provide a new...
classification system derived from the phylogenetic analysis. The OTUs are previously classified members of the study group and may be species or taxa consisting of groups of species (e.g., traditional genera, families). Sometimes named subspecies or even populations, if distinctive and presumed to be on their own evolutionary track, can be used as OTUs in a cladistic analysis.

In addition, one or more outgroups OTUs are selected. An outgroup is a taxon that is closely related to but not a member of the ingroup (see Polarity Determination: Outgroup Comparison). Outgroups are used to root a tree (see later discussion).

Some caution should be taken in choosing which taxa to study. First, the OTUs must be well circumscribed and delimited from one another. Second, the study group itself should be large enough so that all probable closely related OTUs are included in the analysis. Stated strictly, both OTUs and the group as a whole must be assessed for monophyly before the analysis is begun (see below.) In summary, the initial selection of taxa in a cladistic analysis, both study group and OTUs, should be questioned beforehand to avoid the bias of blindly following past classification systems.

CHARACTER ANALYSIS

DESCRIPTION
Fundamental in any systematic study is description, the characterization of the attributes or features of taxa using any number of types of evidence (see Chapters 9–14). A systematist may make original descriptions of a group of taxa or rely partly or entirely on previously published research data. In any case, it cannot be overemphasized that the ultimate validity of a phylogenetic study depends on the descriptive accuracy and completeness of the primary investigator. Thorough research and a comprehensive familiarity with the literature on the taxa and characters of concern are prerequisites to a phylogenetic study.

CHARACTER SELECTION AND DEFINITION
After taxa are selected and the basic research and literature survey are completed, the next step in a phylogenetic study is the actual selection and definition of characters and character states from the descriptive data. (Recall that a character is an attribute or feature; character states are two or more forms of a character.) Generally, those features that (1) are genetically determined and heritable (termed intrinsic), (2) are relatively invariable within an OTU, and (3) denote clear discontinuities from other similar characters and character states should be utilized. However, the selection of a finite number of characters from the virtually infinite number that could be used adds an element of subjectivity to the study. Thus, it is important to realize that any analysis is inherently biased simply by which characters are selected and how the characters and character states are defined. (In some cases, certain characters may be weighted over others; see later discussion.)

Because morphological features are generally the manifestation of numerous intercoordinated genes, and because
evolution occurs by a change in one or more of those genes, the precise definition of a feature in terms of characters and character states may be problematic. A structure may be defined broadly as a whole entity with several components. Alternatively, discrete features of a structure may be defined individually as separate characters and character states. For example, in comparing the evolution of fruit morphology within some study group, the character fruit type might be designated as two character states: berry versus capsule, or the characteristics of the fruit may be subdivided into a host of characters with their corresponding states, for example, fruit shape, fruit wall texture, fruit dehiscence, and seed number. (These characters may be correlated, however; see later discussion.) In practice, characters are divided only enough to communicate differences between two or more taxa. However, this type of terminological atomization may be misleading with reference to the effect of specific genetic changes in evolution, as genes do not normally correspond one for one with taxonomic characters. The morphology of a structure is the end product of development, involving a host of complex interactions of the entire genotype.

CHARACTER STATE DISCRETENESS

Because phylogenetic systematics entails the recognition of an evolutionary transformation from one state to another, an important requirement of character analysis is that character states be discrete or discontinuous from one another. Molecular characters and their states are usually discrete (see Chapter 14). For some nonmolecular, qualitative characters such as corolla color, the discontinuity of states is clear; e.g., the corolla is yellow in some taxa and red in others. But for other features, character states may not actually be clearly distinguishable from one another. This lack of discontinuity often limits the number of available characters and is often the result of variation of a feature either within a taxon or between taxa. Because character states must be clearly discrete from one another in order to be used in a cladistic analysis, they must be evaluated for discontinuity. A standard way to evaluate state discontinuity is to do a statistical analysis, e.g., by comparing the means, ranges, and standard deviations of each character for all taxa in the analysis (including outgroup taxa; see later discussion). Such a plot may reveal two or more classes of features that may be defined as discrete character states.
states (Figure 2.3). The investigator must decide what constitutes discreteness, such as lack of overlap of ranges or lack of overlap of ±1 standard deviation. Additional statistical tests, such as ANOVAS, t-tests, or multivariate statistics, may be used as other criteria for evaluating character state discontinuity.

CHARACTER CORRELATION
Another point to consider in character selection and definition is whether there is possible correlation of characters. Character correlation is an interaction between what are defined as separate characters, but which are actually components of a common structure, the manifestation of a single evolutionary novelty. Two or more characters are correlated if a change in one always accompanies a corresponding change in the other. When characters defined in a cladistic analysis are correlated, including them in the analysis (as two or more separate characters) may inadvertently weight what could otherwise be listed as a single character. In the example above, in which the original single character fruit type is subdivided into many characters (fruit shape, fruit wall texture, fruit dehiscence, and seed number), it is likely that these separate characters are correlated with an evolutionary shift from one fruit type (e.g., capsule) to another (e.g., berry). This is tested simply by determining if there is any variation in the character states of the subdivided characters between taxa. If characters appear to be correlated, they should either be combined into one character or scaled, such that each component character gets a reduced weight in a phylogenetic analysis (see Character Weighting).

HOMOLOGY ASSESSMENT
One concept critical to cladistics is that of homology, which can be defined as similarity resulting from common ancestry. Characters or character states of two or more taxa are homologous if those same features were present in the common ancestor of the taxa. For example, the flower of a daisy and the flower of an orchid are homologous as flowers because their common ancestor had flowers, which the two taxa share by continuity of descent. Taxa with homologous features are presumed to share, by common ancestry, the same or similar DNA sequences or gene assemblages that may, e.g., determine the development of a common structure such as a flower. (Unfortunately, molecular biologists often use the term homology to denote similarity in DNA sequence, even though the common ancestry of these sequences may not have been tested; using the term sequence similarity in this case is preferred.)

Homology may also be defined with reference to similar structures within the same individual; two or more structures are homologous if the DNA sequences that determine their similarity share a common evolutionary history. For example, carpels of flowering plants are considered to be homologous with leaves because of a basic similarity between the two in form, anatomy, and development. Their similarity is thought to be the result of a sharing of common genes or of gene complexes of common origin that direct their development. The duplication and subsequent divergence of genes is a type of intraindividual or intraspecies homology; the genes are similar because of origin from a common ancestor, in this case the gene prior to duplication.

Similarity between taxa can arise not only by common ancestry, but also by independent evolutionary origin. Similarity that is not the result of homology is termed homoplasy (also sometimes termed analogy). Homoplasy may arise in two ways: convergence (equivalent to parallelism, here) or reversal. Convergence is the independent evolution of a similar feature in two or more lineages. Thus, liverwort gametophytic leaves and lycopod sporophytic leaves evolved independently as photosynthetic appendages; their similarity is homoplastic by convergent evolution. (However, although leaves in the two groups evolved independently, they could possibly be homologous in the sense of utilizing gene complexes of common origin that function in the development of bifacial organs. This is unknown at present.)

Reversal is the loss of a derived feature with the re-establishment of an ancestral feature. For example, the reduced flowers of many angiosperm taxa, such as Lemna, lack a perianth; comparative and phylogenetic studies have shown that flowers of these taxa lack the perianth by secondary loss, i.e., via a reversal, reverting to a condition prior to the evolution of a reproductive shoot having a perianth-like structure.

The determination of homology is one of the most challenging aspects of a phylogenetic study and may involve a variety of criteria. Generally, homology is hypothesized based on some evidence of similarity, either direct similarity (e.g., of structure, position, or development) or similarity via a gradation series (e.g., intermediate forms between character states). Homology should be assessed for each character of all taxa in a study, particularly of those taxa having similarly termed character states. For example, both the cacti and stem-succulent euphorbs have spines (Figure 2.4). Thus, for the character spine presence/absence, the character state spines present may be assigned to both of these two taxa in a broad cladistic analysis. Whether intended or not, this designation of the same character state for two or more taxa presupposes that these features are homologous in those taxa and arose by common evolutionary origin. Thus, a careful distinction should be made between terminological similarity and similarity by homology. In the above example, more detailed study demonstrates that the spines of cacti and
euphorbs are quite different in origin, cacti having leaf spines arising from an areole (a type of short shoot), euphorbs having spines derived from modified stipules. Despite the similarity between spines of cacti and stem-succulent euphorbs, their structural and developmental *dissimilarity* indicates that they are homoplasicous and had independent evolutionary origins (with similar selective pressures, i.e., protection from herbivores). This hypothesis necessitates a redefinition of the characters and character states, such that the two taxa are not coded the same.

Homology must be assessed for molecular data as well (Chapter 14). For DNA sequence data, alignment of the sequences is used to evaluate homology of individual base positions. In addition, gene duplication can confound comparison of homologous regions of DNA.

Hypotheses of homology are tested by means of the cladistic analysis. The *totality* of characters are used to infer the most likely evolutionary tree, and the original assessment of homology is checked by determining if convergences or reversals must be invoked to explain the distribution of character states on the final cladogram (see later discussion).

CHARACTER STATE TRANSFORMATION SERIES

After the characters and character states have been selected and defined and their homologies have been assessed, the character states for each character are arranged in a sequence, known as a *transformation series* or *morphocline*. Transformation series represent the hypothesized sequence of evolutionary change, from one character state to another, in terms of direction and probability. For a character with only two character states, known as a *binary character*, obviously only one transformation series exists. For example, for the character ovary position having the states inferior and superior the implied transformation series is inferior ⇔ superior. This two-state transformation series represents (at least initially) a single, hypothesized evolutionary step, the direction of which is unspecified, being either inferior ⇒ superior or superior ⇒ inferior.

Characters having three or more character states, known as *multistate characters*, can be arranged in transformation series that are either ordered or unordered. An *unordered* transformation series allows for each character state to evolve into every other character state with equal probability, i.e., in a single evolutionary step. For example, an unordered transformation series for a three-state character is shown in Figure 2.5A; one for a four-state character is shown in Figure 2.5B and C. An ordered transformation series places the character states in a predetermined sequence that may be linear (Figure 2.5D) or branched (Figure 2.5E). Ordering a transformation series limits the direction of character state changes. For example, in Figure 2.5E, the evolution of 2 stamens from 5 stamens (or vice versa) takes two evolutionary steps and necessitates passing through the intermediate condition, 4 stamens; the comparable unordered series takes a single step between 2 stamens and 5 stamens (and between all other character states; Figure 2.5B).

The rationale for an ordered series is the assumption or hypothesis that evolutionary change proceeds gradually, such that going from one extreme to another most likely entails passing through some recognizable intermediate condition. Ordered transformation series are generally postulated vis-à-vis some obvious intergradation of character states or stages in the ontogeny of a character. A general suggestion in cladistic analyses is to code all characters as unordered unless there is compelling evidence for an ordered transformation, such as the presence of a vestigial feature in a derived structure. For example, a unifoliolate leaf might logically be treated as being directly derived not from a simple leaf but from a compound leaf (in an ordered transformation series; see Figure 2.5D), evidence being the retention of a vestigial, ancestral petiolule (see *Polarity*).

CHARACTER WEIGHTING

As part of a phylogenetic analysis, the investigator may choose to weight characters. Character weighting is the assignment of greater or lesser taxonomic importance to certain characters over other characters in determining phylogenetic relationships. Assigning a character greater weight has the effect of outweighing other characters in determining phylogenetic relationships. Assigning a character greater weight has the effect of weighting in favor of that character. Character weighting is generally done in order to possibly override competing changes in unweighted characters. (Note that fractional weights can also be assigned using computer algorithms.)

In practice, character weighting is rarely done, in part because of the arbitrariness of determining the amount of weight a character should have. A frequent exception, however, is molecular data, for which empirical studies may justify the rationale for and degree of weighting.

Characters may be given greater weight in cases for which the designation of homology is considered relatively certain.
The expectation is that, by increasing the weight of characters for which homoplasy is deemed unlikely, taxa will be grouped by real, shared derived features. Such characters given greater weight may be hypothesized as having homologous states for various reasons. For example, a feature distinctive for two or more taxa may be structurally or developmentally complex, such that the independent evolution of the same character state would seem very unlikely. (It should be realized, however, that if a feature is most likely highly adaptive, convergence of similar complex features in two or more taxa may not necessarily be ruled out.)

Characters may be weighted unintentionally because they are correlated, i.e., the corresponding character state values of two or more characters are always present in all taxa and believed to be aspects of the same evolutionary novelty. In order to prevent excess weighting of correlated characters, they may be scaled, meaning that each character receives a weight that is the inverse of the number of characters (e.g., if there are three correlated characters, each receives a weight of 1/3).

Alternatively, weighting may be done after the first stage of a phylogenetic analysis. Those characters that exhibit reversals or parallelisms on the cladogram are recognized and given less weight over those that do not, sometimes as a direct function of the degree of homoplasy they exhibit. For example, if, after a cladistic analysis, a character exhibits two convergent changes, that character would be given a weight of 1/2 in a second cladistic analysis. This type of a posteriori analysis is called successive weighting (which relies on the assumption that the initial tree(s) are close to an accurate representation of phylogeny). Often, the rescaled consistency index (RC) value is used as a basis for successive weighting (see Measures of Homoplasy).

POLARITY

The final step of character analysis is the assignment of polarity. Polarity is the designation of relative ancestry to the character states of a morphocline. As summarized earlier, a change in character state represents a heritable evolutionary modification from a preexisting structure or feature (termed plesiomorphic, ancestral, or primitive) to a new structure or feature (apomorphic, derived, or advanced). For example, for the character ovary position, with character states superior and inferior, if a superior ovary is hypothesized as ancestral, the resultant polarized morphocline would be superior ⇒ inferior. For a multistate character (e.g., leaf type in Figure 2.5D), an example of a polarized, ordered transformation series is seen in Figure 2.5F. The designation of polarity is often one of the more difficult and uncertain aspects of a phylogenetic analysis, but also one of the most crucial. The primary procedure for determining polarity is outgroup comparison (see Polarity Determination: Outgroup Comparison).
CHAPTER 2 PHYLOGENETIC SYSTEMATICS

Character step matrices for: Figure 2.6

Weighed character.

CHARACTER STEP MATRIX

As reviewed earlier, assigning a character state transformation determines the number of steps that may occur when going from one character state to another. Computerized phylogeny reconstruction algorithms available today permit a more precise tabulation of the number of steps occurring between each pair of character states through a character step matrix. The matrix consists of a listing of character states in a top row and left column; intersecting numbers within the matrix indicate the number of steps required, going from states in the left column to states in the top row. For example, the character step matrix of Figure 2.6A illustrates an ordered character state transformation series, such that a single step is required when going from state 0 to state 1 (or state 1 to state 0), two steps are required when going from state 0 to state 2, etc. The character step matrix of Figure 2.6B shows an unordered transformation series, in which a single step is required when going from one state to any other (nonidentical) state. Character step matrices need not be symmetrical; that of Figure 2.6C illustrates an ordered transformation series but one that is irreversible, disallowing a change from a higher state number to a lower state number (e.g., from state 2 to state 1) by requiring a large number of step changes (symbolized by ∞). Character step matrices are most useful with specialized types of data. For example, the matrix of Figure 2.6D could represent DNA sequence data, where 0 and 1 are the states for the two purines (adenine and guanine) and 2 and 3 are the states for the two pyrimidines (cytosine and thymine; see Chapter 14). Note that in this matrix the change from one purine to another purine or one pyrimidine to another pyrimidine (each of these known as a transition) requires only one step, being biochemically more probable to occur, whereas a change from a purine to a pyrimidine or from a pyrimidine to a purine (termed a transversion) is given five steps, being more biochemically less likely. Thus, in a cladistic analysis, the latter change will be given substantially more weight.

CHARACTER X TAXON MATRIX

Prior to cladogram construction, characters and character states for each taxon are tabulated in a character x taxon matrix, as illustrated in Figure 2.7A. In order to analyze the data using computer algorithms, the characters and character states must be assigned a numerical value. In doing so, character states are assigned nonnegative integer values, typically beginning with 0. Figure 2.7B shows the numerical coding of the matrix of Figure 2.7A. The states are numerically coded in sequence to correspond with the hypothesized transformation series for that character. For example, for the ordered transformation series leaf type of Figure 2.5D,F, the character states simple, ternately compound, and unifoliolate could be enumerated as 0, 1, and 2. In the character x taxon matrix, polarity is established by including one or more outgroup taxa as part of the character x taxon matrix (as in Figure 2.7A,B) and subsequently rooting the tree by placing the outgroups at the extreme base of the final, most parsimonious cladogram (see later discussion). By convention, the ancestral character state (that possessed by the outgroup) is usually designated 0, even if intermediate in a morphocline (e.g., 1 ⇒ 0 ⇒ 2, in which state 0 is ancestral to both 1 and 2); however, any coded state may be designated as ancestral, including nonzero ones.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

CLADOGRAM CONSTRUCTION

APOMORPHY

The primary tenet of phylogenetic systematics is that derived character states, or apomorphies, that are shared between two or more taxa (OTUs) constitute evidence that these taxa possess them because of common ancestry. These shared derived character states, or synapomorphies, represent the products of unique evolutionary events that may be used to link two or more taxa in a common evolutionary history. Thus, by sequentially linking taxa together based on their common possession of synapomorphies, the evolutionary history of the study group can be inferred.

The character x taxon matrix supplies the data for constructing a phylogenetic tree or cladogram. For example, Figure 2.7 illustrates construction of the cladogram for the five species of the hypothetical genus *Xid* from the character x taxon matrix at Figure 2.7A,B. First, the OTUs are grouped together as lineages arising from a single common ancestor.
above the point of attachment of the outgroup (Figure 2.7C). This unresolved complex of lineages is known as a polytomy (see later discussion). Next, derived character states are identified and used to sequentially link sets of taxa (Figure 2.7D,E). In this example, synapomorphies include (1) the derived states of characters 1 and 3 that group together X. nigra, X. purpurea, and X. rubens; (2) the derived state of character 4 that groups together X. alba and X. lutea; (3) the derived state four stamens of character 5, which is found in all ingroup OTUs and constitutes a synapomorphy for the entire study group; and the derived state two stamens of character 5 that groups X. nigra and X. purpurea. The derived state of character 2 is restricted to the taxon X. lutea and is therefore an autapomorphy. Autapomorphies occur within a single OTU and are not informative in cladogram construction. Finally, the derived state of character 6 evolved twice, in the lineages leading to both X. alba and X. purpurea; these independent evolutionary changes constitute homoplasies due to convergence.

One important principle is illustrated in Figure 2.7E for character 5, in which the derived state four stamens is an apomorphy for all species of the study group, including X. nigra and X. purpurea. Although the latter two species lack...
the state four stamens for that character, they still share the evolutionary event in common with the other three species. The lineage terminating in X. nigra and X. purpurea has simply undergone additional evolutionary change in this character, transforming from four to two stamens (Figure 2.7E).

RECENCY OF COMMON ANCESTRY

Cladistic analysis allows for a precise definition of biological relationship. Relationship in phylogenetic systematics is a measure of recency of common ancestry. Two taxa are more closely related to one another if they share a common ancestor that is more recent in time than the common ancestor they share with other taxa. For example, in Figure 2.8A, taxon C is more closely related to taxon D than it is to taxon E or F. This is true because the common ancestor of C and D is more recent in time (closer to the present) than is the common ancestor of C, D, E, and F (Figure 2.8A). In the earlier example of Figure 2.7E, it is evident that X. nigra and X. purpurea are more closely related to one another than either is to X. rubens. This is because the former two species together share a common ancestor (S) that is more recent in time than the common ancestor (R) that they share with X. rubens. Similarly, X. rubens is more closely related to X. nigra and X. purpurea than it is to either X. lutea or X. alba because the former three taxa share a common ancestor (R) that is more recent in time than Q, the common ancestor shared by all five species.

Because descent is assessed by means of recency of common ancestry, the lineages of a given cladogram may be visually rotated around their junction point or node (at the common ancestor) with no change in phylogenetic relationships. For example, the cladogram portrayed in Figure 2.9A, B, and C are all the same as that in Figure 2.7E, differing only in that the lineages have been rotated about their common ancestors. The topology of all these cladograms is exactly the same; only the relative positioning of branches varies. (Again note that cladograms can be portrayed in different manners, with taxa at the top, bottom, or sides and with lineages drawn as vertical, horizontal, or angled lines; see Figure 2.7A C.)

MONOPHYLY

A very important concept in phylogenetic systematics is that of monophyly, or monophyletic groups. As introduced in Chapter one, a monophyletic group is one that consists of a common ancestor plus all descendants of that ancestor. The rationale for monophyly is based on the concept of recency of common ancestry. Members of a monophyletic group share one or more unique evolutionary events; otherwise, the group could not generally be identified as monophyletic. For example, four monophyletic groups can be delimited from the cladogram of Figure 2.7E; these are circled in Figure 2.7F. In another example, the monophyletic groups of the cladogram of Figure 2.8A are shown in Figure 2.8B. Note that all monophyletic groups include the common ancestor plus all lineages derived from the common ancestor, with lineages terminating in an OTU.

Each of the two descendant lineages from one common ancestor is known as sister groups or sister taxa. For example, in Figure 2.7E and F, sister group pairs are: (1) X. lutea and X. alba; (2) X. nigra and X. purpurea; (3) X. nigra + X. purpurea and X. rubens; and (4) X. lutea + X. alba and X. nigra + X. purpurea + X. rubens.

The converse of monophyly is paraphyly. A paraphyletic group is one that includes a common ancestor and some, but not all, known descendants of that ancestor. For example, in Figure 2.7E, a group including ancestor Q and the lineages leading to X. lutea, X. alba, and X. rubens alone is paraphyletic because it has left out two taxa (X. purpurea and X. nigra), which are also descendants of common ancestor Q. Similarly, a polyphyletic group is one containing two or more common ancestors. For example, in Figure 2.7E, a group containing X. lutea and X. purpurea alone could be interpreted as polyphyletic as these two taxa do not have a single common ancestor that is part of the group. (Paraphyletic and polyphyletic may intergrade; the term non-monophyletic may be used to refer to either.)

Paraphyletic and polyphyletic groups are not natural evolutionary units and should be abandoned in formal classification systems. Their usage in comparative studies of character evolution, evolutionary processes, ecology, or biogeography will likely bias the results. In addition, paraphyletic groups cannot be used to reconstruct the evolutionary history of that group (see Classification). A good example of a paraphyletic group is the traditionally defined Dicots. Because most recent analyses show that some members of the Dicots are more closely related to Monocots than they are to other Dicots, the term Dicot should not be used in formal taxonomic nomenclature. (See Chapter 7.)

PARSIMONY ANALYSIS

In constructing a cladogram, a single branching pattern is selected from among many possibilities. The number of possible dichotomously branching cladograms increases dramatically with a corresponding increase in the number of taxa. For two taxa, there is only one cladogram (Figure 2.10A); for three taxa, three dichotomously branched cladograms can be constructed (Figure 2.10B); and for four taxa, 15 dichotomously branched cladograms are possible (Figure 2.10C). The formula for the number of trees is \(\Pi (2i-1) \), with \(\Pi \) being the product of all the factors \((2i-1)\) from \(i = 1\) to \(i = n-1\),
Figure 2.8 A. Hypothetical cladogram, illustrating recency of common ancestry. B. Cladogram of A with all monophyletic groups circled.
where \(n \) is the number of OTUs. For a cladistic analysis involving 54 OTUs, the number of possible dichotomously branching trees is \(3 \times 10^{84} \) (which is greater than the number of electrons in the universe!). The number of trees is even greater when the additional possibilities of reticulation or polytomies are taken into account (see later discussion).

Because there are generally many possible trees for any given data set, one of the major methods of reconstructing phylogenetic relationships is known as the principle of parsimony or parsimony analysis. The principle of parsimony states that of the numerous possible cladograms for a given group of OTUs, the one (or more) exhibiting the fewest number of evolutionary steps is accepted as being the best estimate of phylogeny. (Note that there may be two or more cladograms that are equally most parsimonious.) The principle of parsimony is actually a specific example of a general tenet of science known as Ockham's Razor (\(\textit{Entia non sunt multiplicanda praeter necessitatem} \)), which states that given two or more competing hypotheses, each of which can explain the facts, the simplest one is accepted. The rationale for parsimony analysis is that the simplest explanation minimizes the number of ad hoc hypotheses, i.e., hypotheses for which there is no direct evidence. In other words, of all possible cladograms for a given group of taxa, the one (or more) implying the fewest number of character state changes is accepted. A consequence of minimizing the total number of character state changes is to minimize the number of homoplasious reversals or convergences. The principle of parsimony is a valid working hypothesis because it minimizes uncorroborated hypotheses, thus assuming no additional evolutionary events for which there is no evidence.

Parsimony analysis can be illustrated as follows. For the example data set of Figure 2.7A, which includes five taxa (plus an outgroup), there are actually 105 possible dichotomously branching cladograms; the cladogram at Figure 2.7E (having total of eight character state changes) is only one of these. One of the other 104 alternative cladistic hypotheses is illustrated in Figure 2.9D. Note, however, that for this cladogram, there are a total of 11 character state changes (including three pairs of convergent evolutionary events and one reversal). Thus, of all the possible cladograms for the data set of Figure 2.7A, the one illustrated in Figure 2.7E is the
shortest, containing the fewest number of evolutionary steps, and would be accepted as the best estimate of phylogeny.

Various computer programs (algorithms) are used to determine the most parsimonious cladogram from a given character matrix. (See Cladistic Computer Programs at the end of this chapter.)

UNROOTED TREES
In contrast to a cladogram, a method for the representation of relative character state changes between taxa is the unrooted tree, sometimes called a network. An unrooted tree is a branching diagram that minimizes the total number of character state changes between all taxa. Unrooted trees are constructed by grouping taxa from a matrix in which polarity is not indicated (in which no hypothetical ancestor is designated), perhaps because the polarity of one or more characters cannot be ascertained. Because no assumptions of polarity are made, no evolutionary hypotheses are implicit in an unrooted tree. Figure 2.11 illustrates the unrooted tree for the data set of Figure 2.7A,B. Note that monophyletic groups cannot be recognized in unrooted trees because relative ancestry (and therefore an outgroup) is not indicated. The character state changes noted on the unrooted tree simply denote evolutionary changes when going from one group of taxa to another, without reference to direction of change.

After an unrooted tree is constructed, it may be rooted and portrayed as a cladogram. If the relative ancestry of one or more characters can be established, a point on the network may be designated as most ancestral, forming the root of the cladogram. For example, if the unrooted tree of Figure 2.11 is rooted at *, the result is the tree of Figure 2.7E. However, rooting is effectively done by simply including one or more
CHAPTER 2 PHYLOGENETIC SYSTEMATICS

outgroup(s) in the analysis and placing these outgroups at the base (the root) of the tree.

CHARACTER OPTIMIZATION
Optimization of characters refers to their representation (or plotting) in a cladogram in the most parsimonious way, such that the minimal number of character state changes occur. Figure 2.12A,B shows a cladogram in which the evolution of a character is explained, but not in the most parsimonious way. In Figure 2.12C,D, the character is optimized, having the fewest number of state changes. In this example, character state evolution can be optimized in either of two equally parsimonious ways. *Acctran* (accelerated transformation) optimization hypothesizes an earlier initial state change with a later reversal of the same character (Figure 2.12C). *Deltran* (delayed transformation) optimization hypothesizes two later, convergent state changes (Figure 2.12D). Note that when alternative character optimization exists, there are nodes in the cladogram that are *equivocal*, i.e., for which the character state cannot be definitively determined.

Optimization is automatically performed by computer algorithms that trace characters and character states. (See end of chapter.)

POLYTOMY
Occasionally, the relationships among taxa cannot be resolved. A *polytomy* (also called a polychotomy) is a branching diagram in which the lineages of three or more taxa arise from a single hypothetical ancestor. Polytomies arise either because data are lacking or because three or more of the taxa were

FIGURE 2.11 Unrooted tree for the data set of Fig. 2.7A (minus the *Outgroup* taxon). Direction of evolutionary change is not indicated and monophyletic groups cannot be defined. The * indicates the point of rooting that yields the tree of Fig. 2.7E.

FIGURE 2.12 A,B. Cladograms for taxa W–Z and Outgroup, in which character states of a character (superposed above taxa) are accounted for by hypothesizing three state changes, not optimized. C. Optimization (*Acctran*) of character, hypothesizing two state changes, including one reversal. D. Optimization (*Deltran*) of character, hypothesizing two convergent state changes.
actually derived from a single ancestral species. (In addition, polytomies often are found in consensus trees; see later discussion.)

In the case of a polytomy arising via missing data, there are no derived character states identifying the monophyly of any two taxa among the group. For example, from the character x taxon matrix of Figure 2.13A, the relationships among taxa W, X, and Y cannot be resolved; synapomorphies link none of the taxon pairs. Thus, W, X, and Y are grouped as a polytomy in the most parsimonious cladogram (Figure 2.13B).

The other possible reason for the occurrence of a polytomy is that all of the taxa under consideration diverged independently from a single ancestral species. Thus, no synapomorphic evolutionary event links any two of the taxa as a monophyletic group. The occurrence of a polytomy in phylogenetic analysis should serve as a signal for the reinvestigation of taxa and characters, perhaps indicating the need for continued research.

RETICULATION

The methodology of phylogenetic systematics generally presumes the dichotomous or polytomous splitting of taxa, representing putative ancestral speciation events. However, another possibility in the evolution of plants is reticulation, the hybridization of two previously divergent taxa forming a new lineage. A reticulation event between two ancestral taxa (E and F) is exemplified in Figure 2.13D, resulting in the hybrid ancestral taxon G, which is the immediate ancestor of extant taxon X. Most standard phylogenetic analyses do not consider reticulation and would yield an incorrect cladogram if such a process had occurred. For example, the character x taxon matrix of Figure 2.13C is perfectly compatible with the reticulate cladogram of Figure 2.13D. However, the methods of phylogenetic systematics would construct the most parsimonious dichotomously branching cladogram of Figure 2.13E or 2.10F, which show homoplasy and require one additional character state change than Figure 2.13D.

Reticulation among a group of taxa should always be treated as a possibility. Data, such as chromosome analysis, may provide compelling evidence for past hybridization among the most recent common ancestors of extant taxa. A good example of this is the evolution of durum and bread wheat (Triticum spp.) via past hybridization and polyploidy (Figure 2.13G).

TAXON SELECTION AND POLYMORPHIC CHARACTERS

As alluded to earlier, the initial selection of taxa to be studied may introduce bias in a phylogenetic analysis. Prior to a phylogenetic analysis, each of the smallest unit taxa under study (OTUs) and the group as a whole must be hypothesized to be monophyletic prior to the analysis. Monophyly is ascertained by the recognition of one or more unique, shared derived character states that argue for most recent common ancestry of all and only all members of the taxon in question. If such an apomorphy cannot be identified, any relationships denoted from the phylogenetic analysis may be in doubt. For example, in a cladistic analysis of several angiosperm genera (Figure 2.14A), only if each of the unit taxa (genera in this case) is monophyletic will the resultant cladogram be unbiased. If, however, genus A is not monophyletic, then it may be possible for some species of genus A to be more closely related to (i.e., have more recent common ancestry with) a species of another genus than to the other species of genus A (e.g., Figure 2.14B). Therefore, if any doubt exists as to the monophyly of component taxa to be analyzed, the taxa in question should be subdivided until the monophyly of these subtaxa is reasonably certain. If this is not possible, an exemplar species (selected as representative of a higher taxon and assumed to be monophyletic) may be chosen for a first approximation of relationships.

Related to the requirement of OTU monophyly is the problem of polymorphic characters, i.e., those that have variable character state values within an OTU. If an OTU for which monophyly has been established is polymorphic for a given character, then it may be subdivided into smaller taxonomic groups until each of these groups is monomorphic (i.e., invariable) for the character. If an OTU at the level of species is polymorphic, it is generally listed as such in computer algorithms.

If the ingroup as a whole is not monophyletic, the effect is identical to excluding taxa from the analysis, which could give erroneous results under certain conditions. For example, the most parsimonious cladogram constructed from the data matrix of Figure 2.14C is that of Figure 2.14D. However, if taxon W is inadvertently omitted from the ingroup (which is now not monophyletic; Figure 2.14E), then a different, most parsimonious cladogram topology may result for taxa X, Y, and Z (Figure 2.14F). The question of monophyly may be a serious problem for traditionally recognized taxa that were generally not defined by demonstrable apomorphies.

POLARITY DETERMINATION: OUTGROUP COMPARISON

As mentioned earlier in the discussion on character analysis, knowledge of character polarity is necessary to recognize shared derived character states that define monophyletic taxa. The only valid criterion for ascertaining polarity is outgroup comparison. An outgroup is a taxon that is not a member of
FIGURE 2.13 A. Hypothetical data set. B. Resultant tree from data set at A. Note polytomy of lineages to W, X, and Y. C. Hypothetical data set. D. Cladogram exhibiting reticulation that is compatible with data set at C. E,F. Dichotomously branching cladograms arising from data set at C, showing two alternative distributions of character state changes. G. Evolution of wheat via ancestral hybridization and polyploidy.
the study group under investigation (the ingroup). Outgroup comparison entails character assessment of the closest outgroups to the ingroup. Those character states possessed by the closest outgroups (particularly by the sister group to the ingroup) are considered to be ancestral; states present in the ingroup, but not occurring in the nearest outgroups, are derived.

The rationale for outgroup comparison is founded in the principle of parsimony. For example, given some monophyletic ingroup X (Figure 2.15A), members of which possess either state 0 or 1 of a character, and given that taxon Y (nearest outgroup to X) possesses only character state 1, then the most parsimonious solution (requiring a single character change: 1 ⇒ 0) is that state 1 is ancestral and present in the

Figure 2.14 A. Cladogram of hypothetical genera A–E. B. Cladogram of the species of genera A–E. Note that genus A is paraphyletic. C. Character × taxon matrix for taxa V Z plus OUTGROUP. D. Most parsimonious cladogram for taxa V, W, X, Y, and Z. E. Character × taxon matrix for same taxa, minus taxon W, omitted because it is not considered as part of the ingroup. F. Most parsimonious cladogram for taxa V, X, Y, and Z. Note different branching pattern for taxa X, Y, and Z.
common ancestor M (the outgroup node); character state 0 is derived within taxon X (Figure 2.15A). The alternative, that state 0 is ancestral, requires at least two character state changes (Figure 2.15B). Verification is made by considering an additional outgroup (e.g., taxon Z in Figure 2.15C). If this next outgroup possesses only character state 1, then the ancestral status of state 1 for taxon Y is substantiated (Figure 2.15C). If, however, outgroup Z contains only character state 0, then it is equally parsimonious to assume that state 1 is ancestral (Figure 2.15D) versus derived (Figure 2.15E). In this case, consideration of additional outgroups may resolve polarity.

The major problem with outgroup comparison is that the cladistic relationships of outgroup taxa may be unknown; in such a case, all possible outgroups (in all possible combinations) may be tested. In practice, prior studies at a higher taxonomic level are often used to establish near outgroups for a phylogenetic analysis.

ANCESTRAL VERSUS DERIVED CHARACTERS

A common point of confusion is seen in the use of the terms *ancestral* (plesiomorphic or primitive) and *derived* (apomorph or advanced). It is advisable that these terms be limited
to the description of characters (not taxa) and then only relative to monophyletic groups. For example, in the cladogram of Figure 2.15G (constructed from the matrix of Figure 2.15F), state 1 of character 1 is derived within the group including W, X, Y, and Z (i.e., state 1 is absent in common ancestor E), but it is ancestral with regard to the monophyletic group X, Y, Z (i.e., state 1 is present in F, the common ancestor of X, Y, and Z). The use of the terms ancestral and derived to describe taxa should be avoided to prevent ambiguity. For example, from Figure 2.15G, it might be asked which taxon is most primitive? Confusion is avoided by describing, e.g., taxon W as phylogenetically most basal (or earliest diverging) and, e.g., taxon Z as possessing the fewest number of observed apomorphic states.

CONSENSUS TREES
In practice, most cladistic analyses yield numerous cladograms that are equally most parsimonious. Rather than view and discuss each of these cladograms, it is usually convenient to visualize the one tree that is compatible with all equally most parsimonious trees. A consensus tree is a cladogram derived by combining the features in common between two or more cladograms. There are several types of consensus trees. One of the most commonly portrayed is the strict consensus tree, which collapses differences in branching pattern between two or more cladograms to a polytomy. Thus, the two equally parsimonious cladograms of Figure 2.16A,B are collapsible to the strict consensus tree of Figure 2.16C. Another type of consensus tree is the 50% majority consensus tree, in which only those clades that occur in 50% or more of a given set of trees are retained. Consensus trees may be valuable for assessing those clades that are robust, i.e., that show up in all of the equally parsimonious trees. Greater confidence may be given to such clades in terms of recognition of accepted and named monophyletic groupings.

LONG BRANCH ATTRACTION
Sometimes, e.g., with molecular sequence data, one or more taxa will have a very long branch, meaning that these taxa have a large number of autapomorphies relative to other taxa in the analysis (e.g., taxon Z of Figure 2.16D). This can be caused by unequal rates of evolution among the taxa examined or can be the by-product of the particular data used. Such a situation can result in long branch attraction, in which taxa with relatively long branches tend to come out as close relatives of one another (or, if only one taxon has a long branch, its phylogenetic placement may easily shift from one analysis to another). Long branch attraction occurs because...
when relatively numerous state changes occur along lineages, random changes can begin to outweigh nonrandom, phylogenetically informative ones. The phylogenetic placement of a taxon with a long branch can be uncertain and can unduly influence the placement of other taxa.

Taxa with long branches may need to be analyzed using a different data set. They are sometimes left out of an analysis to see what the effect is on cladogram robustness (see later discussion).

MAXIMUM LIKELIHOOD

The principle of parsimony can be viewed as evaluating all alternative trees (or as many subsets as feasible), calculating the length of those trees, and selecting those trees that are shortest, i.e., require the minimum number of character state changes under the set of conditions (character coding) specified. Another method of phylogenetic inference that deserves at least a brief mention is termed **maximum likelihood** (see references at end of chapter for a better understanding). Maximum likelihood, like parsimony methods, also evaluates alternative trees (hypotheses of relationship), but considers the probability, based on some selected model of evolution, that each tree explains the data. That tree which has the highest probability of explaining the data is preferred over trees having a lower probability. The appropriate model of evolution used is typically based on the data of the current analysis, but may be based on other data sets.

Maximum likelihood is used in practice for molecular sequence data, as illustrated in Figure 2.17A. In this simple example, there are three possible trees (shown as unrooted in Figure 2.17B and rooted arbitrarily at taxon Z in Figure 2.17C). Maximum likelihood evaluates each tree and calculates, for each character, the total probability that each node of the tree possesses a given nucleotide (Figure 2.17D). These individual probabilities (there are 16 in all; only three are illustrated in Figure 2.17D) are added together and the total probability for all characters is calculated. This total probability is compared with that for the other trees. That tree having the greatest overall probability is preferred over the others.

Maximum likelihood methods have an advantage over parsimony in that the estimation of the pattern of evolutionary history can take into account probabilities of a nucleotide substitution (e.g., purine to purine versus purine to pyrimidine; see Chapter 14) as well as varying rates of nucleotide substitution. The particular model used is typically evaluated from the data at hand, so in this sense it is empirical. Maximum likelihood methods may also eliminate the problem of long branch attraction (discussed earlier). Phylogenetic studies will very often present the results of both parsimony and maximum likelihood methods for comparison.

BAYESIAN ANALYSIS

Another more recent method of phylogenetic analysis is **Bayesian** inference (which is also worth mentioning briefly here, but see the references at the end of this chapter for a detailed understanding). This method is based upon **posterior probability**, utilizing a probability formula devised by T. Bayes in 1763.

Bayesian inference calculates the posterior probability of the phylogeny, branch lengths, and various parameters of the data. In practice, the posterior probability of phylogenies is approximated by sampling trees from the posterior probability distribution, using algorithms known as the **Markov chain Monte Carlo** (MCMC) or the **Metropolis-coupled Markov chain Monte Carlo** (MCMCMC). The results of a Bayesian analysis yield the probabilities for each of the branches of a given tree (derived from the 50% majority consensus tree of sampled trees). (Generally, a Bayesian probability of 95% or greater is considered robust for a particular clade: see **Cladogram Robustness**.)

MEASURES OF HOMOPLASY

If significant homoplasy occurs in a cladistic analysis, the data might be viewed as less than reliable for reconstructing phylogeny. One measure of the relative amount of homoplasy in the cladogram is the consistency index. **Consistency index** (CI) is equal to the ratio mls, where m is the minimum number of character state changes that must occur and s is the actual number of changes that occur. The minimum number of changes is that needed to account for a single transformation between all character states of all characters. For example, a three-state character transformation, 0 ⇔ 1 − 2, requires a minimum of two steps; e.g., one possibility (of several) is the change 0 ⇒ 1 (first step) and then 1 ⇒ 2 (second step).

A consistency index close to 1 indicates little to no homoplasy; a CI close to 0 is indicative of considerable homoplasy. As an example, the character x taxon matrix of Figure 2.7A,B necessitates a minimum of seven changes; i.e., there must be at least seven character state transformations to explain the distribution of states in the taxa. The actual number of changes in the most parsimonious cladogram is eight because of homoplasy (Figure 2.7E). Thus, the CI for this cladogram is 7/8 = 0.875. The consistency index may be viewed as a gauge of confidence in the data to reconstruct phylogenetic relationships.

A consistency index may be calculated for individual characters as well. For example, relative to the most parsimonious cladogram of Figure 2.7E, the CI of all characters is equal to 1, except for character 6, which has a CI of 0.5 (because of two convergent character state changes).
Two other measures of homoplasy may be calculated: the retention index (RI) and the rescaled consistency index (RC). The retention index is calculated as the ratio \((g - s)/(g - m)\), where \(g\) is the maximum possible number of state changes that could occur on any conceivable tree. Thus, the retention index is influenced by the number of taxa in the study. The rescaled consistency index (RC) is equal to the product of the CI and RI. The RC is used most often in successive weighting; the rationale for its use is based on theoretical simulation studies.

CLADOGRAM ROBUSTNESS
It is very important to assess the confidence for which a tree actually denotes phylogenetic relationships. One way to evaluate cladogram robustness is the bootstrap. Bootstrapping is a method that reanalyzes the data of the original character
taxon matrix by selecting (resampling) characters at random, such that a given character can be selected more than once. The effect of this resampling is that some characters are given greater weight than others, but the total number of characters used is the same as that of the original matrix. This resampled data is then used to construct the most parsimonious cladogram(s). Many sequential bootstrapping analyses are generated (often 100 or more runs), and all most parsimonious cladograms are determined. From all of these most parsimonious trees, a 50% majority consensus tree is constructed; the percentages placed beside each internode of the cladogram represent the percentage of the time (from the bootstrap runs) that a particular clade is maintained (e.g., Figure 2.16E). A bootstrap value of 70% or more is generally considered a robustly supported node. The rationale for bootstrapping is that differential weighting by resampling of the original data will tend to produce the same clades if the data are good, i.e., reflect the actual phylogeny and exhibit little homoplasy. One problem with the bootstrapping method is that it technically requires a random distribution of the data, with no character correlation. These criteria are almost never verified in a cladistic analysis. However, bootstrapping is still the most used method to evaluate tree robustness. [Another method of measuring cladogram robustness is the so-called jackknife (or jacknifing), which is similar to the bootstrap but differs in that each randomly selected character may only be resampled once (not multiple times), and the resultant resampled data matrix is smaller than the original.]

A second way to evaluate clade confidence is by measuring clade decay. A decay index (also called Bremer support) is a measure of how many extra steps are needed (beyond the number in the most parsimonious cladograms) before the original clade is no longer retained. Thus, if a given cladogram internode has a decay index of 4, then the monophyletic group arising from it is maintained even in cladograms that are four steps longer than the most parsimonious (e.g., Figure 2.16F). The greater the decay index value, the greater the confidence in a given clade.

Finally, Bayesian analysis provides a measure of robustness in calculating posterior probabilities for each of the clades generated. Any branch with a posterior probability of 95% or greater is statistically well supported. (However, this method has come under some scrutiny because it often generates particularly high values of support.)

CLADOGRAM ANALYSIS

A typical cladistic analysis may involve the use of DNA sequence data from one or more genes plus the use of morphological (i.e., nonmolecular) data. (Tests may be used to evaluate the homogeneity or compatibility of phylogenetic information from different types of molecular data, e.g., from chloroplast versus nuclear genes.) Often, separate analyses are done for (1) each of the gene sets individually; (2) all molecular data combined; (3) morphological data alone; and (4) a combined analysis utilizing all available data molecular and morphological. It has been demonstrated that utilizing the totality of data often results in the most robust cladogram. The strict consensus tree of this combined analysis generally represents the best estimate of phylogenetic relationships of the group studied.

From the most robust cladogram(s) derived from cladistic analyses, it is valuable to trace all character state changes. In addition, all monophyletic groupings should be evaluated in terms of their overall robustness (e.g., bootstrap support) and the specific apomorphies that link them together. Homoplasies (convergences or reversals) should also be noted. A homoplasy may represent an error in the initial analysis of that character that may warrant reconsideration of character state definition, intergradation, homology, or polarity. Thus, cladogram construction should be viewed not only as an end in itself, but as a means of pointing out those areas where additional research is needed to resolve satisfactorily the phylogeny of a group of organisms.

Cladograms represent an estimate of the pattern of evolutionary descent, both in terms of recency of common ancestry and in the distribution of derived (apomorphic) character states, which represent unique evolutionary events. Once a robust cladogram is derived, the pattern of relationships and evolutionary change may be used for a variety of purposes, discussed next.

PHYLOGENETIC CLASSIFICATION

One of the most important uses of cladograms is as a basis for classification. The pattern of evolutionary history portrayed in a cladogram may be used to classify taxa phylogenetically. A phylogenetic classification may be devised by naming and ordering monophyletic groups in a sequential, hierarchical classification, sometimes termed an indented method. The hierarchically arranged monophyletic groups may be assigned standard taxonomic ranks. For example, for the most parsimonious cladogram of Figure 2.18A, one possible classification of hypothetical genus Xid is seen in Figure 2.18B. Note that in this example, each named taxon corresponds to a monophyletic group (Figure 2.18A) and that these groups are sequentially nested such that the original cladogram may be directly reconstructed from this classification system. Two taxa of the same rank (e.g., Sections Rubens and Nigropurpurea) are automatically sister groups. Each higher taxon above
An alternative, and often more practical, means of deriving a classification scheme from a cladogram is by annotation. Annotation is the sequential listing of derivative lineages from the base to the apex of the cladogram, each derivative lineage receiving the same hierarchical rank. The sequence of listing of taxa may be used to reconstruct their evolutionary relationships. For example, an annotated classification of the taxa from Figure 2.18A is seen in Figure 2.18C. In this case all named taxa are monophyletic, but taxa at the same rank are not necessarily sister groups.

The particular rank at which any given monophyletic group is given is arbitrary and is often done to conserve a past, traditional classification. A recent trend in systematics is to eliminate ranks altogether or, alternatively, to permit unranked names between the major rank names (see Chapter 16). In either case, the taxon names, minus ranks, would still retain their hierarchical, evolutionary relationship (e.g., as in Figure 2.18D).

This most common type of phylogenetic classification is sometimes termed node-based, because it recognizes a node (common ancestor) of the cladogram and all descendants of that common ancestor as the basis for grouping (Figure 2.18E). In some cases, it may be valuable to recognize a group that is stem-based, i.e., one that includes the stem (internode) region just above a common ancestor plus all descendants of that stem (Figure 2.18E). A stem-based group might be useful, for example, in that it might include both a well-defined and corroborated node-based monophyletic group, plus one or more extinct, fossil lineages that contain some, but not all, of the apomorphies possessed by the node-based group. Yet a third general type of phylogenetic classification is apomorphy-based, in which all members of a monophyletic group that share a given, unique evolutionary event (illustrated by an * in Figure 2.18E) are grouped together.
Last, it should be mentioned that a monophyletic group can be recognized with a phylogenetic definition. For example, in Figure 2.18A, the monophyletic Xid might be defined as the least inclusive monophyletic group containing the common ancestor of X. lutea and X. nigra. The rationale is that this presents a more explicit and stable means of classification of taxa. However, any given phylogenetic definition is based on some cladistic analysis. If future cladistic analyses portray a somewhat different relationship of taxa, then the phylogenetically defined groups may contain taxa that were unintended, making them less useful and less stable than more standard classifications.

As mentioned in Chapter 1, a second major type of classification is phenetic, in which taxa are grouped by overall similarity. This phenetic grouping may be represented in the form of a branching diagram known as a phenogram. For example, for the data matrix of Figure 2.19A, the resultant phenogram is seen in Figure 2.19B. (Note that no outgroup is included in the matrix.) Phenetic classifications will often be quite different from phylogenetic ones because in a phenetic analysis, taxa may be grouped together by shared ancestral features (known as symplesiomorphies) as well as by shared derived character states (synapomorphies). For example, the data matrix of Figure 2.19C (identical to that of 2.16A except for the addition of an outgroup) yields the most parsimonious cladogram at Figure 2.19D, which has a different branching pattern from the phenogram of Figure 2.19B. Note that in the cladogram, taxa W and X are grouped as sister taxa because they share the derived state of character 1, which is a synapomorphy for W and X. In contrast, the phenogram of Figure 2.19B groups together taxa X and Y because they are more similar, having in common state 0 of characters 2 and 3; however, these are shared ancestral states (symplesiomorphies) and cannot be used to recognize monophyletic groups. Because many past classification systems have been based on overall phenetic similarity, great caution should be taken in evaluating relationship. Taxa that are most similar to one another may not, in fact, be particularly close relatives in a phylogenetic sense (i.e., by recency of common ancestry).

In summary, phylogenetic classification of taxa has the tremendous advantage of being based upon and of reflecting the evolutionary history of the group in question. The International Code of Botanical Nomenclature (Chapter 16) has been used very successfully to assign taxonomic names based on the criterion of monophyly (although some problems persist that it is hoped will be addressed in future versions of the Code). Phylogenetic classifications have resulted in several name changes in some groups, but these are gradually beginning to stabilize, particularly with additional, robust molecular studies. In practice, assigning a name to every monophyletic group, whether ranked or not, is unwieldy, impractical, and unnecessary. Generally, only monophyletic groups that are well supported (and ideally that have a well-recognized apomorphy) should be formally named, and every effort should be made to retain (or modify) former classification systems, where possible.

CHARACTER EVOLUTION

Cladograms can be used as an analytical device to evaluate evolutionary change within a given character. Examination of the cladogram with reference to the distribution of the states of this character reveals one or more optimized (most parsimonious) explanations for the evolution of that character. Such an analysis can be used to verify the original coding of characters. For example, cladistic analyses of angiosperms (based on numerous characters) verify that the spines of cacti and those of euphorbs have evolved independently of one another. Had these features been coded as the same state of the character spine presence/absence, convergent evolution would be evident in the cladogram, indicative of an initially faulty assessment of homology.

In addition, certain characters may have been omitted from the original character x taxon matrix because of incomplete data or uncertainty with regard to homology, polarity, or intergradation of character states. However, the sequence of evolutionary changes of these characters may be ascertained by superposing the states of the characters not included on the terminal taxa of the cladogram. If it is assumed that the cladogram is correct, then the most parsimonious explanation for the distribution of character states may be obtained by optimization. For example, Figure 2.20 illustrates the most
parsimonious cladogram for taxa T, Z, in which the character chromosome number w as not originally included. A superposition of known haploid chromosome numbers may be used to hypothesize the most parsimonious (or optimum) evolutionary pattern (Figure 2.20).

BIOGEOGRAPHY AND ECOLOGY

A phylogenetic analysis can be used to evaluate past changes in biogeographic distribution and ecological habitat. Both distribution and habitat data are considered to be extrinsic in nature, i.e., not determined by the genetic makeup (genome) of a taxon, and, therefore, not subject to biological evolution. Thus, data on distribution and habitat cannot be included in the data matrix of a cladistic analysis. (Note that ecological data in the simple sense of the habitat a taxon occupies, such as desert or salt marsh, is extrinsic. However, the propensity or capability to survive in a particular habitat, e.g., physiological or morphological adaptations that allow survival in the desert, are intrinsic and may be used directly as characters in an analysis.) A historical analysis of extrinsic data may be accomplished by superposing the data onto an existing cladogram and optimizing the changes that would be needed, using the principle of parsimony (see later discussion).

Analysis of biogeographic data can give insight into the direction of change in biogeographic distribution. A change from one distribution to another can occur by either of two means: dispersal or vicariance. **Dispersal** is the movement of an organism or propagule from one region to another, such as the transport of a seed or fruit (by wind, water, or bird) from a continent to an island (Figure 2.21A). **Vicariance**, in contrast, is the splitting of one ancestral population into two (or more) populations, e.g., by continental drift or the formation of a new waterway or mountain range, resulting in a barrier between the split populations; this barrier prevents gene flow between these populations, allowing them to diverge independently (Figure 2.21B).

Determining vicariance versus dispersal as an explanation for biogeographic change cannot always be made, and requires additional knowledge of geologic history. For example, Figure 2.21C illustrates a cladogram of taxa endemic to the Hawaiian archipelago, in which the ranges (by island) are superposed. A simple optimization shows the changes in geographic ranges that would be needed to explain the data. In this case, a shift from the island of Kauai to Maui and one from Maui to the island of Hawaii constitutes the simplest explanation needed to account for the current distribution of taxa. Because geologic data firmly suggests that the Hawaiian islands arose from sequential hot-spot volcanic activity and that the major islands were never connected, vicariance as an explanation is ruled out, leaving dispersal as the mechanism for biogeographic change. The hypothetical example of Figure 2.21D shows another cladogram in which both biogeographic distributions are superposed. A likely explanation for change in biogeographic distributions in this example is the splitting of the three continents from an ancestral Gondwana (Figure 2.21D). Although dispersal across oceans cannot be ruled out, vicariance might be more likely because the changes in distribution correspond to a hypothesis of continental drift. (Note that the contientally delimited groups need not be monophyletic.)

An example of tracing extrinsic ecological data is seen in Figure 2.21E, in which habitat types are superposed on the taxa from a cladistic analysis. Note in this example the shift from a terrestrial to an aquatic habitat. Analyses such as this may yield insight into the adaptive significance of evolutionary changes in anatomy, morphology, or physiology relative to differing habitat requirements.

ONTOGENY AND HETEROCHRONY

Phylogeny and character evolution are normally studied only with regard to the mature features of adult individuals. However, a mature structure, whether organ, tissue, or cell, is the end product of **ontogeny**, the developmental sequence under the control of a number of genes. Ontogeny may be visualized in either of two ways. First, a study of the developmental pattern may reveal a series of discrete structural stages or entities, one transforming into the next until the end point (the mature adult structure) is obtained. These discrete stages are identified and named and the transformation in **ontogenetic sequence**, from one stage to the next, is compared in different taxa (Figure 2.22A). Second, some feature of the developmental change of a structure may be measured quantitatively as a function of real time. This plot of morphology as a function of time is called an **ontogenetic trajectory** (Figure 2.22B). Ontogenetic trajectories may be compared...
FIGURE 2.21 Cladistic analysis of biogeographic data.

A. Hypothesis of dispersal, in which a propagule of species Y lands on another island. The isolated population subsequently diverges into Y''.

B. Hypothesis of vicariance, in which ancestral population X is divided into two populations by a mountain range. The two populations, now isolated, can subsequently diverge, one becoming X''.

C. Cladogram in which geographic distributions are superposed atop lineages, illustrating dispersal in Hawaiian archipelago. Optimized explanation is dispersal of ancestral taxa from Kauai to Maui and then from Maui to Hawaii.

D. Cladogram in which geographic distributions are superposed atop lineages, illustrating vicariance. Continental drift explains current distribution of taxa D–K.

E. Superposition of ecological habitat data, illustrating use of cladogram to deduce history of ecological change.
between different taxa. Note, e.g., in Figure 2.22B that taxon Z and taxa W and Y have the same adult structures but differing ontogenetic trajectories.

Ontogenetic data may be used in a cladistic analysis like any other character. Thus, two or more discrete ontogenetic sequences (Figure 2.22A) or ontogenetic trajectories (Figure 2.22B) may be defined as separate character states of a developmental character. The polarity of ontogenetic character states may be assessed by outgroup comparison as can be done for any other character.

Evolution may often be manifested by a change in ontogeny. An evolutionary change in the rate or timing of development is known as heterochrony. Heterochrony has apparently been an important evolutionary mechanism in many groups, in which the relatively simple evolutionary alteration of a regulatory gene results in often profound changes in the morphology of a descendant. Heterochrony can be assessed by performing a cladistic analysis and determining from this the ancestral versus the derived condition of an ontogenetic sequence or trajectory. The two major categories of heterochrony are peramorphosis and paedomorphosis. Peramorphosis is a derived type of heterochrony in which ontogeny passes through and goes beyond the stages or trajectory of the ancestral condition. Peramorphosis can result in the addition of a new stage or an ontogenetic trajectory that continues beyond that of the ancestral trajectory. For example, in Figure 2.22C, the derived ontogenetic sequence of taxa A and D (s1 ⇒ s2 ⇒ S3) is the result of peramorphosis via the terminal addition of stage S3 to the ancestral sequence (s1 ⇒ S2). (Note that s represents a juvenile developmental stage; S is a mature, adult feature.) Thus, the adult condition (S3) in the ancestral ontogeny is homologous with a juvenile condition (s3) in the derived ontogeny of taxa A and D. This principle is termed terminal addition or Haeckelian recapitulation and is often summarized by the expression ontogeny recapitulates phylogeny.

Paedomorphosis is a type of heterochrony in which the mature or adult stage of the derived ontogenetic sequence resembles a juvenile ontogenetic stage of the ancestral condition. (Neotony is one type of paedomorphosis that is caused by a decrease in the rate of development of a structure.) For example, in Figure 2.22D, the derived ontogenetic sequence of taxon Z (s1 ⇒ S3) is the result of paedomorphosis by the terminal loss of stage S1 in the ancestral sequence (s1 ⇒ s2 ⇒ S3). Thus, the adult condition (S3) in the derived ontogeny of taxon Z is homologous with a juvenile condition (s2) in the ancestral ontogeny. In a cladistic analysis paedomorphosis is portrayed as the reversal of a character state and can only be detected via the utilization of other characters in the analysis.

Evolutionary change may result in the modification of mature structures by affecting early developmental stages. For example, if the ontogeny of structure S1 occurs in two discrete stages (s1 ⇒ s2) and (s2 ⇒ S3), then a single alteration of the regulatory pathway controlling the first developmental sequence (represented by * in Figure 2.22E) may cause a change in both the final structure and the intermediate stage (e.g., to s1 ⇒ s2 ⇒ S3; Figure 2.22E). Thus, structural evolution may occur by modification at any developmental stage, and mature ancestral structures need not be preserved as extant juvenile developmental stages.

A PERSPECTIVE ON PHYLOGENETIC SYSTEMATICS

The careful researcher, in constructing cladograms or critically reading cladistic analyses in the literature, should be aware of several potential pitfalls in phylogenetic studies. Lack of consideration of any of the following renders the study questionable at best and useless at worst. Are unit taxa (OTUs) and the group as a whole monophyletic? If evidence for monophyly is not presented, the study may be faulty from the start. What are the sources of the data? The validity of a phylogenetic study is based on the comprehensiveness and accuracy of the original descriptive data. Which characters are selected and how are they defined? It is important to question the basis for the selection of these characters and not others. Are character states assessed for discreteness? Is homology assessed? Has an effort been made to determine whether similar characters and character states presumably have a common evolutionary origin? Or is observed similarity more one of traditional and imprecise terminology and possibly homoplasious? Have any characters been weighted? If so, what is the rationale behind it? How are polarities determined? The evidence for selection and relative placement of outgroups should be thoroughly investigated. Finally, is the resultant cladogram analyzed in terms of monophyletic groupings, character state changes, assessment of convergences and reversals, testing of homology, and possible reevaluation of characters and character states? The thorough phylogenetic study critically reviews each step of cladogram construction, considers all alternatives, and evaluates and reevaluates the significance of the phylogenetic analysis in terms of future research that might clarify our understanding of plant evolutionary relationships. Although the determination of phylogeny using the methodology of phylogenetic systematics may be problematic, it has the significant advantage of being repeatable and explicit. Each step of the analysis can be duplicated, evaluated, and critiqued in subsequent investigations.
FIGURE 2.22 A. Representation of an ontogenetic sequence, a change from one discrete stage to another in various taxa. B. Ontogenetic trajectories of various taxa. Note juvenile and adult stages. C–E. Cladograms, with ontogenetic data (in parentheses next to taxa) and character state changes of mature structures (along lineage internodes). Note that s represents a juvenile developmental stage; S is a mature, adult feature. See text for further explanation.
REVIEW QUESTIONS

OVERVIEW, TAXON SELECTION, AND CHARACTER ANALYSIS
1. Define phylogeny and give the name of the branching diagram that represents phylogeny.
2. What is phylogenetic systematics and what are its goals?
3. What are the lines of a cladogram called and what do they represent?
4. What does a split, from one lineage to two, represent?
5. Name the term for both a preexisting feature and a new feature.
6. What is the difference between an autapomorphy and a synapomorphy?
7. What names are given to both the group as a whole and the individual component taxa in a cladistic analysis?
8. What precautions must be taken in taxon selection?
9. What criteria are used in the selection and definition of characters and character states?
10. Why and how are characters assessed for character state discreteness?
11. How might characters be correlated, and what should be done in a cladistic analysis if they are?
12. What is homology and how may it be assessed?
13. What is homoplasy?
14. Name and define the two types of homoplasy and give an example of each.
15. What is a transformation series or morphocline?
16. Name, define, and discuss the rationale for the two basic types of transformation series.
17. What is character weighting? Scaling? Why is either done?
18. What is polarity?
19. What is a character step matrix? A character x taxon matrix?

CLADOGRAM CONSTRUCTION
20. What is meant by recency of common ancestry?
21. What is a monophyletic group?
22. What is the rationale for using synapomorphies in recognizing monophyletic groups?
23. What are sister groups?
24. What is a paraphyletic group?
25. Name a traditional taxonomic plant group that is paraphyletic (refer to Chapters 3-6).
26. What is the principle of parsimony and what is the rationale of this principle?
27. From the data set of Figure 2.7, construct five trees that are different from the one in Figure 2.7E, draw in all character state changes, and calculate the total length of these trees.
28. What is an unrooted tree and what can it not represent?
29. What is a polytomy and how may polytomies arise in cladistic analyses?
30. What is reticulation? How might it be detected?
31. Why do the OTUs of a study need to be verified for monophyly?
32. Why does the whole study group (ingroup) need to be verified for monophyly?
33. What is outgroup comparison and what is the rationale for using it to determine character state polarity?
34. Why should the terms ancestral/plesiomorphic and derived/apomorphic not be applied to taxa?
35. What is a consensus tree?
36. What is long branch attraction and why is it a problem in phylogenetic analysis?
37. Briefly describe the methods of maximum likelihood and Bayesian analysis.
38. What is a consistency index and what does it measure?
39. What are bootstrapping and the decay index and what do they assess?

CLADOGRAM ANALYSIS
40. Describe two ways in which a classification system may be derived from a cladistic analysis.
41. What are the differences between a node-based, apomorphy-based, and stem-based classification system?
42. Give an example as to how a cladistic analysis can be used to assess (a) character evolution; (b) change in ecological habitat; (c) biogeographic history.

43. Name the two major explanations for changes in distribution and indicate how they differ.

44. What is ontogeny and how may ontogeny be measured?

45. Define heterochrony, peramorphosis, paedomorphosis, and neotony.

46. Review the precautions to be taken in a cladistic analysis.

47. For the following data sets: (a) draw the three possible (dichotomously branching) cladograms; (b) for each of the three cladograms indicate (with arrows and corresponding characters and states) the minimum character state changes that are needed to explain the data; (c) indicate which of the three trees would be accepted by a cladist as the best estimate of phylogeny and why.

48. For each of the following data sets: (a) draw the most parsimonious cladogram; (b) indicate all character state changes; (c) circle all monophyletic groups; (d) derive a hypothetical classification scheme. Assume an ordered transformation series where more than two character states per character occur.
EXERCISES

1. **Computer phylogeny applications.**
 If computers are available, you may wish to explore one of the commonly used phylogeny software applications, such as MacClade (Maddison and Maddison, 2000; see others cited hereafter). These programs allow the user to input data, including taxa names and their characters and character states, and enable both the phylogenetic relationships of taxa and specific character state changes to be visualized.

 With the help of your instructor, enter a data file using MacClade or some other phylogeny application for a given taxonomic group. You may use the data matrix below for the families of the Zingiberales.

 Examine the optimal (most parsimonious) tree. Engage the function that displays characters and visualize several, noting the distribution of their states. You may also swap branches on the cladogram, exploring alternative evolutionary hypotheses and noting the change in tree length.

 If time allows, choose a volunteer to re-draw the cladogram from MacClade onto the chalkboard. List each apomorphy illustrated on MacClade by placing the derived character state (apomorphy) beside a hatch-mark on the cladogram. Circle and tentatively name all monophyletic groups.

 Review as a class the following terms: cladogram, lineage/clade, common ancestor, lineage divergence/diversification, apomorphy, synapomorphy, autapomorphy, monophyletic, paraphyletic.

Example data set of the families of the Zingiberales.

LEAF SEED POLYARC INNER MED. SILICA						
ARRANGEMENT ARIL ROOT STAMEN RAPHIDES CRYSTALS						
Cannaceae	distichous	+	+	+	–	+
Costaceae	distichous	+	+	+	–	+
Heliconiaceae	distichous	+	+	+	+	–
Lowiaceae	distichous	+	–	–	+	–
Marantaceae	distichous	+	–	–	+	+
Musaceae	spiral	–	–	–	+	–
Strelitziaceae	distichous	+	+	–	+	–
Zingiberaceae	distichous	+	+	+	–	+

STAMEN STAMINODE OUT. TEPALS ANOTHER					
STAMEN NUMBER PETALOID PERISPERM FUSED TYPE					
Cannaceae	1	+	+	–	monothecal
Costaceae	1	+	+	+	bithecal
Heliconiaceae	5	–	–	–	bithecal
Lowiaceae	5	–	–	–	bithecal
Marantaceae	1	+	+	–	monothecal
Musaceae	5	–	–	–	bithecal
Strelitziaceae	5	–	–	–	bithecal
Zingiberaceae	1	+	+	+	bithecal

2. **Web trees.**
 If you have available a computer with a Web browser Internet connection, log onto The Tree of Life (http://tolweb.org), TreeBASE (http://www.treebase.org), Angiosperm Phylogeny Website (http://www.mobot.org/MOBOT/research/Apweb), or a similar Web page. These Web pages contain up-to-date information on the relationships of organismal groups and plants, respectively. Browse through the trees illustrated on the sites and note the source of the data. Examine the apomorphies denoted at the nodes for these trees.
REFERENCES FOR FURTHER STUDY

CLADISTIC COMPUTER PROGRAMS

Felsenstein, J. 1993. PHYLIP (Phylogeny Inference Package) version 3.5c. Distributed by the author. Department of Genetics, University of Washington, Seattle. [Mac & Windows OS]
[NOS; Windows OS compatible with an emulator]
II
EVOLUTION AND DIVERSITY OF PLANTS
The green plants, or Chlorobionta, are a monophyletic group of eukaryotic organisms that includes what have traditionally been called green algae plus the land plants or embryo-phytes (Figure 3.1). Like all eukaryotes, the Chlorobionta have cells with membrane-bound organelles, including a nucleus (containing chromosomes composed of linear chains of DNA bound to proteins, that are sorted during cell division by mitosis), microtubules, mitochondria, an endoplasmic reticulum, vesicles, and golgi bodies. Although the interrelationships of the non land plant Chlorobionta will not be covered in detail here, it is important to realize that some of the evolutionary innovations, or apomorphies, that we normally associate with land plants actually arose before plants colonized the land.

Several apomorphies unite the Chlorobionta (Figure 3.1). One possible novelty for this group is a cellulosic cell wall (Figure 3.2A). Cellulose, like starch, is a polysaccharide, but one in which the glucose sugar units are bonded in the beta-1,4 position (=β-1,4-glucopyranoside). This slight change in chemical bond position results in a very different molecule. Cellulose is secreted outside the plasma membrane as microscopic fiber-like units called microfibrils that are further intertwined into larger fibril units, forming a supportive meshwork. The function of cellulose is to impart rigidity to the cells, acting as a sort of cellular exoskeleton. The evolution of a cellulosic cell wall was a preamble to the further evolution of more complex types of growth, particularly of self-supporting shoot systems. It is not clear if a cellulosic cell wall constitutes an apomorphy for the Chlorobionta alone, as it may have evolved much earlier, constituting an apomorphy for the Chlorobionta plus one or more other groups; in any case, its adaptive significance seems clear.

Perhaps the primary apomorphy for the Chlorobionta is a specialized type of chloroplast (Figure 3.2). As discussed in Chapter 1, chloroplasts are one of the major defining characteristics of traditionally defined plants; their adaptive significance as organelles functioning in photosynthesis, the conversion of light energy to chemical energy, is unquestioned. Chloroplasts in the Chlorobionta, the green plants, differ from those of most other organisms, such as the red and brown algae, in (1) containing chlorophyll b in addition to chlorophyll a, the former of which acts as an accessory pigment in light capture; (2) having thylakoids, the chlorophyll-containing membranes that are stacked into grana, which are pancake-like aggregations (see Figure 3.2B); and (3) manufacturing as a storage product true starch, a polymer of glucose sugar units (= polysaccharide) in which the glucose molecules are chemically bonded in the alpha-1,4 position (=α-1,4-glucopyranoside). Thus, all green plants, from filamentous green algae in a pond or tide pool to giant sequoia or Eucalyptus trees
CHAPTER 3 EVOLUTION AND DIVERSITY OF GREEN AND LAND PLANTS

Chlorobionta = Green Plants

Chlorophytes (a paraphyletic group)

"Green Algae"

Chlorophytes

Chlorophytes (e.g., Chlamydomonas)

Ulvophyceae (e.g., Ulva)

Charophyta

Ulvophytes

Zygnematales (e.g., Spirogyra)

Coleochaete

Charales

Chlorophytes

"Micromonadophytes"

Pleurastrophytes

Chlorophyll b (chlorophyll a is ancestral)

thylakoids stacked in grana

Land Plants = Embryophytes

sporophyte/embryo (alternation of generations)

archegonium

antheridium

parenchyma

cuticle

plasmodesmata

oogamy

Unique green plant chloroplast features

cellulose in cell wall (may have evolved earlier & thus not a synapomorphy for Chlorobionta alone)

Figure 3.1 Cladogram of the green plants (Chlorobionta), modified from Bremer (1985), Mishler and Churchill (1985), and Mishler et al. (1994). Important apomorphies discussed in the text are listed beside thick hash marks.

Figure 3.2 A. Elodea, whole leaf in face view, showing apomorphies of the Chlorobionta: a cellulosic cell wall and green plant chloroplasts. B. Diagram of chloroplast structure of green plants, showing thylakoids and grana. C. Electron micrograph of Chlamydomonas reinhardtii, a unicellular green alga, showing granum of chloroplast. (Photo courtesy of Rick Bizzoco.)
have this same type of chloroplast. Recent data imply that chloroplasts found in the green plants today were modified from those that evolved via endosymbiosis, the intracellular cohabitation of an independently living, unicellular prokaryote inside a eukaryotic cell (see Chapter 1).

The Chlorobionta as a whole are classified as two sister groups: chlorophytes, or Chlorophyceae, and streptophytes, or Streptophyceae (Figure 3.1). The traditional green algae are a paraphyletic group (which is why the name is placed in quotation marks) and are defined as the primarily aquatic Chlorobionta, consisting of all chlorophytes and the non land plant streptophytes. Green algae occur in a tremendous variety of morphological forms. These include flagellated unicells (Figure 3.3A) with or without flagella, thalloid forms (Figure 3.3B), motile and nonmotile colonies (Figure 3.3C), and nonmotile filaments (Figure 3.3D). Many have flagellated motile cells in at least one phase of their life history. Green algae inhabit fresh and marine waters and some live in or on soil (or even on snow!) or in other terrestrial but moist habitats.

The primitive type of green plant sexual reproduction seems to have been the production of flagellate, haploid (n) gametes that are isomorphic, that is, that look identical. Fertilization occurs by union of two of these gametes, resulting in a diploid (2n) zygote (Figure 3.4A). The zygote, which is free-living, then divides by meiosis to form four haploid spores, each of which may germinate and develop into a new haploid individual, which produces more gametes, completing what is termed a haplontic (or haplobiontic) life cycle (Figure 3.4A).

Within the streptophyte lineage that gave rise to the land plants, a few innovations evolved that may have been preadaptations to survival on land. First of these was the evolution of oogamy, a type of sexual reproduction in which one gamete, the egg, becomes larger and nonflagellate; the other gamete is, by default, called a sperm cell (Figure 3.4B). Oogamy is found in all land plants and independently evolved in many other groups, including many other algae and in the animals. Two other evolutionary novelties that occurred prior to the evolution of land plants were retention of the egg and retention of the zygote on the parent body (Figure 3.1). Retention of the egg and zygote was adaptive, at least in part, by making possible the future nutritional dependence of the zygote upon the haploid plant, ultimately leading to the sporophyte (see later discussion).

Several other apomorphies of and within the Chlorobionta include ultrastructural specializations of flagella and some features of biochemistry. Although these have been valuable in elucidating phylogenetic relationships, their adaptive significance is unclear, and they will not be considered further here.

An apomorphy for the Charophytes, a clade within the streptophytes that includes the Coleochaete (Figure 3.6A), Charales (Figure 3.6B- D), and the land plants (Figure 3.1), are plasmodesmata. Plasmodesmata are essentially pores in the primary (1°) cell wall through which membranes traverse between cells, allowing for transfer of compounds between cells (Figure 3.5). Plasmodesmata may function in more efficient or rapid transport of solutes, including regulatory and growth-mediating compounds, such as hormones.

Members of the Charales, such as the genera Chara and Nitella, are perhaps the closest living relatives to the land plants. These aquatic organisms form whorls of lateral branches (Figure 3.6B) and grow by means of a single apical cell, resembling that of some land plants (but differing in lacking true parenchyma; see later discussion). The Charales

FIGURE 3.3 Examples of non land plant Chlorobionta. A. Chlamydomonas reinhardtii, a unicellular form. (Photo courtesy of Rick Bizzoco.) B. Ulva, a thalloid form. C. Volvox, a colonial form. D. Spirogyra, a filamentous form. Above: vegetative form, with large, spiral chloroplasts. Below: reproductive conjugation stage, showing + and – mating strains and nonmotile zygotes.
have specialized male and female gametangia, termed antheridia and oogonia (Figure 3.6C,D). The oogonia are distinctive in having a spirally arranged group of outer cells (Figure 3.6D); these have been found in the fossil record. Oogonia and antheridia of the Charales resemble the archegonia and antheridia of land plants (see later discussion) in having an outer layer of protective cells, but have been thought not to be directly homologous because of differences in structure. However, these specialized gametangia, as well as the apical cell growth, may represent a transition to what is seen in the land plants.

THE LAND PLANTS

The land plants, or embryophytes (also known as Embryophyta), are a monophyletic assemblage within the green plants (Figures 3.1, 3.7). The first colonization of plants on land during the Silurian period, ca. 400 million years ago, was concomitant with the evolution of several important features. These shared, evolutionary novelties (Figure 3.7A,B) constituted major adaptations that enabled formerly aquatic green plants to survive and reproduce in the absence of a surrounding water medium.

One major innovation of land plants was the evolution of the embryo and sporophyte (Figure 3.8). The sporophyte is a separate diploid (2n) phase in the life cycle of all land plants. The corresponding haploid, gamete-producing part of the life cycle is the gametophyte. The life cycle of land plants, having both a haploid gametophyte and a diploid sporophyte, is an example of a haplodiplontic (also called diplobiontic) life cycle, commonly called alternation of generations (Figure 3.8). Note that alternation of generations does not necessarily mean that the two phases occur at different points in time; at any given time, both phases may occur in a population.

The sporophyte can be viewed as forming from the zygote by the delay of meiosis and spore production. Instead of meiosis, the zygote undergoes numerous mitotic divisions, which result in the development of a separate entity. The embryo is defined as an immature sporophyte that is attached to or surrounded by the gametophyte. In many land plants, such as the seed plants, the embryo will remain dormant for a period of time and will begin growth only after the proper environmental conditions are met. As the embryo grows into a mature sporophyte, a portion of the sporophyte differentiates as the spore-producing region. This spore-producing region of the sporophyte is called the sporangium. A sporangium contains

FIGURE 3.4 Haplontic life cycles in some of the green plants. A. Isogamy. B. Oogamy.

FIGURE 3.5 Diagram of plasmodesmata in cellulosic cell wall, an apomorphy of some green plants, including the land plants.
sporogenous tissue, which matures into sporocytes, the cells that undergo meiosis. Each sporocyte produces, by meiosis, four haploid spores. The sporangium is enveloped by a sporangial wall, which consists of one or more layers of sterile, non-spore-producing cells.

One adaptive advantage of a sporophyte generation as a separate phase of the life cycle is the large increase in spore production. In the absence of a sporophyte, a single zygote (the result of fertilization of egg and sperm) will produce four spores. The elaboration of the zygote into a sporophyte and sporangium can result in the production of literally millions of spores, a potentially tremendous advantage in reproductive output and increased genetic variation.

Another possible adaptive value of the sporophyte is associated with its diploid ploidy level. The fact that a sporophyte has two copies of each gene may give this diploid phase an increased fitness in either of two ways: (1) by potentially preventing the expression of recessive, deleterious alleles (which, in the sporophyte, may be shielded by dominant alleles, but which, in the gametophyte, would always be expressed); and (2) by permitting increased genetic variability in the sporophyte generation (via genetic recombination from two parents) upon which natural selection acts, thus increasing the potential for evolutionary change.

A second innovation in land plant was the evolution of cutin and the cuticle (Figure 3.9). A cuticle is a protective layer that is secreted to the outside of the cells of the epidermis (Gr. epi, upon + derma, skin), the outermost layer of land plant organs. The epidermis functions to provide mechanical protection of inner tissue and to inhibit water loss. The cuticle consists of a thin, homogeneous, transparent layer of cutin, a polymer of fatty acids, and functions as a sealant, preventing excess water loss. Cutin also impregnates the outer cellulosic cell walls of epidermal cells; these are known as a cutinized cell wall. The adaptive advantage of cutin and the cuticle is obvious: prevention of desiccation outside the ancestral water medium. In fact, plants that are adapted to very dry environments will often have a particularly thick cuticle (as in Figure 3.9) to inhibit water loss.

A third apomorphy for the land plants was the evolution of parenchyma tissue (Figure 3.10). All land plants grow by means of rapid cell divisions at the apex of the stem, shoot,
CHAPTER 3 EVOLUTION AND DIVERSITY OF GREEN AND LAND PLANTS

FIGURE 3.7 Two alternative cladograms of the land plants (Embryophyta), with major apomorphies indicated, those with an * varying between the two cladograms. A. Traditional topology, based on morphology (e.g., Bremer, 1985; Mishler and Churchill, 1985; Mishler et al., 1994). B. Recent molecular study (e.g., Nickrent et al., 2000; Renzaglia et al., 2000).
and thallus or (in most vascular plants) of the root. This region of actively dividing cells is the **apical meristem**. The apical meristem of liverworts, hornworts, and mosses (discussed later), and of the monilophytes (see Chapter 4) have a single apical cell (Figure 3.10), the ancestral condition for the land plants. In all land plants the cells derived from the apical meristem region form a solid mass of tissue known as **parenchyma** (Gr. para, beside + enchyma, an infusion; in reference to a concept that parenchyma infuses or fills up space beside and between the other cells). Parenchyma tissue consists of cells that most resemble the unspecialized, undifferentiated cells of actively dividing meristematic tissue. Structurally, parenchyma cells are (1) elongate to isodiametric; (2) have a primary (1°) cell wall only (rarely a secondary wall); and (3) are living at maturity and potentially capable of continued cell divisions. Parenchyma cells function in metabolic activities such as respiration, photosynthesis, lateral transport, storage, and regeneration/wound healing. Parenchyma cells may further differentiate into other specialized cell types. It is not clear if the evolution of both apical growth and true parenchyma is an apomorphy for the land plants alone, as shown here (Figure 3.7). Both may be interpreted to occur
in certain closely related green plants, including the Charales.

Correlated with the evolution of parenchyma may have been the evolution of a middle lamella in land plants. The middle lamella is a pectic-rich layer that develops between the primary cell walls of adjacent cells (Figure 3.5). Its function is to bind adjacent cells together, perhaps a prerequisite to the evolution of solid masses of parenchyma tissue.

Another evolutionary innovation for the land plants was the antheridium (Figure 3.11A). The antheridium is a type of specialized gametangium of the haploid (n) gametophyte, one that contains the sperm-producing cells. It is distinguished from similar structures in the Chlorobionta in being surrounded by a layer of sterile cells, the antheridial wall. The evolution of the surrounding layer of sterile wall cells, which is often called a sterile jacket layer, was probably adaptive in protecting the developing sperm cells from desiccation. In all of the nonseed land plants, the sperm cells are released from the antheridium into the external environment and must swim to the egg in a thin film of water. Thus, a wet environment is needed for fertilization to be effected in the nonseed plants, a vestige of their aquatic ancestry. Members of the Charales also have a structure termed an antheridium, which has an outer layer of sterile cells (Figure 3.6C,D). However, because of its differing anatomy, the Charales antheridium may not be homologous with that of the land plants, and thus may have evolved independently.

Another land plant innovation was the evolution of the archegonium, a specialized female gametangium (Figure 3.11B). The archegonium consists of an outer layer of sterile cells, termed the venter, that immediately surround the egg plus others that extend outward as a tube-like neck. The archegonium is stalked in some taxa; in others the egg is rather deeply embedded in the parent gametophyte. The egg cell is located inside and at the base of the archegonium. Immediately above the egg is a second cell, called the ventral canal cell, and above this and within the neck region, there may be several neck canal cells. The archegonium may have several adaptive functions. It may serve to protect the developing egg. It may also function in fertilization. Before fertilization occurs, the neck canal cells and ventral canal cell break down and are secreted from the terminal pore of the neck itself; the chemical compounds released function as an attractant, acting as a homing device for the swimming sperm. Sperm cells enter the neck of the archegonium and fertilize the egg cell to form a diploid (2n) zygote. In addition to effecting fertilization, the archegonium serves as a site for embryo/sporophyte development and the establishment of a nutritional dependence of the sporophyte upon gametophytic tissue.

The land plants share other possible apomorphies: the presence of various ultrastructural modifications of the sperm cells, flavonoid chemical compounds, and a proliferation of heat shock proteins. These are not discussed here.
DIVERSITY OF NONVASCULAR LAND PLANTS

During the early evolution of land plants, three major, monophyletic lineages diverged before the vascular plants (Chapter 4). These lineages may collectively be called the nonvascular land plants or bryophytes and include the liverworts, hornworts, and mosses. Bryophytes are a paraphyletic group, defined by the absence of derived features; the name, placed in quotation marks, is no longer formally recognized.

Liverworts, hornworts, and mosses differ from the vascular plants in lacking true vascular tissue and in having the gametophyte as the dominant, photosynthetic, persistent, and free-living phase of the life cycle; it is likely that the ancestral gametophyte of the land plants was thalloid in nature, similar to that of the hornworts and many liverworts. The sporophyte of the liverworts, hornworts, and mosses is relatively small, ephemeral, and attached to and nutritionally dependent upon the gametophyte (see later discussion).

The relationships of the liverworts, hornworts, and mosses to one another and to the vascular plants remain unclear. Many different relationships among the three lineages have been proposed, two of which are seen in Figure 3.7A and B. Note, when considering differing phylogenetic relationships, that the position of apomorphies may shift.

LIVERWORTS

Liverworts, also traditionally called the Hepaticae, are one of the monophyletic groups that are descendents of some of the first land plants. Today, liverworts are relatively minor components of the land plant flora, growing mostly in moist, shaded areas (although some are adapted to periodically dry, hot habitats). Among the apomorphies of liverworts are (1) distinctive elaters, elongate, nonsporogenous cells with spiral wall thickenings, found inside the sporangium. Elaters are hygroscopic, meaning that they change shape and move in response to changes in moisture content. Elaters function in spore dispersal; as the sporangium dries out, the elaters twist out of the capsule, carrying spores with them (Figures 3.12, 3.13H).

There are two basic morphological types of liverwort gametophytes: thalloid and leafy (Figures 3.12, 3.13). Thalloid liverworts consist of a thallus, a flattened mass of tissue; this is likely the ancestral form, based on cladistic studies. As in hornworts and mosses, the gametophyte bears rhizoids, uniseriate, filamentous processes that function in anchorage and absorption. Pores in the upper surface of the thallus function in gas exchange (Figure 3.13I). These pores are not true stomata (discussed later), as they have no regulating guard cells. Some liverworts, like the hornworts (discussed next), have a symbiotic relationship with Cyanobacteria. On the upper surface of the gametophytes of some thalloid liverworts, such as Marchantia, are specialized structures called gemma cups, which contain propagules called gemmae. These structures function in vegetative (asexual) reproduction; when a droplet of water falls into the gemma cup, the gemmae themselves may be dispersed some distance away, growing into a haploid genetic clone of the parent.

Leafy liverworts have gametophytes consisting of a stem axis bearing three rows of thin leaves. In most leafy liverworts, the stem is prostrate and the leaves are modified such that the upper two rows of leaves are larger and the lowermost row (on the stem underside) are reduced (Figures 3.12, 3.13K). Other leafy liverworts are more erect, with the three rows of leaves similar. The leaves of leafy liverworts evolved independently from those of mosses (discussed later) or vascular plants (Chapter 4).

As in all of the early diverging land plant lineages, liverworts have antheridia and archegonia that develop on the gametophyte. In some liverwort taxa (e.g., Marchantia), the gametangia form as part of stalked, peltate structures: antheridiophores bearing antheridia and archegoniophores bearing archegonia (Figures 3.12, 3.13). Sperm released from an antheridium of the antheridiophore swims in a film of water to the archegonia of the archegoniophore, effecting fertilization.

After fertilization the zygote divides mitotically and eventually differentiates into a diploid (2n) embryo, which matures into the diploid (2n) sporophyte. This sporophyte is relatively small, nonphotosynthetic, and short lived. It consists almost entirely of a sporangium or capsule (Figure 3.13G). At a certain stage, the internal cells of the capsule divide meiotically, forming haploid (n) spores (see Figure 3.8). In liverworts the spores are released by a splitting of the capsule into four valves. The spores may land on a substrate, germinate (under the right conditions), and grow into a new gametophyte, completing the life cycle.

HORNWORTS

The hornworts, or Anthocerotae, are a monophyletic group comprising a second major lineage of land plants. Some hornworts have stomates (also termed stomata), specialized epidermal cells generally found on leaves, but sometimes on stems. Stomata consist of two chloroplast-containing cells, the guard cells, which, by changes in turgor pressure, can increase or decrease the size of the opening between them, the stoma (Figure 3.14). Each guard cell has one or more ridge-like deposits on the side facing the stoma (Figure 3.14).
CHAPTER 3 EVOLUTION AND DIVERSITY OF GREEN AND LAND PLANTS

thalloid liverwort

leafy liverwort

Figure 3.12 Liverwort morphology and life cycle.
This material, which is rich in suberin, a waxy, water-resistant substance, functions to better seal the stoma. Stomata function in regulation of gas exchange, in terms of both photosynthesis and water uptake. Carbon dioxide passing through the stoma diffuses to the chloroplasts of photosynthetic cells within and is used in the dark reactions of photosynthesis. Oxygen, a by-product of photosynthesis, exits via the stoma. Stomata also allow water vapor to escape from the leaf. In most plants stomata open during the day when photosynthesis takes place; thus, heat from the sun may cause considerable water loss through stomata. In some plants, loss of water via stomata is simply a by-product, a price to be paid for entry of carbon dioxide, which is essential for photosynthesis.

However, in other plants, such as tall trees, stomatal water loss may actually be adaptive and functional, as a large quantity of water must flow through the leaves in order to supply sufficient quantities of mineral nutrients absorbed via the roots.

By one hypothesis, stomates represent an apomorphy for all land plants except for the liverworts (Figure 3.7A); by another hypothesis, stomata evolved independently in the vascular plants and in lineages within the hornworts and mosses (Figure 3.7B).

Hornworts are similar to the thalloid liverworts in gametophyte morphology (Figure 3.15) and are found in similar habitats. Hornworts differ from liverworts, however, in lacking...
pores (having stomates in some species, as discussed above). All hornworts have a symbiotic relationship with Cyanobacteria (blue-greens), which live inside cavities of the thallus. This relationship is found in a few thalloid liverworts as well (probably evolving independently), but not in mosses. Interestingly, hornworts and liverworts may also have a symbiotic association between the gametophytes and a fungus, similar to the mycorrhizal association with the roots of vascular plants.

The basic life cycle of hornworts is similar to that of liverworts and mosses. However, the sporophyte of hornworts is unique in being elongate, cylindrical, and photosynthetic (Figure 3.15A,C). This cylindrical sporophyte has indeterminate (potentially continuous) growth, via a basal, **intercalary meristem** (Figure 3.15B). The intercalary meristem is a region of actively dividing cells near the base of the sporophyte (just above the point of attachment to the gametophyte), constituting an apomorphy for the hornworts. Other apomorphies include a unique central column of sterile (non-spore-producing) tissue called a **columella** and the production of specialized structures in the sporangium called **pseudo-elaters**, groups of cohering, nonsporogenous, elongate, generally hygroscopic cells, which are nonhomologous but have a similar function to the elaters of liverworts (Figure 3.15D).

Mosses
The mosses, or **Musci**, are by far the most speciose and diverse of the three major groups of nonvascular land plants and inhabit a number of ecological niches. Mosses may share some apomorphies with the vascular plants. One of these is an elongate, **aerial sporophyte axis**, an apomorphy for the mosses alone (Figure 3.7B) or a possible precursor to the evolution of the sporophytic stem in vascular plants (Figure 3.7A). Some mosses have specialized conductive cells called **hydroids**, which function in water conduction, and **leptoids**, which function in sugar conduction. These cells resemble typical xylem tracheary elements and phloem sieve elements (Chapter 4), but lack the specializations of the latter cell types. They may represent intermediates in the evolution of true vascular tissue (Figure 3.7A) or evolved independently of vascular tissue (Figure 3.7B). The spores of mosses have a thick outer layer called a **perine layer** (Figure 3.16), which may be apomorphic for the mosses alone (Figure 3.7B) or for the mosses and vascular plants combined (Figure 3.7A). The perine layer may function in preventing excess desiccation and provide additional mechanical protection of the spore cytoplasm. As with liverworts and hornworts, a three-lined structure, called a **trilete mark**, develops on the spore wall; the trilete mark is the scar of attachment of the adjacent three spores of the four spores produced at meiosis (Figure 3.16).

Moss gametophytes are always leafy, with a variable number of leaf ranks or rows (Figures 3.17, 3.18B). The leaves of mosses are thought to have evolved independently from those in liverworts and, thus, constitute an apomorphy for the mosses alone. Moss leaves are mostly quite small and thin, but may have a central **costa**, composed of conductive cells, that resembles a true vein (Figure 3.17). Antheridia and archegonia in mosses are usually produced at the apex of gametophytic stems (Figures 3.17, 3.18C,D,E). After fertilization, the sporophyte grows upward (Figures 3.17, 3.18F) and often carries the apical portion of the original archegonium, which continues to grow. This apical archegonial tissue, known as a **calyptra** (Figures 3.17, 3.18G), may function in protecting the young sporophyte apex. The sporophyte generally develops a long stalk, known as a **stipe**, at the apex of which is born the sporangium or capsule (Figures 3.17, 3.18F,G). The capsule of most mosses has a specialized mechanism of dehiscence. At the time of spore release, a lid known as an **operculum** falls off the capsule apex, revealing a whorl of **peristome teeth**. The peristome teeth, like the elaters of liverworts, are hygroscopic. As the capsule dries up, the peristome teeth retract, effecting release of the spores (Figures 3.17, 3.18G,H).

Under the right environmental conditions, moss spores will germinate and begin to grow into a new gametophyte. The initial development of the gametophyte results in the formation of filamentous structure, known as a **protonema** (Figure 3.18A). The protonema probably represents an ancestral vestige, resembling a filamentous green alga. After a period of growth, the protonema grows into a parenchymatous gametophyte.

One economically important moss worth mentioning is the genus **Sphagnum**, or peat moss, containing numerous species. **Sphagnum** grow in wet bogs and chemically modifies its...
FIGURE 3.17 Moss morphology and life cycle.
Unit II Evolution and Diversity of Plants

Peristome teeth

Figure 3.18 Mosses. A. Protonema of Sphagnum. B. Atrichum sp. gametophyte. C. Polytrichum sp. gametophyte, face view, showing antheridia at tips of branches. D, E. Mnium sp. D. Antheridia, longitudinal section, showing external capsule wall (sterile layer) and internal sporogenous tissue. E. Archegonia, showing stalk, egg cell, neck, and neck canal cells. F. Sporophytes of moss, showing capsules. G. Moss sporophyte close-up, showing developmental series (left to right). H. Mnium, capsule (sporangium) longitudinal section, showing operculum, one of several peristome teeth, and spores within sporangium.
environment by making the surrounding water acidic. The leaves of *Sphagnum* are unusual in having two cell types: chlorophyllous cells, which form a network, and large, clear hyaline cells, having characteristic pores and helical thickenings (Figure 3.19). The pores of the hyaline cells give *Sphagnum* remarkable properties of water absorption and retention, making it quite valuable horticulturally in potting mixtures. Peat is fossilized and partially decomposed *Sphagnum* and is mined for use in potting mixtures and as an important fuel source in parts of the world.

POLYSPORANGIOPHYTES
This group is inclusive of a few, basal fossil taxa plus all of the true vascular plants, or tracheophytes (Chapter 4). The basal (first-evolving) polysporangiophytes, such as the genus *Horneophyton* (not illustrated), were similar to hornworts, liverworts, and mosses in lacking vascular tissue. However, they are different from bryophytes, and linked to the vascular plants, in having branched stems with multiple sporangia. Thus, the polysporangiophytes include taxa that were transitional to the evolution of tracheophytes.

REVIEW QUESTIONS

GREEN PLANTS
1. What is a formal name for the green plants?
2. What are the unique features of green plant chloroplasts?
3. How are chloroplasts thought to have originated?
4. The bulk of the primary cell wall of green plants is composed of what substance? (Give the common name and chemical name.)
5. Is the cell wall synthesized inside or outside the plasma membrane?
6. What are plasmodesmata?
7. What is a haplontic life cycle?
8. What is oogamy?
LAND PLANTS
9. What is the formal name for the land plants?
10. Name the major apomorphies of the land plants.
11. Draw and label the basic haplodiplontic life cycle (alternation of generations) of all land plants, illustrating all structures, processes, and ploidy levels.
12. What is an embryo?
13. What is a sporangium?
14. Name the possible adaptive features of the sporophyte.
15. What are cutin and cuticle and what are their adaptive significance?
17. In land plants what is the name of the pectic-rich layer between adjacent cell walls that functions to bind them together?
18. What is an antheridium? Draw.

HONWORTS, LIVERWORTS, AND MOSSES
20. Draw two, different phylogenetic trees denoting relationships of the mosses, liverworts, hornworts, and vascular plants.
21. Name two apomorphies of the liverworts.
22. What are the two major morphological forms of liverworts? Which is likely ancestral?
23. What are gemmae and gemma cups?
24. What is an antheridiophore? an archegoniophore?
25. What land plant groups possess stomates?
26. Describe the structural makeup and function of a stomate.
27. How do the hornworts differ from the liverworts?
28. Name major apomorphies either shared by the mosses alone or possibly shared by the mosses plus vascular plants.
29. What is a calyptra, stipe, operculum, peristome tooth?
30. What is the scientific name of peat moss?
31. What feature of the leaf anatomy of peat moss enables the leaves to absorb and retain water?
32. How is peat moss of economic importance?
33. What apomorphy links the Polysporangiates with the vascular plants?

EXERCISES
1. Peruse the most recent literature on phylogenetic relationships of the green algae relative to the land plants. Are there any differences relative to Figure 3.1?
2. Peruse the recent literature on phylogenetic relationships of the hornworts, liverworts, and mosses. Do any show relationships different from that of Figure 3.7?
3. Peruse botanical journals and find a systematic article on a moss, liverwort, or hornwort. What is the objective of the article and what techniques were used to address it?
4. Collect and identify local liverworts, hornworts, and mosses. What features are used to distinguish among families, genera, and species?

REFERENCES FOR FURTHER STUDY

VASCULAR PLANT APOMORPHIES

The vascular plants, or Tracheophyta (also called tracheophytes), are a monophyletic subgroup of the land plants. The major lineages of tracheophytes (excluding many fossil groups) are seen in Figure 4.1. Vascular plants together share a number of apomorphies, including (1) lignified secondary walls, with pits, in certain specialized cells; (2) sclerenchyma, specialized cells that function in structural support; (3) tracheary elements, cells of xylem tissue; (4) sieve elements, cells of phloem tissue (the xylem and phloem comprising the vascular tissue); (5) an endodermis; and (6) an independent, long-lived sporophyte. In addition, all extant vascular plants, and all except for the earliest fossil lineages such as rhiophytes (discussed later), possess two other apomorphies: (7) sporophytic leaves, which are associated with the stem in a shoot system; and (8) roots (secondarily lost in the psilophytes; see later discussion).

LIGNIFIED SECONDARY CELL WALLS

Vascular plants have evolved a chemical known as lignin, which is a complex polymer of phenolic compounds. Lignin is incorporated into an additional cell wall layer, known as the secondary (2°) wall (Figure 4.2), which is found in certain, specialized cells of vascular plants. Secondary walls are secreted to the outside of the plasma membrane (between the plasma membrane and the primary cell wall) after the primary wall has been secreted, which is also after the cell ceases to elongate. Secondary cell walls are usually much thicker than primary walls and, like primary walls, contain cellulose. However, in secondary walls, lignin is secreted into the space between the cellulose microfibrils, forming a sort of interbinding cement. Thus, lignin imparts significant strength and rigidity to the cell wall.

In virtually all plant cells with secondary, lignified cell walls, there are holes in the secondary wall called pits (Figure 4.2). Pits commonly occur in pairs opposite the sites of numerous plasmodesmata in the primary cell wall. This group of plasmodesmata is called a primary pit field. Pits function in allowing communication, via the plasmodesmata of the primary pit field, between cells during their development and differentiation. They may also have specialized functions in water conducting cells (discussed later). Plant cells with secondary walls include sclerenchyma and tracheary elements (see later discussion).
SCLERENCHYMA

Sclerenchyma (Gr. scleros, hard + enchyma, infusion, in reference to the infusion of lignin in the secondary cell walls) are nonconductive cells that have a thick, lignified secondary cell wall, typically with pits, and that are dead at maturity.

There are two types of sclerenchyma (Figure 4.3): (1) fibers, which are long, very narrow cells with sharply tapering end walls; and (2) sclereids, which are isodiametric to irregular or branched in shape. Fibers function in mechanical support in various organs and tissues, sometimes making up the bulk...
of the tissue. Fibers often occur in groups or bundles. They may be components of the xylem and/or phloem or may occur independently of vascular tissue. Sclereids may also function in structural support, but their role in some plant organs is unclear; they may possibly aid to deter herbivory in some plants. The evolution of sclerenchyma (especially fibers), with lignified secondary cell walls, constituted a major plant adaptation, permitting the structural support needed to attain greater stem height.

Another tissue type that functions in structural support is collenchyma, consisting of live cells with unevenly thickened, pectic-rich, primary cell walls (see Chapter 10). Collenchyma is found in many vascular plants, but is probably not an apomorphy for the group.

TRACHEARY ELEMENTS (OF XYLEM)

The vascular plants, as the name states, have true vascular tissue, consisting of cells that have become highly specialized for conduction of fluids. (A tissue consists of two or more cell types that have a common function and often a common developmental history; see Chapter 10.) Vascular tissue was a major adaptive breakthrough in plant evolution;

FIGURE 4.2 Lignified secondary cell wall of specialized cells of vascular plants. Note pit-pair, adjacent to primary pit field.

FIGURE 4.3 Sclerenchyma. A. Fiber cell. B. Sclereid cells. Cross-section = c.s.
more efficient conductivity allowed for the evolution of much greater plant height and diversity of form.

Tracheary elements are specialized cells that function in water and mineral conduction. Tracheary elements are generally elongate cells, are dead at maturity, and have lignified 2° cell walls (Figure 4.4A,B). They are joined end-to-end, forming a tubelike continuum. Tracheary elements are typically associated with parenchyma and often some sclerenchyma in a common tissue known as **xylem** (Gr. xylo, wood, after the fact that wood is composed of secondary xylem). The function of tracheary elements is to conduct water and dissolved essential mineral nutrients, generally from the roots to other parts of the plant.

There are two types of tracheary elements: **tracheids** and **vessel members** (Figure 4.4A). These differ with regard to the junction between adjacent end-to-end cells, whether imperforate or perforate. Tracheids are imperforate, meaning that water and mineral nutrients flow between adjacent cells through the primary cell walls at pit-pairs, which are adjacent holes in the lignified 2° cell wall. Vessel members are perforate, meaning that there are one or more continuous holes or perforations, with no intervening 1° or 2° wall between adjacent cells through which water and minerals may pass.

The contact area of two adjacent vessel members is called the **perforation plate**. The perforation plate may be **compound**, if composed of several perforations, or **simple**, if composed of a single opening (see Chapter 10). Vessels may differ considerably in length, width, angle of the end walls, and degree of perforation.

Tracheids are the primitive type of tracheary element. Vessels are thought to have evolved from preexisting tracheids independently in several different groups, including in a few species of *Equisetum*, a few leptosporangiate ferns, all Gnetales (Chapter 5), and almost all angiosperms (Chapter 6).

Sieve elements (of **phloem**)

Sieve elements are specialized cells that function in conduction of sugars. They are typically associated with parenchyma and often some sclerenchyma in a common tissue known as **phloem** (Gr. phloe, bark, after the location of secondary phloem in the inner bark). Sieve elements are elongate cells having only a primary (1°) wall, with no lignified 2° cell wall. This primary wall has specialized pores (Figure 4.5C), which are aggregated together into **sieve areas** (Figure 4.5A). Each pore of the sieve area is a continuous hole in the 1° cell wall that is lined with a substance called...
callose, a polysaccharide composed of β-1,3-glucose units. (Note the difference in chemical linkage from cellulose, which is a polymer of β-1,4-glucose.) Sieve elements are semi-alive at maturity. They lose their nucleus and other organelles but retain the endoplasmic reticulum, mitochondria, and plastids. Like tracheary elements, sieve elements are oriented end-to-end, forming a tubelike continuum. Sieve elements function by conducting dissolved sugars from a sugar-rich source to a sugar-poor sink region of the plant. Source regions include the leaves, where sugars are synthesized during photosynthesis, or mature storage organs, where sugars may be released by the hydrolysis of starch. Sinks can include actively dividing cells, developing storage organs, or reproductive organs such as flowers or fruits.

There are two types of sieve elements: sieve cells and sieve tube members (Figure 4.5A). Sieve cells have only sieve areas on both end and side walls. Sieve tube members have both sieve areas and sieve plates (Figure 4.5B). Sieve plates consist of one or more sieve areas at the end wall junction of two sieve tube members; the pores of a sieve plate, however, are significantly larger than those of sieve areas located on the side wall (Figure 4.5C). Both sieve cells and sieve tube members have parenchyma cells associated with them.

Parenchyma cells associated with sieve cells are called alburninous cells; those associated with sieve tube members are called companion cells. The two differ in that companion cells are derived from the same parent cell as are sieve tube members, whereas alburninous cells and sieve cells are usually derived from different parent cells. Both alburninous cells and companion cells function to load and unload sugars into the cavity of the sieve cells or sieve tube members. Sieve cells (and associated alburninous cells) are the ancestral sugar-conducting cells and are found in all nonflowering vascular plants. Sieve tube members were derived from sieve cells and are found only in flowering plants (angiosperms; see Chapter 6).

ENDODERMIS

Another apparent apomorphy for the vascular plants is the occurrence in some (especially underground) stems and all roots of a special cylinder of cells, known as the endodermis (Figure 4.6A,B). Each cell of the endodermis possesses a Casparian strip, which is a band or ring of lignin and suberin (chemically similar to lignin) that infiltrates the cell wall, oriented tangentially (along the two transverse walls) and axially (along the two radial walls; Figure 4.6C). The Casparian
strip acts as a water-impermeable material that binds to the plasma membrane of the endodermal cells. Because of the presence of the Casparian strip, absorbed water and minerals that flow from the outside environment to the central vascular tissue must flow through the plasma membrane of the endodermal cells (as opposed to flowing through the intercellular spaces, i.e., between the cells or through the cell wall). Because the plasma membrane may differentially control solute transfer, the endodermis (with Casparian strips) selectively controls which mineral nutrients are or are not absorbed by the plant; thus, toxic or unneeded minerals may be differentially excluded.

INDEPENDENT, LONG-LIVED SPOROPHYTE
Like all land plants, the vascular plants have a haplodiplontic alternation of generations, with a haploid gametophyte and a diploid sporophyte. Unlike the liverworts, hornworts, and mosses, however, vascular plants have a dominant, free-living, photosynthetic, relatively persistent sporophyte generation. In the vascular plants, the gametophyte generation is also (ancestrally) free-living and may be photosynthetic, but it is smaller (often much more so) and much shorter-lived than the sporophyte generation. In all land plants, the sporophyte is initially attached to and nutritionally dependent upon the gametophyte. However, in the vascular plants, the sporophyte soon grows larger and becomes nutritionally independent, usually with the subsequent death of the gametophyte. (In seed plants the female gametophyte is attached to and nutritionally dependent upon the sporophyte; see Chapter 5.)

The sporophytic axes, or stems, of vascular plants are different from those of liverworts, hornworts, and mosses in being branched and bearing multiple sporangia. Vascular plants share this feature with some fossil plants that are transitional between the bryophytes and the tracheophytes. This more inclusive group, containing these basal, fossil taxa (having branched sporophytic stems and multiple sporangia) plus the tracheophytes, is referred to as the polysporangiophytes (see Chapter 3).

Stems function as supportive organs, bearing and usually elevating leaves and reproductive organs; they also function as conductive organs, via vascular tissue, of water/minerals and sugars between roots, leaves, and reproductive organs. Structurally, stems can be distinguished from roots by several anatomical features (below).

Stems of the vascular plants typically have a consistent and characteristic spatial arrangement of xylem and phloem. This organization of xylem and phloem in the stem is known as a stele. In several groups of early vascular plant lineages, the stelar type is a protostele, in which there is a central solid cylinder of xylem and phloem (Figure 4.7). The largely parenchymatous tissue between the epidermis and vascular tissue defines the cortex. Protosteles are thought to be the most ancestral type of stem vasculature, found, e.g., in the rhyniophytes (below).
Another apomorphy of all extant vascular plants is the sporophytic leaf. Sporophytic leaves are dorsiventrally flattened organs that generally function as the primary organ of photosynthesis. Although some liverworts and all mosses have leaves, these occur on gametophytes only and are not strictly homologous with the sporophytic leaves of vascular plants. The evolution of sporophytic leaves (usually just called leaves) constituted a major adaptive innovation for extant vascular plants by greatly increasing the tissue area available for photosynthesis. This paved the way for the evolution of various ecological adaptive strategies, enabling some vascular plants to survive in previously inaccessible habitats. In addition, leaves or leaflike homologues have become evolutionarily modified for numerous other functions in plants, to be discussed later.

Leaves have a characteristic anatomy (Figure 4.8). Because they are usually dorsiventrally flattened organs (with some exceptions), both an upper and lower epidermis can be defined. As with all land plants, a cuticle covers the outer cell wall of the epidermal cells. One or more vascular bundles, or veins, contain xylem and phloem tissue and conduct water and sugars to and from the chloroplast-containing mesophyll cells. The mesophyll of some leaves is specialized into upper, columnar palisade mesophyll cells and lower, irregularly shaped spongy mesophyll cells, the latter with large intercellular spaces (Figure 4.8). Stomata, which function in gas exchange (see Chapter 3), are typically found only in the lower epidermis of leaves (Figure 4.8).

Sporophytic leaves originate developmentally as part of an integral association of stem plus leaves known as a shoot (Figure 4.9). The tip of a shoot contains one or more actively dividing cells of the apical meristem. These cells undergo continuous mitotic divisions. [The ancestral apical meristem consisted of a single, apical cell; in seed plants (see later discussion; Chapter 5), the apical meristem is complex, consisting of a number of continuously dividing cells.] Vertically down from the apical meristem, the cells undergo considerable elongation, literally pushing the cells of the apical meristem upward or forward. Even further down from the shoot tip, the fully grown cells differentiate into their mature, specialized form. To the sides of the apical meristem region, certain regions of the outermost cell layers of a shoot undergo cell division and elongation. Further growth and differentiation in these regions result in the formation of a leaf (Figure 4.9A,D,E). The point of attachment of a leaf to the stem is known as the node; the region between two nodes is
called an internode (Figure 4.9D). As the shoot matures, the leaves fully differentiate into an amazing variety of forms (see Chapter 9), and the stem differentiates a vascular system. Vascular strands run between stem and leaf, providing a connection for fluid transport.

Later in shoot development, the tissue at the region of the junction of stem and upper leaf, termed the axil, may begin to divide and differentiate into a bud (Figure 4.9F), defined as an immature shoot system. Buds have an architectural form identical to that of the original shoot. They may develop into a lateral branch or may terminate by developing into a reproductive structure. It is growth of new shoots from buds that result in branching of sporophytes in the vascular plants.

ROOTS

Roots are specialized plant organs that function in anchorage and absorption of water and minerals. Roots are found in all vascular plants except for the (extinct) rhyniophytes and the psilophytes (discussed later). Other fossil groups of vascular plants may have lacked roots; plants lacking roots generally have uniseriate (one cell thick), filamentous rhizoids (similar to those of bryophytes), which assume a similar absorptive function. Although roots are apparently not a strict apomorphy for all vascular plants, they constituted a major adaptive advance in enabling much more efficient water and mineral acquisition and conduction, permitting the evolution of plants in more extreme habitats.
Roots, like shoots, develop by the formation of new cells within the actively growing apical meristem of the root tip, a region of continuous mitotic divisions (Figure 4.10B). At a later age and further up the root, these cell derivatives elongate significantly. This cell growth, which occurs by considerable expansion both horizontally and vertically, pushes the apical meristem tissue downward. Even later in age and further up the root, the fully-grown cells differentiate into specialized cells. [As with shoots, the ancestral apical meristem of roots consisted of a single, apical cell; in seed plants (see later discussion; Chapter 5), the apical meristem is complex, consisting of a number of continuously dividing cells.]

Roots are characterized by several anatomical features. First, the apical meristem is covered on the outside by a rootcap (Figure 4.10B); stems lack such a cell layer. The rootcap functions both to protect the root apical meristem from mechanical damage as the root grows into the soil and to provide lubrication as the outer cells slough off. Second, the epidermal cells away from the root tip develop hairlike extensions called root hairs (Figure 4.10A); these are absent from stems. Root hairs function to greatly increase the surface area available for water and mineral absorption. Third, roots have a central vascular cylinder, in which ridges of xylem alternate with cylinders of phloem; i.e., xylem and phloem are on alternate radii (Figure 4.10C,D). As in stems, the mostly parenchymatous region between the vasculature and epidermis is called the cortex (Figure 4.10C); the center of the vascular cylinder, if vascular tissue is lacking, is called a pith. Fourth, the vascular cylinder of roots is surrounded by an endodermis with Casparian strips (Figure 4.10D). As with some stems, the endodermis in roots selectively controls which chemicals are and are not absorbed by the plant, functioning in selective absorption. Fifth, roots have no exogenous (externally developing) organs like leaf primordia; all secondary roots arise endogenously from the internal tissues of the root. Secondary roots develop by cell divisions within either the endodermis or the pericycle; the latter is a cylindrical layer of parenchyma cells located just inside the endodermis itself. Secondary roots must actually penetrate the surrounding tissue of the cortex and epidermis during growth.

Numerous modifications of roots have evolved, most of these restricted to the flowering plants (see Chapter 9). Roots of many, if not most, vascular plants have an interesting symbiotic interaction with various species of fungi, this association between the two known as mycorrhizae. The fungal component of mycorrhizae appears to aid the plant in both increasing overall surface area for water and mineral absorption and increasing the efficiency of selective mineral absorption, such as of phosphorus.

VASCULAR PLANT DIVERSITY

Of the tremendous diversity of vascular plants that have arisen since their first appearance some 400 million years ago, only the major lineages will be described here. These include the rhyniophytes, known only from fossils, plus clades that have modern-day descendants: the Lycopodiophyta,
Equisetales, Marattiales, Polypodiales (leptosporangiate ferns), Ophioglossales, Psilotales, and seed plants (Figure 4.1). The evolution of seed plants will be discussed in Chapter 5.

RHYNIOPHYTA — RHYNIOPHYTES

The Rhyniophyta, or rhyniophytes, were among the first vascular land plants. They include only extinct, fossil plants and may constitute a paraphyletic group. Rhyniophytes include the genus *Rhynia* (Figure 4.11A,B), a well-known vascular plant from the early Devonian, ca. 410–360 million years ago. Rhyniophyte sporophytes consisted of dichotomously branching axes that bore terminal sporangia. Rhyniophytes ancestrally lacked both roots and a leaf-bearing shoot system; these two features evolved later, prior to or within the Lycophyte lineage (discussed next). The stems of Rhyniophytes were protostelic (Figure 4.7) in which the first-formed xylem (known as protoxylem) was centrarch (positioned at the center).

LYCOPODIOPHYTA — LYCOPHYTES

The Lycopodiophyta, or lycophytes (also commonly called lycopods), are a lineage of plants that diverged after the rhyniophytes. An extinct, fossil group, known as Zosterophylls [Zosterophyllophytina], are either immediately basal to or sister to the lycophytes. Zosterophylls had no leaves, but possessed lateral sporangia, similar to those of the lycophytes (see later discussion). Within the lycophytes, the now extinct *Lepidodendron, Sigillaria*, and relatives (Figure 4.11C-E) were woody trees that comprised a large portion of the primary biomass of forests during the Carboniferous, approximately 300 million years ago. Fossil remains of these plants today make up much of the Earth’s coal deposits.

A number of apomorphies characterize the lycophytes, three of which are mentioned here. First, the roots of lycophytes have an endarch protoxylem. Protoxylem refers to the first tracheary cells that develop within a patch of xylem and that are typically smaller and have thinner cell walls than the later formed metaxylem. In the roots of lycophytes, the protoxylem forms in a position interior to the metaxylem (i.e., toward the stem center). Second, the stems of lycophytes have an exarch protoxylem (just the reverse of the roots). In the stems of lycophytes, the protoxylem forms in a position exterior to the metaxylem (i.e., away from the stem center; Figure 4.12A,B). Third, lycophytes have a sporophytic leaf structural type known as a lycophyll (essentially synonymous with microphyll). Lycophylls are characterized as having an intercalary meristem (at the proximal side of the leaf base) and lacking a gap in the vasculature of the stem (Figure 4.12C). Lycophylls also have a single, unbranched (very rarely branched) vein. Lycophylls may have evolved from small appendages called enations (found in rhyniophytes and some lycophyte relatives), which may resemble lycophylls but which lack vascular tissue. Thus, lycophylls may have formed by the innervation of vasculature tissue from the stem into the leaf (lycophyll) axis.
enation and flattening of this structure into a dorsiventral, planar posture; such a gradation, from enation to lycophyll, may be seen in some fossil plants.

The only lycophytes that survived to the present are small, nonwoody, herbaceous plants, typically grouped into three families: Lycopodiaceae, Selaginellaceae, and Isoetaceae. The Lycopodiaceae (ca. 380 species; Figure 4.13), which are often commonly called club-mosses, are distinguished in having one type of spore, a condition known as homospory. The Lycopodiaceae contain about 300 species in five genera: Diphasiastrum, Huperzia (Figure 4.13A,C), Lycopodium (Figure 4.13B,D G), and Phylloglossum (Figure 4.13H). Some family members may in fact resemble a large moss (e.g., Figure 14.13A), but they are true vascular plants, the persistent, long-lived phase being sporophytic. Sporangia of the Lycopodiaceae, like those of all lycophytes, develop laterally (relative to the stem) in the axils of specialized leaves termed sporophylls (Figure 4.13E). In some members of the family, the sporophylls are similar to the vegetative leaves (Figure 4.13C) and co-occur with them on shoots that are indeterminate, i.e., with continuous growth. In other family members, the sporophylls differ in size or shape from vegetative leaves and are aggregated into a terminal shoot system that is determinate, meaning that it terminates growth after formation. This determinate reproductive shoot, consisting of a terminal aggregate of sporophylls with associated sporangia, is known as a strobilus or cone (Figure 4.13B,D,G,H).

The two other extant lycophyte families are the Selaginellaceae and Isoetaceae. The Selaginellaceae (Figure 4.14A G) contain approximately 700 species in the single genus Selaginella, commonly called spike-moss. Species of Selaginella occur in two vegetative forms. Some have spirally arranged vegetative leaves that are isomorphic, of only one size and shape (Figure 4.14A). Other Selaginella species, which are generally prostrate, have leaves that are dimorphic, of two forms, arranged in four rows: two lateral rows of larger leaves and two upper, or dorsal, rows of smaller leaves (Figure 4.14B,C). The Isoetaceae (Figure 4.14H J) consist of approximately 150 species in the single genus Isoetes, commonly called quillwort or Merlin’s-grass. Isoetes plants consist of a cormose (rarely rhizomatous) stem bearing numerous acicular (needle-like) leaves (Figure 4.14J). Species of Isoetes are aquatics found in shallow, sometimes periodically inundated, pools.

The Selaginellaceae and Isoetaceae differ from the Lycopodiaceae in having leaf ligules and in being heterosporous, both of which are apomorphies within the lycophytes (Figure 4.1). Ligules are tiny appendages on the upper (adaxial) side of the leaf (both vegetative and reproductive), near the leaf base (Figures 4.14D, 4.15). The function of ligules is not clear; one proposal is that they act as glands, providing hydration for young, developing lycophylls. Heterospory refers to the production of two types of spores: microspores and megaspores, which form within specialized sporangia: microsporangia and megasporangia (Figure 4.14E). Microspores are relatively small (Figure 4.14F) and are produced in large numbers. Megaspores (Figure 4.14G) are much larger in size and are produced in fewer numbers (typically four) per sporangium. Megasporangia and microsporangia may be produced together in the same shoot or in different shoots.

FIGURE 4.12 A,B. Lycopodium stem cross-section, showing protoxylem that is exarch (to periphery of stem). C. Lycophyll structure.
Some species of *Selaginella* have strobili, with specialized sporophylls subtending the sporangia on a determinate shoot (Figure 4.14E). In *Isoetes*, the sporophylls bear enlarged microsporangia or megasporangia on the upper (adaxial) side of the sheathing base (Figure 4.14I,J); male sporophylls (microsporophylls) are usually located inner to the female sporophylls (megasporophylls). The size and sculpturing pattern of the spores can be an important feature in identifying different species of *Isoetes*. In both *Selaginella* and *Isoetes*, the megaspore develops into a female gametophyte, which contains only archegonia, housing the egg cell. Each microspore germinates to form a male gametophyte, which produces only antheridia, the sperm-manufacturing organs. The gametophytes of *Selaginella* and *Isoetes* are endosporic, meaning that the gametophytes develop entirely within the original spore wall. Heterospory and endospory also evolved independently in the seed plants (see Chapter 5).

Interestingly, the fossil tree *Lepidodendron* belongs to the ligulate lycophytes, being most closely related to *Isoetes* among the extant lycophytes.

EUPHYLLOPHYTES

The sister group of the lycophytes are the euphyllphytes, including all the other vascular plants (Figure 4.1). Two major apomorphies that unite the euphyllphytes are mentioned here. First, the roots have an exarch protoxylem, in which the protoxylem is placed outer to the metaxylem (Figure 4.10D). Second, the leaves are euphyllous, meaning that they grow by means of either marginal or apical meristems and have an associated leaf gap, a region of nonvascular, parenchyma tissue interrupting the vasculature of the stem (Figure 4.16). Euphyls typically have more than one vein and generally have a highly branched system of veins, although in a few euphyllous taxa, the veins have become secondarily reduced again to a single mid-vein. (Note that euphyl is essentially synonymous with megaphyll, a more traditional term.) Fossil evidence suggests that euphyls evolved from a planar branch system, different from that of lycophylls. Third, euphyllophestes have a molecular apomorphy, a 30-kilobase inversion located in the large single-copy region of chloroplast DNA (see Figure 14.4 of Chapter 14).

Euphyllophytes are composed of two major groups, which are sister to one another: monilophytes (ferns, in the broad sense) and spermatophytes (seed plants), the latter to be discussed in Chapter 5.

MONILOPHYTES — FERNS

Recent morphological and molecular phylogenetic studies (e.g., Kenrick and Crane, 1997; Pryer et al., 2001) support the recognition of a monophyletic group of vascular plants that are inclusive of five major lineages: Equisetales (horsetails), Marattiales (marattioid ferns), Ophioglossales (ophioglossoid ferns), Psilotales (whisk ferns), and Polypodiales.
(leptosporangiate ferns). This monophyletic group has been termed the monilophytes (or moniliformopses); the common name is often now termed ferns, in the broad sense of the word. One recognized anatomical apomorphy for the monilophytes is that the **stem protoxylem is mesarch** in position (Figure 4.17E), meaning that tracheary elements first mature near the middle of a patch of xylem; this protoxylem (unlike that of some related fossil taxa) is restricted to the lobes of the xylem. The derivation of monilophyte (L. *monilo*, necklace or string of beads + Gr. *phyt*, plant) is in reference to this anatomy.

Lastly, the ancestral stem vasculature of the monilophytes, found in most (but not all) extant members, is the **siphonostele**. A **siphonostele** (Figure 4.17A D) is a type of stem vasculature in which a ring of xylem is surrounded by an outer layer of phloem (ectophloic siphonostele, Figure 4.17A) or by an outer and inner layer of phloem (amphiphloic siphonostele, Figure 4.17B; if dissected, called a dictyostele, Figure 4.17C); siphonostele s have a central, parenchymatous pith (Figure 4.17). Siphonostele s have evidently become secondarily modified in some monilophytes.

OPHIOGLOSSALES — OPHIOGLOSSOID FERNS

The Ophioglossales (=Ophioglossidae), or ophioglossoid ferns, consist of a few genera of fernlike plants. The ophioglossoid ferns are unique in that each leaf (or frond) consists of a **sterile segment**, which contains the photosynthetic blade or lamina, and a **fertile segment**. The underground rhizome gives rise to unbranched roots that lack root hairs. The most common genera of the Ophioglossales are *Botrychium*, commonly called grape fern or moonwort, and *Ophioglossum*, commonly called adder’s tongue. *Botrychium* species have

FIGURE 4.17 A–C. Siphonostele types. A. Ectophloic siphonostele, with phloem to outside of xylem. B. Amphiphloic siphonostele, with phloem to outside and inside. C. Dictyostele, a dissected amphiphloic siphonostele. D. *Adiantum* rhizome, an amphiphloic siphonostele. E. *Polypodium* rhizome, close-up of vasculature showing mesarch protoxylem, an apomorphy for the monilophytes (ferns).
a divided to compound lamina and a branched fertile segment (Figure 14.18A,B), whereas species of *Ophioglossum* have a simple, undivided lamina and an unbranched fertile segment (Figure 14.18C).

The sporangia of the Ophioglossales, and all other monilophytes except for the leptosporangiate ferns, are often termed **eusporangia** (or **eusporangiate sporangia**) to contrast them with leptosporangia of the leptosporangiate ferns (see later discussion). A **eusporangium** is relatively large, is derived from several epidermal cells, and has a sporangial wall comprised of more than one cell layer (Figure 4.18B,C). Eusporangia are the ancestral condition of the land plants.

Two features may constitute apomorphies, linking the ophioglossoid ferns with the Psilotales, the whisk ferns (discussed later). First, the roots of ophioglossoid ferns are unusual in lacking both root branches and root hairs. This may represent a transitional stage to the total loss of roots in the whisk ferns. Second, the gametophytes of the Ophioglossales and Psilotales are nonphotosynthetic (heterotrophic), contain mycorrhizal fungi, and are often subterranean (Figure 4.1).

PSILOTALES — WHISK FERNS
The Psilotales, or psilophytes (commonly called whisk ferns), consist of only two genera of plants, *Psilotum* (two species) and *Tmesipteris* (ca. 10 species). Like all vascular plants, the whisk ferns have an independent, dominant, free-living sporophyte; the haploid gametophyte is small, obscure, and free-living in or on the soil. The sporophyte consists of a horizontal rhizome that gives rise to aerial, photosynthetic, generally dichotomously branching stems (Figure 4.19A,B). Plants are often epiphytic, with rhizomes having mycorrhizal symbiotic associations. All psilophytes **lack true roots**, an apomorphy for the group; only absorptive rhizoids arise from the rhizome. The absence of roots in the psilophytes has often been considered to be a primitive retention, the psilophytes having being viewed as direct descendants of the rhyinites. However, molecular studies clearly indicate that psilophytes are sister to the Ophioglossales (Figure 4.1) and likely lost roots secondarily.

The leaves of psilophytes are very reduced and peg-like (Figure 4.19C) and may lack a vascular strand, in which case they are termed **enations**. The sporangia (which, like the Ophioglossales, could be termed eusporangia) are two- or three-lobed, which is interpreted as a **synangium**, a fusion product of two or three sporangia (Figure 4.19D). The synangia are yellowish at maturity and are subtended by a forked appendage, an apomorphy for the group. As in the Ophioglossales, the gametophytes of the Psilotales are nonphotosynthetic (subterranean or surface-dwelling) and may contain mycorrhizal fungi.

Psilotum nudum, the **whisk broom**, is the most widespread species of the psilophytes, one that commonly serves as an exemplar for the group (Figure 4.19). *Psilotum nudum* is native to tropical regions and is cultivated in greenhouses and naturalized in warm climates worldwide.
EQUISETALES — HORSETAILS

The Equisetales, also called the equisetophytes, sphenophytes, or sphenopsids, are a monophyletic group that diverged early in the evolution of vascular plants. As with the lycophytes, some equisetophytes in the Carboniferous period, approximately 300 million years ago, were large woody trees. Among these was *Calamites* (Figure 4.20), another contributor to coal deposits. Current molecular systematic studies (Figure 4.1) place the equisetophytes near the Marattiales and within a group containing the Polypodiales (leptosporangiate ferns; see later discussion). However, this may contradict fossil interpretations, so the position of this group needs further investigation.

Equisetales are united by several apomorphies, four of which are cited here (Figure 4.1): (1) **ribbed stems** (Figure 4.21A,J), these often associated with internal hollow canals (Figure 4.21C); (2) **reduced, whorled leaves** that are usually marginally fused (Figure 4.21A,J); (3) **sporangio- phores**, each of which consists of a peltate axis bearing pendant longitudinally dehiscent sporangia Figure 4.21F,L); and (4) photosynthetic spores with **elaters** (Figure 4.21G,H; see later discussion).

Today, the only remaining equisetophytes are species of the genus *Equisetum*. *Equisetum* species generally have an extensive underground rhizome system with adventitious roots; the rhizome gives rise to erect, aerial shoots. The ribbed stems contain epidermal cells that are impregnated with silica. Thus, the stems are rather tough, laying claim to having

FIGURE 4.19 Psilotophyta. *Psilotum nudum*. **A.** Whole plant, showing dichotomous branching. **B.** Close-up of plant. **C.** Vegetative stem close-up, showing reduced leaves or enations. **D.** Close-up of synangia, subtended by forked appendage.

FIGURE 4.20 *Calamites*, an extinct, tree-sized equisetophyte. **A.** Fossil impression, showing nodes and stem ridges. **B.** Fossil cast of stem. **C.** Fossil impression showing whorled leaves of branch.
been used in the past for cleaning cooking utensils, hence the common name scouring rush. The stems are hollow (have a hollow pith), with cross walls called septa at each node (Figure 4.21B) and peripheral canals (termed vallecular canals; Figure 4.21C). The leaves are whorled and laterally fused, forming a sheathlike structure at the nodes (Figure 4.21A,B,J).

Equisetum species are classified in part based on their aerial branching pattern. In some species, whorls of lateral branches arise at the node from the axils of the leaves, actually penetrating the marginally fused leaves; because of their appearance, these species are called horsetails (Figure 4.21I,J) and are classified as the subgenus *Equisetum*. The other species, which lack extensive branching at the nodes, are classified as subgenus *Hippochaete* (Figure 4.21A,D). The two subgenera differ in stomate anatomy as well, those of subgenus *Hippochaete* being sunken, and those of subgenus *Equisetum* occurring at the (stem) surface.

At the tip of some aerial stems are strobili or cones (Figure 4.21E,L) containing the sporangia, which are pendant from a stalked, peltate structure called the sporangiophore (Figure 4.21F,L). The sporangiophore is thought to represent an evolutionary fusion product of an aggregate of ancestrally distinct, recurved sporangia. Some species of *Equisetum*, e.g., *E. arvense*, are unusual in having two types of aerial stems: photosynthetic vegetative stems (Figure 4.21I,J) and nonphotosynthetic reproductive stems that terminate in strobili (Figure 4.21K,L). The spores of *Equisetum* are unique among vascular plants in containing chloroplasts and unique among land plants in having four or more unusual appendages called elaters (Figure 4.21G,H). The elaters of *Equisetum* spores (which are not homologous with elaters in the sporangia of liverworts) are hygroscopic and uncurl from the spore body upon drying, aiding in spore dispersal.

MARATTIALES — MARATTIOID FERNS

The Marattiales are a group of about six genera and have traditionally been called ferns. They are very similar to the Polypodiales or leptosporangiate ferns (discussed later) in general form, having large pinnate or bipinnate leaves (Figure 4.22A,D) with circinate vernation, sporangia located on the abaxial surface of leaflet blades, and a photosynthetic gametophyte (see later discussion). However, the sporangia of the Marattiales are eusporangiate, like those of all vascular plants except for the leptosporangiate ferns. In some taxa of the Marattiales, the sporangia are fused into a common structure, a synangium (Figure 4.22B,C). A distinctive apomorphy of the Marattiales is the occurrence of a polycyclic siphonostele (Figure 4.1), which appears as concentric rings of siphonosteles in cross-section (the vasculature of which is, however, connected at a lower level).

POLYPODIALES — LEPTOSPORANGIATE FERNS

The Polypodiales (also known as Filicales or Pteridales) correspond to what are commonly known as the leptosporangiate ferns. Of the five major monilophyte groups, the
leptosporangiate ferns contain by far the greatest diversity, with more than 11,000 species.

Most leptosporangiate ferns have a horizontal stem, the rhizome, which is usually underground but may sprawl at ground level. Some leptosporangiate ferns have erect aerial stems, which in the so-called tree ferns (Figure 4.23G) can attain heights approaching 100 feet. A few ferns are vines (Figure 4.23E,F), with weak stems that sprawl on the ground or upon another plant. The leaves of ferns come in a great variety of forms (Figure 4.23, 4.24).

Like those of the Marattiales, the immature leaves of Polypodiales are coiled and known as fiddleheads or croziers (Figure 4.23A). This type of developmental morphology is called circinate vernation. Leptosporangiate ferns often have trichomes or scales on the rhizome or leaves, which are a valuable taxonomic character (Figure 4.23B). Circinate vernation with crozier formation may constitute an apomorphy for the Polypodiales and Marattiales together; however, this feature is also shared with the cyads of the seed plants (see Chapter 5).

Leptosporangiate fern leaves have a terminology slightly different from that of other vascular plants (see Chapter 9). The leaf itself is called a frond; the petiole is called a stipe; the first discrete leaflets or blade divisions of a fern leaf are called pinnae (singular pinna). If there is more than one division, the terms 1° pinna, 2° pinna, and so forth may be used. The ultimate leaflets or blade divisions are called pinnules (Figure 4.23C,D; see also Chapter 9).

The primary apomorphy of the Polypodiales is the leptosporangium (Figure 4.1, 4.24I). Leptosporangia are unique among vascular plants in (1) developing from a single cell, and (2) having a single layer of cells making up the sporangium wall. Leptosporangia are often aggregated into clusters, known as sori (singular sorus; Figure 4.24A,B,D), which may or may not be covered by a flap of tissue, the indusium (Figure 4.24E). Some species have an extension of the pinnule margin called a false indusium that overlaps the sori (Figure 4.24F,G). In addition to general frond morphology, the position and shape of the sori and indusium are useful taxonomic characters in delimiting the ferns. For example, the family Polypodiaceae are largely distinguished in being exindusiata (sori lacking an indusium), whereas other families, such as the Pteridaceae, are indusiata (sori having an indusium).

The leptosporangium may have been an important adaptation in the ferns because of a unique mechanism of spore dispersal. On the outer rim of the leptosporangium is a single row of specialized cells, collectively known as an annulus, in which the cell walls are differentially thickened on the inner cell face and on the cell faces between adjacent annular cells (Figure 4.24I, 4.25). As the leptosporangium matures and begins to dry, water evaporates from the cells of the annulus. The force of capillarity causes the cells to buckle on the outer faces, as these are regions in which the cell wall is not thickened and therefore structurally weakest. This buckling provides a force resulting in splitting, or delhiscence, of the leptosporangium, followed by a backward retraction of the annulus (Figure 4.25). A short time after the annular cells fully retract, total evaporation of water within the cells causes the release of the capillarity tensile strength, which catapults the annulus forward, erecting the spores in the process (Figure 4.25).

Leptosporangiate ferns, like all nonseed tracheophytes, have a haploid gametophyte phase that is free-living from the dominant sporophyte phase. The gametophytes are quite small and generally consist of a thin flat sheet of photosynthetic cells, which is variable (but often cordate) in shape. These bear several rootlike rhizoids as well as sperm-producing antheridia and egg-producing archegonia (Figure 4.25). As in all the nonflowering land plants, a sperm cell fertilizes an egg cell of the archegonium. The resultant zygote divides and differentiates into a new sporophyte, which initially remains attached to the gametophyte (Figure 4.25). Soon, however, the sporophyte attains independence of the gametophyte (which subsequently dies), the sporophyte becoming the persistent, dominant phase of the life cycle, a characteristic of all vascular plants (Figure 4.1).

The economic importance of leptosporangiate ferns is mostly as important ornamental cultivars in the horticultural trade. These include, among many others, species of Adiantum (maiden hair fern), Asplenium (e.g., A. nidus, bird’s nest fern), Cyathea (a tree fern), and Nephrolepis (Boston fern, sword fern). Ostrich fern (Matteuccia struthiopteris) has edible croziers. Pteris vittata has recently been used to remove arsenic from toxic landfills. The family circumscription of the leptosporangiate ferns is still in flux and awaits further studies. See Pryer et al. (2004a) for a recent phylogenetic analysis of the group.

One group of leptosporangiate ferns is unusual in being aquatic, with members sometimes cultivated in small ponds or aquaria. These so-called water ferns comprise two major subgroups. One group is composed of three genera, Pilularia (Figure 4.26D,E), Regnellidium, and Marsilea, the water clover (Figure 4.26A), the latter considered by some to be the true four-leaf clover. Another subgroup of water ferns contains two genera, Salvinia, the water spangles (Figure 4.26A,B), and Azolla, the mosquito fern (Figure 4.26A C). Azolla is interesting in having a symbiotic, nitrogen-fixing cyanobacterium living inside leaf clefts of the plant. Because the cyanobacterium ultimately adds nitrogen to the environment, rice farmers in parts of the world have learned to seed the paddies with Azolla, ensuring a better crop.
Figure 4.23 Polypodiales leptosporangiate ferns. A. Polypodium aureum, showing croziers or delicateheads in early (left) and later (right) stages. B. Nephrolepis cordifolia, showing scales at base of stipe. C. Adiantum capillus-veneris, with bipinnate leaf, having ultimate pinnules. D. Osmunda claytoniana, with bipinnate leaves bearing pinnae, divided into pinnules. E,F. Lygodium japonicum, an epiphytic vine. G. Cyathea cooperi, a tree fern with erect, elongate stems. H. Platycerium sp., staghorn fern, epiphytic with dimorphic leaves. I. Asplenium nidus, bird's nest fern, epiphytic with simple leaves.
CHAPTER 4 EVOLUTION AND DIVERSITY OF VASCULAR PLANTS

All of the aquatic ferns are virtually unique among the leptosporangiate ferns in being heterosporous. Recall that heterospory is the development of two types of spores, male and female. From these spores develop the male and female gametophytes, which are endosporic, similar to Selaginella and Isoetes of the lycophytes. The reproductive structures of these aquatic ferns are complicated and are organized into generally spherical sporocarps (Figure 4.26E). The sporocarps allow the sporangia and spores to remain dormant for long periods of time, an adaptation that enables them to survive and persist when the ponds or pools where these plants are found dry up.

REVIEW QUESTIONS

VASCULAR PLANT APOMORPHIES
1. What is the formal, scientific name for the vascular plants?
2. Name the major apomorphies of the vascular plants.
3. How was the evolution of lignin a major adaptive feature of the vascular plants?
4. What is the difference between a primary and secondary cell wall in terms of time of deposition and chemistry?
5. What is a pit? a primary pit field?
6. Is the secondary cell wall formed inside or outside the plasma membrane? inside or outside the primary cell wall?
7. What are the general characteristics of sclerenchyma cells?
8. Name the two types of sclerenchyma and state how they differ.
9. How are sclerenchyma and tracheary elements similar? How do they differ?
10. What is the function of tracheary elements?
11. What is xylem?
12. Name the two types of tracheary elements and cite how they differ structurally.
13. What is a perforation plate?
14. In what taxa are vessels found?
15. What is the function of sieve elements?
16. What is phloem?
17. What is a sieve area and what compound is associated with them?
18. What is the difference, in morphology and taxonomic group found, between a sieve cell and a sieve tube member?
19. What is the endodermis and Casparian strip, and what is the function of these?
20. How are sporophytes of the vascular plants different from those of the liverworts, hornworts, and mosses?
21. What is the definition and function of a stem?
22. What is a stele?
23. What is the ancestral stelar type in the vascular plants and what is its structural anatomy?
24. What is the general morphology and function of leaves?
25. What are the internal, chlorophyllous cells of a leaf called? Into what two layers are these cells typically formed?
26. What is a vein?
27. What is a shoot?
28. What is the name of the region of actively dividing cells in the shoot?
29. What is the definition of a bud?
30. Where are buds typically located?
31. Define node; internode.
32. What is the function of roots?
33. What is the name of the region of actively dividing cells in the root?
34. What is the function of: (a) rootcap; (b) root hairs; (c) endodermis/Casparian strips?
35. What are the major differences between roots and stems?
36. What are mycorrhizae?

VASCULAR PLANT DIVERSITY
37. What is the most basal (earliest diverging) lineage of the vascular plants, now extinct?
38. What are the major apomorphies of the lycophytes?
39. What fossil lycophyte was a large tree in the Carboniferous and now makes up a large percentage of coal deposits?
40. What is a lycophyll (microphyll)? an enation?
41. What is the position of the sporangia in lycophytes?
42. What is a sporphyll? a strobilus?
43. What is homosporous? Name two genera of lycophytes that have this condition.
44. Name and define the two types of leaf morphology in Selaginella species.
45. Name two genera of extant lycophytes that are heterosporous. What structure is associated with their leaves?
46. Define the terms heterosporous and endosporic.
47. Name the apomorphies of the euphyllophytes, and list the two major, vascular plant groups included.
48. Name the putative apomorphies of the monilophytes, and list the five major groups contained within it.
49. What is distinctive about the leaves of the ophioglossid ferns?
50. What is a eusporangium?
51. What two features may link the ophioglossid ferns with the psilophytes (whisk ferns)?
52. What is distinctive (and apomorphic) about the roots, leaves, and sporangia of the Psilotales?
53. What is the most commonly cultivated species of whisk fern?
54. What is a fossil member of Equisetales, making up a component of coal deposits.
55. Name the major apomorphies of the Equisetales.
56. What is the only extant genus of this group?
57. What do equisetophytes have as a component of the cell wall?
58. What is the difference between a scouring rush and a horsetail? Into what two subgenera are these classified?
59. Describe the morphology of the strobilus (cone), sporangiophore, and sporangia of Equisetum.
60. What is unique about the spores of Equisetum? What is the function of this novelty?
61. Describe the diagnostic features and a putative apomorphy of the Marattiales.
62. How do the gametophytes and leaf development of the Marattiales resemble the Polypodiales (below)?
63. What type of sporangium is found in the Marattiales?
64. What is the major evolutionary novelty of the Polypodiales? Describe its development and morphology.
65. Name three stem types/habits that occur in the Polypodiales.
66. What is circinate vernation? What terms are used for immature fern leaves that exhibit this?
67. Define frond, stipe, pinna, pinnule.
68. Define sorus, indusium, false indusium, annulus.
69. In a fern gametophyte, what is the name of the male gametangium? the female gametangium? What do they look like?
70. Name three or more genera of aquatic ferns.
71. What reproductive features unite the aquatic ferns?

EXERCISES

1. Peruse the most recent literature on phylogenetic relationships of the vascular plants. Are there any differences relative to Figure 4.1?
2. Peruse botanical journals and find a systematic article on a nonseed vascular plant (e.g., a leptosporangiate fern or fern group). What is the objective of the article and what techniques were used to address it? What types of morphological characters are discussed by the author(s)?
3. Collect and identify local lycophytes, equisetophytes, psilophytes, ophioglossoid ferns, or leptosporangiate ferns. What diagnostic features are used to distinguish between species?

REFERENCES FOR FURTHER STUDY

Mickel, John T. 1979. How to Know the Ferns and Fern Allies. Wm. C. Brown, Dubuque, IA.

LIGNOPHYTES—WOODY PLANTS

The lignophytes, or woody plants (also called Lignophyta), are a monophyletic lineage of the vascular plants that share the derived features of a vascular cambium, which gives rise to wood, and a cork cambium, which produces cork (Figures 5.1, 5.2). These features also occurred in now extinct lineages within the lycophytes (e.g., Lepidodendron) and equisetophytes (e.g., Calamites), but are thought to have been derived independently in these taxa. A vascular cambium is a sheath, or hollow cylinder, of cells that develops within the stems and roots as a continuous layer, between the xylem and phloem in extant, eustelic spermatophyte (see later discussion). The cells of the vascular cambium divide mostly in a tangential plane, resulting initially in two layers of cells (Figure 5.3). One of these layers remains as the vascular cambium and continues to divide indefinitely; the other layer eventually differentiates into either secondary xylem = wood, if produced to the inside of the cambium, or secondary phloem, if produced to the outside of the cambium (Figure 5.3, 5.4). Generally, much more secondary xylem is produced than secondary phloem. As secondary tissue is formed, the inner cylinder of wood expands (Figures 5.4, 5.5). Many woody plants have regular growth periods, e.g., forming annual rings of wood (Figure 5.5). A cork cambium is similar to a vascular cambium, only it differentiates near the periphery of the stem or root axis. The cork cambium and its derivatives constitute the periderm (referred to as the outer bark). The outermost layer of the periderm is cork (Figure 5.4). Cork cells contain a waxy polymer called suberin (similar to cutin) that is quite resistant to water loss (see Chapter 10).

The vascular cambium and cork cambium were a major evolutionary novelty. Secondary xylem, or wood, functions in structural support, enabling the plant to grow tall and acquire massive systems of lateral branches. Thus, the vascular cambium was a precursor to the formation of intricately branched shrubs or trees with tall overstory canopies (e.g., Figure 5.2), a significant ecological adaptation. Cork produced by the cork cambium functions as a thick layer of cells that protects the delicate vascular cambium and secondary phloem from mechanical damage, predation, and desiccation.
Wood anatomy can be quite complex. The details of cellular structure are important characters used in the classification and identification of woody plants. Wood anatomical features may also be used to study the past, a specialty known as dendrochronology (see Chapter 10).

SPERMATOPHYES—SEED PLANTS

The spermatophytes, or seed plants (also called Spermatophyta), are a monophyletic lineage within the lignophytes (Figure 5.1). The major evolutionary novelty that unites this group is the seed. A seed is defined as an embryo, which is an immature diploid sporophyte developing from the zygote, surrounded by nutritive tissue and enveloped by a seed coat (Figure 5.6). The embryo generally consists of an immature root called the radicle, a shoot apical meristem called the epicotyl, and one or more young seed leaves, the cotyledons; the transition region between root and stem is called the hypocotyl (Figures 5.6, 5.12). An immature seed, prior to fertilization, is known as an ovule.

SEED EVOLUTION

The evolution of the seed involved several steps. The exact sequence of these is not certain, and two or more steps in seed evolution may have occurred concomitantly.

FIGURE 5.1 Cladogram of the woody and seed plants. Major apomorphies are indicated beside a thick hash mark. Modified from Bowe et al., 2000; Chaw et al., 2000; Frohlich et al., 2000; and Samigullin et al., 1999.
The probable steps in seed evolution are as follows (Figure 5.7):

1. **Heterospory.** Heterospory is the formation of two types of haploid spores within two types of sporangia: large, fewer-numbered *megaspores*, which develop via meiosis in the *megasporangium*, and small, more numerous *microspores*, the products of meiosis in the *microsporangium* (Figures 5.7, 5.8). The ancestral condition, in which a single spore type forms, is called *homospory*. Each megaspore develops into a female gametophyte that bears only archegonia; a microspore develops into a male gametophyte, bearing only antheridia. Although heterospory was prerequisite to seed evolution, there are fossil plants that were heterosporous but had not evolved seeds, among these being species of *Archeopteris* (Figure 5.1, 5.15A; see later discussion). Note that heterospory has evolved independently in other, nonseed plants, e.g., in the extant lycophytes *Selaginella* and *Isoetes* and in the water ferns (Chapter 4).

2. **Endospory.** Endospory is the complete development of, in this case, the female gametophyte within the original spore wall (Figure 5.7). The ancestral condition, in which the spore germinates and grows as an external gametophyte, is called *exospory*.

3. **Reduction of megaspore number to one.** Reduction of megaspore number occurred in two ways. First, there evolved a reduction in the number of cells within the megasporangium that undergo meiosis (each termed a *megasporocyte* or *megaspore mother cell*) was reduced to one (Figure 5.7). After meiosis, the single diploid megasporocyte gives rise to four haploid megaspores. Second, of the four haploid megaspores produced by meiosis, three consistently abort, leaving only one functional megaspore. This single megaspore also undergoes a great increase in size, correlated with the increased availability of space and resources in the megasporangium.

4. **Retention of the megaspore.** Instead of the megaspore being released from the sporangium (the ancestral condition, as occurs in all homosporous nonseed plants), in seed plants it is retained within the megasporangium (Figure 5.7). This was accompanied by a reduction in thickness of the megaspore wall.

5. **Evolution of the integument.** Most likely, the final event in seed evolution was the envelopment of the megasporangium by tissue, called the *integument* (Figure 5.7). The integument grows from the base of the *megasporangium* (which is often called a nucellus when surrounded by an integument) and surrounds it, except at the distal end. Fossil evidence suggests that integuments may have evolved first as separate lobes. In all extant seed plants, however, the integment develops as a continuous sheath.
FIGURE 5.3 Development of the vascular cambium.

FIGURE 5.4 Development of secondary vascular tissue in the stem, illustrated here for a eustelic stem.
and completely surrounds the nucellus except for a small pore at the distal end called the **micropyle**. The micropyle functions as the site of entry of pollen grains (or in angiosperms, of pollen tubes), which effect fertilization of the egg (see later discussion). The micropyle also functions in the mechanics of pollination droplet formation and resorption (see later discussion). Note that a single integument represents the ancestral condition of spermatophytes; in angiosperms a second integument layer evolved (Chapter 6).

POLLEN GRAINS
Concomitant with the evolution of the seed was the evolution of pollen grains (Figure 5.9). A pollen grain is, technically, an immature, endosporic male gametophyte. **Endospory** in pollen grain evolution was similar to the same process in seed evolution, involving the development of the male gametophyte within the original spore wall. Pollen grains of seed plants are extremely reduced male gametophytes, consisting of only a few cells. They are termed immature male gametophytes because, at the time of their release, they have not fully differentiated.

After being released from the microsporangium, pollen must be transported to the micropyle of the ovule (or, in angiosperms, to the stigmatic tissue of the carpel; see Chapter 6) in order to ultimately effect fertilization. Wind dispersal, in combination with an ovule pollination droplet (see later subsection), was probably the ancestral means of pollen transport. After being transported to the ovule (or stigmatic tissue), the male gametophyte completes development by undergoing additional mitotic divisions and differentiation. The male gametophyte grows an exosporic **pollen tube**, which functions as a haustorial organ, obtaining nutrition by absorption from the surrounding sporophytic tissue (Figure 5.10; see **Pollen Tube**).

POLLEN TUBE
The male gametophytes of all extant seed plants form a pollen tube (Figure 5.10) soon after the pollen grains make contact with the megasporangial (nucellar) tissue of the ovule. The formation of pollen tubes is termed **siphonogamy** (siphon, tube + gamos, marriage). The pollen tubes, which may become branched in some taxa, function as a haustorial organ, growing into and feeding from the megasporangial (nucellar) tissue. Pollen tubes also function to deliver the sperm cells, directly or indirectly, to the egg of the ovule (see later discussion).

POLLINATION DROPLET
One possible evolutionary novelty associated with seed evolution is the **pollination droplet**. This is a droplet of liquid that is secreted by the young ovule through the micropyle.
CHAPTER 5 EVOLUTION AND DIVERSITY OF WOODY AND SEED PLANTS

1. **Heterospory**

2. **Endospory**

3. **Reduction to 1 megaspore**

4. **Retention of megaspore**

5. **Evolution of Integument**

FIGURE 5.7 Ovule and seed evolution in the spermatophytes (hypothetical, for purpose of illustration).
(Figure 5.11). This droplet is mostly water plus some sugars or amino acids and is formed by the breakdown of cells at the distal end of the megasporangium (nucellus). The cavity formed by this breakdown of cells is called the pollination chamber (Figure 5.11). The pollination droplet functions in transporting pollen grains through the micropyle. This occurs by resorption of the droplet, which pulls pollen grains that have contacted the droplet into the pollination chamber. It is unknown whether a pollination droplet was present in the earliest seed plants. However, the presence of a pollination droplet in many nonflowering seed plants suggests that its occurrence may be ancestral for at least extant seed

FIGURE 5.8 Life cycle of heterosporous plants.

(Figure 5.11). This droplet is mostly water plus some sugars or amino acids and is formed by the breakdown of cells at the distal end of the megasporangium (nucellus). The cavity formed by this breakdown of cells is called the pollination chamber (Figure 5.11). The pollination droplet functions in transporting pollen grains through the micropyle. This occurs by resorption of the droplet, which pulls pollen grains that have contacted the droplet into the pollination chamber. It is unknown whether a pollination droplet was present in the earliest seed plants. However, the presence of a pollination droplet in many nonflowering seed plants suggests that its occurrence may be ancestral for at least extant seed

FIGURE 5.9 Pollen grains. A. Zamia sp., a cycad. B. Ginkgo biloba. C. Pinus sp., a conifer.
plant lineages. Note that the ovules of angiosperms lack pollination droplets or pollination chambers, as flowering plants have evolved a different mechanism of pollen grain transfer (see Chapter 6).

OVULE AND SEED DEVELOPMENT

After pollination, the megasporocyte develops within the megasporangium of the ovule (Figures 5.11, 5.13A). The megasporocyte is a single cell that undergoes meiosis, producing a tetrad of four haploid megaspores, which in most extant seed plants are arranged in a straight line, or linearly (Figure 5.11). The three megaspores that are distal (away from the ovule base) abort; only the proximal megaspore (near the ovule base) continues to develop. In the pollination chamber, the resorbed pollen grains (Figures 5.11, 5.13A) develop into mature male gametophytes and form pollen tubes, which grow into the tissue of the megasporangium (Figures 5.11, 5.13B). In gymnosperms these male gametophytes may live in the megasporangial tissue for some time, generally several months to a year.

The functional megaspore greatly expands, accompanied by numerous mitotic divisions, to form the endosporic female gametophyte (Figures 5.11, 5.13B,C). In the seeds of gymnosperms, archegonia differentiate at the apex of the female gametophyte (Figure 5.13C,D). As in the nonseed

FIGURE 5.10 Male gametophyte morphology and development in the nonflowering Spermatophytes; Cycas sp., illustrated. (Reproduced and modified from Swamy, B. G. L. 1948. American Journal of Botany 35: 77–88, by permission.)

FIGURE 5.11 Ovule development in the nonflowering Spermatophytes.
land plants, each archegonium has a large egg cell and a short line of neck cells (plus typically a ventral canal cell or nucleus). Eventually, the male gametophytes release or transport sperm cells (motile or nonmotile) into a cavity between the megasporangium and female gametophyte known as the **archegonial chamber** (Figure 5.11). (Note that the ovules of angiosperms lack archegonia and an archegonial chamber.) Here, the sperm cells either swim to (in cycads and Ginkgo) or are released in close proximity to (in conifers and Gnetales) an archegonium of the female gametophyte. A sperm cell entering the archegonium then fertilizes the egg. A long time (perhaps a year or more) may ensue between pollination, which is delivery of the pollen grains to the ovule, and fertilization, actual union of sperm and egg. **Note:** This is not true for the flowering plants, in which fertilization occurs very soon after pollination (see Chapter 6).

The resulting diploid zygote, once formed, undergoes considerable mitotic divisions and differentiation, eventually maturing into the **embryo**, the immature sporophyte (Figures 5.12, 5.13E). The tissue of the female gametophyte continues to surround the embryo (Figure 5.13E) and serves as nutritive tissue for the embryo upon seed germination (except in the flowering plants; see Chapter 6). The megasporangium (nucellus) eventually degenerates. The integument matures into a peripheral **seed coat**, which may differentiate into various hard and/or fleshy layers.

SEED ADAPTATIONS

The adaptive significance of the seed is unquestioned. First, seeds provide **protection**, mostly by means of the seed coat, from mechanical damage, desiccation, and often predation. Second, seeds function as the **dispersal unit** of sexual reproduction. In many plants the seed has become specially modified for dispersal. For example, a fleshy outer seed coat layer may function to aid in animal dispersal. In fact, in some plants the seeds are eaten by animals, the outer fleshy layer is digested, and the remainder of the seed (including the embryo protected by an inner, hard seed coat layer) passes harmlessly through the gut of the animal, ready to germinate with a built-in supply of fertilizer. In other plants, differentiation of the seed coat into one or more wings functions in seed dispersal by wind. Third, the seed coat may have **dormancy mechanisms** that ensure germination of the seed only under ideal conditions of temperature, sunlight, or moisture. Fourth, upon germination, the **nutritive tissue** surrounding the embryo provides **energy** for the young seedling, aiding in successful establishment.

Interestingly, in seed plants the female gametophyte (which develops within the megaspore) remains attached to and nutritionally dependent upon the sporophyte. This is exactly the reverse condition as is found in the liverworts, hornworts, and mosses (Chapter 3).

EUSTELE

In addition to the seed, an apomorphy for most spermatophytes, including all **extant** spermatophytes (Figure 5.1), is the **eustele** (Figure 5.14). A eustele is a primary stem vasculature (primary meaning prior to any secondary growth) that consists of a single ring of discrete vascular bundles. Each vascular bundle contains an internal strand of xylem...
CHAPTER 5 EVOLUTION AND DIVERSITY OF WOODY AND SEED PLANTS

Figure 5.13 Ovule and seed development, illustrated by Pinus sp. A. Young ovule, longitudinal section, at time of pollination. Pollen grains are pulled into micropyle by resorption of pollination droplet. Meiosis of the megasporocyte has yet to occur. B. Postpollination, showing development of the female gametophyte and haustorial pollen tube growth of the male gametophytes within tissue of megasporangium (nucellus). C. Mature ovule, showing two functional archegonia within female gametophyte. D. Close-up of archegonia, each containing a large egg cell with a surrounding layer of sterile cells and apical neck. E. Seed longitudinal section, seed coat removed, showing embryo and surrounding nutritive layer of female gametophytic tissue.
and an external strand of phloem that are radially oriented, i.e., positioned along a radius (Figure 5.14).

The protoxylem of the vascular bundles of a eustele is endarch in position, i.e., toward the center of the stem. This is distinct from the exarch protoxylem of the lycophytes and the mesarch protoxylem of the monilophytes (Chapter 4).

DIVERSITY OF WOODY AND SEED PLANTS

ARCHEOPTERIS

A well-known lignophyte that lacked seeds was the fossil plant Archeopteris (not to be confused with the very famous fossil, reptilian bird Archeopteryx). Archeopteris was a large tree, with wood like a conifer but leaves like a fern (Figure 5.15A,B). Sporangia, producing spores, were born on fertile branch systems. Some species of Archeopteris were heterosporous.

“PTERIDOSPERMS” — “SEED FERNS”

The pteridosperms, or seed ferns, are almost certainly a nonnatural, paraphyletic group of fossil plants that had fernlike foliage, yet bore seeds. Medullosa is a well-known example of a seed fern (Figure 5.15C E). As in many fossil plants, different organs of Medullosa are placed in separate form genera. For example, the fernlike leaves of Medullosa are in the form genera Alethopteris and Neuropteris. Dolerotheca, which had huge pollen grains, refers to the pollen-bearing organs of Medullosa, and seeds of Medullosa are placed in the genus Pachytesta.

The relationships of various pteridosperms to extant seed plants are unclear. Some are basal to the extant seed plants; others may be more closely related to the gymnosperms and others to the angiosperms (Figure 5.1).

GYMNOSPERMS

The extant, nonangiospermous seed plants are included within a group known as the Gymnospermae, or gymnosperms (after gymnos, naked + sperm, seed). In the past decade or so, based on morphological and limited molecular studies, the gymnosperms were largely accepted to be an unnatural, paraphyletic taxon, grouped together based more on what they lacked (flowers) than on any definitive apomorphy. In addition, the Gnetales (discussed later) were considered to be the closest living relative of the angiosperms, together comprising a group termed the Anthophytes. However, these results were never viewed as particularly robust.

Very recently, more intensive cladistic analyses using multiple gene sequences have provided quite strong evidence that the gymnosperms are in fact a monophyletic group and are sister to the angiosperms (Figure 5.1). Relationships within the gymnosperms are somewhat unclear, but many results show the cycads (or Cycadophyta) as the most basal lineage, followed by the Ginkgo group (Ginkgophyta), then the conifers (Coniferophyta). Interestingly, the Gnetales are most frequently placed within the conifers (often as the sister group to
the Pinaceae. Thus, the Anthophytes are no longer recognized as a natural group.

Cycadophyta—Cycads. The Cycadophyta, or cycads, are a relatively ancient group of plants that were once much more common than today and served as fodder for plant-eating nonavian dinosaurs. Extant cycads are now fairly restricted in distribution, consisting of approximately 185 species in 11 or so genera. Cycads are found in southeastern North America, Mexico, Central America, some Caribbean islands, South America, eastern and southeastern Asia, Australia, and parts of Africa. Many cycads throughout the world are of economic importance in being used as a source of food starch (sometimes termed *sago*), typically collected from the apex of the trunk just prior to a flush of leaves or reproductive structures. Some cycads, especially *Cycas revoluta*, the *sago palm*, are planted horticulturally.

Cycads are an apparently monophyletic lineage consisting of plants with a mostly short, erect stem or trunk, rarely tall and palmlike (as in the misnamed genus *Microcycas*). The trunk bears spirally arranged, mostly pinnately compound leaves (Figure 5.16A,C,E). Only the genus *Bowenia* of Australia has bipinnately compound leaves (Figure 5.16B). The trunk of cycads does not usually exhibit lateral (axillary) branching; thus, the loss of axillary branching on the aerial trunk may be an apomorphy for the cycads (Figure 5.1). Interestingly, the leaves of cycads have *circinate vernation* (Figure 5.17B) as in ferns, perhaps a primitive retention that was lost in other seed plants. Reproductively, all cycad individuals are either male or female; this plant sex is termed *dioecious* (see Chapter 9).

The classification of cycads varies, but recent evidence suggests they are best grouped as two families: Cycadaceae and Zamiaceae. The Cycadaceae, which consists solely of the genus *Cycas*, is distinguished by not forming female cones. In species of *Cycas*, seeds are produced on the lower margins of numerous *female sporophylls* (also called megasporophylls) that are congregated at the trunk apex in dense masses (Figure 5.17E,G). *Cycas* species do have male cones (Figure 5.17A,C), which are found in all cycads (see later discussion).

The family Zamiaceae differs from the Cycadaceae in having both male and female *cones*, also called *strobili*. Recall that cones are determinate shoot systems, consisting of a single axis that bears sporophylls, modified leaves with attached sporangia. Male cones (Figures 5.17A,B, 5.18A,B,G) have *male sporophylls* (also called microsporophylls), each of which bears numerous male sporangia (Figure 5.17D). The male sporangia, also called *microsporangia*, produce haploid microspores that develop into pollen grains. Female cones (Figures 5.16C,E, 5.18C,D,F,G) have *female sporophylls* (also called megasporophylls), each of which bears two seeds (Figure 5.18E,H,I).

Interestingly, the pollen of all cycads release motile sperm cells (Figure 5.10) into the ovule of a female cone, a vestige of an ancestrally aquatic condition.
GINKGOPHYTA—GINKGO. The Ginkgophyta, or ginkgophytes, have an extensive fossil record but contain only one extant species, *Ginkgo biloba*. This species is native only to certain remote regions of China but has now been planted worldwide as a popular street tree. *Ginkgo biloba*, unlike the cycads (and similar to conifers, discussed next), is a highly branched, woody tree. It can be recognized by the fact that it has short shoots in addition to long shoots, and by the distinctive obtriangular (fan-shaped), often two-lobed leaves with dichotomous venation (Figure 5.19A–C). *Ginkgo*, like the cycads, is dioecious and has ancestrally motile sperm.

Male *Ginkgo* trees bear reproductive structures that are called cones but that do not bear structures that resemble sporophylls. These male cones consist of a central axis with lateral stalks (Figure 5.19D–E), each of which bears two microsporangia (Figure 5.19F,G). The microsporangia dehisce longitudinally, releasing pollen grains. Female *Ginkgo* trees do not bear cones. The female reproductive structures each consist of an axis having two terminal ovules (Figure 5.19H,I).

CONIFEROPHYTA—CONIFERS. The Coniferophyta, or conifers, are another ancient group of land plants that were...
once dominant in most plant communities worldwide. Today, they have largely been replaced by angiosperms, but still constitute the dominant species in various coniferous forests.

Conifers comprise a monophyletic group of highly branched trees or shrubs with simple leaves, the latter a possible apomorphy for the group. Leaves of conifers are linear, acicular (needle-like), or subulate (awl-shaped; see Chapter 9). In some conifers the leaves are clustered into short shoots, in which adjacent internodes are very short in length. An extreme of this is the fascicle, e.g., in species of Pinus, the pines.

A fascicle is a specialized short shoot consisting of stem tissue, one or more needle-shaped leaves, and persistent basal bud scales (Figure 5.20A,B; Chapter 9).

A second, apparent apomorphy of the conifers, including the Gnetales (discussed next), is the loss of sperm cell motility (Figure 5.1). This distinguishes the conifers from the other gymnosperms, which have flagellated sperm cells. Conifers, like all extant seed plants, are siphonogamous, i.e., the male gametophytes develop pollen tubes. As in cycads and Ginkgo, these pollen tubes are haustorial, consuming the tissues of the nucellus (megasporangial tissue) for a year or so after pollination. One difference, however, (likely correlated with

FIGURE 5.19 Ginkgo biloba. **A, B.** Vegetative growth. Note fan-shaped leaves, clustered into short shoots. **C.** Leaf close-up, showing dichotomous venation. **D.** Male tree bearing male cones. **E.** Male cone. **F, G.** Close-up of male sporangia, born in pairs on stalk arising from central axis of male cone. **H.** Female plant bearing stalk with pair of ovules. **I.** Close-up of ovule pair. Note pollination droplet from micropyle.
Figure 5.20 Conifers. A–G. *Pinus* spp. A. Shoot with young fascicles. B. Branch, showing scale leaves and fascicles. C. Apex of branch with fascicles and male cones. D. Male cones, close-up. E. Male sporophylls of male cones, each with two male sporangia. F. Male strobilus, longitudinal section, showing microsporangia and subtending microsporophylls. G. Close-up of microsporangium, full of mature pollen grains.
sperm nonmotility) is that the male gametophyte of conifers delivers the sperm cells more directly to the egg by the growth of the pollen tube into the archegonial chamber, where it makes contact with the female gametophyte at or near the archegonia. The nonswimming sperm cells are then released from the pollen tube, make contact with the archegonial egg cell, and fertilize the egg nucleus. Because there is more than one archegonium per seed, multiple fertilization events may occur, resulting in multiple young embryos, but usually only one survives in the mature seed.

Reproductively, conifers produce male cones and female cones, either on the same individual (monoecy) or, less commonly, on different individuals (dioecy). As with all vascular plants, cones consist of an axis that bears sporophylls. As in cycads, male strobili (Figure 5.20C,D) have male sporophylls (microsporophylls; Figure 5.20E,F). These male sporophylls bear the male sporangia (microsporangia) that produce pollen grains (Figure 5.20E G). The pollen grains of conifers are interesting in mostly being bi-saccate, in which two bladders develop from the pollen grain wall (Figure 5.9C). These saccate structures, like air bladders, may function to transport the pollen more efficiently by wind. They may also function as flotation devices, to aid in the capture and transport of pollen grains by a pollination droplet formed in the nonflowering seed plants.

Female cones of most conifers are different from those of other seed plants. Conifer female cones are a compound structure. They consist of an axis that bears modified leaves called bracts, each of which subtends the seed-bearing structure, called an ovuliferous scale (Figure 5.21). The ovuliferous scale is actually a modified lateral branch system. The evidence for this is the inverted vasculature orientation and fossil intermediates between extant conifers and fossil conifers plus another fossil group called the Cordaitales. In most conifer female cones, the ovuliferous scales are much bigger than the small bracts (Figure 5.21D F). In a few conifers, e.g., Pseudotsuga, or Douglas-fir, the bracts are elongated and can be seen on the outside of the ovuliferous scales (Figure 5.21G). The female cones of most conifers have two seeds on the upper surface of each ovuliferous scale (Figure 5.21H). Mature seeds are typically winged (Figure 5.21H,I), an adaptation for seed dispersal by wind.

Important families of conifers include the Araucariaceae (e.g., buya bunya, monkey puzzle, and Norfolk Island-pine, Figure 5.22A); Cupressaceae, or cypress family (e.g., cypress, junipers, incense cedar, balsam cypress, redwood, and giant sequoia, inclusive of the Taxodiaceae; Figure 5.22B G); Podocarpaceae (including the yew pine; Figure 5.22H); Taxaceae (yews; Figure 5.22I,J); and Pinaceae, or Pine family (including cedars, pines, spruces, firs, Douglas-fir, larches, and hemlock; Figures 5.20, 5.21, 5.22K,L).

GNETALES. The Gnetales, also referred to as the Gnetopsida or sometimes Gnetophyta, are an interesting group containing three extant families: Ephedraceae (consisting of Ephedra, with about 65 species), Gnetaceae (consisting of Gnetum, with 28 species, plus the monotypic genus Vinkilla), and Welwitschiaceae (consisting of the sole species Welwitschia mirabilis). The Gnetales has often been thought to be the sister group to the angiosperms, the two groups united by some obscure features, possibly including whorled, somewhat perianth-like microsporophylls in structures that may resemble flowers (see Chapter 6). However, as reviewed earlier, recent molecular studies have placed the Gnetales within the conifers (Figure 5.1).

The Gnetales are united by (among other things) the occurrence of (1) striate pollen (Figure 5.23A); and (2) vessels with porose (porelike) perforation plates (Figure 5.23B), as opposed to scalariform (barlike) perforation plates in basal angiosperms (see Chapter 6). The vessels of Gnetales were derived independently from those of angiosperms. The reproductive structures in various Gnetales show some parallels to the flowers of angiosperms.

Ephedra of the Ephedraceae is a rather common desert shrub (Figure 5.24A C) and can be recognized by the photosynthetic, striate stems and the very reduced scale-like leaves, only two or three per node. Male or female cones may be found in the axils of the leaves (Figure 5.24B,C). The Gnetaceae are tropical vines (rarely trees or shrubs) with opposite (decussate), simple leaves (Figure 5.24D), looking for all the world like an angiosperm but, of course, lacking true flowers. *Welwitschia mirabilis* of the Welwitschiaceae is a strange plant native to deserts of Namibia in southwestern Africa. An underground caudex bears only two leaves (Figure 5.24E,F), these becoming quite long and lacerated in old individuals. Male and female cones are born on axes arising from the apex of the caudex (Figure 5.24G J).

Recently, the occurrence of a type of double fertilization was verified in species of the Gnetales. Double fertilization in *Ephedra* entails the fusion of each of two sperm cells from a male gametophyte with nuclei in the archegonium of the female gametophyte. One sperm fuses with the egg nucleus and the other fuses with the ventral canal nucleus. In fact, the fusion product of sperm and ventral canal cell may even divide a few times mitotically, resembling angiospermous endosperm (Chapter 6), but this does not persist. Thus, double fertilization, which has long been viewed as a defining characteristic of the angiosperms alone, was recently interpreted as a possible apomorphy of the Gnetales and angiosperms together (the Anthophytes). This notion is rejected with the current acceptance of seed plant relationships as seen in Figure 5.1, in which the Gnetales are nested within the conifers. Thus, double fertilization in the Gnetales and angiosperms presumably evolved independently.
Figure 5.21 Conifers. A–F. *Pinus* spp. A. Young female cone, at time of pollination. B. Close-up, showing ovuliferous scales and bracts. Note pollen grains. C. One-year-old female cone. D. *Pinus coulteri*, coulter pine, mature female cone (most massive of any species). E. Female pine cones, right in section. F. Close-up of longitudinal section, showing bract and ovuliferous scale. G. *Pseudotsuga* sp. (Douglas- r) female cone. Note elongate bracts and wide ovuliferous scales. H. Immature ovuliferous scale, top view, showing two winged seeds. I. *Pinus*, mature winged seed.
Figure 5.22 Conifer diversity.
B–G. Cupressaceae.
B. *Cupressus macrocarpa*, Monterrey cypress.
C. *Cupressus sempervirens*, with female cones.
D. *Juniperus californica*, California juniper, bearing eshy female cones.
E. *Sequoia sempervirens*, redwood, with attened branch system having linear leaves.
F. *Sequoiadendron giganteum*, giant sequoia, branches with awl-like leaves.
G. *Taxodium distichum*, bald cypress, with leaf-like branches and female cones.
I. Branch with bearing male cones.
J. Branch with female cone of single seed surrounded by red, eshy aril.
K–L. Pinaceae.
K. *Abies magnifica*, female cone.
L. *Cedrus* sp., cedar, with female cones.
Figure 5.23 Gnetales apomorphies, illustrated by *Ephedra*. A. Striate pollen grains, face view below, cross-section above. B. Vessels with porose perforation plates. (B reproduced from Esau, K. 1965. Plant Anatomy. J. Wiley and Sons, New York, by permission.)

(Continued)
REVIEW QUESTIONS

WOODY PLANT APOMORPHIES
1. What are the major evolutionary novelties for the lignophytes?
2. Describe how a cambium undergoes secondary growth.
3. What are the products of secondary growth of the vascular cambium? the cork cambium?

SEED PLANT APOMORPHIES
4. Define seed and ovule.
5. Including heterospory, name and describe the steps that were involved in the evolution of the seed.
6. What is the definition of a pollen grain? From what does it develop?
7. What is a pollen tube and how does it function?
8. Define and state the significance of the pollination droplet.
9. Review the stages of ovule and seed development, and describe how a lag period can occur between pollination and fertilization.
10. Name four ways that seeds are adaptive.
11. Name and describe the stem stelar type that is an apomorphy for all extant seed plants.

SEED PLANT DIVERSITY
12. What were the basic features of *Archeopteris*?
13. What is a pteridosperm (seed fern)? Name a genus of the seed ferns.
14. What group of seed plants is characterized by generally short trunks, pinnate, coriaceous leaves (with circinate vernation) and dioecy, bearing either male or female cones?

15. What are the conifers and what are some families of conifers?

16. What is the definition of a cone (strobilus)? What are the parts of a female cone? a male cone?

17. What group/species is a tree having short shoots and obtriangular leaves with dichotomous venation?

18. What is the name of the structure in a pine cone that directly bears the ovules/seeds? What was it derived from? What subtends this structure?

19. What is a pine fascicle?

20. What is the morphology of a conifer pollen grain? What is the possible function of this morphology?

21. Name two apomorphies for the Gnetales.

22. Name the three families and four genera of the Gnetales. What do they look like and were do they occur?

EXERCISES

1. Peruse the most recent literature on phylogenetic relationships of the seed plants. Are there any differences relative to Figure 5.1?

2. Peruse botanical journals and find a systematic article on a conifer, ginkgo, a Gnetales, or a cycad. What is the objective of the article and what techniques were used to address it?

3. Collect and identify several local conifers. What diagnostic features are used to distinguish between species?

REFERENCES FOR FURTHER STUDY

Samigullin, Tagir Kh., William F. Martin, Aleksey V. Troitsky, Andrey S. Antonov. 1999. Molecular data from the chloroplast rpoC1 gene suggest a deep and distinct dichotomy of contemporary spermatophytes into two monophyla: gymnosperms (including Gnetales) and angiosperms. Journal of Molecular Evolution 49: 310 315.
The flowering plants, or angiosperms (also called Angiospermae, Magnoliophyta, or Anthophyta), are a monophyletic group currently thought to be the sister group to the gymnosperms (Chapter 5). Angiosperms are by far the most numerous, diverse, and successful extant plant group, containing well over 95% of all land plant species alive today. Flowering plants grow in virtually every habitable region and are dominant in some aquatic and most terrestrial ecosystems, the notable exception to the latter being coniferous forests. Angiosperms comprise the great bulk of our economically important plants, including our most valuable food crops (Chapter 1).

Several apomorphies distinguish the angiosperms from all other land plants (Figure 6.1): (1) the flower, usually with an associated perianth; (2) stamens with two lateral thecae, each composed of two microsporangia; (3) a reduced, 3-nucleate male gametophyte; (4) carpels and fruit formation; (5) ovules with two integuments; (6) a reduced, 8-nucleate female gametophyte; (7) endosperm formation; and (8) sieve tube members. Some of these apomorphic features, which represent the product of a unique evolutionary event, have become further modified in particular lineages of angiosperms (see Chapters 7, 8).

Figure 6.1 shows a simplified cladogram of the major groups of angiosperms. The diversity and classification of these groups are discussed in Chapter 7 (Amborellales, Nymphaeales, Austrobaileyales, Magnoliids, Ceratophyllales, and Monocots) and Chapter 8 (Eudicots). The following is a review of flowering plant apomorphies and general evolutionary history.

ANGIOSPERM APOMORPHIES

FLOWER

Perhaps the most obvious distinguishing feature of angiosperms is the flower (Figure 6.2; see Chapter 9 for detailed terminology of flower parts). A flower can be defined as a modified, determinate shoot system bearing one or more stamens, collectively called the androecium, and/or one or more carpels (making up one or more pistils), collectively called the gynoecium (see later discussion). Most angiosperm flowers are bisexual (perfect), containing both stamens and carpels, but some are unisexual (imperfect), having only stamens or carpels. In addition, most (but not all) flowers have a perianth, consisting of modified leaves at the base of the shoot system.

The perianth of a flower both protects the other floral parts during oral development and functions as an attractant for pollination (see later discussion and Chapter 13). Most flowers have a perianth of two discrete whorls or series of parts: an outer calyx and an inner corolla (Figure 6.3A). The calyx is generally green and photosynthetic, composed of leaf-like sepals or (if these are fused) of calyx lobes. The corolla is typically colorful, showy, and odoriferous and is composed...
of individual petals or (if these are fused) of corolla lobes. However, in some flowering plants, there are two whorls of parts, but the outer and inner whorl of perianth parts are not otherwise differentiated, resembling one another in color and texture. The term tepal is often used for such similar perianth parts, and one may refer to outer tepals and inner tepals for the two whorls (Figure 6.3B). More rarely, the perianth may consist of a single whorl (this usually called the calyx, by tradition) or of three or more discrete whorls (see Chapter 9). Finally, the perianth of some flowers consists of spirally arranged units that grade from sepal-like structures on the outside to petal-like structures on the inside, but with no clear point of differentiation between them; in this case, the units may be termed tepals, perianth parts, or perianth segments (Figure 6.3C).

The components of a flower develop in a manner very similar to leaves. In early floral development actively dividing regions of cells grow, forming bumpylike mounds of tissue, the primordia. Typically, the primordia develop in whorls from outside to inside, in sequence as sepal (or outer tepal) primordia first, petal (or inner tepal) primordia second, stamen primordia third (often in two or more whorls), and carpel primordia last (Figure 6.4A–C). Each primordium typically becomes innervated by one or more vascular bundles (veins); primordia may also transform into a flattened, or dorsiventral (having a dorsal and ventral side) shape, resembling leaves. Fusion of floral parts may occur after they form, termed postgenital fusion. Alternatively, floral parts may appear to be fused at maturity but may actually develop as a single structure. For example, the basal tube of a corolla in which the petals are fused (known as a sympetalous corolla; see Chapter 9) may form by vertical expansion of a ring of actively dividing tissue that develops beneath discrete primordia; only the upper corolla lobes may develop from discrete primordia. Overall, the resemblance of floral organs to leaves in terms of initiating like leaf primordia of a vegetative shoot, being innervated by veins, and often having a dorsiventral shape is why these or gans sepal, petals, stamens, and carpels are thought to be homologous to leaves (Chapter 2).

Ongoing studies of the molecular basis of development in plants, especially those using the species Arabidopsis thaliana (termed the Drosophila of the plant world), have helped to elucidate the genetic basis of oral development and the nature of these presumed homologies. Research in this field is summarized in the ABC model of oral development, in which gene products of the so-called A, B, and C classes combine to produce the four major oral organs: sepals, petals, stamens, and carpels (Figure 6.5). In this model, sepals are expressed by A activity alone; petals by a combination of A and B activities, stamens by a combination of B and C activities, and carpels by C activity alone (Figure 6.5).
In addition, genes of the so-called SEPALLATA class are needed in combination with those of the A, B, and C classes to effect proper oral organ identity (Figure 6.5). All of these oral organ identity genes work by producing transcription factors in the proper location of the flower, i.e., in the outermost, second, third, and innermost oral whorls. The transcription factors induce the expression of other genes that bring about the development of the four oral organs. Developmental studies like these, in a wide range of species, will help to understand both the molecular basis of homology and the mechanisms of evolution that have given rise to the rich diversity of oral forms.

The flower, with its typically showy and often scented perianth, evidently evolved in response to selective pressure for the transfer of pollen by animals. Animal pollination appears to be the primitive condition in the angiosperms, separating them from the predominantly wind-pollinated gymnosperms (Chapter 5). Numerous, intricate pollination mechanisms have evolved in various angiosperm lineages. These pollination mechanisms have largely driven the evolution of innumerable...
oral forms, accounting in large part for the distinctiveness of many angiosperm families (see Chapter 13 for oral syndromes related to pollination biology). Animal pollinators may include bees (Figure 6.6A), butterflies and moths (Figure 6.6B), flies (Figure 6.6C), bats (Figure 6.6D,E), and birds (Figure 6.6F). However, flowers of many groups are quite reduced in size or structural complexity, often lacking a perianth altogether; these may be water pollinated (Figure 6.6G) or wind pollinated (Figure 6.6H).

STAMENS
A distinctive apomorphy for the angiosperms is the stamen, the male reproductive organ of a flower. Stamens are interpreted as modified microsporophylls, modified leaves that bear microsporangia (see Chapter 5). Microsporangia produce microspores, which develop into pollen grains (Chapter 5; see later discussion). Some stamens have a laminar (leaf-like) structure, to which the anther is attached or embedded (Figure 6.7A). However, the stamens of most flowering plants have two parts: a stalk, known as a lament, and the pollen bearing part, known as the anther (Figure 6.7B). Some stamens lack a lament (or lamina), in which case the anther is sessile, directly attached to the rest of the flower.

The angiosperm anther is a type of synangium, a fusion product of sporangia. Anthers are unique in (ancestrally) containing two pairs of microsporangia arranged in a bilateral symmetry (i.e., having two mirror image halves). Each pair of microsporangia is typically located within a discrete half of the anther called a theca (plural, thecae; Figure 6.7C). Thus, such an anther consists of two thecae (termed bithecal), each theca having two microsporangia for a total of four (termed tetrasporangiate; Figure 6.7D). At maturity, the two microsporangia of a theca typically coalesce into a single, contiguous chamber, called the anther locule; each theca then opens to the outside by a specific dehiscence mechanism, releasing the pollen (Figure 6.7E). (Note that anthers of some angiosperms are secondarily reduced to a single theca, known as monothecal or bisporangiate, a distinctive systematic character; see Chapters 7–9.)

The adaptive value of the stamens of angiosperms over the microsporophylls of gymnosperms is likely connected with selective pressures for the flower itself. Stamens are generally smaller and lighter than gymnosperm microsporophylls, and stamens generally occur in bisexual flowers, rather than in more massive, unisexual cones. Modifications of the stamen

Figure 6.4 Flower development. A. Early development of sepal/outer tepal (se/ot) primordia and petal/inner tepal (pe/it) primordia. B. Later formation of stamen (st) primordia. C. More mature stamens and early initiation of carpel (c) primordia.

Figure 6.5 The ABC model of floral development. Within each gene class are specific genes (AP1, AP2, AP3, AG, PI, SEP1, SEP2, SEP3), identified in mutant forms in Arabidopsis thaliana. (Diagram after Jack, 2001.)
have enabled the evolution of specialized pollination mechanisms, such as those involving stamens of the proper length or orientation to transfer pollen to a specific pollinator, flower heteromorphism (associated with stamens at different levels in the flower relative to differing style/stigma lengths), trigger devices, and very modified stamens such as pollinia (see Chapters 12 and 13 for more details).

REduced Male GAmetophyte
Another apomorphy for the angiosperms is a reduced, three-celled male gametophyte (Figure 6.8). No other plant group has a male gametophyte so reduced in cell number. After each microspore is formed by meiosis within the microsporangium, its single nucleus divides mitotically to form two cells: a tube cell and a generative cell (Figure 6.8A,B). When this happens, the microspore is transformed to an immature, endosporic male gametophyte or pollen grain (Chapter 5). The generative cell divides one time, producing two sperm cells (Figure 6.8A). Pollen grains are shed in either a two- or three-celled condition, depending on whether the generative cell division occurs before or after the pollen grains are released. If pollen is released as two-celled, then the generative cell divides within the pollen tube as it travels down the style (Figure 6.8A). Whether pollen grains are 2- or 3-nucleate at release can be an important taxonomic character (Chapter 11).

The pollen grains of angiosperms, like those of gymnosperms, germinate during development, meaning that an elongate pollen tube grows out of the pollen grain wall, a condition known as siphonogamy (Figure 6.8A,C,D). In gymnosperms the pollen tube develops after the pollen grains enter the micropyle of the ovule and functions as a haustorial device (feeding from the tissues of the nucellus) for a long period of time (see Chapter 5). In contrast, the pollen tube of angiosperms forms immediately after transfer of pollen to the stigma. The pollen tube of angiosperms elongates through (and feeds upon) the tissues of the stigma and style of the carpel and soon reaches the ovule, where it penetrates the micropyle and transports the two sperm cells directly to the female gametophyte (see later discussion). The sperm cells of angiosperms lack flagella or cilia and are thus nonmotile, a derived condition among the land plants. The loss of motility may be a function of the direct transport of the sperm cells to the micropyle of the ovule. The only other land plants with nonmotile sperm cells are the gymnospermous conifers (including the Gnetales), which lost sperm motility independently of flowering plants.

The adaptive significance of the reduced male gametophytes of angiosperms is probably correlated with the evolution of a reduced female gametophyte and relatively rapid seed development (discussed later). In gymnosperms fertilization of sperm and egg occurs long after pollination, sometimes as long as a year; the male gametophytes must persist during this long period, feeding off the tissues of the nucellus. In angiosperms, however, fertilization occurs very soon

FIGURE 6.7 Stamen morphology. A. Laminar stamen, *Nymphaea*. B,C. Filamentous stamen, *Aloe*. Note anther composed of two thecae, each with two microsporangia. D. Young anther in cross-section, showing four microsporangia. E. Cross-section of older anther at time of dehiscence. Note that walls between adjacent microsporangia of each theca have broken down. Dehiscence line indicated by arrows.
after pollination. Thus, angiospermous male gametophytes are lean, apparently requiring a minimum number of cells and nuclei; they function to deliver sperm cells to the female gametophyte and effect fertilization very rapidly compared with gymnosperms.

CARPEL

A major apomorphy of angiosperms is the **carpel**. According to the most widely accepted hypothesis, the carpel constitutes a modified, conduplicate megasporophyll bearing two, adaxial rows of ovules (Figure 6.9D). (Recall that a megasporophyll is a modified leaf that bears megasporangia, which in the seed plants are components of the ovules and seeds; see Chapter 5. Conduplicate means inwardly folded longitudinally and along the central margin; see Chapter 9.) This megasporophyll is modified in that the margins by virtue of the conduplicate folding come together and fuse (Figures 6.9A–D, 6.10A), with certain parts differentiating into tissue for pollen reception and pollen tube growth, typically forming an apical stigma and style (Figure 6.9D).

At maturity the carpel body completely encloses the ovules and seeds, accounting for the name angiosperm (Gr. angio, vessel + sperm, seed).

The sporophyll-like nature of the carpel is evident in that (1) it may develop like a leaf, having an initially flattened, dorsiventral shape, with an adaxial (toward the top-center of the flower) and abaxial (away from the top-center of the flower) surface; and (2) it has veins, typically one in the middle termed the **dorsal** (median) vein or bundle, corresponding to the midvein of a leaf, and two others near the two carpel margins termed the **ventral** (lateral or placental) veins/bundles (Figures 6.9D, 6.10A). Additional veins often occur between the dorsal and ventral bundles (e.g., Figure 6.10B), and veins will sometimes fuse together. The veins of a carpel are
typically collateral (see Chapter 10), with xylem on the adaxial side and phloem on the abaxial side. The ventral veins become inverted in orientation after carpel formation, with the xylem and phloem disposed 180° from their original orientation, i.e., prior to conduplicate folding (Figure 6.9D).

The carpels of some angiosperm taxa show no evidence of a conduplicate, leaf-like nature during development. It is generally accepted that these have become secondarily modified or specialized, particularly in compound pistils (see later discussion). One type, known as an **ascidiate** carpel, develops from a ring of tissue that grows upward, sometimes assuming a somewhat peltate form. However, taxa that lack a conduplicate carpel development usually still have inverted ventral veins, evidence of the ancestral condition.

A given flower can have one to many carpels. If two or more carpels are present, they may be separate from one
another (distinct), termed **apocarpous**, or fused together (connate), termed **syncarpous**. Because of the frequent fusion of carpels, additional terms are useful in describing the female parts of a flower. The term **gynoecium** is the totality of female reproductive structures in a flower, regardless of their structure. Thus, a carpel may be alternatively defined as a unit of the gynoecium. The gynoecium is composed of one or more **pistils**. Each pistil consists of a basal **ovary**, an apical **style** (or styles), which may be absent, and one or more **stigmas**, the tissue receptive to pollen grains (Figure 6.9D). A pistil may be equivalent to one carpel (in which case, it may be termed a **simple pistil**) or composed of two or more, fused carpels (termed a **compound pistil**; Figures 6.9E, 6.10B). (The position of one or more ovules and the fusion of one or more carpels determine various placentation types; see Chapter 9 for complete terminology.)

The evolution of the carpel had considerable adaptive significance. First, because carpels are the receivers of pollen, they may function to selectively control fertilization. The transfer of pollen to the carpels is followed by germination of the pollen grain to form a pollen tube, which grows through the tissue of the stigma and style to the micropyle of the ovule. However, chemicals that are present in the stigma and style may inhibit either pollen germination or pollen tube growth; this is known as an **incompatibility reaction**, mediated by incompatibility genes (see Chapter 13). This type of chemical incompatibility often occurs between the pollen and stigmatic regions of different species. However, it may also occur between individuals of the same species, notably between individuals that are genetically similar and possess the same incompatibility alleles. Thus, incompatibility reactions may inhibit inbreeding, allowing for reproduction only between genetically dissimilar individuals of the species (i.e., promoting out-crossing; see Chapter 13 for more details). Thus, the carpel may ultimately provide some selective control as to which pollen grains contribute the sperm cells that fertilize the egg.

A second major adaptive function of the carpel pertains to fruit formation and seed dispersal. A **fruit** is the mature ovary or ovaries (made up of one or more carpels) plus any accessory tissue that might be present (see Chapter 9). Fruits generally do not mature from ovaries if fertilization of the seed(s) does not occur. The mature ovary wall, termed the **pericarp**, may be highly modified. These modifications generally function in a tremendous variety of dispersal mechanisms (Chapter 9). In general, if the pericarp is eshy, fruits are dispersed by animals. In these eshy, animal-dispersed fruits, the seeds are transported either by passing through the gut of the animal unharmed (with only the pericarp being digested) or by being spilled during a sloppy eating session. Dry fruits may also be dispersed by animals, but typically via external barbs or prickles that catch on skin, fur, or feathers. Last, fruits may be dispersed by wind (aided by the development of wings or trichomes), water (via various flotation devices), or mechanically (by various explosive, hygroscopic, or catapulting methods).

FIGURE 6.10
A. Ovary cross-section of a taxon with a single carpel per flower (unicarpellate gynoecium). Note outline of carpel boundary (dashed line). Inset diagram: note orientation of xylem (black) and phloem (white) of veins.
B. Ovary cross-section of a taxon with a 3-carpellate, syncarpous pistil (carpels outlined by dashed lines), showing dorsal and ventral veins. (Note: vascular bundle outside dorsal vein supplies perianth and stamens, this ovary being inferior.)
TWO INTEGUMENTS
A unique apomorphy of angiosperms is the growth of **two integuments** during ovule development, the ovules known as **bitegmic** (Figure 6.11). All non-overing seed plants have ovules with a single integument, termed **unitegmic**. The two integuments of angiosperm ovules usually completely surround the nucellus, forming a small pore at the distal end; this opening, the **micropyle**, is the site of pollen tube entrance. Both of the integuments of angiosperm ovules contribute to the seed coat. The two integuments typically coalesce during seed coat development, but may form anatomically different layers.

The possible adaptive significance of two integuments, if any, is not clear, but may have enabled the evolution of specialized seed coat layers, although differential seed coat layers are found in several gymnosperm taxa as well. Interestingly, several angiosperm lineages have secondarily lost an integument, and are thus unitegmic. Notable unitegmic groups are many Poales of the Monocots (Chapter 7) and most of the Asterids of the Eudicots (Chapter 8).

REDUCED FEMALE GAMETOPHYTE
Several novelties of the angiosperms have to do with the evolution of a specialized type of ovule and seed. A major apomorphy of angiosperms is a **reduced 8-nucleate female gametophyte**. As in other seed plants, a single megasporocyte within the megasporangium (nucellus) divides meiotically to form four haploid megaspores (Figure 6.12). The female gametophyte typically generates from only one of these megaspores (Figure 6.12), with a few exceptions in which others may contribute (see Chapter 11). Typically, the megaspore divides in a sequence of three mitotic divisions, resulting in a total of eight haploid nuclei. Further differentiation usually results in an arrangement of these eight nuclei into seven cells (Figures 6.12, 6.14A). In the micropylar region three cells develop: an **egg cell** anked by two **synergid cells**. Egg plus synergids is sometimes called the **egg apparatus**. In the **chalazal** region, which is opposite the micropyle, three **antipodal cells** form. The remaining volume of the female gametophyte is technically a single cell, called the **central cell**, which contains two **polar nuclei**. Archegonia do not form within the female gametophyte of angiosperms as they do in virtually all other seed plants. The female gametophyte in various angiospermous taxa may become further modified from the ancestral type described here by variations in cells divisions, nuclear fusions, and cell formations (see Chapter 11). (Note: The female gametophyte of angiosperms is often called an **embryo sac**; this terminology, although often used, is to be avoided, as it fails to denote the homology with the female gametophyte of other seed plants.)

The significance of a reduced female gametophyte in overing plants is likely correlated with developmental timing. Fertilization in angiosperms occurs very shortly after pollination, unlike that of the gymnosperms, in which a long period of time may ensue between the two events. Thus, angiosperms have the capacity to more quickly generate seeds. This feature may be of tremendous adaptive value, enabling, for example, the evolution of rapidly spreading annual herbs.

ENDOSPERM FORMATION
Another major apomorphy of the angiosperms is the presence of **endosperm**. Endosperm is the product of **double fertilization**. When the pollen tube enters the micropyle of the ovule,
it penetrates one of the synergid cells and releases the two sperm cells into the central cell of the female gametophyte (Figure 6.13). One sperm cell migrates toward and fuses with the egg cell to produce a diploid zygote. As in other land plants, the zygote matures into an embryo, with structures similar to those in other seed plants (Figure 6.13). The other sperm cell fuses with the two polar nuclei to produce a triploid, or 3n, endosperm cell. This endosperm cell then repeatedly divides by mitosis, eventually forming the endosperm, a mass of tissue that generally envelopes the embryo of the seed (Figures 6.13, 6.14B,C). Endosperm replaces the female gametophyte as the primary nutritive tissue for the embryo in virtually all angiosperms, containing cells rich in carbohydrates, oil, or protein.

The adaptive significance of endosperm is, like that of the reduced female gametophyte, possibly correlated with developmental timing. The endospermous nutritive tissue of angiosperms does not begin to develop until after fertilization is achieved. This is in contrast with gymnospermous seed plants, in which considerable female gametophytic nutritive tissue is deposited after pollination, even if the ovules are never ultimately fertilized. Thus, a major selective pressure

FIGURE 6.12 Angiosperm ovule development and morphology. Note meiosis of megasporocyte, producing four haploid megaspores, one of which undergoes mitotic divisions and differentiation, resulting in an 8-nucleate female gametophyte.

FIGURE 6.13 Angiosperm seed development and morphology. Note fertilization of egg, forming zygote and embryo, and fertilization of polar nuclei, forming triploid endosperm.
for the evolution of endosperm may have been conservation of resources, such that seed storage compounds are not formed unless fertilization is assured. An additional, functional feature of endosperm derives from the tissue being triploid. Having three sets of chromosomes (one from the male and two from the female) may enable the endosperm to develop more rapidly (correlated with rapid overall seed development) and may also provide greater potential for chemical variation in nutritive contents.

SIEVE TUBE MEMBERS
Angiosperms are unique (with minor exceptions) in having **sieve tube members** as the specialized sugar-conducting cells (Figure 6.15). Sieve cells (and associated albuminous cells) are the primitive sugar-conducting cells and are found in all non-floowering vascular plants (see Chapter 4). Sieve tube members (and associated companion cells) were evolutionarily modified from sieve cells and are found only in flowering plants. Sieve tube members differ from the ancestral sieve cells in that the pores at the end walls are differentiated, being much larger than those on the side walls. These collections of differentiated pores at the end walls are called **sieve plates**. Sieve plates may be either compound (composed of two or more aggregations of pores) or simple (composed of one pore region). Parenchyma cells associated with sieve tube members are called **companion cells**. Companion cells function to load and unload sugars into the cavity of sieve tube members. Unlike the similar albuminous cells of gymnosperms, companion cells are derived from the same parent cell as the conductive sieve tube members.

The adaptive significance of sieve tube members over sieve cells is not clear, though they may provide more efficient sugar conduction.

ANGIOSPERM SPECIALIZATIONS
Angiosperms are a tremendously diverse group of seed plants and have evolved a great number of novel structural features. Various lineages of angiosperms have acquired an amazing...
variety of specialized roots, stems, and leaf types not found in any other land plant taxa (see Chapters 7–9). And, as mentioned earlier, angiosperms have a number of specialized pollination systems and fruit/seed dispersal mechanisms, by-products of the evolution of flowers and fruits (see Chapter 13).

VESSELS

One angiosperm specialization concerns water and mineral conductive cells. The great majority of angiosperms have vessels, in which the two ends of the cells have openings, termed perforation plates (Figure 6.16; see Chapters 4, 10). Vessels constituted a major evolutionary innovation within the angiosperms, presumably providing for more efficient solute conduction. Not all angiosperms have vessels, however; and some basal flowering plant groups (e.g., Amborellales, some Nymphaeales; see Figure 6.1, Chapter 7) are vessel-less, having only tracheids (which lack perforation plates). Thus, vessels may not constitute an apomorphy for the flowering plants as a whole, and likely arose independently in more than one angiosperm lineage.

The tracheids of basal, vessel-less angiosperms characteristically have numerous transversely elongated pits (called scalariform pitting), especially at the tapering end walls where they join other tracheid cells. Tracheids with scalariform pitting may be the ancestral tracheary element for the angiosperms. In general, primitive vessels resemble tracheids in having scalariform perforation plates (Figure 6.17A) in which the openings consist of numerous, transversely oriented pits. Specializations of vessels (Figure 6.16) include (1) modification of the perforation plate from scalariform to one with fewer, less transversely oriented openings, to a simple perforation plate (having a single opening; e.g., Figure 6.17B,C); (2) modification from tapering end walls to perpendicular ones; and (3) modification from long, narrow cells to short, wide cells (Figure 6.17D).

ORIGIN OF ANGIOSPERMS

As is often stated, Charles Darwin described the relatively rapid diversification of the higher plants (presumed to mean angiosperms) as an abominable mystery. The earliest definitive fossils of flowering plants are dispersed pollen grains from the earliest Cretaceous period, approximately 140 million years ago. The earliest definitive flowers occur slightly later in the fossil record, as early as 130 million years ago. These early flowering plant fossils can largely be assigned to recognizable, extant groups. Once angiosperms arose, they radiated rapidly into several, distinct lineages and gradually replaced gymnosperms as the dominant plant life form on the earth.

However, the details of angiosperm evolution from a gymnosperm precursor are not clear. One problem is what to call an angiosperm. Many angiosperm features cited earlier, such as a reduced male gametophyte, reduced female gametophyte, and double fertilization with triploid endosperm, are microscopic and cytological and would be unlikely to be preserved in the fossil record. Cladistic analyses of extant angiosperms may help elucidate the features possessed by the common ancestor of the flowering plants. Given this, we might expect to find at least some of these features in the closest fossil relatives of the angiosperms. Based on recent cladistic studies, Amborella trichopoda of the Amborellales (Figure 6.1) is accepted as the best hypothesis for the most basal angiosperm lineage (see Chapter 7). Amborella lacks vessels and has unisexual flowers with a spiral perianth, laminar stamens, and separate carpels. However, other, near-basal lineages of flowering plants vary in these features, making an assessment of the characteristics of the common ancestor of the angiosperms unclear.

An ongoing hypothesis on the origin of angiosperms is that they were derived by modification of some member of the group known as pteridosperms (mentioned in Chapter 5), a paraphyletic assemblage of extinct plants that possessed...
seeds and had generally fernlike foliage. Some Pteridosperms may represent possible angiosperm progenitors. One fossil taxon that exemplifies a putative transition to angiosperms is *Caytonia* of the Caytoniales (Figure 6.18A C). *Caytonia* possessed reproductive structures similar to those of the angiosperms. The male reproductive structures resemble anthers in consisting of a fusion product (synangium) of three or four microsporangia; however, these differ from angiosperm anthers in being radially (not bilaterally) symmetric (Figure 6.18A). The female reproductive structures of *Caytonia* consist of a spikelike arrangement of units that have been termed **cupules** (Figure 6.18B,C). Each cupule encloses a cluster of unitegmic ovules/seeds, with a small opening in the cupule near the proximal end (Figure 6.18C). The cupule has been hypothesized as being homologous with the angiosperm carpel. However, the cupule of *Caytonia* is different from what is presumed to be the ancestral carpel morphology, a conduplicate megasporophyll bearing ovules along two margins. In addition, (monosulcate) pollen grains have been discovered at the micropyle of *Caytonia* ovules, evidence that the pollen grains were transported directly to the ovules (perhaps by means of a pollination droplet, as occurs in extant gymnosperms), rather than to a stigmatic region where pollen tubes formed. Thus, the cupule apparently did not function as a carpel in terms of a site for pollen germination. Another interpretation of the cupule of *Caytonia* is that it is the homologue of the second integument apomorphic of all angiosperms, evolving by the reduction of the number of ovules within the cupule to one. In summary, the homology of the reproductive structure in *Caytonia* is difficult to decipher, and no other pteridosperm is clearly an angiosperm progenitor.

However, some pteridosperms, like *Caytonia*, may still be more closely related to the angiosperms than to the gymnosperms (see Figure 5.1).

An example of a fossil that may help elucidate early angiosperm evolution is the genus *Archaefructus*, fairly recently collected from China, and evidently now dated to no earlier than 130 million years ago of the early Cretaceous. *Archaefructus* (with two described species) was apparently an aquatic plant, having dissected leaves and elongate reproductive axes, each of the latter with paired stamens below and several-seeded carpels above (Figure 6.18D,E). Although *Archaefructus* appears to have bona fide carpels, its relationship to extant angiosperms is debatable. By one hypothesis the reproductive axis is interpreted as an entire, perianth-less flower (with stamens below and carpels above), the axis perhaps homologous to an elongate receptacle reminiscent of some Magnoliaceae (see Chapter 7). By this interpretation, this reproductive structure might represent an ancestral flower (or flower precursor), and *Archaefructus* might be sister to the extant angiosperms. An alternative hypothesis views the reproductive axis of *Archaefructus* not as a single, achetypical flower, but as an in ocrence of individual, reduced male and female flowers, as seen in some aquatic angiosperms today. By this viewpoint, *Archaefructus* may just as likely represent an extinct off-shoot of an extant lineage within the angiosperms (such as the Nymphaeales).

In summary, it seems that more fossils may need to be discovered and described (or reinvestigated with new techniques) before the abominable mystery can be satisfactorily solved. Cladistic analyses help, but there is always the problem of
homology assessment with structures that are vastly different from contemporary forms. Despite the fact that the relationships among extant flowering plants are much better known with advanced molecular techniques (see Chapter 7), fossils will be key to understanding their origin. Paleobotanical work should be continuously emphasized as of the utmost importance in understanding plant relationships.

REVIEW QUESTIONS

ANGIOSPERM APOMORPHIES
1. What is another name for the flowering plants?
2. Name the apomorphies of the flowering plants.
3. What is the definition of a flower?
4. Name the major components of a typical flower.
5. Describe the morphology and adaptive significance of the perianth.
6. What is the ABC model of floral development, and what species served as the original exemplar for this?
7. What was a major selective pressure that resulted in the evolution of specialized types of flowers?
8. What is unique about the angiosperm stamen, and what are the types and parts of a stamen?
9. What is a theca and of what is it composed?
10. What about the male gametophyte of flowering plants is unique?
11. Describe the structure and function of a mature male gametophyte in the flowering plants.
12. What is the definition of a carpel?
13. What is the difference between carpel, pistil, and gynoecium?
14. Name and describe two major adaptive features of the carpel.
15. Contrast integument number in gymnosperms versus that in angiosperms.
16. Draw and label a mature female gametophyte in the flowering plants.
17. How many cells and nuclei are present in a typical, mature, female gametophyte of the flowering plants?
18. How might the reduced angiospermous female gametophyte be adaptive?
19. What is endosperm and what is its function?
20. What is the difference between a sieve cell and a sieve tube member? In what groups are each found?
21. What type of tracheary element do most angiosperms have, and what is its adaptive significance?

ANGIOSPERM ORIGINS
22. When are the earliest definitive angiosperm fossils found?
23. Describe the example of *Caytonia* as a putative angiosperm progenitor, citing evidence for and against this idea.
24. Describe the reproductive structure of *Archaefructus* and indicate two competing hypotheses for its homology.

EXERCISES

1. Collect and observe a flowering plant. Looking at specific parts of the plant, go over in your mind the apomorphies (both macroscopic and microscopic) that have enabled the angiosperms to dominate the world’s vegetation. Especially review all parts of a flower, citing the adaptive significance of each component.
2. Place various angiospermous pollen grains on a microscope slide, stain (e.g., with toluidine blue), and observe these reduced male gametophytes under a microscope. Look for the cells and nuclei inside. Are the pollen grains two-celled or three-celled at maturity?
3. Observe an angiosperm ovule in sagittal-section under the microscope. Look for the two integuments and the (typically) eight nuclei and seven cells of the female gametophyte.
4. Contrast popcorn (an angiosperm) with pine nuts (a gymnosperm) in terms of the ploidy level and development of the nutritive tissue. Cite the selective advantage that flowering plant seeds might have in this regard.

REFERENCES FOR FURTHER STUDY

Diversity and Classification of Flowering Plants:
Amborellales, Nymphaeales, Austrobaileyales, Magnoliids, Ceratophyllales, and Monocots

This section provides an introduction to the diversity and classification of flowering plants, focusing on specific clades within the angiosperms. The page outlines various family descriptions, including:

Amborellales
- Amborellaceae

Nymphaeales
- Nymphaeaceae
- Cabombaceae

Austrobaileyales
- Illiciaceae

Magnoliids
- Laurales
- Magnoliales
- Acorales

Magnoliids (continued)
- Magnoliales (continued)
- Laurales (continued)
- Magnoliales (continued)
- Acorylales
- Alismatales
- Asparagales
- Dioscoreales
- Liliales
- Pandanales
- Commelinids

The page also includes a section on monokotyledons, discussing their apomorphies and classification.
INTRODUCTION

The phylogenetic relationships within the angiosperms has been and continues to be a field of active research in plant systematics. Much progress has been made with the use of cladistic methodology and the incorporation of morphological, anatomical, embryological, palynological, karyological, chemical, and molecular data (see Chapters 9–14). The more recent use of multiple gene sequence data has been particularly useful in assessing higher-level angiosperm relationships. However, the phylogenetic relationships and classification presented in this chapter can be viewed as somewhat preliminary, to be further refined with continued research. For a more precise understanding of relationships within a particular group, there is no substitute for consulting the most recent, primary scientific literature.

MAJOR ANGIOSPERM CLADES

Portrayal of the relationships of major angiosperm groups is modeled (with very few exceptions) after the system of the Angiosperm Phylogeny Group, 2003 (referred to as APG II, 2003), which supersedes Angiosperm Phylogeny Group, 1998. The APG II system is based on published cladistic analyses primarily utilizing molecular data (e.g., Chase et al. 1993, 2000; Graham and Olmstead 2000b; Soltis et al. 1997, 2000; Qui et al. 2000; Zanis et al. 2002) or a combination of morphological and molecular data (e.g., Nandi et al. 1998). In the APG II system, an attempt was made to recognize only those angiosperm families that are monophyletic. In many cases, angiosperm families have been redefined from their past, traditional circumscription, either being split into separate groups (e.g., the traditional Liliaceae and Scrophulariaceae) or united into one family (e.g., the Bombaceae, Malvaceae, Sterculiaceae, and Tiliaceae united into one family, Malvaceae, s.l.). The APG II system classifies one to several families into orders (thus, each group having the ending -ales), where strong evidence suggests that the order is monophyletic. It must be understood, however, that the designated orders are not comparable evolutionary units and are not indicative of a hierarchical classification system (see Chapter 2). For example, a single order may be sister to a monophyletic group containing several orders. The orders can be viewed simply as convenient placeholders for one or more families that appear to comprise a monophyletic group with relatively high certainty. Some monophyletic groups containing several orders are given informal names, such as Magnoliids, Monocots, Eudicots, Rosids, Eurosids I and II, Asterids, and Euasterids I and II.

The precise interrelationships of the major groups of angiosperms still show some uncertainty, but recent results have begun to converge. Figure 7.1 illustrates higher-level phylogenetic relationships from various analyses that are summarized in APG II, 2003. Note that some polytomies occur; further research may, in time, resolve many of these. In particular, the elucidation of the most basal branches of the flowering plants may yield insight into early angiosperm evolution and radiation.

As seen in Figure 7.1, the angiosperms can be broadly delimited into several groups: the Amborellales, Nymphaeales, Austrobaileyales, Chloranthaceae, Magnoliids (consisting of Laurales, Magnoliidae, Canellales, and Piperales), monocotyledons (the Monocotyledoneae or monocots), Ceratophyllum, and the eudicots. Of these major groups, the current chapter deals with all but the eudicots, which are covered in Chapter 8. Those angiosperm groups other than the eudicots are sometimes referred to as basal flowering plants because
they include the first lineages that diverged from the common ancestor of the angiosperms. However, as portrayed in Figure 7.1, it is evident that this is an arbitrary designation, in that some of these groups are no more basal than the eudicots. The families within the orders are listed in Table 7.1 (all except the monocots), Tables 7.2 (basal monocots) and 7.3 (commelinid monocots); eudicot families are listed in Tables 8.1–8.3 of Chapter 8.

The great bulk of the angiosperms in terms of species diversity are contained within the monocots and eudicots. The monocotyledons are a large group, containing approximately 22% of all angiosperms (see later discussion). The eudicots comprise a very large group, including approximately 75% of all angiosperms, and will be treated separately in Chapter 8.

The traditionally defined group Dicotyledonae, the dicotyledons or dicots, have been defined in the past by their possession of embryos with two cotyledons. It is now thought that the possession of two cotyledons is an ancestral feature for the taxa of the flowering plants and not an apomorphy for any group within. Thus, dicots as traditionally delimited (all angiosperms other than monocots), are paraphyletic and must be abandoned as a formal taxonomic unit.

In the descriptions in this chapter and in Chapter 8, exemplars are used for each order or other major group. The choice of these exemplars is very limited in the context of the huge diversity of the angiosperms. These treatments are not designed as a substitute for the many fine references on flowering plant family characteristics (see the references at the end of
TABLE 7.1 Major groups of the angiosperms, listing orders and included families (after APG II, 2003) for groups other than monocots (see Tables 7.2, 7.3) and eudicots (see Chapter 8). Families in bold are described in detail. An asterisk denotes an acceptable deviation from APG II, with brackets indicating the more inclusive family recommended by APG II.

<table>
<thead>
<tr>
<th>ANGIOSPERMS</th>
<th>MAGNOLIIDS</th>
<th>CANELLALES</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMBORELLALES*</td>
<td>LAURLES</td>
<td>Canelaceae</td>
</tr>
<tr>
<td>Amborellaceae</td>
<td>Atherospermataceae</td>
<td>Winteraceae</td>
</tr>
<tr>
<td>Nymphaeales*</td>
<td>Calycanthaceae</td>
<td>PIPERALES</td>
</tr>
<tr>
<td>Nymphaeaceae*</td>
<td>Gomortegaceae</td>
<td>Aristolochiaceae</td>
</tr>
<tr>
<td>Cabombaceae* [Nymphaeaceae]</td>
<td>Hernandiaceae</td>
<td>Hydnoraceae</td>
</tr>
<tr>
<td>AUSTRABAILEYALES</td>
<td>Lauraceae</td>
<td>Lactoridaceae</td>
</tr>
<tr>
<td>Austrobaileyaceae</td>
<td>Monimiaceae</td>
<td>Piperaceae</td>
</tr>
<tr>
<td>Illiciaceae* [Schisandraceae]</td>
<td>Siparunaceae</td>
<td>Saururaceae</td>
</tr>
<tr>
<td>Schisandraceae</td>
<td>MAGNOLIALES</td>
<td>MONOCOTS (see Table 7.2, p. 159; Table 7.3, p. 185)</td>
</tr>
<tr>
<td>Trimeniaceae</td>
<td>Annonaceae</td>
<td>Ceratophyllales</td>
</tr>
<tr>
<td>Chloranthaceae</td>
<td>Degeneriaceae</td>
<td>Ceratophyllaceae</td>
</tr>
<tr>
<td>Nymphaeaceae* [Nymphaeaceae]</td>
<td>Eupomatiaceae</td>
<td>EUDICOTS (see Chapter 8)</td>
</tr>
<tr>
<td>Nymphaeaceae</td>
<td>Himantandraceae</td>
<td></td>
</tr>
<tr>
<td>Magnoliaceae</td>
<td>Magnoliaceae</td>
<td></td>
</tr>
<tr>
<td>Myristicaceae</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

this chapter), but are intended as an introduction to some of the common or important groups for the beginning student.

Taxa at the traditional rank of family are utilized as exemplar units; in a few cases subfamilies or tribes are described. Only major, general features of commonly encountered plant families are presented, with examples cited to show diagnostic features. More thorough descriptions and illustrations of angiosperm families may be obtained from references cited in the family descriptions and listed at the end of the chapter.

FAMILY DESCRIPTIONS

The family descriptions that follow use technical terms that are defined and illustrated in Chapter 9 and listed in the Glossary; some embryological or anatomical terms are defined in Chapters 10 and 11. The descriptions begin with a heading that lists the family name (scientific and common), the etymology of the family name where known (Gr. = Greek; L. = Latin), and the number of genera and species. The first paragraph is a description of plant characteristics of the family members, starting with plant habit and vegetative features, in the order of root, stem, and leaf. This is followed by reproductive features, in the order of inflorescence, flower, perianth (if undifferentiated) or calyx and corolla (if differentiated), androecium, gynoecium, fruit, and seed. Important anatomical or chemical characteristics are occasionally listed as well. The second paragraph lists infrafamilial classification (where pertinent), distribution, and economically important members of the family. The third paragraph lists the diagnostic features of the family, i.e., how the family can be distinguished from other, related families. This is to aid the beginning student in recognizing the family at a glance; the most important diagnostic features are shown in boldface-italics. Features thought to represent apomorphies for the family or groups within the family are cited as such. Finally, the family descriptions end with a floral formula.

The floral formulas are used to summarize the number and fusion of floral parts. In these formulas, \(P \) refers to perianth parts and is used where the perianth is undifferentiated into a typical outer calyx and inner corolla (e.g., being homochlamydeous, or having outer, calyx-like series and inner corolla-like series that intergrade). If the perianth is differentiated into a distinct calyx and corolla, \(K \) represents the number of sepals or calyx lobes and \(C \) the number of petals or corolla lobes. The androecium is denoted by \(A \) and represents the number of stamens; staminodes may also be tabulated, but are indicated as such in the formula. The gynoecium is denoted by \(G \), showing the number of carpels in the gynoecium, followed by superior or inferior to denote ovary position. Connation, the fusion of similar parts, is illustrated with parentheses () that enclose the number. Separate, discrete whorls of parts are separated by the + sign, delimiting the number of parts per whorl; the outermost whorl is indicated by the first number, the innermost whorl by the last number. Numbers that are enclosed by brackets [] represent a less common or rare condition. If there are more than about 10 12 parts, the \(\infty \) sign is used for numerous.
The floral formulas used here summarize the variation that occurs *within the family as a whole*, not necessarily that for a single species. However, floral formulas certainly may also be used to summarize the floral characteristics of a single species. Some hypothetical examples of floral formulas are:

\[
\text{K} (5) \quad \text{C} 5 \quad \text{A} 5+5 \quad \text{G} 5 \quad \text{superior: represents a flower having a synsepalous calyx with five [rarely four] lobes, an apopetalous corolla of five [rarely four] petals, an androecium with ten distinct (not fused to one another) stamens in two whorls of five each [rarely eight stamens in two whorls of four], and an apocarpous gynoecium with five [rarely four], superior-ovaried carpels.}
\]

\[
\text{P} (3+3) \quad \text{A} 3+3 \quad \text{G} (3) \quad \text{inferior: represents a flower with a homochlamydeous perianth (i.e., one not delimited into calyx and corolla) having connate, outer and inner whorls of three tepals each, six distinct stamens in two whorls of three each, and a syncarpous, inferior-ovaried gynoecium with three carpels.}
\]

Family descriptions are accompanied by figures of photographs and line drawings of exemplars. An effort is made to illustrate both diagnostic and apomorph features. **Floral diagrams** are sometimes illustrated. These represent a diagrammatic cross-sectional view of a flower bud, showing the relative relationship of perianth, androecial, and gynoecial components (examples in Figure 7.2). Floral diagrams may show fusion of floral parts as well as things such as stamen position, placentation, and perianth, calyx, or corolla aestivation (see chapter 9). They are very useful in visualizing floral structure, and, along with floral formulas, are a succinct summary of the characteristics of the group.

The following are detailed descriptions of selected families (shown in **bold** in Table 7.1) from these major groups.

Those selected families were done so largely because live material is more likely to be available for classroom examination and dissection or because of their tremendous importance ecologically or with respect to biodiversity. An attempt was made to describe only information that can be generally seen by the student, unless the characters are of significant diagnostic significance. The source of data for family descriptions was largely taken from *The Plant-Book* (Mabberley 1997), an excellent compendium of descriptions of vascular plant families and genera and highly recommended as a general reference. Another major reference used was Cronquist (1981). Very good recent family descriptions are found in the ongoing series *The Families and Genera of Flowering Plants*: Kubitzki et al. (1993, 1998a,b); Kubitzki and Bayer (2002); and Kubitzki (2004). The family descriptions that follow were often difficult to do, since many families have undergone vastly different circumscriptions in the APG II system. Refer to the references cited earlier and at the end of the chapter for additional information and for descriptions of families not treated here. The Angiosperm Phylogeny Website (Stevens, 2001 onward) is an excellent, up-to-date resource for cladograms, classification, references, and apomorphies.

AMBORELLALES

This order comprises one family and one species (below). The Amborellaceae is purported in most molecular studies to be the most basal angiosperm group, although some studies suggest other possibilities (notably that *Amborella* + Nymphaeaceae together are sister to the rest of the
angiosperms). See Mathews and Donoghue (1999, 2000); Qui et al. (1999, 2000); Graham and Olmstead (2000a,b); Parkinson et al. (1999); Barkman et al. (2000); Zanis et al. (2002); and Borsch et al. (2003) for studies on relationships of Amborella within the angiosperms. See Doyle and Endress (2000) and Zanis et al. (2003) for a discussion of character evolution in the basal angiosperms.

The absence of vessels in the order, which is rare in angiosperms, is possibly an ancestral condition, and the absence of aromatic (etheral) oil cells is significant in light of other basal groups that have them.

Amborellaceae Amborella family. (L. for around a little mouth, perhaps in reference to the flower). 1 genus and species. (Figure 7.3)

The Amborellaceae comprises the single species *Amborella trichopoda*, a dioecious, tropical shrub. The *leaves* are alternate, spiral to distichous, undivided, exstipulate, evergreen, and simple. The *inflorescence* is an axillary cyme. The *flowers* are unisexual, actinomorphic, and hypogynous to perigynous. The *perianth* consists of 5-8, spiral, distinct to basally connate perianth parts (termed sepals by default). The *stamens* of male flowers are ♂, and somewhat laminar. The *anthers* are longitudinal in dehiscence. The *gynoecium* of female flowers is apocarpous, comprising 5-6 superior-ovaried pistils that are apically open. *Placentation* is marginal; the *ovule* is solitary in each pistil. The *fruit* is a drupecectum. Vessels and ethereal oil cells are lacking.

Amborella trichopoda, the single species of the Amborellaceae, is native only to New Caledonia. There are no

FIGURE 7.3 AMBORELLALES. Amborellaceae, *Amborella trichopoda*. A. Whole plant, in cultivation. B. Close-up of leaves. C. Male flowers, showing laminar stamens. D. Female flower close-up, showing spiral perianth and apocarpous gynoecium. (A and C, courtesy of Stephen McCabe; B, courtesy of the Arboretum at University of California-Santa Cruz; D, courtesy of Sandra K. Floyd.)
economic uses, other than being a cultivar sought because of its distinctive, basal position in the angiosperms. See Thien et al. (2003) for a study of the population structure and floral biology of *Amborella*.

The Amborellaceae are distinctive in being vessel-less, evergreen shrubs with unisexual flowers having an undifferentiated, spiral perianth, numerous, laminar stamens, and an apocarpous, apically-open gynoecium, with 1-ovuled carpels.

Male flowers: \[P \text{ 5-8} \ A \ \sim \ \infty \]
Female flowers: \[P \text{ 5-8} \ G \text{ 5-6}, \text{ superior} \]

NYMPHAEALES

This order consists of two families, Nymphaeaceae and Cabombaceae, which are sometimes treated together (e.g., as subfamilies) in a broader Nymphaeaceae, s.l. See Les et al. (1999) for recent information on the phylogeny and classification of the order.

Nymphaeaceae Water-Lily family (*Nymphaeaceae*), 6 genera / 60 species. (Figure 7.4)

The Nymphaeaceae consist of aquatic, annual or perennial herbs, with a milky latex often present. The underground stems are rhizomatous or tuberous. The stem vasculature is an atactostele or eustele. The leaves are simple, often peltate, stipulate or extipulate, floating, spiral, usually orbicular in shape. The inflorescence consists of a solitary, floating or emergent flower. Flowers are bisexual, actinomorphic, and hypogynous. The perianth is dichlamydeous (differentiated into calyx and corolla), the parts whorled. The calyx consists of 3 [2 or 4] apopetalous sepals. The corolla consists of 3 [2 or 4] apopetalous petals. Stamens are 3 or 6 (in Cabomba) or 12 many (in *Brasenia*); the filaments are somewhat laminar. The gynoecium is apocarpous, with a superior ovary, and 2 18 [1] carpels; placentaion is paretal; ovules are anatropous, bitemgic, and 2 3 [1] per carpel; styles are terminal or decurrent along the carpel. The fruit unit is a coriaceous follicle.

The Cabombaceae consist of aquatic herbs. The underground stems are rhizomatous, which give rise to elongate leafy shoots. The stem vasculature is atactostelic. The leaves are dimorphic, floating or submersed, extipulate, spiral, opposite, or whorled, simple and undivided or highly divided into numerous segments. The inflorescence consists of a solitary, emergent flower. Flowers are bisexual, actinomorphic, and hypogynous. The perianth is dichlamydeous (differentiated into calyx and corolla), the parts whorled. The calyx consists of 3 [2 or 4] apopetalous sepals. The corolla consists of 3 [2 or 4] apopetalous petals. Stamens are 3 or 6 (in Cabomba) or 12 many (in *Brasenia*); the filaments are somewhat laminar. The gynoecium is apocarpous, with a superior ovary, and 2 18 [1] carpels; placentaation is paretal; ovules are anatropous, bitemgic, and 2 3 [1] per carpel; styles are terminal or decurrent along the carpel. The fruit unit is a coriaceous follicle.

The Cabombaceae consist of aquatic herbs. The underground stems are rhizomatous, which give rise to elongate leafy shoots. The stem vasculature is atactostelic. The leaves are dimorphic, floating or submersed, extipulate, spiral, opposite, or whorled, simple and undivided or highly divided into numerous segments. The inflorescence consists of a solitary, emergent flower. Flowers are bisexual, actinomorphic, and hypogynous. The perianth is dichlamydeous (differentiated into calyx and corolla), the parts whorled. The calyx consists of 3 [2 or 4] apopetalous sepals. The corolla consists of 3 [2 or 4] apopetalous petals. Stamens are 3 or 6 (in Cabomba) or 12 many (in *Brasenia*); the filaments are somewhat laminar. The gynoecium is apocarpous, with a superior ovary, and 2 18 [1] carpels; placentaation is paretal; ovules are anatropous, bitemgic, and 2 3 [1] per carpel; styles are terminal or decurrent along the carpel. The fruit unit is a coriaceous follicle.

The Cabombaceae are distributed in tropical to temperate areas. *Cabomba* is found in the tropical Americas, whereas the monotypic *Brasenia* (*B. schreberi*) is distributed in tropical to temperate regions of the Americas, Africa, and Australasia. The Cabombaceae are sometimes treated as a subfamily (Cabomboideae) of the Nymphaeaceae, being different from the latter in having a trimerous [2 or 4] number of non spirally arranged sepals and petals. See Williamson and Schneider (1993) for more information on the family.

The Cabombaceae are distinguished in being aquatic herbs with atactostelic stems (resembling those of monocots); dimorphic, floating or submersed, undivided or highly divided leaves; a perianth with 3 [2,4] sepals and petals, and an apocarpous gynoecium.

\[\text{K} \text{ 3 [2,4]} \ \text{C} \text{ 3 [2,4]} \ \text{A} \text{ 3, 6 or 12} \ \sim \ \text{G} \text{ 2-18 [1]}, \text{ superior} \]

AUSTROBAILEYALES

The Austrobaileyales, sensu APG II (2003) consist of four families (Table 7.1). Only the Illiciaceae are described here.
FIGURE 7.4 NYMPHAEALES. Nymphaeaceae. A. *Victoria amazonica*, with large, oating leaves having upturned, rimlike margins. B–I. *Nymphaea* spp. B. Whole plant, showing oating leaves and solitary ower. C,D. Close-up of ower. Note numerous, spiral perianth parts and stamens. E. Flower in longitudinal section, showing perianth series, inferior ovary, and numerous stamens. F. Removed oral parts (outer to inner = left to right), showing gradation from sepal-like structures (left) to petal-like structures (second and third from left) to stamens (right). G. Close-up of stamens, showing gradation from outer, laminar stamens (left) to lamentous stamens (middle) to sub-sessile stamens (right). H. Ovary cross-section. I. Close-up of ovary cross-section, showing laminar placentation, i.e., attachment of ovules to inner surface of septae.
Illiciaceae Star-Anise family (L., for alluring, enticing). 1 genus/42 species. (Figure 7.6)

The Illiciaceae consist of trees and shrubs with aromatic (ethereal) oil cells. The leaves are simple, spiral (often appearing whorled), pellucid-punctate, exstipulate, evergreen, and glabrous. The inflorescence is an axillary or supra-axillary, solitary flower or group of 2 or 3 flowers. The flowers are small, bisexual, actinomorphic, and hypogynous. The perianth consists of numerous (7–33), distinct tepals, typically spirally arranged, the outer sepal-like parts grading into inner petallike parts, which grade into central anther-like parts. The stamens are few to numerous (4–ca. 50), in one or more spiral series, and apostemonous; filaments are short and thick. Anthers are longitudinal in dehiscence, with an extended connective.

The gynoecium is apocarpous, with numerous (5–21), superior, unilocular carpels in a single whorl. The style is open. Placentation is ventrally sub-basal; ovules are anatropous, 1 per carpel. The fruit is an aggregate of follicles (follicetum). The seeds are endospermous, the endosperm oil-rich. Flowers are beetle-pollinated.

The Illiciaceae have distributions in S.E. Asia and S.E. U.S. to the Caribbean. Economic importance includes Illicium anisatum, Japanese anise, used to kill fish and used medicinally and in religious rites, and Illicium verum, star anise, used as a spice, e.g., in liqueurs (Figure 7.7).

The Illiciaceae are distinctive in being evergreen trees or shrubs having aromatic oil cells, with glabrous, spiral, pellucid-punctate, exstipulate leaves, the flowers with numerous, spiral tepals (outer sepal-like, inner petal-like), few-numerous stamens, and few-numerous, one-seeded, apocarpous pistils in a single whorl, the fruit a follicetum. P = [7–33] A = [4–50] G = [5–21], superior.

FIGURE 7.6 AUSTROBAILEYALES. Illiciaceae. A. Illicium oridanum, outer face view. (Photo courtesy of Jack Scheper, Floridata.com LC) B–D. Illicium parvi orum. B. Branch, showing simple, glabrous, evergreen leaves and one- to few- flowered in racemes. C. Flower, face-view, showing grading perianth. D. Flower, longitudinal-section, showing encircling stamens and apocarpous gynoecium.
CHAPTER 7 DIVERSITY AND CLASSIFICATION OF FLOWERING PLANTS

This group, recognized by APG II (2003), contains the four orders Laurales, Magnoliales, Canellales, and Piperales. See Kim et al. (2004).

LAURALES

The Laurales, sensu APG II (2003), contain seven families (Table 7.1). Only the Lauraceae are described here. See Endress and Igersheim (1997), Renner (1999), and Renner and Chanderbali (2000) for further information.

Lauraceae Laurel family (L. laurus, laurel or bay). 45 genera / 2200 species. (Figure 7.8)

The Lauraceae consist of mostly trees or shrubs (except Cassytha, a parasitic vine) with aromatic oil glands. The leaves are evergreen, simple, exstipulate, spiral, rarely whorled or opposite, undivided or lobed, pinnate-netted, usually punctate. The inflorescence is an axillary cyme or raceme, rarely a solitary flower. Flowers are small, bisexual or unisexual, actinomorphic, perigynous or epiperigynous, the subtending receptacle often enlarging in fruit. The perianth is 1 3-whorled, usu. 3+3 [6, 2+2, or 3+3+3], apotepalous, hypanthium present. Stamens are 3 12 or more, with staminodes often present as an inner whorl; filaments often have a pair of basal, nectar-bearing appendages; anthers are valvular, with 2 4 [1] valves per anther opening from the base, introrse or extrorse in dehiscence, dithecal [monothecal], tetrasporangiate [bi- or monosporangiate]. The gynoecium consists of a single superior, rarely inferior, ovary, unicarpellous or syncarpous, consisting of 1 [up to 3] carpel, 1 locule, 1 terminal style, and 1 3 stigmas; placentation is apical; ovules are anatropous, bitegmic, 1 per carpel. The fruit is a berry, drupe, or is dry and indehiscent, often with an enlarged receptacle and accrescent calyx; seeds are exalbuminous.

The Lauraceae are distributed in tropical to warm temperate regions, esp. S.E. Asia and tropical America. Economic importance includes several timber trees, spice and other flavoring plants (including the bark of Cinnamomum cassia, cassia, and C. zeylanicum, cinnamon; oils derived from C. camphora, camphor; and the leaves of Laurus nobilis, laurel or bay), and food plants, especially avocado, Persea americana. See Rohwer (1993) for more information on the family.

The Lauraceae are distinguished in being perennial trees or shrubs [rarely vines] with aromatic oil glands, evergreen leaves, an undifferentiated perianth, valvular anther dehiscence, and a single, superior ovary having one ovule per carpel with apical placentation, seeds lacking endosperm. P 3+3 [6, 2+2, or 3+3+3] A 3-12+ G 1 [-3), superior, rarely inferior, hypanthium present.

MAGNOLIALES

The Magnoliales, sensu APG II (2003), contain six families (Table 7.1), of which two are described here. Notable among the others are the Myristicaceae, containing Myristica fragrans, from which are derived nutmeg and mace (from the seeds and aril, respectively). See Sauquet et al. (2003) and general references for angiosperm phylogeny.

Annonaceae Custard-Apple family (Anona, a Haitian name). 112 genera / 2150 species. (Figure 7.9)

The Annonaceae consist of trees, shrubs, or woody vines (lianas). The leaves are usually distichous, simple, and exstipulate. The inflorescence is a solitary flower or cyme. The flowers are bisexual [unisexual] and hypogynous. The perianth is triseriate, usu. 3+3+3, hypanthium absent. The stamens are numerous, usually spiral, apostemonous, rarely basally connate. Anthers are longitudinally dehiscent. The pollen is released as monads, tetrads, or polyads. The gynoecium consists of numerous carpels with superior ovaries, either apocarpous with usually spiral carpels, or rarely syncarpous with whorled carpels. Placentation is variable; ovules are anatropous or campylotropous, bitegmic or rarely tritegmic, 1-numerous per carpel. The fruit is an aggregate of berries or dry and indehiscent units, or a syncarp in which the unit berries fuse to a fleshy receptacular axis. The seeds are endospermous, the endosperm ruminate (having an uneven, coarsely wrinkled texture), oily, sometimes starchy. Resin canals and a septate pith are usually present.
CHAPTER 7 DIVERSITY AND CLASSIFICATION OF FLOWERING PLANTS

FIGURE 7.9 MAGNOLIALES. Annonaceae. *Annona cherimola.* A. Shoot, showing distichous leaves. B. Close-up of shoot, with young leaves and flowers. C. Flower close-up, showing undifferentiated perianth. D. Flower, perianth removed. Note basal androecium of numerous stamens and apical, apocarpous gynoecium of numerous pistils. E. Close-up of removed stamen and pistil. F. Pistil, longitudinal section, showing single ovule with basal placentation. G. Fruit, a syncarp of laterally fused carpel units. H. Fruit in section, showing dark seeds and surrounding eshy tissue. I. Seed in longitudinal section, showing characteristic ruminate endosperm.
The Magnoliaceae consist of species of trees or shrubs. The leaves are simple, spiral, pinnate-netted, and stipulate, with caducous stipules enclosing the buds. The inflorescence is a terminal solitary flower. Flowers are large, bisexual (rarely unisexual), actinomorphic, hypogynous; the receptacle grows into an elongate axis (called a torus or androgynophore), which bears the androecium and gynoecium. The perianth is multiwhorled or spiral, and apetalous. Stamens are numerous, spiral, apstemomonous; filaments are thickened to laminar; anthers are longitudinal in dehiscence (variable in direction), tetrasporangiate, dithecal, the paired sporangia sometimes appearing embedded, with a connective often extending beyond thecae. The gynoecium is apocarpous, with [2-] numerous, superior, spirally arranged ovaries/ carpels, each unilocular, with one terminal style, and one stigma; placentation is marginal; ovules are anatropous and bitemgic, 2 numerous per carpel. The fruit is an aggregate of follicles, berries, or samaras; seeds are endospermous, rich in oils and protein with a sarcotesta (fleshy seed coat resembling an aril) usually present.

Magnoliaceae Magnolia family (after Pierre Magnol of Monpelier, 1638 1715). 7 genera/200 species. (Figure 7.10)

The Magnoliaceae are distinctive in being trees, shrubs, or woody vines with simple, usually distichous leaves, a trimerous perianth, numerous, usually spiral stamens and pistils (apocarpous or syncarpous), and seeds with ruminate endosperm.

P 3+3+3 A \infty G \infty , superior.

Aristolochiaceae Birthwort family (Gr. aristos, best + lochia, childbirth, from resemblance of a species of Aristolochia to the correct fetal position). 7 genera/410 species. (Figure 7.11)

The Aristolochiaceae consist of shrubs, vines, or rhizomatous herbs, usually climbing. The leaves are simple, petiolate, spiral, and usually exstipulate. The inflorescence consists of a solitary flower or of terminal or lateral racemes or cymes. Flowers are bisexual, actinomorphic or zygomorphic (in Aristolochia), generally epigynous. The perianth consists of a three-lobed, synsepalous, petaloid calyx. The corolla is absent or reduced to three minute petal-like structures (in Asarum). Stamens are 6 ca.40, free or fused with the style forming a gynostemium (also called a column or androgynophore); filaments, when present, are short and thick; anthers are longitudinal and extrorse [introrse] in dehiscence, dithecous. The gynoecium is syncarpous, with a mostly inferior [half-inferior] ovary, with 4 6 carpels, 4 6 locules, one style, and 4 6 stigmas; placentation is axile; ovules are usually anatropous, bitemgic, many per carpel. The fruit is usually a capsule, less commonly a schizocarp of follicles or indehiscent; seeds are oily to starchy endospermous.

Members of the family have distributions in tropical and warm temperate regions, esp. in the Americas. Economic importance includes cultivated ornamentals, e.g., Aristolochia (Dutchman s-pipe, pelican flower, birthwort) and Asarum (wild ginger), with some species used medicinally (Aristolochia, Thottea), some to cure snakebites. See Kelly and Gonzalez (2003) for a recent analysis of the family.

The Aristolochiaceae are distinguished in being usually climbing plants, having an enlarged, petaloid calyx, an absent to reduced corolla, often adnate stamens (forming a gynostemium), and an inferior to half-inferior, 4-6-carpeled and loculed ovary.

K (3) C 0 [3] A 6-\infty , usu. adnate to style G (4-6), inferior (half-inferior).

Piperaceae Pepper family (piper, Indian name for pepper). 14 genera/1940 species. (Figure 7.12)

The Piperaceae consist of herbs, shrubs, vines, or trees. The leaves are spiral, simple, stipulate (the stipules adnate to the petiole) or exstipulate. The inflorescence is a spadix. The flowers are very small, bisexual or unisexual, actinomorphic,
FIGURE 7.10 MAGNOLIALES. Magnoliaceae. A–D. Magnolia grandiflora. A. Whole flower, showing numerous tepals. B. Close-up of pistil. Note marginal placentation. C. Flower l.s., showing pistils. D. Fruit, an aggregate of follicles. Note seeds, having fleshy (red) sarcotesta. E,F. Magnolia stellata. E. Whole flower. F. Flower l.s. Note elongate, central receptacle (torus, androgynophore). G,H. Michelia doltsopa. G. Flower l.s., close-up, showing androecium (below) and receptacle bearing pistils. H. Stamens, adaxial (left) and side (right) views. Note lack of differentiation between ovary and anther.
UNIT II EVOLUTION AND DIVERSITY OF PLANTS

CHAPTER 7 DIVERSITY AND CLASSIFICATION OF FLOWERING PLANTS

bracteate, with bracts peltate, and hypogynous. The perianth is absent. The stamens are 3+3 \([1-10]\). Anthers are longitudinally dehiscent, dithecous (sometimes appearing monothecal by fusion of thecae). The gyroecium consists of a single pistil with a superior ovary, having 1 or 3 4 carpels, and one locule. The style is absent or solitary; stigma\(s\) are 1 or 3 4, being brushlike and lateral in Peperomia. Placation is basal; ovules are orthotropous, bitegmic or (in Peperomia) unitegmic, one per ovary. The fruit is a 1-seeded berry or drupe. The seeds have a starchy perisperm (the endosperm scarant). Plants have spherical, aromatic (ethereal) oil cells in the parenchyma and an atactostele-like vasculature (but with an outer cambium).

Members of the family have distributions in tropical regions. Economic importance includes Piper nigrum, the source of black and white pepper; other species are used for flavoring, medicinal plants, euphoric plants (e.g., Piper methysticum, kava), and cultivated ornamentals, e.g., Peperomia spp.

The Piperaceae are distinctive in having an atactostelic stem, a spadix with numerous, very small, unisexual or bisexual flowers lacking a perianth, the ovary solitary, 1-ovulate, the fruit a 1-seeded berry or drupe.

\[\text{P 0 A 3+3 [1-10]} \] \[\text{G 1 or (3,4), superior.} \]

Saururaceae Lizard S-Tail family (Gr. saur, lizard + our, tail, in reference to the tail-shaped inflorescence of Saururus cernus). 4 genera/6 species. (Figure 7.13)

The Saururaceae consist of perennial herbs. The leaves are spiral, simple, and stipulate, the stipules adnate to the petiole. The inflorescence is a bracteate spike or raceme, with involucrate bracts enlarged and petal like in some taxa. The flowers are bisexual, hypogynous. The perianth is absent. The stamens are 3, 3+3, or 4+4, apostemones, adnate to the base of the gyroecium in some taxa. Anthers are longitudinally in dehiscence. The gyroecium is syncarpous or apically apocarpous, with a superior ovary, 3 5 carpels, and one locule. The styles are 3 5. Placation is parietal (to marginal in Saururus); ovules are orthotropous to hemitropic, bitemic, 1 10 per ovary. The fruit is an apically dehiscent capsule. The seeds are perispermous. Stems have 1 or 2 vascular bundle rings.

Members of the family have distributions in eastern Asia and N. America. Economic importance includes some cultivated ornamentals. See Meng et al. (2003) for a recent phylogenetic analysis of the family.

The Saururaceae are distinctive in being perennial herbs with a bracteate spike or raceme and with flowers lacking a perianth, the ovary solitary, many-ovulate, the fruit a capsule.

\[\text{P 0 A 3, 3+3, or 4+4 G (3-5), superior.} \]

CERATOPHYLLALES

This order, containing one family and genus (APG II 2003; Table 7.1), has been placed in different positions in various phylogenetic analyses, presumably because of long-branch attraction. Here it is placed as the sister group to the Eudicots, but some studies place it sister to the monocots.

Ceratophyllaceae Hornw rt family (Gr. cerato, horn + phyllum, leaf, from the forked leaves resembling horns). 1 genus/2 (30, depending on treatment) species. (Figure 7.14)

The Ceratophyllaceae consist of monoecious, floating or submerged, aquatic, perennial herbs with rootlike anchoring branches. The leaves are exstipulate, whorled, 3 10 per node, 1 4 dichotomously divided, and marginally serrulate. The inflorescence consists of solitary and axillary flowers, male and female usually on alternate nodes. Flowers are unisexual. The perianth is unisexual and consists of 8 12, basally fused, linear tepals. Stamens are generally numerous (5 27), spirally arranged on a flat receptacle; filaments are not clearly distinct from anthers, the thecae and connective apically two-pointed. The gyroecium is unicarpellous, with a superior ovary, 1 carpel, and 1 locule; placation is marginal with a solitary anatropous or orthotropous, unitegmic ovule. The fruit is an achene, with a persistent, spiny style; seeds are exalbuminous.

Members of the family are worldwide in distribution. Economically, Ceratophyllum demersum is used as an aquarium plant and as a protective cover in fisheries. See Les (1993) for more information on the family.

The Ceratophyllaceae are distinguished from related families in being monoecious, aquatic herbs with whorled, dichotomously branched, serrulate leaves, and solitary, unisexual flowers.

\[\text{P (8-12) A 5-27 G 1, superior.} \]

MONOCOTYLEDONS

The monocotyledons, or monocots (also known as the Monocotyledoneae or Liliidae), have long been recognized as a major and distinct group, comprising roughly 56,000 species, 22% of all angiosperms. All recent studies, including several molecular ones, agree with the notion that monocots are monophyletic (Figure 7.1). Monocots include the well-known aroids, arrowleaf, lilies, gingers, orchids, irises, palms, and grasses. Grasses are perhaps the most economically important of all plants, as they include grain crops such as rice, wheat, corn, barley, and rye.

Traditionally, monocots have been defined in part by the occurrence of floral parts in multiples of three. However, this
feature is now thought to represent an ancestral condition, one present or common in several basal, non-monocot lineages of flowering plants such as the Laurales, Magnoliales, and Piperales.

The phylogenetic relationships of the major groups of monocots, as summarized from recent studies, are seen in Figure 7.15. The monophyly of monocots is supported by several major morphological, anatomical, and ultrastructural apomorphies. These apomorphies will be discussed first, followed by a treatment of the major groups and exemplar families.

MONOCOT APOMORPHIES

First, all monocots have sieve tube plastids with cuneate (wedge-shaped) proteinaceous inclusions (Figure 7.16) of the P2 type; see Behnke (2000). This sieve tube plastid type (which can only be resolved with transmission electron microscopy) is found in all investigated monocotyledons, with some variation in form (Behnke 2000). Thus, it is likely that the cuneate, proteinaceous plastid type constitutes an apomorphy for the monocots (Figures 7.1, 7.15). The adaptive significance of this plastid type in monocots (if any) is unknown.

Second, all monocots have an atactostele stem vasculature, an apparent apomorphy for the group. An atactostele (Figure 7.17) consists of numerous discrete vascular bundles that, in cross-section, consist of two or more rings or (more commonly) appear to be rather randomly organized (but which actually have a high complexity of organization). In addition, no monocot has a true vascular cambium that produces true wood (Chapter 5); this feature is likely correlated with the evolution of the atactostele. Thus, for example, tall palm trees have no wood, relying on the deposition and expansion of cells during primary growth for support. Some monocots (e.g., members of the Agavaceae and Asphodelaceae) do have secondary growth by means of so-called anomalous cambia, but these do not develop as a single continuous cylinder that deposit rings of secondary tissue, as in plants that produce true wood. A few eudicots (e.g., some Nelumbonaceae) have evolved an atactostele, but this was most likely a secondary innovation. Atactostele may have evolved in response to selective pressure for adaptation to an aquatic habitat, but this is not clear.

Third, most monocots have parallel leaf venation (Figure 7.18), another apomorphy for the group. In leaves with parallel venation, the veins are either strictly parallel (as in most grasses), curved and approximately parallel, or penni-parallel (= pinnate-parallel). A penni-parallel leaf has a central midrib with secondary veins that are essentially parallel to one another (Figure 7.18). In all types of parallel venation, the ultimate veinlets connecting the major parallel veins are transverse and do not form a netlike reticulate venation (see Chapter 9) as found in almost all nonmonocotyledonous flowering plants. Parallel leaf venation is not a characteristic of all monocots. Numerous monocot taxa, for example some Araceae, the Dioscoreaceae (yam family), Smilacaceae (green briar family), and many others, have a reticulate leaf venation similar to that found in nonmonocots. However, the evidence supports the notion that a reticulate venation evolved in these monocot taxa secondarily, after the common evolution of parallel veins.

Fourth, all monocots have a single cotyledon (Figure 7.19), the feature responsible for the name monocot. A single cotyledon appears to be a valid apomorphy for all monocots.
Its adaptive significance, if any, is unknown. Some of the angiosperm lineages closely related to monocots may have a reduced second cotyledon, a possible precursor to the single cotyledon.

CLASSIFICATION OF THE MONOCOTYLEDONS

The orders of monocots and their included families are listed in Tables 7.2 and (for the Commelinid monocots) 7.3. The Acorales, which consists of the single family Acoraceae and the single genus *Acorus*, is the most basal monocot lineage as determined by numerous molecular analyses. The Alismatales, as treated here, includes the family Araceae, which is often treated in a separate order, the Arales. Note that the Asparagales, Dioscoreales, Liliales, Pandanales, and Commelinids form an unresolved polytomy. Finally, the Commelinid monocots form a well-resolved clade that consists of the Dasypogonaceae, the Arecales (the sole member being the Arecales, or Palmae, the palms), the Commeliniales, the Zingiberales (ginger group), and the Poales (grasses and their close relatives). See Chase et al. (2000a), Stevenson et al. (2000), and general references on angiosperm phylogeny for recent analyses of the monocots. See Rudall et al. (1995), Wilson and Morrison (2000), and Columbus et al. (2005) for collections of papers from monocot symposia.
ACORALES

The Acorales contain only one family, one genus, and 2-3 species. In molecular analyses, it usually comes out as the most basal lineage of the monocots (see general angiosperm phylogeny references; Duvall et al., 1993; Chase et al., 2000a; and Chen et al., 2002; however, see Stevenson et al., 2000).

Acoraceae Sweet Flag family (Acorus, meaning without pupil, originally in reference to a species of Iris used to treat cataracts). 1 genus/2-3 species. (Figure 7.20)

The Acoraceae consist of perennial herbs found in marshy habitats. The stems are rhizomatous. The leaves are ensiform, unifacial, distichous, sheathing, simple, undivided, exstipulate, and parallel veined, with intravaginal (axillary) squamules present. The inflorescence is a terminal spadix borne on a leaf-like peduncle and subtended by a long, linear spathe. The flowers are bisexual, actinomorphic, ebracteate, sessile, and hypogynous. The perianth is biseriate, of 3+3 distinct tepals. The stamens are biseriate, 3+3, apostemonous, with flattened filaments. Anthers are longitudinal and introrse in dehiscence. The gynoecium is syncarpous, with a superior ovary,
2 3 carpels, 2 3 locules, and a minute stigma. **Placentation** is apical-axile; **ovules** are ∞ per carpel, pendent. The **fruit** is a 1 5 [9] seeded berry , with a persistent perianth. The **seeds** are perispermous and endospermous. Aromatic ethereal oil cells are present. Raphide crystals are absent.

The Acoraceae are similar to the family Araceae (discussed later) in having a spadix and spathe, but is clearly separated from that family (within which it used to be placed) based on morphology and analyses of DNA sequence data. The Acoraceae differs from the Araceae in having ensiform, unifacial leaves, perispermous/endospermous seeds, and aromatic (ethereal) oil cells, and in lacking raphide crystals.

Members of the Acoraceae are distributed in the Old World and North America. Economic importance includes *Acorus calamus* used medicinally (e.g., as calamus oil), in religious rituals, as an insecticide, and as a perfume and flavoring plant (e.g., in liqueurs). See Grayum (1990) and Bogner and Mayo (1998) for more information on the family.

The Acoraceae are distinctive in being **marsh** plants with a **spadix** and **spathe** (resembling Araceae) but having **distichous, ensiform, unifacial** leaves, **perispermous and endospermous** seeds, and **ethereal oil cells**, and in **lacking raphide crystals**.

\[P_{3+3} \, A_{3+3} \, G_{(2-3)} \, \text{superior.} \]

FIGURE 7.18 Parallel venation, an apomorphy of the monocotyledons. **A.** Parallel venation (left) and penni-parallel venation (right). **B.** *Leymus condensatus* (Poaceae), an example of parallel venation. **C.** *Musa coccinea* (Musaceae), an example of penni-parallel venation.

TABLE 7.2 Orders and included families of Monocotyledons (excluding Commelinids, see Table 7.3), after APG II, 2003. Families in **bold** are described in detail. An asterisk denotes an acceptable deviation from APG II, with brackets indicating the more inclusive family recommended by APG II. A double asterisk indicates a change suggested by Angiosperm phylogeny Web site (Stevens, 2001 onwards). Including = incl.

MONOCOTYLEDONS

<table>
<thead>
<tr>
<th>PETROSAVIALES**</th>
<th>ASPARAGALES (continued)</th>
<th>DIOSCOREALES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petrosaviaceae</td>
<td>Asparagaceae*</td>
<td>Burmanniaceae</td>
</tr>
<tr>
<td>ACORALES</td>
<td>Asphodelaceae</td>
<td>Dioscoreaceae</td>
</tr>
<tr>
<td>*Acoraceae</td>
<td>[Xanthorrhoeaceae]</td>
<td>Nartheciaceae</td>
</tr>
<tr>
<td>ALISMATALES</td>
<td>Acoraceae</td>
<td>LILIALES</td>
</tr>
<tr>
<td>*Acoraceae</td>
<td>[Xanthorrhoeaceae]</td>
<td>Alstroemeriaceae</td>
</tr>
<tr>
<td>ACORALES</td>
<td>Acoraceae*</td>
<td>Campynemaceae</td>
</tr>
<tr>
<td>*Acoraceae</td>
<td>[Xanthorrhoeaceae]</td>
<td>Colchicaceae</td>
</tr>
<tr>
<td>ALISMATALES</td>
<td>Acoraceae</td>
<td>Corsiaceae</td>
</tr>
<tr>
<td>*Acoraceae</td>
<td>[Xanthorrhoeaceae]</td>
<td>Liliaceae</td>
</tr>
<tr>
<td>ALISMATALES</td>
<td>*Acoraceae</td>
<td>Luzuriagiaceae</td>
</tr>
<tr>
<td>*Acoraceae</td>
<td>[Xanthorrhoeaceae]</td>
<td>Melanthiaceae</td>
</tr>
<tr>
<td>LILIALES</td>
<td>*Acoraceae</td>
<td>Petermanniaceae**</td>
</tr>
<tr>
<td>*Acoraceae</td>
<td>[Xanthorrhoeaceae]</td>
<td>Philesiaceae</td>
</tr>
<tr>
<td>LILIALES</td>
<td>*Acoraceae</td>
<td>Rhipogonaceae</td>
</tr>
<tr>
<td>*Acoraceae</td>
<td>[Xanthorrhoeaceae]</td>
<td>Smilacaceae</td>
</tr>
<tr>
<td>LILIACEAE</td>
<td>*Acoraceae</td>
<td>PANDANALES</td>
</tr>
<tr>
<td>*Acoraceae</td>
<td>[Xanthorrhoeaceae]</td>
<td>Cyclanlanceae</td>
</tr>
<tr>
<td>LILIACEAE</td>
<td>*Acoraceae</td>
<td>Pandanaceae</td>
</tr>
<tr>
<td>*Acoraceae</td>
<td>[Xanthorrhoeaceae]</td>
<td>Stemonaceae</td>
</tr>
<tr>
<td>LILIACEAE</td>
<td>*Acoraceae</td>
<td>Triuridaceae</td>
</tr>
<tr>
<td>*Acoraceae</td>
<td>[Xanthorrhoeaceae]</td>
<td>Velloziaceae</td>
</tr>
<tr>
<td>LILIACEAE</td>
<td>*Acoraceae</td>
<td>COMMELINIDS (see Table 7.3)</td>
</tr>
</tbody>
</table>

Figure 7.20 ACORALES. Acoraceae. *Acorus calamus*. A. Whole plant. B. Close-up of spadix in orescence.
The Alismatales, sensu APG II (2003), contain 14 families, only two of which are described here. The order has often been split into the Arales (containing only the Araceae) and the Alismatales, s.s. (largely equivalent to the Alismatidae, sensu Cronquist, 1981, and Takhtajan, 1997), but some recent molecular studies unite these two groups. Notable among the families of the order that are not described here (see Figure 7.21) are the terrestrial Tofieldiaceae and a number of aquatic groups, including the Aponogetonaceae (e.g., Aponogeton distachyon), Cymodoceaceae (several marine sea-grasses), Hydrocharitaceae (Figure 7.21A,B, including marine sea-grasses such as Halophila and Thalassia, fresh water aquatics such as the aquarium plants Elodea and Vallisneria, and problematic weedy species of Elodea, Hydrilla, and Lagarosiphon), Juncaginaceae (Figure 7.21C,D), Posidoniaceae (Posidonia spp., marine sea-grasses), Potamogetonaceae (freshwater aquatics, Figure 7.21E,F), Ruppiaceae (Ruppi spp., fresh to brackish water plants), and Zosteraceae (including deep, marine sea-grass species such as Phyllospadix, Figure 7.21G J). See Les and Haynes (1995) and Les et al. (1997) for more information on the order.

Trichomes located in the axils of sheathing leaves, known as intravaginal squamules (see Chapter 9), are common in many Alismatales (also found in the Acorales). The evolution of raphide crystals (see Chapter 10) may constitute an apomorphy for the monocots after the Acorales lineage (Figure 7.15). However, if so, they have been secondarily lost in a number of monocot lineages, including many Poales, Zingiberales, and most of the Alismatales themselves (except for the Araceae).

Araceae Arum family (Arum, a name used by Theophrastus). 104 genera/ca. 3300 species. (Figures 7.22, 7.23)

The Araceae consist of terrestrial or aquatic shrubs, vines, or herbs (the vegetative body reduced and globose to thalloid in the Lemnoideae). The roots are often mycorrhizal, without root hairs. The stems are rhizomatous, cormose, tuberous, or reduced. The leaves are simple, bifacial, spiral, or distichous, sometimes highly divided or fenestrate (often exhibiting heteroblasty), with parallel, penni-parallel, or netted venation. The inflorescence is a terminal, many-flowered spadix (with a sterile apical portion in some), usually subtended by a prominent, often colored spathe, or reduced to 1-4 fowers in a small pouch in the Lemnoideae. Flowers are small, bisexual or unisexual (female flowers often proximal, and the male distal on a spadix), actinomorphic, sessile, ebracteate, hypogynous, sometimes foul-smelling. The perianth is biseriate and 2+2 or 3+3 [4+4] or absent, apotepalous or basally syntepalous, a hypogynous, sometimes foul-smelling. The fruit is typically a multiple of berries, less often dry, e., of utricles. Seeds are oily (sometimes also starchy) endospermous (rarely endosperm absent) with a sometimes fleshy seed coat. Some have cyanogenic compounds or alkaloids. Raphides are present and laticifers are common.

The Araceae are traditionally divided into several subfamilies; the traditional Lemnaceae (small, thalloid to globose aquatics with very reduced flowers; Figure 7.23E-G) are now known to be nested within the Araceae and may be classified as subfamily Lemnoideae. Members of the family have distributions in tropical and subtropical regions. Economic importance includes many taxa that are important food sources (from rootstocks, leaves, seeds, or fruits) in the tropics, e.g., Alocasia, Amorphophallus, Colocasia esculenta (taro), Monstera, Xanthosoma sagittifolium; indigenous medicinal, fiber (from roots), or arrow-poison plants; and numerous cultivated ornamentals, such as Aglaonema, Anthurium, Caladium (elephant’s ear), Dieffenbachia (dumb cane), Epipremnum, Monstera, Philodendron, Spathiphyllum, Syngonium, and Zantedeschia (calla lily). Amorphophallus titanum (Figure 7.23C) is unique in having among the most massive inflorescences of any flowering plant; Wolffia spp. (Figure 7.23F,G) are unique in having the smallest flowers. See Grayum (1990), French et al. (1995), and Mayo et al. (1998) for more information and detailed phylogenetic studies.

The Araceae are distinguished from related families in having bifacial leaves with parallel or netted venation, usually a spadix of numerous, small flowers with a subtending spathe, endospermous seeds, and raphide crystals.

| P | 2+2,3+3, (2+2), (3+3) or 0 (4+4, (4+4)) | A | 4.6,8 or (4.6,8) | [1-12] G | (3) [1-∞] superior |

Alismataceae Water-Plantain family (Alisma, a name used by Dioscorides for a plantain-leaved aquatic plant). 11 genera/ca. 80 species. (Figure 7.24)

The Alismataceae consist of perennial or annual, monococious, dioecious, or polygamous, floating to emergent, aquatic or marsh herbs. The stem is a corm or rhizome, the latter sometimes bearing tubers. The leaves are basal, simple, petiolate [rarely sessile], sheathing, spiral, and often dimorphic (the juvenile linear, adult leaves linear to ovate to triangular sagittate or hastate), parallel, or reticulate in venation. The inflorescence is a scapose raceme or panicle [sometimes
umbel-like], with flowers or flower axes whorled and spathe absent. **Flowers** are bisexual or unisexual, actinomorphic, subsessile to pedicellate, bracteate, hypogynous; the receptacle is flat or expanded and convex. The **perianth** is biseriate and dichlamydeous, trimerous, hypanthium absent. The **calyx** consists of 3, aposepalous sepals. The **corolla** consists of 3, apopetalous, caducous petals. **Stamens** are 6, 9, or \(3 \), whorled, distinct, free, uniseriate or biseriate (often in pairs); anthers are longitudinal, and extrorse or latrorse in dehiscence. The **gynoecium** is apocarpous, with a superior ovary, 3, 6, or \(3 \) carpels, and 1 terminal style and stigma; placentation is basal [rarely marginal]; ovules are anatropous, bitegmic, 1 \([3]\) per carpel. The **fruit** is an aggregate of achenes or of basally dehiscing follicles. **Seeds** are exalbuminous.

The Alismataceae have a worldwide distribution, esp. in N. temperate regions. Economic importance includes taxa used as food by indigenous people, others used as aquatic, cultivated ornamentals. See Haynes et al. (1998) for more information on the family.

The Alismataceae are distinguished from related families in consisting of **aquatic or marsh herbs** with **basal** leaves, usually **whorled** flowers or flower axes, and **dichlamydeous** flowers with an **apocarpous** gynoecium having **basal placentation**.

ASPARAGALES

The Asparagales, sensu APG II (2003), contain approximately 24 families of monocotyledons, including a large and diverse number of taxa (Table 7.2, although note that many...
families could alternatively be united). A possible apomorphy uniting the order (aside from molecular sequence data) is the presence of seeds having a seed coat containing a black substance called phytomelan (Figure 7.25). The phytomelaniferous seeds of the Asparagales have apparently been lost in some taxa, particularly those that have evolved fleshy fruits.

Family delimitations of the Asparagales have undergone a number of changes in recent years and more work is needed before these stabilize. Seven families are described here. Notable among the others are the Agapanthaceae, with Agapanthus spp. being common cultivars (Figure 7.26A,B); Asparagaceae, including the vegetable, Asparagus officinalis, and several ornamental species, such as A. setaceus, asparagus fern; Blandfordiaceae (Figure 7.26C); Doryanthaceae (Figure 7.26F); Hemerocallidaceae (Figure 7.26E), including Hemerocallis fulva, day-lily; Hyacinthaceae, including several ornamental cultivars; Hypoxidaceae (Figure 7.26H); Laxmanniaceae (Figure 7.26D,F); and Xanthorrhoeaceae, the grass trees (Figure 7.26L,M). See Fay et al. (2000) and Rudall (2003) for recent phylogenetic and morphological studies of the Asparagales.

Agavaceae Agave family (after Agave, meaning admired one). Ca. 8 (+12 +) genera/300+ species. (Figures 7.27, 7.28)

The Agavaceae consist of perennial subshrubs, shrubs, trees, or possibly herbs. The stems are acaulescent caudex, rhizome, bulb, or are arborescent, sympodial in taxa with branched stems, some species with anomalous secondary growth. The leaves are parallel veined, often large, xeromorphic, fibrous or rarely succulent, basal and rosulate or acrocaulus, spiral, simple, undivided, the apex or margin sometimes toothed or spined. The inflorescence is a panicle, raceme, or spike in some producing vegetative plantlets. The flowers are bisexual, actinomorphic or zygomorphic, bracteate, hypogynous or epigynous. The perianth is biseriate, homochlamydeous of 3+3 tepals, apotepalous or syn tepalous, a hypanthium present in some. The stamens are 6, distinct, the filaments long and thin to short and thick. Anthers are dorsifixed, versatile, longitudinal and introrse in dehiscence, tetrasporangiate, dithecal. The gynoecium is syncarpous, with a superior or inferior ovary and 3 carpels and locules. The style is solitary; stigmas are solitary or 3-lobed. Placenta tion is axile; ovules are anatropous, bitegmic, and in 2 rows per carpel. Septal nectaries are present. The fruit is a loculicidal or septical capsule or indehiscent (dry or fleshy). The seeds are black, phytomelanous, and flattened. Flowers are pollinated by bats, bees, hummingbirds, or moths; Tegiticaula moths have a symbiotic relationship with Yucca species, the female moths transferring pollen and ovipositing the ovaries (the developing larvae feeding on some of the seeds). The chromosomes are dimorphic in size, characteristically 5 long and 25 short.

Members of the Agavaceae occur in xeric to mesic habitats, with many found in dry areas, and often have CAM photosynthesis. The family is distributed in the New World, ranging from the central U.S. to Panama, Caribbean islands, and northern South America. Economic importance includes use by indigenous cultures as a source of fiber, food, beverages, soap, and medicinals. The leaves of Agave sisalana are the source of sisal fiber and A. fourcroydes of henequen. The fermented and distilled young flowering shoots of Agave tequilana are the primary source of tequila.

A recent study by Bogler et al. (2005) suggests that the Agavaceae could be expanded (as Agavaceae s.l.) to include at least four other basal genera, Camassia, Chlorogalum, Hesperocallis, and Hosta, with additional genera likely to be added. Many of these are herbaceous, and all seem to have dimorphic chromosomes as occur in traditional family members. See also Bogler and Simpson (1995, 1996) for phylogenetic studies within the family and Verhoek (1998) for a recent family treatment.

The Agavaceae are distinctive in being perennial subshrubs to branched trees with spiral, xeromorphic, generally fibrous leaves, trimerous hypogynous to epigynous flowers, and characteristic dimorphic chromosomes (base number with 5 long and 25 short chromosomes), the latter a possible apomorphy.

P 3+3 A 6 G (3), superior or inferior, hypanthium present in some.

Alliaceae Onion family (Latin name for garlic). 13 genera/ca. 600 species. (Figure 7.29)
CHAPTER 7 DIVERSITY AND CLASSIFICATION OF FLOWERING PLANTS

The Alliaceae consist of biennial or perennial herbs, usually with a distinctive onion-like (alliaceous) odor. The stems are acaulescent and usually a bulb, rarely a short rhizome or corm, typically enveloped by membranous scale leaves or leaf bases. The leaves are simple, basal, spiral, closed-sheathing, acicular, linear, or lanceolate [rarely ovate], parallel veined. The inflorescence is a terminal, scapose umbel (derived from condensed, monochasial cymes, sometimes termed a pseudo-umbel), rarely a spike or of solitary flowers, with membranous and spathelike bracts. The flowers are bisexual, actinomorphic, pedicellate (pedicels sometimes apically articulate), membranous-bracteate, and hypogynous. The perianth is biseriate, homochlamydeous, campanulate to tubular, hypanthium absent, with 3 outer and 3 inner, distinct to connate tepals, a corona sometimes present. The stamens are 3+3 [rarely 3 or 2 with staminodes], whorled, diplostemonous, biseriate, unfused or epitepalous; the filaments are generally flat. Anthers are versatile, longitudinal and introrse in dehiscence. The gynoecium is syncarpous, with a superior [rarely half-inferior] ovary, 3 carpels, and 3 locules. The style is solitary, terminal or gynobasic; the stigma is solitary, trilobed to capitate, dry to wet. Placentation is axile; ovules are campylotropous to anatropous, 2 ∞ per carpel. Septal nectaries are present. The fruit is a loculicidal capsule. The seeds are black, phytomelanous, ovoid, ellipsoid or subglobose, endospermous, the endosperm rich in oils and aleurone. Family members contain alliin, which is enzymatically converted by wounding to allyl sulfide compounds, the latter imparting the distinctive onion-like odor and taste.

The Alliaceae have a mostly worldwide distribution, mainly northern hemisphere, S. American, and S. African. Economic importance includes important food and flavoring plants, including onion (Allium cepa), garlic (A. sativum), leek (A. ampeloprasum), chive (A. schoenoprasum), and other Allium species. Garlic also has documented medicinal properties. Several taxa are used as ornamental cultivars,
CHAPTER 7 DIVERSITY AND CLASSIFICATION OF FLOWERING PLANTS

e.g., *Ipheion*, *Leucocoryne*, and *Tulbaghia* spp. See Rahn (1998a) for a recent family treatment of the Alliaceae.

The Alliaceae are distinctive in being generally *bulbous herbs*, with *basal*, usually *narrow* leaves, an *umbellate* inflorescence, and a usually *superior ovary*.

Amaryllidaceae Amaryllis family (Latin name for a country girl). 59 genera / 850 species. (Figure 7.30)

The Amaryllidaceae consist of terrestrial, rarely aquatic or epiphytic, perennial herbs. The stems are bulbs, covered by membranous leaf bases, the tunica. The leaves are simple, undivided, spiral or distichous, sheathing or not, sessile or petiolate, and parallel veined. The inflorescence is a terminal, scape petioloel umbel (derived from condensed, monochasial cymes, sometimes termed a pseudo-umbel), rarely of solitary flowers, with bracts present, enclosing the flower buds. The flowers are bisexual, actinomorphic or zygomorphic, pedicellate or sessile, bracteate, epigynous to epipetalous.

The perianth is biseriate, homochlamydeous, trimerous, apotepalous or syntepalous, and forming a short to long hypanthial tube, sometimes with a perianth corona (e.g., *Narcissus*). The stamens are generally biseriate, 3+3 [3,18], distinct or connate, forming a staminal corona in some (e.g., *Hymenocallis*). Anthers are usually dorsifixed, longitudinal [rarely poricidal], and introrse in dehiscence. The gynoecium is syncarpous, with an inferior ovary, 3 carpels, and 3 [1] locules. Placentation is axile or basai; ovules are anatropous, bitegmic, unitegmic, or ategmic. The fruit is a loculicidal capsule or rarely a berry. The seeds are phytomelaniferous.

The Amaryllidaceae have a worldwide distribution, being especially concentrated in South America and South Africa. Economic importance is primarily as innumerable cultivated ornamentals, such as *Amaryllis* (belladonna-lily), *Crinum*, *Galanthus* (snowdrop), *Hippeastrum* (amaryllis), *Leucojum* (snowflake), *Lycoris* (spider-lily), and *Narcissus* (daffodil);
several taxa are used by indigenous peoples for medicinal, flavoring, psychotropic, or other purposes. See Meerow and Snijman (1998) and Meerow et al. (1999, 2000) for phylogenetic studies of the family.

The Amaryllidaceae are distinctive in being perennial, bulbous herbs with an umbellate inflorescence and an inferior ovary. P 3+3 or (3+3) A 3+3 or (3+3) [3-18] G (3), inferior, hypanthium present.

Asphodelaceae Asphodel or Aloe family. 15 genera / 780 species. (Figure 7.31)

The Asphodelaceae consist of herbs to [rarely] pachycaulous trees. Roots are often succulent, with a velamen in some taxa. The stems exhibit anomalous secondary growth in some taxa, as in Aloe. The leaves are usually succulent, simple, spiral to distichous, undivided, parallel-veined, and dorsiventral to terete, the margins entire to toothed or spinose. The inflorescence is a raceme or panicle. The flowers are bisexual, actinomorphic or zygomorphic, pedicellate, bracteate or not, hypogynous. The perianth is biseriate, homochlamydeous, 3+3, apotepalous or syntepalous. The stamens are 3, opposite the outer tepals, introrse in dehiscence. The gynoecium is syncarpous, with an inferior (superior in Isophysis only) ovary, 3 carpels and locules, style(s) terminal, petaloid in many Iridoideae; placentation is axile (rarely parietal); ovules are anatropous, bitegmic, 1 ≈ per carpel. Thefruit is a loculicidal capsule; seeds are endospermous with a dry or fleshy seed coat.

The Iridaceae has been classified into two subfamilies, Isophysidoideae (one genus, Isophysis, having a superior ovary) and Iridoideae (all other genera, with an inferior ovary). Within the latter subfamily are three commonly recognized tribes: Iridoideae and Nivenioideae with radial, pedicellate flowers and rhipidia enclosed by large, spathelike bracts (Nivenioideae differing in having paired rhipidia) and Ixioideae with radial or bilateral, sessile flowers (two bracts at base) usually with a long perianth tube and arranged on a spike or flowers solitary. Members of the family have a worldwide distribution, being especially diverse in southern Africa. Economic importance includes Iris spp. (esp. A. vera and A. ferox, from which aloin is derived), which have important uses medicinally (e.g., as laxatives and treatment of burns) as well as in skin, hair, and health products; many family members are important as cultivated ornamentals, e.g., Aloe, Asphodelus, Gasteria, Haworthia, Kniphofia. See Smith and v. Wyk (1998) for a recent family treatment and Chase et al. (2000b) for a phylogenetic analysis of the family.

The Asphodelaceae are distinguished from related taxa in being herbs or pachycaulous trees with leaves usually succulent, flowers trimerous with a superior ovary, and the seeds arillate.

P 3+3 or (3+3) A 3+3 G (3), superior.

Iridaceae Iris family (after Iris, mythical goddess of the rainbow). 70 genera/1750 species. (Figure 7.32)

The Iridaceae consist of perennial [rarely annual] herbs or shrubs with anomalous secondary growth, achlorophyllous and saprophytic in Geosiris. The stems are rhizomatous, cormose, bulbous, or a woody caudex. The leaves are unifacial (with leaf plane parallel to stem) or terete, simple, narrow and generally ensiform, sheathing, often equitant, distichous, and parallel-veined [scalelike and achlorophyllous in Geosiris].

The inflorescence is a terminal spike, solitary flower, or a spike or panicle of clusters of 1 many monochasial cymes (often rhipidia), typically subtended by two spathelike bracts; inflorescence subterranean in Geosiris. Flowers are bisexual, actinomorphic or zygomorphic, pedicellate or sessile, bracteate, epigynous or rarely hypogynous (Isophysis). The perianth is biseriate, homochlamydeous, 3+3, apotepalous or syntepalous (forming a prominent tube in Ixioideae), a hypanthium present or absent. Stamens are 3, opposite the outer tepals, distinct or monadelphous; anthers are longitudinally extrorse or poricidal in dehiscence. The gynoecium is syncarpous, with an inferior (superior in Isophysis only) ovary, 3 carpels and locules, style(s) terminal, petaloid in many Iridoideae; placentation is axile (rarely parietal); ovules are anatropous, bitegmic, 1 ≈ per carpel. The fruit is a loculicidal capsule; seeds are endospermous with a dry or fleshy seed coat.

The Iridaceae is distinguished from related families in being usually perennial herbs with generally ensiform, unifacial leaves, a bracteate spike or panicle of solitary flowers or monochasial cyme (rhipidia) clusters, and flowers with three stamens opposite outer tepals. P 3+3 or (3+3) A 3 or (3) G (3), inferior (superior in Isophysis).

Orchidaceae Orchid family (orchis, testicle, from the shape of the root tubers). 700 800 genera / ca. 20,000 species. (Figures 7.33 7.36)

The Orchidaceae consist of terrestrial or epiphytic, perennial [rarely annual] herbs [rarely vines]. The roots are often
ASPARAGALES. Iridaceae. A. Iris sp., showing unifacial leaves that are equitant and distichous. B. Dietes sp., showing the three outer tepals, three inner tepals, and petaloid styles (corresponding in position to the three carpels). C. Iris sp., with petaloid style pulled back to show stamen opposite outer tepal. D. Crocus sp. E. Chasmanthe aethiopica, an example of a zygomorphic member of the family. F. Iris sp., inferior ovary cross-section, showing axile placentation. G,H. Sisyrinchium bellum. G. Whole flower. H. Close-up of flower, showing central connate stamens. I. Close-up of connate anthers. J. Melasphaerula ramosa. K. Pillansia templemannii. L. Moraea fugax. M. Tritoniopsis.
tuberous (in terrestrial species) or aerial (in epiphytic species), typically with a multilayered velamen. The stems are rhizomatous or cormose in terrestrial species, the epiphytic species often with pseudobulbs. The leaves are spiral, distichous, or whorled, usually sheathing, simple, and parallel veined. The inflorescence is a raceme, panicle, spike, or a solitary flower. The flowers are bisexual, rarely unisexual, zygomorphic, usually resupinate, resulting in a 180° shift of floral parts (Figure 7.36), epigynous. The perianth is biseriate, homochlamydeous (although outer and inner whorls are often differentiated), 3+3, apotepalous or basally syntepalous, extremely variable in shape and color, sometimes spurred or with enlarged saclike tepal. The inner median, anterior tepal (when resupinate; actually posterior early in development)
Vanilloids

Apostasioids

Cypripedioids

Orchidoids

"Lower Epidendroids"

Higher Epidendroids

flowers resupinate (reversed in some)

pollen grains aggregated into pollinia

inner stamens reduced to staminodes

parietal placentation

pollen grains united into tetrads

loss of adaxial stamens

inner stamens reduced to staminodes

outer median stamen reduced to staminode

staminodes (if present)

staminodes

fertile stamen

bract

fertile stamen

stamens (if present)

bract

fertile stamen

staminodes

inner median posterior tepal

outer tepal

bract

inner median anterior tepal (labellum)

fertile stamen (outer whorl, median anterior)

inner, median posterior tepal

staminodes (inner whorl, latero-anterior)

staminodes

fertile stamen

resupination (180° twist)

inner median anterior tepal (labellum)

outer median stamen reduced to staminode

Figure 7.35 ASPARAGALES. Orchidaceae. Cladogram of major orchid groups, after Cameron et al. (1999), with putative apomorphies; oral diagrams of Apostasioids, Cypripedioids, and all other orchids (lower), after Dahlgren et al. (1985).

Figure 7.36 ASPARAGALES. Orchidaceae. Floral diagram before (left) and after (right) resupination.
is termed the labellum, which is typically enlarged, sculptured, or colorful and often functions as a landing platform for pollinators. The stamen in most species is solitary, derived from the median stamen of the ancestral outer whorl, often with two vestigial staminodes derived from the lateral stamens of an ancestral inner whorl; in Apostasioideae or Cypripedioideae, there are two or three fertile stamens, when two, derived from the two lateral stamens of the ancestral inner whorl, when three, derived from these plus the median stamen of the outer whorl; the androecium is fused with the style and stigma to form the gynostemium (also called the column or gynostegium). Anthers are longitudinally or modified in dehiscence, bisporangiate, dithecal; in all but the Apostasioidae and most Cypripedioideae, the pollen is agglutinated into 1 12 (typically 2 or 4) discrete masses, each termed a pollinium (deri ved from individual anther microsporangia or from fusion products or subdivisions of the microsporangia); the pollinia plus a sticky stalk (derived from either the anther or stigma) are together termed a pollinarium, the unit of transport during pollination, the anther connective often modified into an operculum (anther cap) that covers the anther(s) prior to pollination. The pollen consists of tetrads in most family members, mas-sulae in some, monads in Apostasioidae and Cypripedioideae. The gynoecium is syncarpous, with an inferior ovary, 3 carpels, and 1 3 locules. The style is solitary and terminal and is the major component of the gynostemium; a single, enlarged lobe, termed the rostellum and interpreted as part of the stigma(s), is positioned above the stigmatic region; the rostellum typically is adherent to the pollinarium stalk, the tip of which derives a sticky substance from the surface of the rostellum (this sticky region termed the viscidium). Placentation is parietal or axile; ovules are anatropous, usually bitegmic, very many per carpel (sometimes on the order of a million). Nectaries are typically present, variable in position and type. The fruit is a loculicidal capsule or rarely a berry. The seeds are often membranous-winged, possibly functioning in wind dispersal, and exalbuminous, the endosperm abortive early in development. Pollination is effected by various insects (often one species having a specific association with one orchid species), birds, bats, or frogs. The transfer of pollen grains together within the pollinia is an apparent adaptation for ensuring fertilization of many of the tremendous number of ovules. Some species have remarkable adaptations for pollination. Among the more remarkable are several species with visual and chemical mimicry, fooling a male insect into perceiving the flower as a potential mate. The bucket orchid, Coryanthes, has an pouchlike labellum that fills with a fluid secreted from the gynostemium; a bee, falling into this fluid, must travel through a tunnel, forcing deposition of the pollinarium on its body.

The Orchidaceae consist of the basal Apostasioideae or Apostasiods (2 3 stamens, axile placentation, lacking pollinia), Cypripedioideae or Cypripedioi (2 stamens, parietal placentation, lacking pollinia), and the remainder of the orchids (1 stamen, parietal placentation, pollinia), the latter grouped by Cameron et al. (1999) into the Vanilloids, Orchidoids, a paraphyletic Lower Epidendroids, and Higher Epidendroids (Figure 7.35). Members of the family are distributed worldwide. Economic importance is largely as cultivated ornamentals, including some quite monetarily valuable in the horticultural trade; the fermented capsules of Vanilla planifolia (Figure 7.33B) are the source of vanilla food flavoring. Angraecum sesquipedale Thouars (Madagascar) is known for its long spur (up to 45 cm long); this orchid is pollinated by a moth with a proboscis of that spur length, a fact that Charles Darwin predicted prior to the discovery of the moth. See Cameron et al. (1999), Cameron and Chase (2000), and Cameron (2004) for recent phylogenetic analyses of the orchids.

The Orchidaceae are distinctive in consisting of mycorrhizal, mostly perennial, terrestrial or epiphytic herbs having trimerous, often resupinate flowers with a showy labellum, the androecium and gynoecium adnate (termed a column, gynostegium, or gynostemium), the pollen grains often fused into 1 several masses (pollinia), bearing a sticky-tipped stalk, pollinia and stalk termed a pollinarium, which is the unit of pollen dispersal during pollination. P (3 3 A 1 3, when 1 a pollinarium G (3), inferior, with gynostemium.

Themidaceae The Brodiaea family. ca. 12 genera / ca. 60 species. (Figure 7.37)

The Themidaceae consist of perennial herbs. The stems are corms, typically with a membranous to fibrous covering from previous leaf bases, termed a tunica. Leaves are simple, closed-sheathing, flat, terete, or fistulose, acicular, linear, or lanceolate in outline. The inflorescence consists of a terminal scapose umbel. Flowers are bisexual, actinomorphic, and hypogynous. The perianth is biseriate and homochlamydeous, tepals 3 3, connate below or distinct. Stamens are 6 (3 3) or 3 (3 outer stamini + 3 fertile, or 3 fertile in the position of the inner whorl), whorled, diplosite-monous or antipetalous, usually distinct. The gynoecium is syncarpous; the ovary is superior, with 3 carpels, 3 locules, and 1 terminal style. Placentation is axile with 2 many ovules per carpel. The fruit is a loculicidal capsule. Seeds are ovoid, ellipsoid, or subglobose, endospermous, rich in oils and aleurone. An onionlike (alliaceous) odor is absent.
Members of the Themidaceae are distributed in North America from S.W. Canada to Central America. There are no economic uses other than a few being used in cultivation. See Fay and Chase (1996) regarding the resurrection of the Themidaceae, Rahn (1998b) for detailed information on the family, and Pires and Sytsma (2002) for a phylogenetic analysis.

The Themidaceae are distinctive in being perennial, cormose herbs, lacking an onionlike odor, and having an umbellate inflorescence.

\[P \ 3+3 \ A \ 3+3, \ 3+3 \text{ staminodes, or } 0+3 \ G \ (3), \text{ superior.} \]

DIOSCOREALES

This order contains three families in APG II (2003): Burmanniaceae, Dioscoreaceae, and Nartheciaceae (Table 7.2). Only the Dioscoreaceae (united in APG II with the Taccaceae and Trichopodaceae) are described here. See Caddick et al. (2002a,b) for a recent cladistic analysis of the group.

Dioscoreaceae

Yam family (after Dioscorides, Greek herbalist and physician of 1st century a.d.). 4 genera / 300+ species. (Figure 7.38)

The Dioscoreaceae consist of dioecious or hermaphroditic, perennial herbs. The stems are rhizomatous or tuberous, often with climbing aerial stems, secondary growth present in some taxa. The leaves are spiral, opposite, or whorled, petiolate (typically with a pulvinus at proximal and distal ends), simple to palmate, undivided to palmately lobed, stipulate or not, with parallel or often net (reticulate) venation, the primary veins arising from the leaf base. The inflorescence is an axillary panicle, raceme, umbel, or spike of monochasial units (reduced to single flowers), with prominent involucral bracts in Tacca. The flowers are bisexual or unisexual, actinomorphic, pedicellate, bracteate or not, and epigynous.
The **perianth** is biseriate, homochlamydeous, 3+3, a hypanthium absent or present. The **stamens** are 3+3 or 3+0, whorled, diplostemonous or antisepalous, distinct or monadelphous, free or epitepalous. **Anthers** are longitudinal and introrse or extrorse in dehiscence, tetrasporangiate, dithecal. The **gynoecium** is syncarpous, with an inferior ovary, 3 carpels, and 3 locules. The **style(s)** are 3 or 1 and terminal; **stigmas** are 3. **Placentation** is axile or parietal; **ovules** are 1 2 [∞] per carpel. The **fruit** is a capsule or berry, often winged, 1 3 locular at maturity. **Seeds** are exalbumnous.

Members of the Dioscoreaceae have a mostly pantropical distribution. The family as most recently circumscribed...
contains 4 genera: *Dioscorea*, *Stenomeris*, *Tacca* (previously classified in Taccaceae), and *Trichopus* (sometimes classified in Trichophodaceae). Several segregate genera have been merged into *Dioscorea* (Caddick et al. 2002). Economic importance includes various species of *Dioscorea*, the true yam, which are very important food sources in many tropical regions and which are also a source of steroidal saponins, used pharmaceutically in semisynthetic corticosteroid and sex hormones (especially birth control products) and used indigenously as a poison or soap. See Caddick et al. (2002) and Huber (1998a,b).

The Dioscoreaceae are distinctive in being perennial, *hermaphroditic or dioecious, rhizomatous or tuberous* herbs with *simple to palmate leaves* having *net venation* and *epigynous*, trimerous flowers. **P** 3+3 **A** 3+3 or 3+0 **G** (3), inferior, hypanthium absent or present.

LILIALES

The Liliales is a fairly large group of monocotyledons that include 10 families (Table 7.2; Figure 7.39). As with the Asparagales, family delimitations of the Liliales have undergone a number of changes in recent years. Only the Liliaceae is described here. Notable among the other families are the *Alstroemeriaeae* (Figure 7.39A D), *Alstroemeria* being a commonly cultivated ornamental, having interesting resupinate leaves; *Colchicaceae* (Figure 7.39E), containing *Colchicum autumnale*, autumn-crocus, source of colchicine used medicinally (e.g., formerly to treat gout) and in plant breeding (inducing chromosome doubling); *Melanthiaceae* (Figure 7.39G I); *Philesiaceae* (Figure 7.39F); and *Smilacaceae* (Figure 7.39J), including *Smilax* (Figure 7.39G I); and *Tulipa*. See Hayashi and Kawano (2000), Patterson and Givnish (2002), and Tamura (1998a,b).

The Liliaceae are characterized in being *perennial, usually bulbous herbs, lacking an onion-like odor*, with basal or cauli- line leaves, the inflorescence a *raceme, umbel or of solitary flowers* with a *superior* ovary. **P** 3+3 **A** 3 **G** (3), superior.

PANDANALES

This order contains five families in APG II (2003), only one of which is described here. Notable among the other four is the Cyclanthaceae, containing *Carludovica palmata*, source of fiber, e.g., for Panama hats. See general references for more information on the order.

The Pandanaceae consist of perennial, dioecious, woody trees, shrubs, or vines. The adventitious roots are often branched, prop roots. The stems are sympodially branched, with prominent, encircling leaf scars. The leaves are acrocaulic, 3- or 4-ranked, appearing spiral because of twisting of the stem, sheathing, simple, undivided, linear to ensiform, parallel veined, the margin and adaxial midrib typically with prickles. The inflorescence is a terminal, rarely axillary, panicle, spike, or raceme or a pseudo-umbel of spikes or spadices subtended
CHAPTER 7 DIVERSITY AND CLASSIFICATION OF FLOWERING PLANTS

A. Whole plant, showing acrocaulis, narrow leaves.
B. Sympodial branching.
C. Whole plant, showing acrocaulis, narrow leaves.
D. Fruit, a multiple fruit of berries.
E. Base of stem with prop roots.
F. Male inflorescence.
G. Male flowers, close-up.
by spathes. The flowers are minute, usually unisexual, often with pistillodes or staminodes present, pedicellate, bracteate, hypogynous. The perianth is absent or an obscure 3-4-lobed, cuplike structure. The stamens are \(\infty \); filaments are fleshy. The gynoecium is syncarpous, with a superior ovary and \(1 \approx \) carpels and locules. Ovules are anatropous, bitegmic, \(1 \approx \). The fruit is a berry or drupe, forming multiple fruits in some taxa.

Members of the Pandananaceae are distributed from western Africa east to the Pacific islands. Economic importance includes use as ornamentals in some taxa and uses by indigenous people for thatch (for roofing), weaving, fiber, food (fruits and stems), spices, and perfumes. See Cox et al. (1995) and Stone et al. (1998) for more information on the family.

The Pandananaceae are distinctive in being mostly dioecious, sympodially branched, woody plants with prop roots, 3- or 4-ranked, simple, acrocaulis, linear to ensiform leaves (appearing spiral), and small, usually unisexual flowers of variable morphology, the fruit a berry or drupe, multiple in some.

P (3-4) or 0 A \(\infty \) (male) G 1(\(\approx \)) (female), superior.

COMMELINIDS

The Commelinids (also called the Commelinoids) are a monophyletic assemblage of monocots, as evidenced by morphological and molecular data (Figure 7.42). The Commelinids are characterized by an apparent chemical apomorphy, the presence of a class of organic acids (including coumaric, diferulic, and ferulic acid) that impregnate the cell walls. These acids can be identified microscopically in being UV-fluorescent (Figure 7.43). The orders and families of the Commelinids (after APG II, 2003) are listed in Table 7.3).

The Commelinids include a number of economically important plants, including the palms (Areaceae), gingers and bananas (Zingiberales), and grasses (Poaceae). The grass family in particular is perhaps the most important family of plants, as grasses include the grain crops. As can be seen from Figure 7.42, the Dasypogonaceae and Arecaceae (palm family) are likely the most basal members of the Commelinid monocots. See Givnish et al. (1999), Chase et al. (2000a), and Davis et al. (2004) for recent analyses.

FIGURE 7.42 Major clades of the commelinid monocotyledons, modified from APG II (2003) with selected apomorphies shown.
ARECALES

This order contains the single family Arecaceae. See Dransfield and Uhl (1998), Asmussen et al. (2000), Hahn (2002), and Lewis and Doyle (2001) for information and phylogenetic analyses of the palms.

Arecaceae (Palmae) Palm family (from areca, Portuguese for the betel palm). ca. 190 genera / ca. 2000 species. (Figures 7.44, 7.45)

The Arecaceae consist of perennial trees, large rhizomatous herbs, or lianas. Plant sex is variable, and secondary growth is absent. The roots are mycorrhizal, lacking root hairs. The stem is usually arborescent, consisting of a single, unbranched trunk [dichotomously branched in Hyphaene], or a cespitose cluster of erect stems, or a stout, dichotomously branched rhizome (Nypa), or an elongate liana with long internodes (rattan palms). The leaves are typically quite large, generally terminal (acrocaulis), spiral [rarely distichous or tristichous], with a sheathing base and an elongate, stout petiole (sometimes referred to as pseudo-petiole) between the sheath apex and blade. In arborescent taxa the sheathing bases of adjacent leaves may overlap one another, forming a distinctive crownshaft at the trunk apex. Leaves are simple, pinnate, bipinnate, costapalmate, or palmate; if simple, the leaves are often pinnately or palmately divided, sometimes bifid, with leaflet spines present in some taxa. Leaves are typically ligulate (with an appendage, the ligule, at the inner junction of blade and petiole); in taxa with palmate leaves, another distinctive process, called the hastula, may be present at the junction of the petiole and blade. The leaf blade is characteristically plicate (pleated), with the leaflets or blade divisions in cross-section either induplicate (V-shaped, with the point of the fold below, or abaxial) or reduplicate (A-shaped, with the point of the fold above, or adaxial). Venation is pinnate- or palmate-parallel. The inflorescence is typically an axillary, bracteate panicle or spike of solitary flowers or of cyme units, the inflorescence arising either below (infrafoliar) or among (interfoliar) or above (suprafoliar) the leaves of the crownshaft. The peduncle is subtended by an often large prophyll and 1∞spathes. The flowers are unisexual or bisexual, actinomorphic, sessile, and hypogynous. The perianth is usually biseriate and homochlamydous, 3+3 [0, 2+2, or ∞], apotepalous. The stamens are 3+3 [3 or ∞], distinct or connate, epipetalous in some spp., stamnodes present in some spp. Anthers are longitudinal, rarely poricidal, in dehiscence. The gynoecium is syncarpous or

FIGURE 7.43 Leaf cross-section of Lachnanthes caroliniana (Haemodoraceae), showing the UV fluorescence of nonlignified cell walls (center). This fluorescence is indicative of the presence of certain organic acids, apomorphic for the Commelinid monocots.

TABLE 7.3 Orders and included families of the Commelinid Monocotyledons, after APG II (2003). Families in bold are described in detail.

<table>
<thead>
<tr>
<th>COMMELINIDS</th>
<th>ZINGIBERALES</th>
<th>POALES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dasypogonaceae</td>
<td>Cannaceae</td>
<td>Anarthriaceae</td>
</tr>
<tr>
<td>ARECALES</td>
<td>Costaceae</td>
<td>Bromeliaceae</td>
</tr>
<tr>
<td>Arecaceae (Palmae)</td>
<td>Heliconiaceae</td>
<td>Centrolepidaceae</td>
</tr>
<tr>
<td>COMMELINALES</td>
<td>Lowiaceae</td>
<td>Cyperaceae</td>
</tr>
<tr>
<td>Commelinaceae</td>
<td>Marantaceae</td>
<td>Echinochloaceae</td>
</tr>
<tr>
<td>Haemodoraceae</td>
<td>Musaceae</td>
<td>Eriocaulaceae</td>
</tr>
<tr>
<td>Hanguanaceae</td>
<td>Strelitziaceae</td>
<td>Flagellariaceae</td>
</tr>
<tr>
<td>Philydraceae</td>
<td>Zingiberaceae</td>
<td>Hydatellaceae</td>
</tr>
<tr>
<td>Pontederiaceae</td>
<td></td>
<td>Joinvilleaceae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Juncaceae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mayacaceae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Poaceae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Gramineae)</td>
</tr>
<tr>
<td>POALES (continued)</td>
<td></td>
<td>Rapateaceae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Restionaceae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sparganiaceae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thurniaceae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(including Prioniaceae)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Typhaeaceae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Xyridaceae</td>
</tr>
</tbody>
</table>
FIGURE 7.44 ARECALES. Arecaceae. A. Archontophoenix cunninghamiana, king palm, showing single, unbranched trunk with acrocaulc crown of pinnately compound leaves and lateral in oressences below crownshaft (infrafoliar). B. Phoenix dactylifera, date palm, with several in oressences arising within crownshaft (interfoliar). C. Syagrus romanzof ana, queen palm, with pinnate leaves. D. Washingtonia robusta, with palmately divided leaves. E. Licuala peltata, with palmately lobed leaves. F. Livistona drudei leaf close-up, showing ligula at junction of petiole and blade. G. Jubaea chilensis leaf close-up, showing plicate posture of pinnate leaves. H. Reduplicate (Syagrus romanzof ana) and induplicate (Phoenix dactylifera) leaf posture. Adaxial side of leaf blade is at top.
UNIT II EVOLUTION AND DIVERSITY OF PLANTS 187

apocarpous, with a superior ovary, usually 3 [1, 2, 4, \(\infty\)] carpels, and 3 or 1 [\(\infty\)] locules. The styles, if present, are distinct or connate; stigmas are sessile or at tip of styles. Placentation is variable; ovules are variable in type, bitegmic, and 1 per locule. Septal nectaries are present in some taxa. The fruit is fleshy or fibrous, usually a drupe, rarely dehiscent, some with outer scales (Calamoideae), hairs, prickles, or other processes. Seeds are usually 1 per fruit and have an oil or hemicellulose-rich, sometimes ruminate, endosperm; starch is absent.

The Arecaceae have distributions mostly in warm, tropical regions and are often ecologically important where they occur. The family has recently classified into several subfamilies, including the Nypoideae, Calamoideae, Arecoideae, Coryphoideae, Phytelanthoideae, and Ceroxyloideae, although some of these are likely paraphyletic. The rhizomatous Nypoideae (Nypa) are thought to be the most basal palm lineage, with the lianous Calamoideae (Calamus and relatives) possibly next basal. Thus, it is likely that the arborescent habit that we typically associate with palms evolved from a rhizomatous habit within the family. The plicate leaf is a probable apomorphy for the family as a whole, as is the drupaceous fruit. (The family Cyclanthaceae and a few other scattered monocot taxa also have plicate leaves, but these are thought to have evolved independently.) The palms are of great economic importance, including uses as fruits (e.g., Cocos nucifera, coconut palm, Phoenix dactylifera, date palm), furniture/canes (rattan palms), fibers (e.g., coir from the mesocarp of Elaeis oleifera, oil palm), starch (e.g., Metroxylon, wax palm), and many species used indigenously as timber or in building construction; fruits of Areca catechu, betel palm, are chewed in India (with Piper betle leaves and lime) as a stimulant.

The Arecaceae are distinctive in having a rhizomatous, lianous, or usually arborescent stem, with large, sheathing, plicate leaves, a fleshy, usually drupaceous fruit, and seeds lacking starch. The plicate leaf posture and drupaceous fruit are likely apomorphies for the family.

P 3+3 [0,2,4,\(\infty\)] A 3+3 or (3+3) [3,\(\infty\); 0 in female fls.] G 3 or (3) [1,2,4,\(\infty\); 0 in male fls.], superior.

COMMELINALES, ZINGIBERALES, AND POALES

The taxa of the Commelinid monocots other than the Dasypogonaceae and Arecaceae are classified into the three orders Zingiberales, Commelinales, and Poales. All of these have seeds that contain endosperm rich in starch, an apparent apomorphy for the three orders (Figure 7.42). In contrast, the palms have seeds rich in oils and hemicellulose and lacking in starch.

The Commelinales and Zingiberales are sister taxa according to some phylogenetic analyses (see general angiosperm phylogeny studies; Chase et al. 2000a; Davis et al. 2004). A possible apomorphy uniting them is the presence of arylphenalenone chemical compounds (Figure 7.42), which are common in the Haemodoraceae and have been discovered also in some Pontederiaceae and Zingiberales.

COMMELINALES

The Commelinales, sensu APG II (2003) consist of five families, three of which are described here. One hypothesis of interrelationships and putative apomorphies is portrayed in Figure 7.42. The family Hanguanaceae has only recently been placed here. The Commelinales is not well defined morphologically, although floral tannin cells may constitute an apomorphy (Figure 7.42). The Haemodoraceae and Phyllydraceae have unifacial leaves, a likely apomorphy, but this would necessitate the reversal to bifacial leaves in the aquatic Pontederiaceae (Figure 7.42). The Haemodoraceae and Pontederiaceae may be united by the apomorphy of non-tectate-columellate pollen wall structure (Figure 7.42). See Givnish et al. (1999) and Davis et al. (2004) for recent phylogenetic analyses of the order.

Commelinaceae Spiderwort family (for Caspar Commelijn, Dutch botanist, 1667–1731). 39 genera/640 species. (Figure 7.46)

The Commelinaceae consist of mostly perennial herbs. The stems typically have swollen nodes. The leaves are spiral, sheathing (sheath closed), simple, undivided, with each half of the blade rolled adaxially toward the midrib early in development. The inflorescence is a cyme, rarely a raceme or of solitary flowers, the flowers often piercing the subtending bract. The flowers are usually bisexual, actinomorphic or zygomorphic, and hypogynous. The perianth is biseriate, usually dichlamydeous. The calyx consists of 3 distinct or basally fused sepals or lobes. The corolla contains 3, equal or unequal (anterior petal smaller), distinct or basally connate [sometimes clawed] petals or lobes, which are characteristically ephemeral. The stamens are usually 3+3, sometimes with 3 fertile and 3 staminodes [rarely of 1 fertile stamen], apostemous, the filaments often with pilose trichomes, fertile stamens sometimes dimorphic. Anthers are basifixid, versatile, longitudinally dehiscent [rarely poricidal apically and basally], with the connective often extended; prominent, antherodes (sterile anthers) present on staminodes.
The **gynoecium** is syncarpous, with a superior ovary, 3 carpels (the median carpel anterior), locules 3 or 1 at the apex only or 1 2 (the other locule(s) unde veloped or absent). **Placation** is axile; **ovules** are orthotropous to anatropous, bitegmic, 1 infinite in number. The **fruit** is a loculicidal capsule, rarely an indehiscent capsule or berry. The **seeds** are rarely winged or arillate, having a starchy endosperm. Plant surfaces typically bear 3-celled, glandular **microhairs**, a putative apomorphy for the family (Figure 7.42), and tissues often have raphide-containing mucilage cells.

Members of the Commelinaceae have distributions in most tropical to subtemperate regions worldwide. Economic importance includes ornamental cultivars, such as *Rhoeo* *Tradescantia*, and some local medicinal and edible species. See Faden (1998) and Evans et al. (2003) for recent treatments and phylogenetic analyses of the family.

The Commelinaceae are distinctive in being mostly perennial **herbs** with **closed sheathed** leaves and a trimerous, hypogynous flower with an **ephenereal** corolla, staminodia in some, most species with characteristic **3-celled glandular microhairs**, the latter a probable apomorphy for the family (Figure 7.42).

| K | 3 or (3) | C | 3 or (3) | A | 3 or 3 + 3 staminodes or 1 G (3), superior |

Haemodoraceae Bloodw ort family (Gr. *haimo*, blood, in reference to red pigmentation in roots and rootstocks of some members). 13 genera / 100 species. (Figures 7.47, 7.48)

The Haemodoraceae consist of perennial herbs. The **stems** are rhizomatous, stoloniferous or cormose. The **leaves** are simple, unifacial, mostly basal, distichous, sheathing and often equitant, undivided, narrow, flat or terete, and parallel veined. The **inflorescence** is a terminal thyrse or corymb of single or 2 3 branched monochasial cyme units, a simple raceme, or rarely reduced to a single flower. The **flowers** are bisexual, actinomorphic or zygomorphic, pedicellate, **corolla**, **staminodia** in **ephermal** coloration to stems and roots in almost all Haemodoroideae), simple, undivided, mostly basal, distichous, sheathing and often equitant, undivided, narrow, flat or terete, and parallel veined. The **gynoecium** is axile; **ovules** are anatropous, bitgmic, 1 2, 5 7, or infinite per carpel. Septal nectaries occur in most taxa. The **fruit** is a capsule or rarely a schizocarp. The **seeds** are globose, ellipsoid and ridged, or flattened and marginally winged, with starchy endosperm. Distinctive arylphenalenone chemicals are found in all investigated family members, comprising a reddish pigmentation in the roots and rhizomes of some taxa (hence the name Bloodwot).

The Haemodoraceae contain two monophyletic groups: Haemodoroideae [Haemodorea], with unbranched, pilate or tapering trichomes, 3 (1) stamens, and monosulcate pollen, and Conostylidoideae [Conostylideae], with branched to dendritic trichomes, 6 stamens, and porate pollen. Members of the family grow in seasonally wet habitats with distributions in S.W. and E. Australia, New Guinea, S. South Africa, N. South America, Central America and S. Mexico, Cuba, or E. to S.E. North America. Economic importance includes ornamental cultivars, especially *Anigozanthos* spp. (kangaroo-paws), and historical uses by native people for food and as euphorics. See Simpson (1990, 1998) and Hopper et al. (1999) for recent treatments of the family.

The Haemodoraceae are distinctive in being perennial herbs with **arylphenalenone** compounds (impacting a reddish coloration to stems and roots in almost all Haemodoraceae), **unifacial** leaves, and variable flowers.

| P | 3+3 or (3+3) or (6) | A | 1,3,6 | G (3), inferior or superior, hypanthesis present or absent |

Pontederiaceae Pick erel-Weed family (for Buillo Pontedera, former Professor of Botany at Padua, 1688 1757). 7 genera / 31 species. (Figures 7.49, 7.50)

The Pontederiaceae consist of perennial or rarely annual, emergent or free-floating, aquatic herbs. The **stems** are rhizomatous or stoloniferous. The **leaves** are bifacial, ligulate, mostly basal, distichous or spiral, basally sheathing and petiolate (the petiole swollen in *Eichhornia*), simple, undivided, narrow to broad, flat, and parallel curved-convergent veined (filiform in *Hydrothrix*). The **inflorescence** is a terminal or axillary raceme, spike, thryse, or of solitary flowers, with spathe-like bract present. The **flowers** are bisexual, zygomorphic or actinomorphic, hypogynous, glabrous or with scattered pilate-glandular trichomes on the outer perianth, filaments, or style. The **perianth** is biseriate and homochlamydeous with 3 [4] outer and 3 [4] inner imbricate tepals,
with median inner tepal posterior in zygomorphic flowers; tepals basally connate, and blue, lilac, white, or yellow, with nectar guide on median tepal in zygomorphic flowers, hypanthium present. The stamens are six \((3+3)\) or three \((+2\) staminodes\) or one \((+2\) staminodes\), whorled, of different lengths in some taxa (often associated with tristyly), diplostemonous (in taxa with 6 stamens) or antipetalous (in taxa with 3 or 1 stamens), epitepalous, filaments with appendages in some taxa. Anthers are basifixed, introrse, longitudinal or \((\text{in } \text{Monochoria})\) poricidal in dehiscence, tetrasporangiate and dithecal. The pollen is di- \((\text{tri-})\) sulculate and trinucleate at release. The gynoecium is syncarpous, with a superior ovary, 3 carpels (2 carpels reduced and abortive in \text{Pontederia} and \text{Reussia}), and 1 to 3 locules. The styles are heteromorphic or enantiomorphic in some taxa; the stigma is solitary, often 3-lobed. Placentation is apical, axile, parietal, or axile below and parietal above; ovules are anatropous, bitegmic, \(1 \approx \) per carpel. Septal nectaries are present or absent. The fruit is a loculicidal capsule or nut/utricle (e.g., \text{Pontederia}). The seeds are longitudinally ribbed, with a starchy endosperm.

Members of the Pontederiaceae have distributions in tropical to north temperate regions in Africa, Asia, and esp. the Americas. Economic importance includes species that are serious weeds (especially \text{Eichhornia crassipes}, water hyacinth, which clogs waterways), some species with edible parts, and cultivated ornamentals (e.g., \text{Eichhornia}, \text{Heteranthera}, and \text{Pontederia}). See Barrett and Graham (1997) and Cook (1998) for recent phylogenetic analyses and treatments of the family.

The Pontederiaceae are distinctive in being emergent to free-floating aquatic herbs with simple, sheathing, bifacial leaves, actinomorphic or zygomorphic flowers, and di-(tri-)sulculate pollen. The bifacial leaves and sulculate pollen are probable apomorphies for the family (Figure 7.42).

P \((3+3)\) or \((4+4)\) A \((3+3)\) or \((3+2)\) staminodes or \((1+2)\) staminodes G \((3)\), superior, hypanthium present.

ZINGIBERALES

The Zingiberales, commonly called the gingers and bananas, are a well-defined, monophyletic clade of eight families (Figure 7.51, 7.53), four of which are described here. (See Figure 7.59 for images of three of the other families.) Several apomorphies unite the ginger group. One obvious apomorphy is the occurrence of leaves with penni-parallel venation (Figures 7.52A, 7.54A). In addition, virtually all members of the Zingiberales have a ptyxis (the posture of immature leaves or leaf parts; see chapter 9) that is supervolute, in which the two opposing (left and right) halves of the blade are rolled along a longitudinal axis, one half being rolled completely within the other (Figure 7.52A.B). Leaves and stems of all members of the order have diaphragmed air chambers (Figure 7.52C) and possess silica cells (although the latter is not apomorphic for this order alone). Lastly, all Zingiberales have an inferior ovary (Figures 7.51, 7.56D).

The four terminal families of the Zingiberales make up a monophyletic assemblage, commonly known as the ginger group; their phylogenetic interrelationships are well accepted (Figure 7.51). The other four families, which are referred to as the bananas, constitute a paraphyletic assemblage whose precise interrelationships are not clear; the phylogeny shown in Figure 7.51 is one possibility. See Kress et al. (2001) for a recent treatment of this group.

Musaceae Banana family (after Antonia Musa, physician to Emperor Augustus 63–14 BC). 3 genera (\text{Ensete}, \text{Musa}, and \text{Musella}) / ca. 40 species. (Figure 7.54)
CHAPTER 7 DIVERSITY AND CLASSIFICATION OF FLOWERING PLANTS

FIGURE 7.50 COMMELINALES. Pontederiaceae. A. *Eichornia diversifolia*, ovary cross-section, showing axile placentation. B. *Heteranthera reniformis*, ovary cross-section, with parietal placentation. C. *Pontederia cordata*, ovary longitudinal section, showing apical placentation. D. Pollen of *Pontederia cordata*, showing disulculate apertures.

FIGURE 7.51 Cladogram of the Zingiberales (after Kress et al. 2001), with selected apomorphies, that at * after Kirchoff (2003).
The Musaceae consist of monoecious, perennial herbs. The stems are subterranean, sympodial, rhizomatous to cormose, and hapaxanthic. The leaves are large, basal, spiral, sheathing (with the long, sheathing leaf bases overlapping, forming a pseudo-stem), a petiole (sometimes termed a pseudo-petiole) present in *Musa*, lacking in *Ensete*, simple (often tearing in several places perpendicular to the midrib), and penni-parallel-veined. The inflorescence (which arises from the apical meristem of the corm and grows inside the rolled leaf sheaths) is a terminal thyrs, equivalent to a raceme of spirally arranged, fasciculate, monoasial cymes (commonly called banana hands), bracteate, the bracts large, coriaceous, each enclosing a fasciculate unit cyme, female cymes proximal, male cymes distal. Flowers are ebracteate, unisexual, zygomorphic, epigynous. The perianth is biseriate and homochlamydeous, 3+3, syntepalous (the inner, adaxial tepal usually distinct). Stamens are apostemonous, 5 or 6, the missing stamen or staminode opposite the inner, median, adaxial tepal; anthers are longitudinal in dehiscence, dithecous. The gynoecium is syncarpous, with an inferior ovary, 3 carpels (the median carpel anterior), and 3 locules; the styles are terminal; placation is axile; ovules are anatropous, bitegmic, \(\infty \) per carpel. Septal nectaries are present and occur above the locules. The fruit is a berry; seeds are endospermous, with rudimentary arils. Pollinated by bats or birds in the wild.

Members of the family have Old World distributions in tropical Africa and southeast Asia to northern Australia. Economic importance includes use of fruits of *Musa* spp. as a food source (esp. triploid forms of *Musa acuminata* and the triploid hybrid *Musa ×paradisiaca*; *Musa textilis* (Manila-hemp, abacã€) and *Musa basjoo* are used as a fiber source for twine, textiles, and building materials. See Andersson (1998a) for a recent treatment of the family.

The Musaceae are distinguished from related families of the Zingiberales in having a spiral leaf arrangement and monoecious plant sex.

\[P (3+3) \ A \ 5-6 \ G (3), \ inferior. \]

Strelitziaceae Bird-of-paradise family (after Charlotte of Mecklenburg-Strelitz, wife of King George III). 3 genera (*Phenakospermum*, *Ravenala*, *Strelitzia*)/7 species. (Figures 7.55A, 7.56)

The Strelitziaceae consist of perennial herbs or trees. The underground stems are rhizomatous (dichotomously branching in at least some), the aerial stems decumbent and herbaceous or arborescent and woody-textured. The leaves are distichous, sheathing, petiolate, simple, and penni-parallel-veined (veins marginally fused). The inflorescence is a terminal or axillary thyrs of 1 many monoasial cymes, each cyme subtended by a large, spatheaceous bract. Flowers are bisexual, zygomorphic,
bracteate, epigynous. The **perianth** is biseriate and homochlamydeous, 3+3, syntepalous, the median inner tepal smaller than the lateral, sometimes connivent inner tepals. **Stamens** are 5 or 6; anthers are basifixed, longitudinal in dehiscence, and bithecal. The **gynoecium** is syncarpous, with a inferior ovary, 3 carpels (the median carpel anterior), and 3 locules; the style is terminal and filiform; placentation is axile; ovules are anatropous, bitemgmic, and ∞ per carpel. Septal nectaries are present. The **fruit** is a loculicidal capsule; seeds are arillate, with a starch-rich endosperm and starch-less perisperm. Pollinated by insects or birds.

Members of the family have distributions in tropical South America, Southern Africa, and Madagascar. Economic importance includes some species used as ornamental cultivars, e.g., *Strelitzia reginae* (bird-of-paradise) and *S. nicolai* (tree bird-of-paradise). See Andersson (1998b) for a recent treatment of the family.

The Strelitziaceae are distinguished from related families of the Zingiberales in having *rhizomatous and decumbent* or *erect, arborescent* stems with *distichous* leaves and flowers having 5–6 **stamens**.

FIGURE 7.53 Cladogram of the Zingiberales, after Kress et al. 2001. (Artwork by Ida Lopez, by permission of W. J. Kress.)
Zingiberaceae Ginger family (from a pre-Gr. name, possibly from India). 50 genera / ca. 1300 species. (Figures 7.55B, 7.57)

The Zingiberaceae consist of perennial herbs. The stems are rhizomatous and sympodial. The leaves are distichous, simple, sheathing (sheaths forming a pseudo-stem in some), petiolate, usually ligulate, penni-parallel-veined, a pulvinus present in Zingiber. The inflorescence is a bracteate spike, raceme, thrys, or of solitary flowers. Flowers are bisexual, zygomorphic, bracteate, and epigynous. The perianth is biseriate and homochlamydeous, 3+3, syntepalous, each whorl 3-lobed. Stamens are 1 fertile (median posterior in position); the anther is longitudinal or poricidal in dehiscence, dithecal.

FIGURE 7.54 ZINGIBERALES. Musaceae. A. Musa coccinea, showing leaf with penni-parallel venation and terminal inflorescence (of bright red flowers and bracts). B–F. Musa acuminata, cultivated banana. B. Young inflorescence, with proximal cyme unit (banana hand) of female flowers, subtended by large bract. C. Cyme of female flowers. D. In inflorescence, which grew through pseudostem, having proximal female flowers (in fruit) and distal male flowers (below). E. Close-up of male flowers. F. Floral diagram (combining male and female flowers); * = missing stamen.
Staminodes are 4, petaloid, the two in the inner whorl connate, forming an anterior labellum, the two in the outer whorl distinct above the floral tube or fused to labellum (the third member of the outer whorl absent). The **gynoecium** is syncarpous, with an inferior ovary, 3 carpels (the median carpel anterior), and 1 or 3 locules; the style is terminal and positioned in the furrow of the filament and between the anther thecae; placentaion is axile or parietal; ovules are anatropous, bitegmic, and \(\infty \) per carpel. Septal nectaries are absent and replaced by two epigynous nectaries. The **fruit** is a dry or fleshy loculidal or indehiscent capsule; seeds are arillate, with a starch-rich endosperm and perisperm. Plants are insect-pollinated.

The Zingiberaceae are a large family, usually classified into four tribes: Hedychieae (leaves parallel to rhizome, lateral staminodes petaloid, not fused to labellum), Zingibereae (style exserted past anther and enveloped by elongate anther crest), Alpinieae (leaves perpendicular to rhizome, lateral staminodes absent or small and fused to labellum), and Globbeae (filament long-exserted and arched, gynoecium 1-locular).

Members of the family have distributions in the tropics of south and southeastern Asia, especially Indomalaysia. Economic importance includes the source of important spice plants, e.g., *Curcuma* spp., including *C. domestica* (turmeric), *Elettaria cardamomum* (cardamom), and *Zingiber* spp., including *Z. officinale* (ginger); some species are grown as cultivated ornamentals, e.g., *Alpinia* and *Hedychium*. See Larsen et al. (1998) and Kress et al. (2002) for recent treatments of the family.

The Zingiberaceae are distinguished from related families of the Zingiberales in having **distichous, usually ligulate** leaves with a single, **dithecal** stamen and a **petaloid labellum derived from two staminodes.**

\[
P (3+3) \quad A \text{ 1 fertile } + 2 + (2) \text{ petaloid staminodes } G (3), \text{ inferior.}
\]

Cannaceae—Canna-Lily family (Gr. canna, a reed). 1 genus (*Canna*) / 10 25 species. (Figure 7.58)

The Cannaceae consist of perennial herbs. The **stems** are rhizomatous and sympodial. The **leaves** are distichous [to spiral], sheathing, petiolate, simple, and penni-parallel veined. The **inflorescence** is a bracteate thyrse consisting of a spike or raceme of 2-flowered cymes (or reduced to a raceme). **Flowers** are bisexual, asymmetric, and epigynous. The **perianth** is biseriate and homochlamydeous, 3+3, and apotepalous. **Stamens** are 1 fertile, (median posterior in position), the fertile stamen petaloid. Staminodes are 1 4[5], large, petaloid, resembling the fertile stamen; the anther is laterally subapically positioned on the petaloid stamen, longitudinal in dehiscence, bisporangiate, and monoecothal. The **gynoecium** is syncarpous, with an inferior ovary, 3 carpels (the median carpel anterior), and 3 locules; the style is terminal and laminar; placentaion is axile; ovules are anatropous, bitegmic, \(\infty \) per carpel. The **fruit** is a usually a capsule; seeds are exarillate, with a starch-rich endosperm and perisperm.

Members of the Cannaceae have distributions in the warm American tropics. Economic importance includes ornamental cultivars of *Canna* spp. (canna lily) and a source of starch (from rhizome of *Canna edulis*). See Kubitzki (1998c) for a recent family treatment.

The Cannaceae are distinguished from related families of the Zingiberales in having **distichous** leaves and

FIGURE 7.55 Floral diagrams. **A.** Strelitziaceae. **B.** Zingiberaceae. * = missing stamen.
FIGURE 7.56 ZINGIBERALES. Strelitziaceae. A–E. Strelitzia reginae, bird-of-paradise. A. Whole plant, showing (basal) leaves (arising from rhizome) and lateral, erect in orescence. B. Close-up of in orescence. Note large, subtending spathe and two visible owers. C. In orescence cross-section, showing spathe and monochasium of owers (ovaries seen in cross-section), each ower subtended by a bract. D. Flower close-up, showing inner and outer tepals and inferior ovary. E. Inner anterior tepals pulled back, exposing the enclosed ve stamens and central style/stigma. F–H. Strelitzia nicolai, giant bird-of-paradise. F. Whole plant. Note distichous, sheathing, cauline leaves. G. In orescence. H. Loculicidal capsular fruits. Note black seeds covered at base with (orange) arils.
Figure 7.58 ZINGIBERALES. Cannaceae. A–F. *Canna × generalis* (canna-lily). A. Whole plant, aerial shoot bearing terminal inflorescence. B. Close-up of shoot, showing sheathing leaves. C. Flower. Note reduced outer tepals, narrow, showy inner tepals, and large, showy, petaloid staminodes and stamen. D. Top view of flower, showing petaloid staminodes. E. Flower close-up, showing petaloid fertile stamen with laterally adnate, monothecal anther. Note laminar style. F. Monothecal anther, close-up. G. Floral diagram. * = missing stamen. H. Close-up of fruit, a capsule.
CHAPTER 7 DIVERSITY AND CLASSIFICATION OF FLOWERING PLANTS

flowers with one petaloid, monothecal stamen associated with 1–4(5) petaloid staminodes.

P 3+3 A 1, petaloid & monothecal + 1-4 petaloid staminodes G (3), inferior.

POALES

The Poales, as circumscribed by APG II (2003), is a large group of 18 families, of which nine are described here. One hypothesis of relationships of the families is seen in Figure 7.60. The order includes several basal groups with showy, insect-pollinated flowers. A distinctive, large subgroup of the Poales is characterized by monoulcerate pollen grains (Figure 7.60); these have small, reduced, typically wind-pollinated flowers. See general studies of the angiosperms and monocots (e.g., Chase et al., 2000a, Davis et al., 2004), plus Bremer (2002) and Michelangeli et al. (2003) for recent studies of the order.

Bromeliaceae Bromeliad family (after Swedish medical doctor and botanist O. Bromell, 1639 1705). 59 genera / 2400 species. (Figure 7.61)

The Bromeliaceae consist of terrestrial or epiphytic, perennial herbs to rosette trees. Roots are absorbing or function as holdfasts or rarely absent. The stem is a caudex or rarely arborescent, often sympodially branched. The leaves are spiral, simple, often adaxially concave, sheathing, in some (the tank bromeliads) tightly overlapping and channeling rain water and runoff to storage in a central cavity, the margins entire or serrate-spinose, the surface usually bearing (at least when young) absorptive, usually peltate, scale-like trichomes, functioning in water and mineral uptake. The inflorescence is a terminal, bracteate, spike, raceme, or head,
the bracts often brightly colored. The flowers are bisexual [rarely unisexual], actinomorphic or slightly zygomorphic, bracteate, hypogynous or epigynous. The perianth is biseriate and dichlamydeous to homochlamydeous, 3+3, the perianth parts distinct to basally connate, the petals/outer tepals often with a basal scale-like or hardened appendage. The stamens are diplostemonous, 3+3, distinct or connate, often epipetalous. Anthers are longitudinally and introrsely dehiscent. The gynoecium is syncarpous, with a superior or inferior ovary, 3 carpels, and 3 locules. The style is solitary, with 3 typically twisted stigmas. Placentation is axile; ovules are mostly anatropous, bitegmic, few ∞ per carpel. Septal nectaries are present. The fruit is a septicidal capsule or berry, rarely a sorosis (Ananas). The seeds are winged, plumose, or glabrous. Pollinated by birds, insects, bats, wind [rarely], or flowers cleistogamous.

The Bromeliaceae are traditionally classified into three subfamilies: Pitcairnioideae, with superior (to half-inferior) ovaries, forming capsules with winged seeds; Tillandsioideae, with superior ovaries forming capsules with plumose seeds; and Bromelioideae, with inferior ovaries forming berries with unappendaged seeds. Givnish et al. (2005) proposed a classification into eight monophyletic subfamilies: Brocchinioideae, Lindmanioideae, Hechtioideae, Tillandsioideae, Navioideae, Pitcairnioideae, Puyoideae, and Bromelioideae. Their Tillandsioideae and Bromelioideae correspond to the traditional subfamilies; the other six were formerly classified together (as a now paraphyletic Pitcairnioideae, s.l.). Members of the Bromeliaceae are distributed almost entirely in the American tropics. Economic importance includes uses as fruit plants (e.g., Ananas comosus, pineapple), fiber plants, and cultivated ornamentals. See Smith and Till (1998) for a general description and Givnish et al. (2005) for a phylogenetic analysis of the family.

The Bromeliaceae are distinctive in being perennial terrestrial or epiphytic herbs or shrubs with absorptive, pellate trichomes, often colorful bracts, and trimerous flowers, the petals/outer tepals often with basal scales or appendages, stigmas typically twisted. P 3+3 or (3)+(3) A 3+3 G (3), superior or inferior.

Typhaceae Cattail family (Gr. for various plants). 1 genus (Typha) / 8 13 species. (Figure 7.62)

The Typhaceae consist of emergent, aquatic, monoecious, perennial herbs. The stems are rhizomatous. The leaves are bifacial, mostly basal, distichous, sheathing, simple, undivided, flat, elongate and narrow, and parallel veined, with spongy parenchyma. The inflorescence is a terminal, cylindrical spike of very dense flowers, male above and female below. The flowers are very small, unisexual, actinomorphic, female flowers hypogynous. The perianth consists of 3 [8] bristle-like tepals in male flowers, ∞ bristle or scale-like tepals (in 1 4 whorls) in female flowers. The stamens are 3 [1 8], apostemonous. Anthers are basifixid, with connective broad, extended beyond thecae. The pollen is released as tetrads or monads. The gynoecium is uncarpellous, with

a superior ovary. The style is accrescent. Placentation is apical; the ovule is solitary, anatropous, bitegmic. Nectaries are absent. The fruit is a dehiscent, achenelike fruit, with an accrescent gynophore (stipe) and style and persistent perianth parts, aiding in wind dispersal. The seeds are starchy endospermous. Flowers are wind pollinated.

Members of the Typhaceae grow as emergents in ponds, ditches, and marshes with worldwide distributions. Economic importance includes local uses as food (pollen or starchy rhizome), matting (leaves), paper, or as ornamental cultivars. See Kubitzki (1998d) for a description of the Typhaceae.

The Typhaceae are distinctive in being perennial, rhizomatous, monoecious, emergent aquatics with distichous, bifacial leaves, a spike of numerous, minute, wind-pollinated flowers (male above and female below) having a bristelike or scalelike perianth, and an achenelike, dehiscent fruit with an accrescent stipe and style.

Male flowers: \(P \ 0-3 [-8] \ A \ 3 [1-8] \).
Female flowers: \(P \approx G \ 1 \), superior.

Sparganiaceae Bur-Reed family (Gr. for band used to wrap or bind, after the long, narrow leaves). 1 genus (*Sparganium*) / 14 species. (Figure 7.63)

The Sparganiaceae consist of emergent, aquatic, monoecious, perennial herbs. The stems are rhizomatous. The leaves are bifacial, distichous, sheathing, simple, undivided, flat, elongate and narrow, and parallel veined. The inflorescence is compound, of globose, bracteate, unisexual heads, male heads above, female below. The flowers are small, unisexual, actinomorphic, sessile, the female flowers hypogynous. The perianth is apparently bracteate in female flowers, the scale-like tepals 1-6 in males, 3 [2-5] in females. The stamens are 1-8, antipetalous, distinct or basally connate. The gynoecium is unicarpellous or syncarpous, with a superior ovary, 1 [2-3] carpel(s), and 1 [2-3] locule(s). The Placentation is axile, basal, or parietal; ovules are anatropous, bitegmic, 1 per carpel. Nectaries are absent. The fruit is dry and drupelike with a persistent perianth and style. The seeds are endospermous. Flowers are wind pollinated.

Members of the Sparganiaceae have a worldwide distribution. Taxa are of no significant economic importance. The family is sometimes united in the Typhaceae; see Kubitzki (1998d).

The Sparganiaceae are distinctive in being perennial, rhizomatous, monoecious, emergent aquatics with distichous, bifacial leaves and unisexual, globose heads (male heads above, female below) of numerous, minute, wind-pollinated flowers having a scalelike perianth, and a drupelike fruit with persistent style.

Male flowers: \(P \ 1-6 \ A \ 1-8 \) or (1-8).
Female flowers: \(P \ 3-4 [2-5] \) in female \(G \ 1 [(2-3)] \), superior.

Juncaceae Rush family (L. for binder, in reference to use in weaving and basketry). 7 genera/ca. 350 species. (Figure 7.64)

The Juncaceae consist of perennial, rarely annual, herbs. The stems of perennials are usually rhizomatous. The leaves are simple, parallel veined, undivided, bifacial or unifacial, mostly basal, spiral, usually tristichous [rarely distichous], sheathing, usually with auricles and ligulate, flat or terete. The inflorescence is of solitary flowers or compound of 1 many cymes, glomerules, or heads. The flowers are bisexual, rarely unisexual, actinomorphic, bracteate, hypogynous. The perianth is usually scarious, biseriate, homochlamydous, rarely uniseriate, 3+3 [2+2 or 3], apotepalous, with hypanthium absent. The outer and inner tepals are distinct, each whorl of 3 [2] parts. The stamens are 3+3 [3+0 or 2+2], whorled, diplosteremonous when biseriate, unfused. Anthers are basifixid, longitudinally dehiscent. The pollen is released as tetrads. The gynoecium is syncarpous, with a superior ovary, 3 carpels, and 3 or 1 locules. The style is usually 3-branched, stigmas sometimes twisted. Placentation is axile, basal, or parietal; ovules are anatropous, bitegmic, 1 or per carpel. The fruit is a loculicidal capsule, rarely indehiscent. Seeds are starchy endospermous. Flowers are wind or insect pollinated.

The Juncaceae, Cyperaceae, and another family (Thurniaceae, including Prioniaceae) probably share two major apomorphies: tristichous leaves and pollen in tetrads (Figure 7.60). Members of the Juncaceae have a worldwide distribution, generally in temperate and cool regions. Economic importance is limited, some used as ornamental cultivars, *Juncus* spp. used indigenously to make matting, bowls, or other products; cushion-forming *Distichia* is used as fuel in Peru. See Balslev (1998) and Drabkova et al. (2003) for recent treatments and phylogenetic analyses of the Juncaceae.

The Juncaceae are distinctive in being usually perennial herbs with spiral, sheathing, bifacial or unifacial leaves, trimerous, actinomorphic flowers with a typically scarious perianth and a loculicidal capsule.

Cyperaceae Sedge family (Gr. for several species of the genus *Cyperus*). 104 genera / ca. 5000 species. (Figures 7.65, 7.66)

The Cyperaceae consist of perennial or annual herbs, rarely shrubs or lianas. The stems of perennials are rhizomes, stolons, bulbs, or caudices bearing aerial culms that are often tufted (cespite), usually 3-sided, with a solid pith. The leaves are bifacial, spiral, and usually tristichous [rarely distichous], sheathing (sheath usually closed), simple, undivided, narrow, flat, and parallel veined, a ligure present or absent;
lower leaves (or in some taxa all leaves) reduced to sheaths. The **inflorescence** consists of one or more bisexual or unisexual sedge spikelets (either solitary or in various types of secondary inflorescences), each spikelet consisting of a central axis (the rachilla), bearing spiral or distichous bracts (also called scales or glumes), each (except sometimes the lower) subtending a single flower. The **flowers** are small, unisexual or bisexual, actinomorphic, hypogynous. The **perianth** is absent or 6-merous \([1 \sim \infty]\), of reduced, distinct bristles or scalelike tepals. **Stamens** are 3 \([1 6+]\), anthers introse and longitudinal in dehiscence, filaments elongating during anthesis. The **pollen** is released as **pseudomonads**, in which 3 of the 4 nuclei of the microspore tetrad degenerate after microsporogenesis. The **gynoecium** is syncarpous, with a superior ovary, 2 or 3 [rarely 4] carpels, and 1 locule; the gynoecium of *Carex* and relatives is surrounded by an inflated bract, known as the perigynium, at the apex of which the style protrudes. The **styles** are usually 2 or 3. **Placentation** is basal; **ovules** are anatropous, bitegmic, 1 per ovary. **Nectaries** are absent. The **fruit** is a lenticular (2-sided)

FIGURE 7.63 POALES, Sparganiaceae. *Sparganium* sp. **A.** Whole plant. **B.** Inflorescence, a panicle of globose heads. **C.** Shoot cross-section, showing distichous leaf arrangement. **D.** Inflorescence, female heads below, male above. **E.** Female heads. **F.** Male heads.
Figure 7.65 POALES, Cyperaceae.

A. Diagram of sedge spikelets with distichous (left) and spiral (right) bracts.

B. Diagram of sedge flower and subtending bract.

C. Diagram of achene, illustrating two shape types; l.s. = longitudinal-section; c.s. = cross-section.

D. *Scirpus* sp., mature achene.

E. *Cyperus papyrus*, papyrus.

F–I. *Cyperus involucratus*.

- **F.** Whole plant showing prominent inflorescence bracts.
- **G.** Close-up of inflorescence, a glomerule of spikelets.
- **H.** Spikelet, close-up.
- **I.** Subtending bract (left) and dissected flower components (right).
or trigonous (3-sided) achene (also called a nutlet). Plants are generally wind pollinated.

Members of the Cyperaceae have a worldwide distribution, especially in temperate regions. The genus *Carex* is especially diverse with ca. 2000 species, important in a number of ecosystems. Economic importance is limited, with some species used as mats, thatch, weaving material, or writing material (*Cyperus papyrus*, papyrus, the culm pith of which was historically used to make paperlike scrolls), a few used as ornamental cultivars (e.g., *Cyperus involucratus*, umbrella plant), and some species, such as the nutsedges, being noxious weeds. See Goetghebeur (1998) and Simpson et al. (2003) for recent descriptions and phylogenetic analyses of the family.

The Cyperaceae are distinctive in being herbs with usually 3-sided, solid-pithed stems, closed-sheathed, often tristichous leaves, the inflorescence a **sedge spikelet**, consisting of a central axis bearing many sessile, **distichous or spiral bracts**, each subtending a single, reduced unisexual or bisexual flower, with perianth **absent or reduced to bristles or scales**, usually 3 stamens, and a 2 3-carpellate ovary, the fruit a 2- or 3-sided **achene**.

\[P \ 6 \text{ or } 0 \ [1-\infty] \ A \ 3 \ [1-6+] \ G \ (2-3)(4), \text{ superior.} \]

Eriocaulaceae Pipewort family (Gr., woolly stem). 10 genera/700 1400 species. (Figure 7.67)

The Eriocaulaceae consist of monoecious [rarely dioecious], perennial or annual herbs. The **stems** are rhizomatous, basal shoots often tufted (cespitose). The **leaves** are basal, often rosulate, spiral [rarely distichous], basally sheathing, simple, usually narrow (flat or terete, canaliculate in some), and parallel veined. The **inflorescence** is a scapose head with

subtending imbricate bracts (phyllaries), the compound receptacle often with trichomes or chaffy bracts, in monoecious species the male and female flowers mixed or females marginal. The flowers are small, whitish, unisexual, actinomorphic or zygomorphic, sessile or short-pedicellate, subtended by chaffy bracts or bractless. The perianth is biseriate, dichlamydeous, transparent, whitish, or variously colored. The calyx is distinct or basally fused into a tube with 2 or 3 parts. The corolla is also distinct or basally fused into a tube and with 2 or 3 parts [corolla rarely absent]. The stamens are 2 or 4 in dimerous flowers, 3, 6, or 1 in trimerous flowers, antepetalous (when 2 or 3), epipetalous or arising from an androphore. Anthers are longitudinal and introrse in dehiscence, bi- or tetrasporangiate. The pollen is spheroidal, usually spiraperturate-spinulose. The gynoecium is syncarpous, with a superior ovary, 2 or 3 carpels, and 2 or 3 locules. The style is solitary, sometimes style-like appendages also present; stigmas are 2-3, dry. Placation is apical, ventral-pendulous; ovules are orthotropous, bitegmic, 1 per carpel. Nectaries are absent except for glands at tepal tips in some taxa. The fruit is a loculicidal capsule. The seeds are ellipsoidal, endospermous, starchy. Flowers are wind or insect pollinated.

The Eriocaulaceae consist of the principal genera Eriocaulon, Leiothrix, Paepalanthus, and Syngonanthus. Members of the family grow in wet areas with distributions in tropical to subtropical warm regions, especially the Americas, a few northern temperate. Economic importance includes inflorescences of Syngonanthus used in the floral trade as everlasting. See St tzel (1998) for a detailed family description.

The Eriocaulaceae are distinctive in being perennial or annual herbs with basal, often rosulate leaves and a scapose head of very small, unisexual usually white flowers. Xyridaceae Y ellow-eyed-grass family (Gr. name for plant with razorlike leaves). 5 genera / ca. 385 species. (Figure 7.68)

The Xyridaceae consist of perennial or annual herbs. The stem of perennials is a caudex, less commonly a rhizome or corn. The leaves are bifacial or unifacial-ensiform, usually basal and rosulate, alternate distichous or spiral, sheathing with sheaths often persistent, simple, ligulate in some, narrow, flat or terete, and parallel veined. The inflorescence is a terminal, scapose, usually solitary spike or head with bracts subtending single or (in Achlyphila) 2 or 3 flowers. The flowers are bisexual, hypogynous, actinomorphic or slightly zygomorphic, sessile or pedicellate, subtended by imbricate, indurate bracts. The perianth is biseriate, dichlamydeous. The calyx is aposepalous with 3 sepals, the anterior one reduced to absent. The corolla is ephemeral, of three, distinct or basally connate petals/corolla lobes, usually yellow, rarely white, blue, or magenta. The stamens are 3 [6], whorled, biseriate or uniseriate, or with 3 stamnodes and 3 fertile stamens. Anthers are longitudinal in dehiscence. The pollen is sulcate or inaperturate. The gynoecium is syncarpous, with a superior ovary, 3 carpels and 1 or 3 locules. The style is solitary; stigmas are 3 [1]. Placation is axil, basal, free-central, or parietal; ovules are orthotropous or anatropous, bitegmic, few ∞ per carpel. The fruit is a loculicidal or irregularly dehiscent capsule, sometimes enclosed by persistent sepals and bracts, The seeds are small, endospermous (starchy and proteinaceous, sometimes oily).

Three genera of the family, Abolboda, Aratitiyopea, and Orectanthe (sometimes classified in the family Abolbodaceae) have spiral, bifacial leaves, spinose pollen, highly connate petals, and asymmetric, appended styles. The other two genera, Achlyphila and Xyris, have distichous, unifacial leaves, nonspinose pollen, slightly connate or distinct petals, and symmetric, unappended styles. Members of the Xyridaceae grow in wet areas, such as marshy savannas, and have a worldwide distribution in tropical and warm and some temperate regions; three genera are restricted to northern South America. Economic importance includes Xyris spp. used occasionally ornamentally and medicinally. See Kral (1998) for a detailed family treatment.

The Xyridaceae are distinctive in being perennial or annual herbs with a terminal, scapose bracteate head or dense spike, bracts subtending showy flowers with ephemeral, usually yellow petals. K 3 C 3 or (3) A 3 or 3+3 or 3+3 staminodes G (3), superior.

Restionaceae Restio f amily (restio, L. for rope, cord, in reference to the cordlike stems). 55 genera / 490 species. (Figure 7.69)

The Restionaceae consist of dioecious [rarely monoecious or hermaphroditic], evergreen, perennial herbs. The underground stems are rhizomatous or stoloniferous, the erect culms photosynthetic, hollow or solid. The leaves are simple, unifacial, spiral, with a usually open sheath, usually elgulate, often reduced to sheaths in mature plants, sometimes caducous. The inflorescence is a solitary flower or an aggregate of spikelets, in variously branched groups, each group sometimes subtended by bracts (spathes). The spikelets consist of an axis bearing 1 ∞ flowers, each flower subtended by 1 [2] bract, lowermost bracts often sterile; male and female spikelets may be similar or dimorphic. The flowers are small, unisexual, actinomorphic, hypogynous. The perianth is biseriate, homochlamydeous, 3+3 [0 2+0 2], apetepalous. The tepals...
are membranous to indurate. The **stamens** are 3 [1-4], antipetalous, distinct [rarely connate]. **Anthers** are usually unilocular, bisporangiate, and monothecal, longitudinally and usually introrse in dehiscence. The **pollen** is monoulcerate at release. The **gynoecium** is syncarpous or unicarpelous, with a superior ovary, 3 [1 or 2] carpels, and 3 [1 or 2] locules. The **style(s)** are 1 [3]. **Placentation** is apical-axile; **ovules** are orthotropous, bitemgic, solitary. **Nectaries** are absent. The **fruit** is an achene, nut, or capsule. The **seeds** are endospermous and sometimes have an elaiosome, functioning in ant dispersal. Flowers are wind pollinated.

Members of the Restionaceae are a major component of fynbos or heath vegetation with distributions in the southern hemisphere, especially South Africa and Australia. Economic importance includes local use as thatching and brooms. See Linder et al. (1998, 2000) for recent phylogenetic analyses and treatments of the family.

The Restionaceae are distinctive in being **perennial, rhizomatous**, mostly **dioecious herbs** with photosynthetic erect stems, **leaves reduced to sheaths**, an inflorescence of solitary flowers or variously branched **spikelets**, and small, unisexual, wind-pollinated flowers with usually monothecal, bisporangiate anthers.

P 3+3 [0-2+0-2] **A** 3 [1-4] **G** 3 [1-(2)], superior.

Poaceae (Gramineae) Grass family (from **poa**, Greek name for a grass). 668 genera / 9500 species. (Figures 7.70 7.73)

The Poaceae consist of perennial or annual, hermaphroditic, monococious, or dioecious herbs or (in the bamboos) trees. The **roots** are adventitious, often endomycorrhizal. The underground **stems** of perennials are rhizomes or stolons, the erect stems (termed culms) are hollow (solid at the nodes), often cespitose, woody-textured in some (e.g., bamboos). The **leaves** are simple, basal or cauline, distichous, rarely
CHAPTER 7 DIVERSITY AND CLASSIFICATION OF FLOWERING PLANTS

Complex of the leaves, sheathing, distichous

A.

B.

C.

D. Diagram of grass spikelet, consisting of an axis (rachilla) bearing two, basal glumes (one or both absent or modified in some taxa) plus 1 ∞ florets. E. Floret, consisting of a short, lateral branch bearing two bracts, lemma and palea, plus a flower; a given floret may be sterile or unisexual in some taxa. F. Grains of (left to right) Zea mays (corn), Triticum aestivum (bread wheat), and Oryza sativa (rice). G. Grain of Zea mays in longitudinal section, showing embryo, endosperm, and fusion product of seed coat and pericarp.
spiral, with a usually open, basal sheath; the leaf blade is bifacial, parallel-veined, often auriculate at base, and typically ligulate, with a ligule at junction of sheath and blade (resembling a sheathlike structure or tuft of trichomes); in the bamboos the first leaves are scalelike and sheathing, followed by branches that bear photosynthetic leaves; in the bamboos and other taxa, a stalklike pseudo-petiole is present between the sheath and blade. The inflorescence consists of terminal or axillary spikelets (more properly termed grass spikelets), these aggregated in secondary inflorescences of spikes, racemes, panicles, or glomerules; the spikelets are sessile or stalked (the spikelet stalk termed a pedicel), and are whorled, opposite, or distichous (on 1 or 2 sides) on the inflorescence axes; the grass spikelet itself consists of an axis (termed the rachilla) bearing distichous parts: two basal bracts (termed glumes, the lower one called the first glume, the upper the second glume, sometimes modified or absent) and one or more florets; each floret consists of a minute lateral axis with two additional bracts (termed the lemma and palea) and a flower; the lemma is the lower and larger bract, typically with an odd number of veins (nerves); the palea is the upper, smaller bract, which has 2 veins and is partially enveloped or enclosed by the lemma. A bristlelike awn may be present at the apex of glumes or lemmas. The flowers are bisexual or unisexual, sessile, and hypogynous. The perianth is absent or modified into 2 or 3 lodicules (located on the lower side, toward the lemma), which upon swelling function to open the floret by separating the lemma from palea. The stamens are 2 or 3. Anthers are basifixed-versatile, usually sagittate at the base, generally pendulous on elongate filaments, dithecal, and longitudinal in dehiscence. The pollen is monoporate. The gynoecium is syncarpous, with a superior ovary, 2–3 carpels, and 1 locule. The stigmas are 2 or 3, usually plumose. Placentation is basal; ovules are orthotropous to anatropous, usually bitegmic, 1 per ovary. Nectaries are absent. The fruit is a caryopsis (grain). The seeds are endospermous. Plants are wind pollinated.

The Poaceae are worldwide in distribution. The grasses are perhaps the most economically important group of plants, containing the agricultural grains (vital food and alcoholic beverage sources), including barley (*Hordeum*), corn (*Zea*), oats (*Avena*), rice (*Oryza*), rye (*Secale*), wheat (*Triticum*), and others, as well as important forage and grazing plants. Members of the family are also important components of many ecosystems, such as grasslands and savannahs. See the Grass Phylogeny Working Group (2001) for information on

FIGURE 7.71 POALES. Poaceae. Bamboos, having stout, woody, aerial stems that bear large, nonphotosynthetic, scale leaves and upper, lateral branches with photosynthetic leaves. **A,B. Dendrocalamus giganteus.** C. Bamboo showing lateral branches with photosynthetic leaves.
FIGURE 7.72 POALES. Poaceae. Spikelet morphology. A–C. Elymus glaucus. A. Spikelet, immature and closed, with two glumes and three orets. B. Mature spikelet, showing palea and awned lemma of open oret. C. Close-up of ower, showing three stamens and styles of ovary. D–F. Agrostis stolonifera. D. Open, mature spikelet, showing two glumes and palea and lemma of single oret. E. Floret dissected open, showing three stamens and two lodicules on lemma side of ovary. F. Lodicles removed; note ovary with two plumose styles.
Figure 7.73 POALES. Poaceae. Spikelet diversity. A. *Cynodon dactylon*, bermuda grass, close-up of spikelets in two rows, each bearing exserted, pendulous anthers and red staminate styles. B. *Nasella pulchra*, needle grass, having one oret per spikelet. C. *Sorghum bicolor*, in which two, reduced, male spikelets are grouped with a single, bisexual spikelet. D. *Phalaris minor*, spikelet with prominent glumes and one oret. E. *Avena barbata*, pendulous spikelet. F. *Distichlis spicata*, in orecence of female plant, a condensed panicle of spikelets. G. *Brachypodium distachyon*, spikelet with numerous, awned orets. H. *Lolium multiorum*, in orecence a spike of distichously arranged spikelets. I. *Oryza sativa*, rice.
character evolution in the Poaceae plus recommendations regarding infrafamilial classification.

The Poaceae are distinctive in being herbs (trees in the bamboos) with hollow-pithed stems and open-sheathed, distichous leaves with a ligule at inner junction with blade; the inflorescence is a grass spikelet, typically with 2 basal bracts (glumes) on a central axis and 1 ∞ florets, each consisting of a short lateral axis with 2 bracts (a lower, odd-veined lemma and an upper, 2-veined palea) and a flower, the flower with perianth reduced to usually 2 3 lodicules, usually 2 3 pendulous stamens, and a single 2 3-carpellate, 1-ovuled ovary with 2 3 plumose stigmas, the fruit a caryopsis (grain).

REVIEW QUESTIONS

GENERAL
1. What is the Angiosperm Phylogeny Group system of classification and what ranking does it utilize?
2. What are the major groups of basal angiosperms?
3. Why have the traditional dicots been abandoned as a taxonomic group?
4. What is a floral formula? What are the symbols used in floral formulas?
5. What is a floral diagram and what does it represent?

NONMONOCOT GROUPS
6. Name the family and species of what is currently thought to represent the most basal lineage of angiosperms.
7. Name the diagnostic characteristics of the Amborellaceae. Do these necessarily represent ancestral angiosperm features?
8. How does the Nymphaeales compare with the Amborellaceae in: plant habit, flower sex, perianth arrangement, stamen number and type, gynoecial fusion type, and ovary position?
9. What anatomical feature is characteristic of the family Illiciaceae? How is this family different from and similar to the Amborellaceae and Nymphaeales?
10. For the Ceratophyllaceae name the plant habitat, plant habit, leaf arrangement and morphology, and economic importance.
11. What distinctive anther dehiscence occurs in the Lauraceae?
12. Name two economically important members of the Lauraceae.
13. Name at least two families of the Magnoliidae.
14. For the Annonaceae, what is distinctive about the leaf arrangement and endosperm structure?
15. What is distinctive about the receptacle and gynoecial fusion of the Magnoliidae?
16. What is the fruit type of the Magnoliidae?
17. Name at least three families of the Piperales.
18. What is the etymology of Aristolochia?
19. What are the diagnostic features of the Aristolochiaceae?
20. How does the Piperaceae differ from the Aristolochiaceae?
21. What is an economically important member of the Piperaceae?
22. How does the Saururaceae differ from the Piperaceae?

MONOCOTS: BASAL LINEAGES
23. Name and describe the major apomorphies of the monocots.
24. Name the order, family, and genus of the most basal lineage of monocots.
25. How does Acorus differ from the Araceae in: leaf structure; seed nutritive tissue; crystal type?
26. What is the leaf venation of members of the Araceae?
27. What is the inflorescence type of the Araceae?
28. Name an economically important member of the Araceae.
29. What is a major apomorphy of the Asparagales?
30. What is a cytological apomorphy of the Agavaceae?
31. What is the ovary position of the Agavaceae?
32. What is a chemical apomorphy of the Alliaceae?
33. Name two economically important members of the Alliaceae.
34. How are members of the Asphodelaceae distinguished? What is their distribution?
35. Name and define the leaf structure of the Iridaceae.
36. What is the range of inflorescence morphology of the Iridaceae?
37. What is the floral formula of the Iridaceae?
38. How many species occur in the orchid family?
39. For the Orchidaceae, name the ovary position, placentation, and name for specialized androecium.
40. What is a gynostemium? What are other names for this structure?
41. What orchid is used as a food flavoring and what part of the plant is utilized?

MONOCOTS: COMMELINIDS
42. Name and describe the major chemical apomorphy of the Commelinid monocots.
43. Name an apomorphy of the palms.
44. What are the two acceptable scientific names of the palm family?
45. For the Arecales, what is the: flower sex, ovary position, fruit type?
46. What is the seed nutrition of the Commelinid monocots, minus the Arecales and Dasypogonaceae?
47. Name three apomorphies of the Zingiberales.
48. What is the leaf arrangement and plant sex of the the Musaceae?
49. What is the scientific name of banana?
50. What leaf arrangement apomorphy unites all of the Zingiberales, minus the Musaceae?
51. Name two apomorphies that unite the clade Cannaceae + Costaceae + Marantaceae + Zingiberales.

EXERCISES
1. Select a family of angiosperms treated in this chapter and learn everything you can about it. Perform a literature search (e.g., family name + systematics) on journal articles published in the last 5 years. Consult family descriptions, recent data on phylogenetic relationships, and information on intrafamilial groupings.
2. From this same family, collect living material of an exemplar. Describe this species in detail, using the character list of Appendix 1 as a guide (see Chapter 9). Illustrate the vegetative and reproductive parts (see Appendix 2).

3. Assimilate all of your information in a written report and computerized slide presentation to present to an audience.

REFERENCES FOR FURTHER STUDY

GENERAL REFERENCES ON ANGIOSPERM RELATIONSHIPS AND EVOLUTION

CHAPTER 7 Diversity and classification of flowering plants

WEB PAGE SITES

http://www.inform.umd.edu/PBIO/fam/revfam.html
An index of accepted family names.

Royal Botanic Garden Vascular Plant Families and Genera Database
http://www.rbgkew.org.uk/data/vascplnt.html

http://www.mobot.org/MOBOT/research/APweb
An excellent graphic representation of the Angiosperm Phylogeny Group classification, up-to-date cladograms, family characteristics, references, and apomorphies.

ANGIOSPERM FAMILY DESCRIPTIONS AND ILLUSTRATIONS

NONMONOCOTYLEDON REFERENCES

MONOCOTYLEDON REFERENCES

DIVERSITY AND CLASSIFICATION OF FLOWERING PLANTS: EUDICOTS

<table>
<thead>
<tr>
<th>Order</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>EUDICOTS</td>
<td>228</td>
</tr>
<tr>
<td>RANUNCUALES</td>
<td>228</td>
</tr>
<tr>
<td>Berberidaceae</td>
<td>228</td>
</tr>
<tr>
<td>Papaveraceae</td>
<td>230</td>
</tr>
<tr>
<td>Ranunculaceae</td>
<td>233</td>
</tr>
<tr>
<td>PROTEALES</td>
<td>233</td>
</tr>
<tr>
<td>Nelumboaceae</td>
<td>233</td>
</tr>
<tr>
<td>Platanaceae</td>
<td>235</td>
</tr>
<tr>
<td>Proteaceae</td>
<td>235</td>
</tr>
<tr>
<td>CORE EUDICOTS</td>
<td>238</td>
</tr>
<tr>
<td>CARYOPHYLLALES</td>
<td>238</td>
</tr>
<tr>
<td>Aizoaceae</td>
<td>238</td>
</tr>
<tr>
<td>Amaranthaceae</td>
<td>241</td>
</tr>
<tr>
<td>Cactaceae</td>
<td>244</td>
</tr>
<tr>
<td>Caryophyllaceae</td>
<td>244</td>
</tr>
<tr>
<td>Polygonaceae</td>
<td>249</td>
</tr>
<tr>
<td>SANTALALES</td>
<td>249</td>
</tr>
<tr>
<td>Santalaceae</td>
<td>249</td>
</tr>
<tr>
<td>SAXIFRAGALES</td>
<td>250</td>
</tr>
<tr>
<td>Crassulaceae</td>
<td>250</td>
</tr>
<tr>
<td>Saxifragaceae</td>
<td>252</td>
</tr>
<tr>
<td>ROSIDS</td>
<td>252</td>
</tr>
<tr>
<td>GERANIALES</td>
<td>252</td>
</tr>
<tr>
<td>Geraniaceae</td>
<td>252</td>
</tr>
<tr>
<td>MYRTALES</td>
<td>254</td>
</tr>
<tr>
<td>Melastomataceae</td>
<td>254</td>
</tr>
<tr>
<td>Myrtaceae</td>
<td>256</td>
</tr>
<tr>
<td>Onagraceae</td>
<td>259</td>
</tr>
<tr>
<td>EUROSIDS I</td>
<td>259</td>
</tr>
<tr>
<td>CUCURBITALES</td>
<td>259</td>
</tr>
<tr>
<td>Cucurbitaceae</td>
<td>259</td>
</tr>
<tr>
<td>FABALES</td>
<td>262</td>
</tr>
<tr>
<td>Fabaceae (Leguminosae)</td>
<td>262</td>
</tr>
<tr>
<td>Polygalaceae</td>
<td>265</td>
</tr>
<tr>
<td>FAGALES</td>
<td>265</td>
</tr>
<tr>
<td>Betulaceae</td>
<td>265</td>
</tr>
<tr>
<td>Fagaceae</td>
<td>265</td>
</tr>
<tr>
<td>MALPIGHIALES</td>
<td>269</td>
</tr>
<tr>
<td>Euphorbiaceae</td>
<td>269</td>
</tr>
<tr>
<td>Passi oraceae</td>
<td>271</td>
</tr>
<tr>
<td>Violaceae</td>
<td>272</td>
</tr>
<tr>
<td>OXALIDALES</td>
<td>272</td>
</tr>
<tr>
<td>Oxalidaceae</td>
<td>272</td>
</tr>
<tr>
<td>ROSALES</td>
<td>275</td>
</tr>
<tr>
<td>Moraceae</td>
<td>275</td>
</tr>
<tr>
<td>Rhamnaceae</td>
<td>275</td>
</tr>
<tr>
<td>Rosaceae</td>
<td>275</td>
</tr>
<tr>
<td>EUROSIDS II</td>
<td>278</td>
</tr>
<tr>
<td>BRASSICALES</td>
<td>278</td>
</tr>
<tr>
<td>Brassicaceae (Cruciferae)</td>
<td>280</td>
</tr>
<tr>
<td>MALVALES</td>
<td>280</td>
</tr>
<tr>
<td>Malvaceae s.l.</td>
<td>280</td>
</tr>
<tr>
<td>SAPINDALES</td>
<td>286</td>
</tr>
<tr>
<td>Anacardiaceae</td>
<td>286</td>
</tr>
<tr>
<td>Rutaceae</td>
<td>286</td>
</tr>
<tr>
<td>Sapindaceae</td>
<td>289</td>
</tr>
<tr>
<td>ASTERIDS</td>
<td>289</td>
</tr>
<tr>
<td>CORNALES</td>
<td>291</td>
</tr>
<tr>
<td>Cornaceae</td>
<td>291</td>
</tr>
</tbody>
</table>

(Continued)
EUDICOTS

The eudicots are a large, monophyletic assemblage of angiosperms, comprising roughly 190,000 described species, or 75% of all angiosperms. The monophyly of eudicots is well supported from molecular data and delimited by at least one palynological apomorphy: a tricolpate or tricolpate-derived pollen grain (Figure 8.1). A tricolpate pollen grain is one that has three apertures, equally spaced and approximately parallel to the polar axis of the grain (Figure 8.2; see Chapter 12). Apertures are differentiated regions of the pollen grain wall that may function as the site of pollen tube exitus as well as to allow for expansion and contraction of the pollen grain with changes in humidity (Chapter 12). Tricolpate pollen grains evolved from a monosulcate type (having a single distal aperture; Figure 8.2), which is considered to be ancestral in the angiosperms, as well as for many seed plant clades. Many eudicots have pollen grains with more than three apertures, of a great variety of numbers, shapes, and position (constituting important taxonomic characters; see Chapter 12). These are all thought to have been derived from a tricolpate type.

The orders of the eudicots and their included families (after APG II 2003) are listed in Tables 8.1 8.3. Table 8.1 lists the most basal groups, including the families of the Ranunculales, Proteales, Caryophyllales, Sanatales, and Saxifragales. Table 8.2 lists orders and families within a large group termed the Rosids. Table 8.3 lists orders and families of another large group termed the Asterids. See FAMILY DESCRIPTIONS, Chapter 7, for a summary of the format for these. For detailed information on eudicot relationships, see the references on general angiosperm relationships (e.g., Chase et al. 1993, 2000; Graham and Olmstead 2000; Nandi et al. 1998; Soltis et al. 1997, 2000; Hilu et al. 2003; Savolainen et al. 2000a). Also see Hoot and Crane (1995) and Hoot et al. (1999) for an analysis of the basal eudicots and Savolainen et al. (2000b) for a treatment of the eudicots alone.

RANUNCULALES

The Ranunculales, sensu APG II (2003), contain seven families, of which three are described here. See Hoot et al. (1999) for a phylogenetic analysis that includes this order.

Berberidaceae Barberry family (after Barbary, an ancient Arabic name for N. Africa). 15 genera / 670 species. (Figure 8.3)

The Berberidaceae consist of perennial trees, shrubs, or herbs. The leaves are spiral [rarely opposite], petiolate with the petiole often flared basally, and either pinnate, ternate, simple, or unifoliolate. The inflorescence is a raceme, spike, panicle, cyme, or a solitary, axillary flower. The flowers are bisexual, actinomorphic, and hypogynous. The perianth is 6-7-seriate with 3 [2,4] parts per whorl, the outer 2 whors sepaloid, the inner 4-5 whors petaloid, with the innermost...
Figure 8.1 Cladogram of the orders of the Eudicots (modified from APG II, 2003).

Figure 8.2 Transformation from monosulcate to tricolpate pollen grain, the latter an apomorphy of the Eudicots.
230 CHAPTER 8 DIVERSITY AND CLASSIFICATION OF FLOWERING PLANTS: EUDICOTS

TABLE 8.1 Orders and families of the Eudicots, after APG II (2003). Families in bold are described in detail. An asterisk denotes an acceptable deviation from APG II, with brackets indicating the more inclusive family recommended by APG II. A double asterisk indicates a change suggested by Angiosperm Phylogeny Website (Stevens 2001 onwards). See Tables 8.2 and 8.3 for listings in the Rosids and Asterids.

<table>
<thead>
<tr>
<th>UNPLACED**</th>
<th>CARYOPHYLLALES</th>
<th>SANTALALES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apodanthaceae, Balanophoraceae, Cynomoriaceae, Cytinaceae, Hoplestigmateaceae, Metteniusaceae, Pottingeriaceae</td>
<td>Achatocarpaceae</td>
<td>Erythralpaleaceae**</td>
</tr>
<tr>
<td>BUXALES**</td>
<td>Alzaceae</td>
<td>Olaceae</td>
</tr>
<tr>
<td>Buxaceae</td>
<td>Amaranthaceae</td>
<td>Opilicaceae</td>
</tr>
<tr>
<td>Didymelaceae**</td>
<td>Ancistrocladaceae</td>
<td>Loranthaceae</td>
</tr>
<tr>
<td>Sabiaceae</td>
<td>Asteropoeiaceae</td>
<td>Misdendraceae</td>
</tr>
<tr>
<td>TROCHODENDRALES**</td>
<td>Barbeuiaceae</td>
<td>Santalaceae</td>
</tr>
<tr>
<td>Trochodendraceae</td>
<td>Saracobataceae</td>
<td>Schoep aceae**</td>
</tr>
<tr>
<td>RANUNCULALES</td>
<td>Papaveraceae</td>
<td>Saxifragales</td>
</tr>
<tr>
<td>Berberidaceae</td>
<td>Ranunculaceae</td>
<td>Altingiaceae</td>
</tr>
<tr>
<td>Circarasteraceae</td>
<td>Proteaceae</td>
<td>Aphanopetalaceae**</td>
</tr>
<tr>
<td>Eupteleaceae</td>
<td>Dilleniaceae</td>
<td>Berberidopsidaceae</td>
</tr>
<tr>
<td>Lardizabalaceae</td>
<td>Gunnerales</td>
<td>Phytolaccaceae</td>
</tr>
<tr>
<td>Menispermaceae</td>
<td>Gynophyllaceae</td>
<td>Tetracarpaeaceae**</td>
</tr>
<tr>
<td>Papaveraceae</td>
<td>Physenaceae</td>
<td>Dilleniaceae</td>
</tr>
<tr>
<td>Ranunculaceae</td>
<td>Saxifragales</td>
<td>Portulacaceae</td>
</tr>
<tr>
<td>PROTEALES</td>
<td>CORE EUDICOTS</td>
<td>Dilleniaceae</td>
</tr>
<tr>
<td>Nelumbonaceae</td>
<td>BERBERIDOPSIDALES**</td>
<td>Gunneraceae</td>
</tr>
<tr>
<td>Platanacea* [Proteaceae]</td>
<td>Aextoxicaceae</td>
<td>Myrothamnaceae**</td>
</tr>
<tr>
<td>Proteaceae</td>
<td>Berberidopsidaceae</td>
<td>Dilleniaceae</td>
</tr>
<tr>
<td>DILLENIALES**</td>
<td>Didymiaceae</td>
<td>GUNNERALES</td>
</tr>
<tr>
<td>Dilleniaceae</td>
<td>Gunneraceae</td>
<td>BERBERIDOPSIDALES**</td>
</tr>
<tr>
<td>GUNNERALES</td>
<td>Myrothamnaceae**</td>
<td>Aextoxicaceae</td>
</tr>
<tr>
<td>Gunneraceae</td>
<td>Berberidopsidaceae</td>
<td>Plumbaginaceae</td>
</tr>
<tr>
<td>PROTEALES</td>
<td>DILLENIALES**</td>
<td>Polygonaceae</td>
</tr>
<tr>
<td>Dilleniaceae</td>
<td>Portulacaceae</td>
<td>Portulacaceae</td>
</tr>
<tr>
<td>GUNNERALES</td>
<td>Rhabdodendraceae</td>
<td>Rhabdodendraceae</td>
</tr>
<tr>
<td>Gunneraceae</td>
<td>Sarcobataceae</td>
<td>Sarcobataceae</td>
</tr>
<tr>
<td>Myrothamnaceae**</td>
<td>Simmondsiaceae</td>
<td>Simmondsiaceae</td>
</tr>
<tr>
<td>CORE EUDICOTS</td>
<td>Stegnospermataceae</td>
<td>Stegnospermataceae</td>
</tr>
<tr>
<td>Physenoaceae</td>
<td>Tamaricaceae</td>
<td>Tamaricaceae</td>
</tr>
<tr>
<td>Phytoleacaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plumbaginaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polygonaceae</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2 3 of these nectariferous (sometimes interpreted as staminodes). The stamens are 6 [4–18], mostly in two whorls, opposite the inner most whorls of petals. Anthers are valvular (opening from the base) or longitudinal in dehiscence, and are tetrasporangiate and dithecal. The gynoecium is unicarpellous (sometimes interpreted as derived from 2 3 carpels), with a superior ovary, and 1 [2] locules. Placentation is marginal; ovules are ∞ [1, 2] per ovary. The fruit is a berry [rarely dry].

Members of the family have a worldwide distribution, especially in north-temperate regions. Economic importance includes cultivated ornamentals, such as Berberis and Mahonia; Podophyllum is reported to be used against testicular cancer; Berberis vulgaris, the common barberry, is the alternate host of stem rust of wheat.

The Berberidaceae are distinctive in having flowers with a multisepalate perianth (possibly apomorphic for the family) differentiated into outer sepaloid and inner petaloid parts (the innermost nectariferous), a bisetate androecium, and a single, apparently unicarpellate pistil.

Papaveraceae (including Fumariaceae) Poppy family (Latin for poppy). 40 genera / 760 species. (Figure 8.4)

The Papaveraceae consist of annual or perennial herbs, shrubs, or small (sometimes pachycaulis) trees, with milky latex from articulated laticifers in some taxa. The leaves are spiral to subopposite, usually lobed to divided or dissected, exstipulate. The inflorescence is a solitary flower or cyme. The flowers are bisexual, actinomorphic, zygomorphic, or biradial, hypogynous [rarely perigynous]. The perianth is dichlamydeous, in 3 [2, 4] series, a hypanthium absent [rarely present]. The calyx is uniseriate and aposepalous to basally synsepalous, with 2 [3], usually caducous sepals. The corolla is biseriate, aposetalous, of 2+2 or 3+3 [16] petals, sometimes
imbricate and crumpled in bud, the outer petals with a spur or sac in some taxa. The **stamens** are usually numerous [4–6], centripetal, sometimes in two or three bundles. **Anthers** are tetrasporangiate or bisporangiate, dithecal or monothecal (sometimes in the same flower). The **gynoeicum** is syncarpous, with a superior ovary, 2 [to several] carpels, and 1 [2 several] locule(s). The **style** and **stigma** are usually solitary, the latter sometimes connate to form a disc-like structure. **Placentation** is parietal [rarely axile]; **ovules** are anatropous to campylotropous, bitegmic, 1 ∞ per carpel. **Nectaries** are sometimes present at base of stamens. The **fruit** is a longitudinally dehiscent or poricidal capsule, sometimes a schizocarp or nut. The **seeds** are oily endospermous, arillate in some taxa.

The Papaveraceae are treated here as encompassing the Fumariaceae (often as subfamily Fumarioideae), the latter

![Image of flowers](image-url)
differing in having biradial or bilateral flowers, the outer whorl of petals usually with a spur or sac. Members of the family are distributed in mostly north temperate regions. Economic importance includes many cultivated ornamentals and taxa used as oil seeds. *Papaver somniferum*, opium poppy, is an addictive narcotic plant, the source of heroin (which has shaped human history) and very important medicinally, e.g., as the source of the analgesic morphine and other alkaloids. See Hoot et al. (1997) and Kader et al. (1994, 1995) for detailed phylogenetic studies of the family.

The Papaveraceae are distinctive in being herbs, shrubs, or small trees (some with milky sap), with a *dichlamydeous*, *triseriate* perianth (the corolla *biseriate*), usually numerous stamens, and a superior, compound ovary usually with *parietal* placentation, the fruit usually a *loculicidal or poricidal capsule*. **K** 2 [3] or (2 [3]) **C** 2+2 or 3+3 [-16] **A** ∞ [4-6] **G** (2) [-several], superior.

Ranunculaceae Buttercup family (meaning little frog, after the amphibious habit of many species). 62 genera / 2,450 species. (Figure 8.5)

The Ranunculaceae consist of terrestrial or aquatic, perennial or annual shrubs, herbs, or lianas. The leaves are spiral, simple to compound, stipulate or exstipulate. The inflorescence is a cyme or a solitary flower. The flowers are bisexual, simple to compound, stipulate or exstipulate. The leaves are spiral, [few-] 5-8 [3], often petaloid sepals. The receptacle is somewhat elongate. The flowers are bisexual, actinomorphic or zygomorphic, hypogynous; the perianth (the corolla *biseriate*), usually numerous stamens, and a superior, compound ovary usually with *parietal* placentation, the fruit usually a *loculicidal or poricidal capsule*. **K** 2 [3] or (2 [3]) **C** 2+2 or 3+3 [-16] **A** ∞ [4-6] **G** (2) [-several], superior.

PROTEALES

The Proteales contain three very different families, classified together only rather recently. All three are similar in having mostly 1 ovule per ovary. The Nelumbonaceae and Platanaceae are similar in having apical placentation. The Platanaceae and Proteaceae have similarities in wood anatomy.

Nelumbonaceae Water Lotus family (*Nelumbo*, a Sinhalese name). 1 genus (*Nelumbo*) / 2 species. (Figure 8.6)

The Nelumbonaceae consist of aquatic, perennial herbs, with milky latex present from articulated laticifers. The stems are rhizomatous. The leaves are spiral, peltate, petiolate (petiole emergent), simple, undivided, orbicular, concave above, and net-veined. The inflorescence is an axillary (from a scale leaf of the rhizome), emergent, solitary flower. The flowers are large, bisexual, actinomorphic, long-pedunculate, ebracteate, hypogynous; the receptacle is enlarged and spongy, with numerous sunken cavities containing individual pistils. The perianth is approximately 3-seriate, with an outermost whorl of 2 green, sepaloid tepals, and two inner whorls of numerous, yellow or red, petaloid tepals, all tepals distinct. The stamens are numerous, spiral, apostemonous; filaments are narrow. Anthers are latrorse to introrse and longitudinal in dehiscence, tetrasporangiate, with a laminar connective. The gynoecium is apocarpous, with 12 40 one-loculed superior ovaries. The style and stigma are solitary and terminal. The Placentaion is apical; ovules are anatropous and bitemgic, 1 per ovary. The fruit is a aggregate of nuts, each sunken in an accrescent receptacle. The seeds are exalbuminous. Flowers are beetle-pollinated. The stems have a eustele or atactostelic-like vasculature.

The Nelumbonaceae were formerly treated as a subfamily (Nelumboideae) of the Nymphaeaceae. The two species that make up the Nelumbonaceae are distributed from eastern North America to northern South America (*N. lutea*) and Asia to northern Australia (*N. nucifera*). Economic importance includes use as cultivated ornamentals, edible rhizomes and seeds, medicine, and in religious rites (the sacred lotus); *N. nucifera* is famous for having long-lived seeds, some discovered 3000 years old. See Williamson and Schneider (1993) for more detailed information.

The Nelumbonaceae are distinctive in being *aquatic herbs* with often atactostelic stems, *emergent concave-peltate leaves*, and *emergent, solitary* flowers with numerous tepals, numerous stamens, and an *apocarpous* gynoecium having pistils *partially embedded within an expanded receptacle*; the fruit is an *aggregate of nuts* within an *accrescent receptacle*.

Platanaceae

The Platanaceae consist of terrestrial or aquatic, perennial herbs, shrubs, or trees (some with milky sap), with articulated laticifers. The leaves are spiral, simple to compound, stipulate or exstipulate. The inflorescence is a cyme or a solitary flower. The flowers are numerous, yellow or red, petaloid tepals, all tepals distinct. The stamens are numerous, spiral, apostemonous; filaments are narrow. Anthers are latrorse to introrse and longitudinal in dehiscence, tetrasporangiate, with a laminar connective. The gynoecium is apocarpous, with 12 40 one-loculed superior ovaries. The style and stigma are solitary and terminal. The Placentaion is apical; ovules are anatropous and bitemgic, 1 per ovary. The fruit is a aggregate of nuts, each sunken in an accrescent receptacle. The seeds are exalbuminous. Flowers are beetle-pollinated. The stems have a eustele or atactostelic-like vasculature.

The Platanaceae were formerly treated as a subfamily (Platanoideae) of the Sapindaceae. The two species that make up the Platanaceae are distributed from eastern North America to northern South America (*P. occidentalis*) and Asia to northern Australia (*P. macrophylla*). Economic importance includes use as cultivated ornamentals, edible rhizomes and seeds, medicine, and in religious rites (the sacred plane tree); *P. occidentalis* is famous for having long-lived seeds, some discovered 3000 years old. See Williamson and Schneider (1993) for more detailed information.

The Platanaceae are distinctive in being *aquatic herbs* with often atactostelic stems, *emergent concave-peltate leaves*, and *emergent, solitary* flowers with numerous tepals, numerous stamens, and an *apocarpous* gynoecium having pistils *partially embedded within an expanded receptacle*; the fruit is an *aggregate of nuts* within an *accrescent receptacle*.

Proteaceae

The Proteaceae consist of terrestrial or aquatic, perennial herbs, shrubs, or trees (some with milky sap), with articulated laticifers. The leaves are spiral, simple to compound, stipulate or exstipulate. The inflorescence is a cyme or a solitary flower. The flowers are numerous, yellow or red, petaloid tepals, all tepals distinct. The stamens are numerous, spiral, apostemonous; filaments are narrow. Anthers are latrorse to introrse and longitudinal in dehiscence, tetrasporangiate, with a laminar connective. The gynoecium is apocarpous, with 12 40 one-loculed superior ovaries. The style and stigma are solitary and terminal. The Placentaion is apical; ovules are anatropous and bitemgic, 1 per ovary. The fruit is a aggregate of nuts, each sunken in an accrescent receptacle. The seeds are exalbuminous. Flowers are beetle-pollinated. The stems have a eustele or atactostelic-like vasculature.

The Proteaceae were formerly treated as a subfamily (Proteoideae) of the Anacardiaceae. The two species that make up the Proteaceae are distributed from eastern North America to northern South America (*P. occidentalis*) and Asia to northern Australia (*P. macrophylla*). Economic importance includes use as cultivated ornamentals, edible rhizomes and seeds, medicine, and in religious rites (the sacred plane tree); *P. occidentalis* is famous for having long-lived seeds, some discovered 3000 years old. See Williamson and Schneider (1993) for more detailed information.

The Proteaceae are distinctive in being *aquatic herbs* with often atactostelic stems, *emergent concave-peltate leaves*, and *emergent, solitary* flowers with numerous tepals, numerous stamens, and an *apocarpous* gynoecium having pistils *partially embedded within an expanded receptacle*; the fruit is an *aggregate of nuts* within an *accrescent receptacle*.
CHAPTER 8 DIVERSITY AND CLASSIFICATION OF FLOWERING PLANTS: EUDICOTS

Platanaceae Plane Tree or Sycamore family (Greek Platanus, broad leaf). 1 genus (*Platanus*) / 7 species. (Figure 8.7)

The Platanaceae consist of monoecious trees with exfoliating bark. The leaves are alternate (the petiole enclosing an infrapetiolar bud), simple, palmately lobed, stipulate (stipules usually encircling twig), deciduous, with stellate trichomes, and usually palmately netted venation. The inflorescence is a terminal, pendant spike of unisexual heads. The flowers are small, unisexual. The perianth is biseriate, hypanthium absent. The calyx is aposepalous to basally synsepalous, of 3–4 [7] sepals. The corolla is apopetalous, of 3–4 [7] (usually 0 in females) petals. The stamens are 3–4 [7], antisepalous, apostemonous, staminodes present in some female flowers. Anthers are sessile, longitudinal in dehiscence, the connective with an apical, peltate appendage. The gynoecium is apocarpous, with a superior ovary and 5–8 [3–9] carpels and locules. Placentation is apical; ovules are orthotropous, bitegmic, 1 [2] per ovary. Nectaries are absent.

The fruit is a multiple of achenes, with an accrescent, bristly perianth (functioning in wind dispersal) and persistent style. The seeds are endospermous. Flowers are wind-pollinated.

Members of the Platanaceae are distributed in the northern hemisphere. Economic importance includes timber and use as cultivated ornamentals. See Kubitzki et al. (1993) for a treatment of the family.

The Platanaceae are distinctive in being in being monoecious trees with encircling stipules, infrapetiolar buds, usually palmately lobed and veined leaves, and a pendant spike of heads bearing unisexual flowers, with a multiple fruit of bristly achenes.

Female: K 3–4 [7] or (3–4 [7]) C 0 G 5–8 [3–9], superior.

Proteaceae Protea family (after Proteus, the sea god, for his versatility in changing form). 75 genera / 1350 species. (Figure 8.8)
The Proteaceae consist of shrubs and trees. The roots are without mycorrhizae, often with short, lateral proteoid roots. The leaves are usually spiral and simple, pinnate or bipinnate, evergreen, and coriaceous. The inflorescence is a bracteate raceme, umbel, involucrate head, or of solitary or paired flowers. The flowers are bisexual or unisexual, actinomorphic or zygomorphic. The perianth is uniseriate. The calyx is valvate, consisting of 4 distinct or connate sepals. The corolla is absent (or interpreted as modified into 4-lobed nectariferous disk or minute scales). The thecae, with thecae and connective often extended as an appendage. The thecal, with thecae and connective often extended as an appendage. The dehiscence, tetrasporangiate or bisporangiate, dithecal or monosporangiate, usually episepalous. Anthers are 4, anti-nectariferous disk or minute scales. The ovules are in type, bitegmic, 1 2 1, superior ovary and 1 locule. Placentation is marginal or appearing basal; ovules are variable in type, bitegmic, 1 2 [∞] per ovary. The fruit is a follicle, nut, achene, or drupe. Seeds are exalaminous.

Members of the Proteaceae occur in rain forest to xeric habitats with distributions in tropical and subtropical regions, especially Australia and South Africa. Economic importance includes numerous cultivated ornamentals (e.g., Banksia, Grevillea, Protea), important timber trees, and species with edible seeds (e.g., Macadamia). See Hoot and Douglas (1998) for a recent phylogenetic study of the Proteaceae.

The Proteaceae are distinctive in having flowers with a uniseriate perianth of 4 sepals, 4 antiseral sepals, and a unicarpellous, superior ovary.

K 4 or (4) C 0 A 4 G 1, superior.

CORE EUDICOTS

The so-called Core Eudicots of the APG II system include (among others) the orders Caryophyllales, Santalales, and Saxifragales, plus two large groups, the Rosids and Asterids (Figure 8.1, Table 8.1).

CARYOPHYLLALES

The Caryophyllales, sensu APG II (2003), contain 28 families (plus three more, after Stevens, 2001 onwards), of which five are treated here (Table 8.1). Notable among the families not described are the Droseraceae (Figure 8.9A E), including the spectacular carnivorous plants Dionaea muscipula, Venus fly-trap with trap leaves, and Drosera spp., the sundews with tentacular leaves; Frankeniaceae (Figure 8.9F H), her-baceous or shrubby halophytes; Nepenthaceae (Figure 8.9I), carnivorous plants with pitchers at the ends of photosynthetic leaves; Nyctaginaceae (Figure 8.9J K), four-o clock family, including Bougainvillea; Phytolaccaceae (Figure 8.9L), the pokeberry family; Plumbaginaceae (Figure 8.9M), including the cultivars Armeria, Limonium (statice) and Plumbago; Portulacaceae (Figure 8.9N O), the purslane family, mostly succulents, including a number of cultivated ornamentals; Simmondsiaceae (Figure 8.9P Q), a monotypic family consisting of Simmondsia chinensis, jojoba, the seed a source of oil-like wax with many uses, including cosmetics and skin/hair products; and Tamaricaceae (Figure 8.9R), including the cultivar and weed Tamarix.

The Caryophyllales encompass a traditional group formerly known as the Centrospermae (or Caryophyllidae, after Cronquist 1981). The traditional Centrospermae or Caryophyllidae are largely equivalent to the Core Caryophyllales, a complex of approximately 15 families (Figure 8.10), although the Polygonaceae, Plumbaginaceae, Frankeniaceae, and Tamaricaceae were often included. Knowledge of the interrelationships within the Core Caryophyllales is still in flux, with several additional families having been proposed by various workers.

Many, though not all, members of the Core Caryophyllales possess pollen that is trinucleate upon being released from the anther, a relatively rare feature in angiosperms (most being binucleate at release). Also, many members of the Core Caryophyllales have either free-central (hence the name Centrospermae, from the seeds arising from a central column) or basal placentation. More clear-cut apomorphies for the Core Caryophyllales are an ultrastructural feature sieve tube plastids with protein crystalloid inclusions surrounded by proteinaceous filaments (Figure 8.11B) and ovule/seed apomorphies ovules campylotropous (Figure 8.11A) and perispermous seeds (see Chapter 11).

A subgroup of approximately 10 families of the Core Caryophyllales, termed the Higher Caryophyllales, are largely united by the presence of betalains (Figure 8.11C), reddish, purplish, or yellowish pigmented compounds that functionally replace the anthocyanins found in other angiosperms.

The Caryophyllales of the APG II system also include a number of basal families previously unsuspected of close relationships to the Core Caryophyllales prior to detailed molecular studies. These families include the Simmondsiaceae and the carnivorous groups Droseraceae, Drosophyllaceae, and Nepenthaceae. The relationships of these families portrayed in Figure 8.9 shows one possibility of evolution in this group, necessitating the reversal of carnivory in two families. See Meimberg et al. (2000) and Soltis et al. (2000) for more information.

Aizoaceae Mesembryanthemum or Vygie family (meaning all ways alive). 128 genera / 1850 species. (Figure 8.12)
The Aizoaceae consist of annual or perennial herbs, rarely shrubs or trees, rarely spiny. The leaves are often centric, without a bifacial structure (some with apical lens through which light enters), opposite or whorled (rarely alternate), simple, undivided, usually extispulate, succulent, often terete or angled. The inflorescence is terminal or axillary, of solitary flowers or cymes. The flowers are bisexual (rarely unisexual), actinomorphic, epipetalous or perigynous. The perianth is uniseriate, a hypanthium present. The calyx is distinct with 5 [3, 8] sepals. The corolla is absent, the petaloid structures of some taxa interpreted as petaloid staminodes. The stamens are [4] × 5, apostemalous or basally connate into bundles or monadelphous, with an outer whorl(s) of petaloid staminodes in some taxa. The gynoecium is syncarpous, with a superior or inferior ovary, 2 × carpels, and 2 × (rarely 1) locules. The styles are generally as many as carpels. Placentation is axile, parietal with septa, or basal; ovules are campylotropous to anatropous, bitegmic, [1] ×. Nectaries are present, inner to the insertion of the androecium. The fruit is a loculicidal capsule or berry. Betalain pigments are present, anthocyanins absent. Photosynthesis is often C4 or CAM (see Chapter 10).
Members of the Aizoaceae grow in tropical and subtropical regions, primarily in South Africa, less so in Australia. Economic importance includes mostly numerous ornamental cultivars, some (e.g., Sceletium) with medicinal properties, Tetragonia (New Zealand spinach) used as table greens. See Klak et al. (2003) for a recent treatment of the Aizoaceae.

The Aizoaceae are distinctive in being herbs, rarely shrubs or trees, with generally opposite, succulent leaves (often with C4 or CAM photosynthesis) and solitary or cymose flowers with a uniseriate perianth (outer petaloid staminodes present in many), usually numerous stamens, and usually numerous ovules, betalain pigments only present.

Amaranthaceae (including Chenopodiaceae) Amaranth family (Greek unfading, from the persistent bracts and perianth), ca. 174 genera / 2050 species. (Figure 8.13)

The Amaranthaceae consist of annual or perennial, hermaphroditic, dioecious, monoeccious, or polygamous herbs, vines, shrubs, or rarely trees. The stems are sometimes jointed or succulent. The leaves are simple, spiral or opposite, exstipulate, succulent or reduced in some taxa. The inflorescence is of solitary flowers or a spike, panicle, cyme, or thyrs, with bracts and bracteoles bristle-like and pigmented in some taxa. The flowers are small, bisexual or unisexual, usually actinomorphic, hypogynous or rarely epigynous. The perianth is uniseriate (usually termed a calyx, by default), consisting of [0 2] 3 5 [6 8] distinct or rarely basally connate sepals. The stamens are [1 2] 3 5 [6 8], generally the same number as sepals and antisepalous, distinct or basally connate and forming a tube. Anthers are longitudinal in dehiscence, dithecal or monotheal. The gynoecium is unicarpellous or syncarpous, with a superior, rarely half-inferior ovary, 1 3 [5] carpels, and 1 locule. The style(s) are 1 several. Placentation is basal; ovules are campylotropous or amphitropous, bitemgic, 1 [3=]. Nectaries are present in some, typically an annular disk. The fruit is a nutlet, berry, irregularly dehiscing capsule, or rarely a circumsessile capsule or multiple fruit. The seeds are mostly starchy-perispermous with curved embryo.

FIGURE 8.11 Caryophyllales apomorphies. A. Campylotropous ovule. B. Sieve tube plastid with proteinaceous laments (F) encircling central crystallloid protein (P); from Benhke (1972), by permission. C. Betanidin, a betacyanin (left) and indicoxanthin, a betaxanthin, both examples of betalain pigments.
Figure 8.12 CARYOPHYLLALES. Aizoaceae. A. Carpobrotus edulis. A. Flower, top view, showing numerous, petaloid staminodes and numerous fertile stamens. B. Flower, longitudinal section. Note inferior ovary and hypanthium. C–E. Aptenia cordifolia. C. Flowering shoot. Note decussate leaf arrangement. D. Flower, longitudinal section, showing inferior ovary and hypanthium. E. Flower, cross-section, showing axile placentation (four carpels and locules in this species). F–H. Fenestera aurantiaca. F. Leaves, with apical lens. G. Leaf longitudinal section. H. Flower, longitudinal section, showing numerous petals and stamens and inferior ovary. I. Lithops sp., one of the stone plants, the leaves camouflaged as pebbles. J. Faucaria tigrina, tiger's jaw, flower and shoots.
Betalain pigments are present, anthocyanins absent. Plants have anomalous secondary growth, forming concentric rings of vascular bundles or alternating concentric rings of xylem and phloem, often with C4 or CAM photosynthesis.

The Amaranthaceae has a largely worldwide distribution, members common in some deserts, estuarine or alkaline regions, tropical areas, and some temperate regions. Economic importance includes vegetable crops such as beet (Beta vulgaris) and spinach (Spinacea oleracea), pseudograin crops such as Amaranthus and Chenopodium spp. (e.g., C. quinoa), some cultivated ornamentals such as Celosia argentea, cockcomb, several detrimental weeds, and some local firewood and medicinal plants.

The Amaranthaceae are distinctive in being herbs to trees with anomalous secondary growth, simple leaves (succulent to reduced in some), bristlelike, pigmented bracts in some, a uniseriate perianth of mostly 3 [0 2, 6 8] sepals, basally connate stamens of same number and opposite perianth parts, a 1-loculed, mostly 1-ovuled ovary with basal placentation, seeds with curved embryo, and betalain pigments only present. The Caryophyllaceae consist of annual or perennial herbs, rarely shrubs, lianas, or trees. The stems often have swollen nodes. The leaves are opposite (rarely spiral), simple, usually estipulate. The inflorescence is of dichasial cymes or solitary flowers. The flowers are bisexual or unisexual, acinomorphic, actinomorphic, hypogynous, rarely perigynous. The perianth consists of numerous, distinct, spirally arranged tepals, grading from outer bractlike to inner petal-like structures, a hypanthium present. The stamens are numerous, spiral or in whorled clusters, and aposporous. The anthers are longitudinal in dehiscence, tetrasporangiate and dithecal. The gynoecium is syncarpous, with an inferior ovary, 3 man y carpels, and 1 locule. The style(s) are single at the base, branched above. Placentation is parietal [basal]; ovules are campylotropous [anatropous], bitegmic, numerous per carpel. Nectaries are present within the hypanthium. The fruit is a berry, rarely dry and indehiscent. The seeds are arillate in some, exalbuminous, perispermous in some, embryos straight to curved. Flowers are pollinated by bees, moths, hummingbirds, or bats. Betalain pigments are present, anthocyanins absent. Photosynthesis is CAM (Crassulacean Acid Metabolism), in which stomata are opened at night (when carbon dioxide is fixed and stored), closed during the day to conserve water (see Chapter 10).

The Cactaceae are typically classified into three subfamilies: Pereskioideae (thought to be basal in the family), with persistent, broad vegetative leaves, glochidia absent, and seeds exarillate; Opuntioideae, with cylindrical, caducous leaves, specialized glochidia, and arillate seeds; and Cactoideae, with leaves and glochidia absent and seeds exarillate. Only the Opuntioideae are likely monophyletic. Members of the Cactaceae grow mostly in desert regions with distributions in the New World (except for Rhipsalis in Africa). Economic importance includes numerous cultivated ornamentals; Opuntia spp. are eaten for their fruits (prickly-pears) and stems (nopales); Lophophora williamsii (peyote) is used as a hallucinogen and in religious ceremonies (e.g., Religion of the Native American Church). See Nyffeler (2002) and Wallace and Gibson (2002) for recent studies of Cactaceae systematics.

The Cactaceae are distinctive in being typically stem-succulent, CAM shrubs or trees, with leaves usually reduced or absent, the axillary meristems modified into specialized areoles bearing leaf spines, the flowers epipertigynous with spiral perianth parts intergrading from outer bractlike to inner petal-like parts, having numerous stamens and an inferior ovary with numerous ovules and parietal placentation, betalain pigments only present. The Caryophyllaceae consist of annual or perennial herbs, rarely shrubs, lianas, or trees. The stems often have swollen nodes. The leaves are opposite (rarely spiral), simple, usually estipulate. The inflorescence is of dichasial cymes or solitary flowers. The flowers are bisexual or unisexual, acinomorphic, hypogynous, rarely perigynous. The perianth is biseriate, dichlamydeous, hypanthium absent [rarely present]. The calyx is synsepalous [rarely aposepalous] with 5 [4] sepals. The corolla is apetalous and often unguiculate (clawed), with 5 [4] petals. The stamens are 5 10 [1 4], uniseriate or biseriate, apostemonous, epipetalous, or epipetalous, basally epipetalous and forming a tube in some species. The anthers are longitudinal in dehiscence. The gynoecium is syncarpous, with a superior ovary (often with a stipe/gynophore), 2 5+ carpels, and 1 locule, often with basal septa. The style(s) are terminal, single below, often branched above. Placentation is free-central at least above, often axile below; ovules are campylotropous to hemitropous, bitegmic, usually numerous per ovary. Nectaries occur as a nectariferous disk in some. The fruit is a capsule, with valves or teeth 1 2 × the
carpel number. The seeds are often with sculptured seed coat and are perispermous. Anthocyanin pigments are present, betalains absent. Anomalous secondary growth with concentric rings of vascular tissue occurs in some taxa.

The Caryophyllaceae have a worldwide distribution, especially in the northern hemisphere. Economic importance includes several ornamental cultivars, such as *Dianthus*, carnation.

See Smisson et al. (2002) for a recent phylogenetic analysis of the Caryophyllaceae.

The Caryophyllaceae are distinctive in having nodes often swollen, with simple, opposite leaves, an inflorescence of solitary flowers or dichasial cymes, and biseriate, actinomorphic, usually pentameric flowers with distinct, clawed petals, a superior ovary with distally free-central styles.
placentation, and a capsular fruit, anthocyanin pigments only present.

Polygonaceae Buckwheat family (meaning many knees, from swollen nodes found in some species). 46 genera / 1100 species. (Figure 8.17)

The Polygonaceae consist of annual or perennial herbs, shrubs, lianas, vines, or trees. The stems often have swollen nodes. The leaves are usually spiral, simple, stipulate or exstipulate, when stipulate, stipules are typically connate into a scarious, appressed sheath extending above the node, termed an ocrea. The inflorescence consists of involucrate fasciculate units, the fascicles arranged in various branched or unbranched secondary inflorescences. The flowers are hypogynous, small, bisexual or unisexual, actinomorphic, pedicellate, the pedicels often articulated (jointed) above, an ocreola often subtending indi vidual flowers. The perianth is uniseriate or appearing biseriate (actually spiral), homochlamydeous, usually 3+3, or 5 and quincuncial (rarely 2+2), the tepals (perianth parts) basally connate, hypanthium absent or present. The stamens are 3+3 or 8 [2,9+], often of two lengths, generally antitepalous, apospemous to basally connate. Anthers are versatile, longitudinal and introrse in dehis- cence. The gynoecium is syncarpous, with a superior ovary, 3 [2,4] carpels, and 1 locule. The styles are distinct or basally connate. Placentation is basal; ovules are orthotropous, bi- or unigemig, solitary. Nectaries are often present, consisting of a nectariferous disk or nectary pads at base of stamens. The fruit is usually a 3-sided achene or nutlet, sometimes with an accrescent perianth or hypanthium. The seeds are endospermous, oily and starchy. Anthocyanin pigments are present, betalains absent. The vasculature is often anomalous.

The Polygonaceae are typically classified into two subfamilies: Polygonoideae, with ocrea present, and Eriogonoideae, with ocrea absent, although the ocrea-containing taxa are likely paraphyletic. Members of the family have a worldwide distribution, especially in the northern temperate hemisphere. Economic importance includes edible plants, such as *Fagopyrum esculentum*, buckwheat, and *Rheum × hybridum*, rhubarb; medicinal plants; timber, charcoal, and tanning plants; and a number of cultivated ornamentals, such as *Antigonon leptopus*, coral vine, *Muehlenbeckia*, and *Polygonum*. See Lamb Frye and Kron (2003) for a recent phylogenetic analysis of the family.

The Polygonaceae are distinctive in having simple, spiral leaves, with or without a stipular ocrea, an inflorescence of fasciculate units, small actinomorphic flowers usually with 3+3 or 5 (quincuncial) connate tepals, a 3 [2,4] carpellate ovary with a single, basal, mostly orthotropous ovule, and a usually 3-sided achene or nutlet, anthocyanin pigments only present.
P (3+3) or (5) [(2+2)] A 3+3, 8 [2,9+] G (3) [(2,4)], superior, hypanthium absent or present.

SANTALALES

The Santalales, sensu APG II (2003), contain five families (seven in Stevens, 2001 onwards), of which one is described here. See Nickrent and MalØcot (2001) for more details.

Santalaceae [incl. Viscaceae] Sandal wood family (from Persian name for sandalwood). 41 genera / 925 species. (Figure 8.18)

The Santalaceae (sensu APG II 2003) consist of herbs, shrubs, or trees that are hemiparasites (parasites that carry on photosynthesis). The roots are haustorial either on the roots (sandalwoods) or stems (mistletoes) of a host plant. The stems are bifurcating (pseudo-dichotomous) in some (e.g., mistletoes), thorns sometimes present. The leaves are simple, exstipulate, usually opposite, either typical (bifacial and photosynthetic) or reduced and scale-like. The inflorescence is usually of axillary dichasia in a compound inflorescence. The flowers are small, bisexual or unisexual, actinomorphic, bracteate, hypogynous to epigynous. The perianth is uniseriate, of 3 5 [6 8], usually valvate tepals, apotepalous or syntepalous with a fleshy tube. The stamens are 4 5 [3 8], opposite the tepals, apotepalous, free or epi tepalous. Anthers are longitudinal, porcidual, or transverse in dehisence, and either tetra-, bi-, or unisporangiate. The gynoecium is syncarpous, with a superior to inferior ovary, 3 4 [2,5] carpels, and 1 locule. The style is solitary and terminal. Placentation is free-central, apical/pendulous, or with a large, basal placenta; ovules are 1 4 per ovary. An ovary disk is present in some. The fruit is a drupe, nut, berry, or explosive capsule. Seeds with seed coat absent, endospermous, the endosperm chlorophyllous in some.

The Santalaceae in the APG II (2003) treatment encompass the families Santalaceae, s.s. (sandal woods) and Viscaceae (mistletoes). Members of the family have a worldwide distribution. Economic importance includes uses as timber, oil, incense (e.g., Santalum album, Indian sandalwood), plus some used for edible fruits or tubers and for tanning; mistletoes, esp. Phoradendron spp., are used in decorative displays, some are pests on crop trees (e.g., Arceuthobium). See Nickrent and MalØcot (2001) for a recent treatment on the family and its relationships.

The Santalaceae are distinctive in being photosynthetic hemiparasites with haustorial roots attached to roots or
branches of a host plant, having small, often unisexual flowers with a uniseriate, valvate perianth, antitepalous stamens, and free-central/apical or basal placentation, seeds lacking a seed coat, the fruit a drupe, nut, berry, or explosively dehiscent. P 3-5 [6-8] or (3-5) [(6-8)] A 3-5 [6-8] G (3-4) [(2,5)], superior to inferior.

SAXIFRAGALES

The Saxifragales, sensu APG II (2003) include 10 families (15 sensu Stevens, 2001 onwards), of which two are described here. Notable among the families not treated are the Altingiaceae (including Liquidambar, sweetgum), Cercidiphyllaceae (only 2 species, used as timber trees, much more widespread in the past), Grossulariaceae (including Ribes, currants/gooseberries, with edible fruits), Haloragaceae (including aquarium aquatics such as Myriophyllum), Hamamelidaceae (including Hamamelis, witch-hazel), and Paeoniaceae (peony family). See Soltis and Soltis (1997) and Fishbein et al. (2001) for information on the order.

Crassulaceae Stonecrop family (meaning thick or succulent little plant). 33 genera / ca. 1500 species. (Figure 8.19)

The Crassulaceae consist of herbs, shrubs, or rarely trees. The leaves are spiral, opposite, or whorled, simple, exstipulate, and characteristically succulent. The inflorescence is a branched cyme or of solitary flowers. The flowers are usually bisexual, actinomorphic, pedicellate or sessile, hypogynous or slightly perigynous. The perianth is biseriate and dichlamydeous. The calyx is usually aposepalous, with 5 [rarely 3 6+] sepals. The corolla is apetalous to basally sympetalous, with 5 [rarely 3 6+] petals. The stamens are 1 2× the sepal or petal number, biseriate and obdiplostemonous or uniseriate and antiselpalous, free or epipetalous. Anthers are longitudinal in dehiscence, tetrasporangiate, dithecal. The gynoecium is apocarpous, with a superior ovary and 5 [3 6 or more] carpels. Placentation is marginal; ovules are anatropous, bitegmic, and numerous [rarely few or 1]. Nectaries are present, consisting of scale-like structures at the base of and opposite the carpels. The fruit is a follicetum, rarely a capsule. The seeds are endospermous (oily and proteinaceous). The stem xylem is usually in a continuous cylinder;
leaves often have Kranz anatomy, with Crassulaceous Acid Metabolism (CAM) photosynthesis (see Chapter 10).

The Crassulaceae is traditionally treated in six subfamilies, but recent studies discount the monophyly of most of these. Members of the family often grow in arid environments, but also occur in mesic or moist habitats with distributions worldwide, except Australia and Pacific islands; species are most diverse in S. Africa and mtns. of Mexico and Asia. Economic importance includes cultivated ornamentals, especially Aeonium, Crassula, Echeveria, Kalanchōe, and Sedum. See Ham and t Hart (1998) and Mort et al. (2001) for recent phylogenetic analyses.

The Crassulaceae are distinctive in being herbs, shrubs, or rarely trees, with simple, succulent leaves having CAM photosynthesis, a cymose inflorescence with bisexual, actinomorphic, dichlamydeous flowers, obdiplostemonous or uniseriate stamens, and an apocarpous gynoecium with opposed, scale-like nectaries, the fruit a follicetum. K 5 [3-6+] C 5 [3-6+] A 5+5 or 5 [3-6+] G 5 [3-6+], superior.

Saxifragaceae Saxifrage family (Latin for rock breaking). 35 genera / 660 species. (Figure 8.20)

The Saxifragaceae consist of perennial herbs or subshrubs. The leaves are usually spiral, often rosulate, simple, pinnate, or palmate, usually exstipulate, sometimes succulent. The inflorescence is a cyme or a solitary, axillary flower. The flowers are bisexual, actinomorphic, and hypogynous to epigynous. The perianth is biseriate, dichlamydeous. The calyx is aposepalous with 5 [3 10] sepals; the corolla is sympetalous with 5 [3 10] petals. The stamens are variable in number, uniseriate or biseriate, with staminodes present in some. The gynoecium is syncarpous and often lobed, rarely apocarpous, with a superior to inferior ovary, and 2-7 [7] car pels. Placentation is marginal, axile, or parietal; ovules are anatropous, uni- or bitegmic, usually numerous. A nectariferous ovary disk is often present. The fruit is a (usually) septicidal capsule. The seeds are (oily) endospermous.

The Saxifragaceae are widely distributed, especially in northern temperate and cold regions. Economic importance is primarily as cultivated ornamentals. See Soltis and Soltis (1997) and Soltis et al. (2001).

The Saxifragaceae are distinctive in being perennial herbs, rarely shrubs, with spiral, sometimes succulent leaves (often in rosettes), the flowers generally with 5 distinct sepals, 5 connate petals, and 1 2 whorls of stamens, the gynoecium usually syncarpous and lobed, the ovary superior to inferior, with numerous ovules, the fruit a septical capsule. K 5 [3-10] C (5) [(3-10)] A 5 or 5+5 [variable] G (2-4) [(-7)], superior to inferior.

ROSIDS

The Rosids, as delimited by the APG II (2003) system, comprise a very large group of eudicots. Recent molecular studies, upon which the APG II system is based, verify the monophyly of this group. Rosids are largely equivalent to the subclass Rosidae of Cronquist (1981), but also contain several taxa that various authors placed in other groups (particularly within the subclass Dilleniidae of Cronquist).

No clear nonmolecular apomorphies unite the Rosids. Members tend to have perianths with unfused parts and a stamen merosity greater than that of the calyx or corolla, but there are many exceptions. Generally, Rosids have bitegmic, crassinucellate ovules, distinguishing them from the Asterids, which largely have unitegmic, tenuinucellate ovules.

The Rosids are currently delimited into 13-16 orders, many of which are members of the subgroups Eurosids I and Eurosids II (Figures 8.1, 8.21). A listing of families placed within these orders is seen in Table 8.2. Some families are of uncertain placement (insertae sedis); these are listed at the beginning of the Rosids and Eurosids I (Table 8.2).

GERANIALES

The Geraniales, sensu APG II, 2003, contain four families (Table 8.2), only one of which, the Geraniaceae, is described here.

Geraniaceae — Geranium family (Gr. for crane, from accrescent styles resembling a long bird’s beak). 11 genera / 700 species. (Figure 8.22)

The Geraniaceae consist of herbs or shrubs. The stems are a pachycaul in some taxa. The leaves are simple or compound, if simple, usually pinnately or palmately lobed to divided, spiral, rarely opposite, usually stipulate. The inflorescence is a cyme or a solitary, axillary flower. The flowers are bisexual, actinomorphic (zygomorphic in Pelargonium), hypogynous, often bracteate, an epicalyx present in some. The perianth is biseriate and dichlamydeous. The calyx is aposepalous or synsepalous with 5 [4], imbricate or valvate sepals, the adaxial sepal a nectariferous spur in Pelargonium. The corolla is sympetalous with 5 [4], imbricate or valvate sepals, the adaxial sepal a nectariferous spur in Pelargonium. The gynoecium is syncarpous with 5 [0,4,8] carpels, rarely 7 or 5, in two whorls, basally connate, with staminodes present in the outer whorl of some. Anthers are longitudinal in dehiscence. The gynoecium is syncarpous, with a superior ovary, 5 [rarely 2, 3, or 8] carpels, and as many locules as carpels. The style is usually solitary; stigmas are as many as carpels. Placentation is apical-axile; ovules are anatropous to campylotropous, bitemgic, usually
two per carpel. **Nectaries** are present, between petals and stamens (except in *Pelargonium*). The **fruit** is a loculicidal capsule or a schizocarp of mericarps or follicles, usually separating from a persistent beak arising from an accrescent style. Muticellular, capitulate, glandular trichomes are often present, usually with aromatic oils in trichome glands.

The Geraniaceae contain the tribe Geranieae, including *Geranium*, *Pelargonium*, and *Erodium* (stork's bill, crane's bill, or filaree), distinctive in having a schizocarpic fruit with an elongate, persistent beak. Members of the family are distributed in mostly temperate, some tropical, regions. Economic importance includes the use of taxa as cultivated ornamentals (such as *Pelargonium*). See Lis-Balchin (2002) for more detailed studies of the family.

The Geraniaceae are distinctive in being herbs or shrubs with generally pentamerosous, dichlamydeous flowers usually having **nectariferous glands alternating with the petals** and generally **two or more whorls of stamens, staminodes** often present; the tribe Geranieae is distinctive in having **beaked, schizocarpic fruits**.

MYRTALES

The Myrtales, sensu APG II, 2003, contain 13 families (Table 8.2), of which three are described here. A possible apomorphy for the order may be an inferior ovary with a hypanthium (epiperigynous perianth/androecial position). Notable among the families not described here are the **Combretaceae** (including savannah and mangrove species, timber and dye plants, and ornamental cultivars) and the **Lythraceae** (the loosestrife family, including dye and timber plants, ornamental cultivars such as *Cuphea* and *Lagerstroemia*, and the food plant *Punica granatum*, pomegranate [formerly classified in the Punicaceae]). See Conti et al. (1996, 1998) for detailed studies of the Myrtales.

Melastomataceae Melastome family (Greek for black mouth, from fruits that stain). 188 genera / 4,950 species. (Figure 8.23)

The Melastomataceae consist of shrubs, herbs, rarely trees or lianas. The **stems** are often 4-sided. The **leaves** are simple, opposite, rarely whorled, usually exstipulate, often with 3–9 subparallel, major veins. The **inflorescence** is a cyme. The **flowers** are bisexual, epiperigynous, with perianth mostly actinomorphic, the androecium zygomorphic. The **perianth** has a hypanthium usually present. The **calyx** consists of 4–5 [3–10], valvate or calytrate sepals. The **corolla** is apetalous, with 4–5 [3–10] con volute petals. The **stamens** are usually 8 or 10, biseriate, often dimorphic; filaments are often twisted during anthesis, positioning the anthers to one side of flower. **Anthers** are poricidal with 1–2 pores per anther, rarely longitudinal in dehiscence, the anther connective often appended. The **gynoeicum** is syncarpous, with an inferior ovary, 3–5 [2–15] carpels, and locules, or unilocular by formation of incomplete septa. **Placentation** is usually axile; **ovules** are anatropous to campylotropous, bitegmic, with zig-zag micropyle, ≈ [1] per carpel. The **fruit** is a loculicidal or septifragal capsule or a berry. The **seeds** are exalbuminous.

The Melastomataceae have distributions in tropical regions, especially South America. Economic importance includes timber trees, edible fruit plants, dye plants, and several ornamental cultivars, such as *Tibouchina*. See Clausing and Renner (2001) for more detailed studies of the family.

The Melastomataceae are distinctive in being shrubs, herbs, rarely trees or lianas, the **stems** **often 4-sided**, with **simple, opposite** (rarely whorled) **leaves**, usually with 3–9 subparallel **major veins**. The inflorescence a cyme. **Flowers** **epiperigynous**, the perianth usually 4–5-merous, the **stamens** **biseriate and dimorphic**, anthers oriented to one side of flower by filament twisting, **connective** often **appendaged** and **dehiscence usually poricidal**, the inferior ovary with usually axile **placentation**, and fruit a capsule or berry. **K** 4–5 [3–10] **C** 4–5 [3–10] **A** 4+4 or 5+5 **G** (3–5) [(2–15)], inferior, hypanthium usually present.
TABLE 8.2 Orders and families of the Rosids, after APG II (2003). Families in **bold** are described in detail. An asterisk denotes a deviation from APG II, with brackets indicating the more inclusive family recommended by APG II. A double asterisk indicates a change suggested by Angiosperm Phylogeny Website (Stevens 2001 onwards). See Table 8.3 for listing of orders and families in the Asterids.

<table>
<thead>
<tr>
<th>Rosids</th>
<th>FAGALES</th>
<th>Rosales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Picramniaceae</td>
<td>Betulaceae</td>
<td>Barbevaceae</td>
</tr>
<tr>
<td>VITALES**</td>
<td>Casuarinaceae</td>
<td>Cannabaceae</td>
</tr>
<tr>
<td>Vitaceae</td>
<td>Fagaceae</td>
<td>Dirachmaceae</td>
</tr>
<tr>
<td>CROSSOSOMATALES</td>
<td>Juglandaceae</td>
<td>Elaeagnaceae</td>
</tr>
<tr>
<td>Aphiaceae**</td>
<td>(incl. Rhoipteleaceae)</td>
<td>Moraceae</td>
</tr>
<tr>
<td>Crossosomaetae**</td>
<td>Myricaceae</td>
<td>Rhamnaceae</td>
</tr>
<tr>
<td>Geissolomataceae**</td>
<td>Nothofagaceae</td>
<td>Rosaceae</td>
</tr>
<tr>
<td>Ixericeae**</td>
<td>Ticondendraceae</td>
<td>Ulmaceae</td>
</tr>
<tr>
<td>Stachyuraceae</td>
<td></td>
<td>Urticaceae</td>
</tr>
<tr>
<td>Staphyleaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strasburgeriaceae**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GERAANIALES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geraniaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ledocarpaeae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meliaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vivianiaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MYRTALES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alzateaeae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combretaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cryoteroniaeae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heteropyxidaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lythraceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melastomataaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myrtaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oliniaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onagraceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penaeaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psilloxyleae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhyndochalypseae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vochoisiaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EUROIDS I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZYGOPHYLLALES**</td>
<td>Krameriaceae* [Zygodomycaleae]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zygodomycaleae*</td>
<td></td>
</tr>
<tr>
<td>CELASTRALES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Celastraee</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lepidobotryaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parnassiaeae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CUCURBITALES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anisophylleaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Begoniaeae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coriariaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corynocoarpaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cucurbitaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Datiscaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrameleaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FABALES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fabaceae (Leguminosae)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polygalaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quillajeaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surianaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MALPIGHIATELS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Achariaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balanopaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bonnetiaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caryocaraceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centropaceae**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chrysobalanaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clusiaceae (Guttiferae)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ctenolophonaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elatinaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erythroxylaceae* [Rhizophoraceae]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Euphorbiaceae</td>
<td>Euphorbiaceae s.s.</td>
<td></td>
</tr>
<tr>
<td>Goupiaecae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humiriaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypericaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irvingiaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ixifloraceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lacistemataceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linaeeae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lophopyxidaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malpighiaeeae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ochrameae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pandaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passi oraceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phylanthaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Picrodendraceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Podostemaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Putranjivaceae</td>
<td>Raf esiaaceae**</td>
<td></td>
</tr>
<tr>
<td>Raf esiaaceae**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhizophoraceae*</td>
<td>Salicineae</td>
<td></td>
</tr>
<tr>
<td>Violaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OXALIDALES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brunelliaeae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cephalotraceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conaraceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cunoniaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elaeocarpaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxalidaceae</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Myrtaceae Myrtle family (myrtus, Gr. name for myrtle). 120 genera / 3850 species. (Figure 8.24)

The Myrtaceae consist of trees and shrubs. The roots possess ectotrophic mycorrhizae. The stems have secretory cavities and internal phloem in the pith. Leaves are opposite (usually) or spiral, rarely whorled, simple, glandular-punctate or pellucid, and often coriaceous, with stipules present and small or absent. The inflorescence is variable. The flowers are bisexual, actinomorphic, bracteate, epipetalous or perigynous, rarely perigynous. The perianth is biseriate, perianth segments distinct or connate, fused into a lidlike calyptre (perculum) in some (Eucalyptus). The calyx consists of 4–5 [3,6] sepals. The corolla consists of 4–5 [3,6] petals. The stamens are 0 and when distinct or connate into 4 or 5 groups. Anthers are loculicidal or poricidal in dehiscence. The gynoecium is syncarpous, with an inferior [rarely half-inferior or superior]
ovary, 2 \(5\) carpels, and 2 \(5\) locules. The **style** is terminal; the **stigma** is capitate or lobed. **Placentation** is axile (being basal-axile to apical-axile) [parietal if unicellular]; **ovules** are anatropous or campylotropous, bitegmic or unigemtic, 2 \(\approx\) per locule. **Nectaries** are present, as a disk atop the ovary or on the inner hypanthium. The **fruit** is a berry or loculicidal capsule [rarely a drupe or nut].

The Myrtaceae are typically classified into two subfamilies (with several tribes): Leptospermoideae, with fruits usually a capsule and leaves spiral or opposite, and Myrtoideae, with fruits fleshy and leaves always opposite. Members of the family have distributions in warm tropics and temperate Australia. Economic importance includes important timber trees, especially *Eucalyptus* spp., edible fruits (e.g., *Psidium guajava*, guava), spices (e.g., *Syzygium aromaticum*, cloves, *Pimenta dioica*, allspice), oils (e.g., *Eucalyptus* spp.), and cultivated ornamentals such as *Callistemon* (bottlebrush), *Chamelaucium* spp.), and cultivated *Eucalyptus* dioica, allspice), oils (e.g., *Syzygium aromaticum*, cloves, *Pimenta dioica*, allspice), oils (e.g., *Eucalyptus* spp.), and cultivated ornamentals such as *Callistemon* (bottlebrush), *Chamelaucium* spp., *Eucalyptus* spp., *Leptospermum* (tea tree), and *Myrtus* (myrtle). See Wilson et al. (2001) for a detailed study of the family.

The Myrtaceae are distinctive in being trees and shrubs with **glandular-punctate or pellucid leaves** and usually **epipеригинous flowers** with **numerous stamens**.
\[K \ 4-5 \ [3, 6] \ C \ 4-5 \ [3, 6] \ A \ \approx \ G (2-5) \ [(-16)], \] inferior [rarely half-inferior or superior], with hypanthium.

Onagraceae Ev ening-Primrose family (after onagra, Gr. for oleander, an unrelated plant). 24 genera / 650 species. (Figure 8.25)

The Onagraceae consist of terrestrial or aquatic herbs and shrubs, rarely trees. The **stems** have internal phloem, often with epidermal oil cells. The **leaves** are spiral, opposite, or whorled, simple, undivided to pinnatifid, and exstipulate or stipulate. The **inflorescence** is a spike, panicle, or of solitary flowers. The **flowers** are bisexual (usually), actinomorphic, and epiperigynous, the hypanthium elongate in some taxa. The **perianth** is biseriate and dichlamydeous. The **calyx** is valvate, aposepalous, consisting of usually 4 [rarely 2 6] sepals. The **corolla** is valvate or imbricate, apopetalous, consisting of usually 4 [rarely 2 6] petals. The **stamens** are 4–4 [rarely 2 6]. **Anthers** are longitudinal in dehiscence, tetrasporangiate and dithecal, with cross-partitions in some species. The **pollen** is shed in monads or tetrads, often with viscin threads, which function to adhere grains together. The **gynoecium** is syncarpous, with an inferior ovary, and usually 4 [rarely 2 6] carpels and locules. **Placentation** is axile or parietal; **ovules** are anatropous, bitegmic, usually \(\approx\) per locule, with a monosporic, 4-nucleate (*Oenothera* type) female gametophyte. The **fruit** is a capsule, berry, or nut. **Seeds** are (oily) endospermous.

The Onagraceae have a worldwide distribution. Economic importance includes several cultivated ornamentals, such as species of *Clarkia*, *Fuchsia*, and *Oenothera*. See Levin et al. (2003) for a detailed phylogenetic study of the family.

The Onagraceae are distinctive in being herbs and shrubs (rarely trees) with usually **4-merous [2–6-merous]**, epipеригинous **flowers** with usually **4+4 stamens** and a **monosporic, 4-nucleate female gametophyte**, the latter a possible apomorphy for the family.
\[K \ 4 [2-6] \ C \ 4 [2-6, 0] \ A \ 4+4 [2-6] \ G (4) [(2-6)], \] inferior, with hypanthium.

EUROSIDS I

This subgroup of the Rosids contains 7 8 orders plus one unplaced family (Table 8.2, Figure 8.21). Some of the orders are quite large, both in terms of number of families and number of species. Among the Eurosids I group are taxa of great agricultural importance, such as members of the Cucurbitaceae (squash family), Fabaceae (bean/pea family), Rosaceae (rose family), and Euphorbiaceae (spurge family). Others are of great ecological or industrial significance, such as the oaks (Fagaceae).

CUCURBITALES

This order, sensu APG II, 2003, contains seven families (Table 8.2), one of which is described here. Well known among the other families are the **Begoniaceae**, with *Begonia* a prominent ornamental cultivar. See Zhang and Renner (2003) for a recent study of the order.

Cucurbitaceae Cucumber / Gourd f amily (L. for gourd). 120 genera / 775 species. (Figure 8.26)

The Cucurbitaceae consist of monoecious or dioecious [rarely hermaphroditic] vines [rarely tree-like], usually with one tendril per node. The **leaves** are simple, palmately veined and often palmately lobed, spiral, and exstipulate. The **inflorescence** is axillary, variable in type or with flowers solitary. The **flowers** are usually unisexual, actinomorphic, the female flowers epipеригинous. The **perianth** is biseriate and dichlamydeous, with hypanthium present. The **calyx** is asepalous with 5 [3 6] imbricate sepals. The **corolla** is apopetalous or sympetalous with 5 [3 6] valvate petals. The **stamens** are 3 5, alternipetalous, distinct or connate. **Anthers** are longitudinal in dehiscence, dithecal or monothecal. The **gynoecium** is syncarpous, with an inferior ovary, 3 [1 5] carpels, and 1 locule [locules rarely as many as carpels]. The **styles** are
CHAPTER 8 DIVERSITY AND CLASSIFICATION OF FLOWERING PLANTS: EUDICOTS

1 3; stigmas are 1 2. Placentation is parietal, rarely axile; ovules are anatropous, bitegmic, generally \(\approx \) [rarely 1 fe w]. Extrafloral nectaries are often present. The fruit is a berry, pepo, capsule, or samara. The seeds are exalbuminous. Stem anatomy is typically bicyclic, with bicollateral vascular bundles.

The Cucurbitaceae have largely worldwide distributions, but occur mostly in tropical regions. Economic importance includes important food crops such as Citrullus lanatus (watermelon), Cucumis melo (melons), Cucumis sativa (cucumber), Cucurbita pepo and other spp. (squashes, pumpkins) and a number of other taxa; the dried fruits of several species are used as gourds, those of Luffa (luffa) are used as a sponge; some taxa have medicinal or horticultural uses. See Renner et al. (2002) for a recent study of the family.

The Cucurbitaceae are distinctive in being mostly monoeious or dioecious vines with simple, palmately veined and/or lobed leaves, usually with tendrils, the female flowers epipеригynous, with usually parietal placentation and three carpels, the fruit a berry, pepo, capsule, or samara. K 5 [3-6] C 5 [3-6] or (5) [(3-6)] A 3-5 or (3-5) G (3) [(2-5)], inferior, hypanthium present.

FABALES

The Fabales, sensu APG II, 2003, contain four families (Table 8.2), the two most common of which are described here. See Forest et al. (2002) for a recent study of the order.

Fabaceae (Leguminosae) — Bean/Pea family (after faba, Latin name for broad bean). 643 genera / 18,000 species. (Figures 8.27, 8.28)

The Fabaceae consist of herbs, shrubs, trees, or vines, with spines sometimes present. The roots of many members have a symbiotic association with nitrogen-fixing bacteria (Rhizobium spp.), which induce formation of root nodules (this especially common in the Faboideae). The leaves are usually compound (pinnate, bipinnate, trifoliate, rarely palmate), sometimes simple or unifoliate, usually spiral, basal pulvini often present, sometimes functioning in tactile (thigmomonastic), leaflet folding responses (e.g., Mimosa spp.), generally stipulate, sometimes stipellate, stipules spinose in some. The inflorescence is variable, typically bracteate. The flowers are usually bisexual, sometimes unisexual, actinomorphic or zygomorphic, pedicellate or sessile, hypogynous or perigynous. The perianth is biseriate, dichlamydeous, with a hypanthium sometimes present. The calyx is aposepalous or synepalous with 5 [3 6] sepals. The corolla is apetalous or sympetalous, with 5 [rarely 0] valvate or imbricate petals. The stamens are 5 or 10 \(\approx \), distinct or connate. Anthers are longitudinal, rarely poricidal in dehiscence. The gynoecium is unicarpellous, with a superior ovary, 1 [rarely 2 or more in some Mimosoideae] carpel, and 1 locule. The style and stigma are solitary. Placentation is marginal; ovules are anatropous or campylotropous, bitegmic, 2 \(\approx \) [1] per carpel. Nectaries are often present as a ring at the base of the ovary. The fruit is generally a legume, sometimes indehiscent (e.g., Arachis, peanut), winged (a samara), drupe-like, or divided into transverse partitions (a loment).

The Fabaceae are traditionally classified into three subfamilies (sometimes treated as separate families): Caesalpinioideae, Mimosoideae, and Faboideae (=Papilionoideae).

The Caesalpinioideae are distinctive in having generally zygomorphic flowers with usually \(5 \) or \(10 \) \([1 \approx] \) distinct stamens (staminodes present in some) and a corolla (imbricate in bud) with typically five distinct petals (sometimes reduced or lacking), the posterior, median petal inner to (overlapped by) the two lateral petals. The Caesalpinioideae is likely paraphyletic and, hence, placed in quotations here.

The Mimosoideae are distinctive in having actinomorphic flowers with a corolla of typically five, distinct or basally fused petals (valvate in bud), a hypanthium sometimes present, and with usually numerous, distinct or basally fused stamens.

The Faboideae (Papilionoideae) are distinctive in having “papilionaceous” flowers, which are zygomorphic, with connate stamens (either 10 monadelphous or 9+1 diadelphous) and a corolla (imbricate in bud) with five petals consisting of a large, median, usually posterior petal (the banner or standard), which is outer to (overlapping) the adjacent petals, two lateral “wing” petals (overlapped by the banner), and two anterior, distally fused “keel” petals. The flowers are resupinate in some species, e.g., Clitoria, in which the banner is anterior in position.

The Fabaceae is a very large group with a worldwide distribution. Members of the family are dominant species in some ecosystems (e.g., Acacia spp. in parts of Africa and Australia) and ecologically important for containing nitrogen-fixing rhizobial nodules. Economically, legumes are one of the important plant groups, being the source of numerous pulses (such as Arachis hypogaea; peanut; Glycine max, soybeans; Lens culinaris, lentil; Phaseolus spp., beans; Pisum sativum, peas); flavoring plants (such as Ceratonia siliqua, carob), fodder and soil rotation plants (such as Medicago sativa, alfalfa, or Trifolium spp., clovers) oils, timber trees, gums, dyes, and insecticides. See Doyle et al. (2000), Bruneau et al. (2001), and references therein for information on the phylogeny of the Fabaceae.

The Fabaceae are distinctive in being trees, shrubs, vines, or herbs, with stipulate, often compound leaves and typically pentamorous flowers, usually with a single, unicarpellous pistil with marginal placentation, the fruit a legume (or modified legume).
The Polygalaceae consist of trees, shrubs, lianas, or herbs. The leaves are simple, spiral, usually exstipulate (modified as a pair of glands or spines in some). The inflorescence is a spike, raceme, or panicle. The flowers are bisexual, zygomorphic, hypogynous to perigynous, and subtended by a pair of bracteoles. The perianth is biseriate, a hypanthium present in some. The calyx is usually aposepalous, sepals 5, the two inner, latero-posterior sepals often petaloid (resembling wing petals), rarely all or the two anterior sepals basally connate. The corolla is often adnate to the androecium forming a tube, petals 5 or 3 (the latter by suppression or loss of two lateral petals), when 3, the median-anterior (lower) petal apically fringed and boat-shaped. The stamens are 4+4, 10, or 3 7, usually basally connate forming a staminal tube. Anthers are longitudinal or apically poricidal in dehiscence. The gynoecium is syncarpous with a superior ovary, 2 5 [8] carpels, and locules [locule rarely 1]. The style is often curved, often 2-lobed, one lobe stigmatic, the other sterile and comose. Placentation is usually apical-axile; ovules are pendulous, epipetalous, anatropous to hemitropous, bitegmic, 1 per carpel [rarely 1 per ovary]. Nectaries consist of a nectariferous disk surrounding the base of the ovary; extrafloral nectaries are present in many species. The fruit is a loculicidal capsule, nut, samara, or drupe. The seeds are arillate (with caruncle) and endospermous (proteinaceous).

Members of the Polygalaceae have a mostly worldwide distribution. Economic importance includes some ornamental cultivars and plants of local medicinal value. See Persson (2001) for a study of the family.

The Polygalaceae are distinctive in being trees, shrubs, lianas, or herbs, with simple, spiral, usually exstipulate leaves, the flowers bisexual, the perianth biseriate, with the 2 inner (of 5) sepals often petaloid (resembling wing petals), petals 3 5, when 3, the anterior petal often apically fringed and boat-shaped, the anthers aporicidal or longitudinally dehiscent, the style often 2-lobed with one lobe stigmatic, the other sterile, ovule 1 per carpel, the seeds arillate (with caruncle). K 5 or (5) or (2)+3 C 3 or 5 A 4+4, 10, 3-7 G (2-5) [(3-6)] superior. K 5 or (5) [(3-6)] C 5 or (5) [0,1-6, or (1-6)] A 5, 10, or (∞) [1-∞] G 1 [2-16], superior, hypanthium sometimes present.

FAGALES

The Fagales, sensu APG II, 2003, contain seven families (Table 8.2), members of which are largely monoecious and wind pollinated. Two families are described here. Notable among the others are the Casuarinaceae (including Casuarina, Australian-pine), Juglandaceae (walnut family, including Carya, pecan, and Juglans, walnut), Myricaceae (wax-myrtle family), and Nothofagaceae (southern-beech family, which include important timber trees). See Li et al. (2002) and Manos and Steele (1997) for detailed treatments of the order.

Betulaceae—Birch family (Latin name for birch or for pitch, derived from bark). 6 genera / ca. 110 species. (Figure 8.30)

The Betulaceae consist of monoecious trees or shrubs. The leaves are simple, deciduous, usually spiral, caducous-stipulate, with the margin usually toothed. The inflorescences are unisexual, the male inflorescence is a pendulous catkin, the female inflorescence a short, pendulous or erect catkin, both bearing numerous, 1 3-flowered, bracteate, simple dichasial flowers. The flowers are unisexual, hypogynous or epigynous. The perianth is unisepalous (by default termed a calyx), of 1 6 [0], scale-like sepals/lobes. A corolla is absent. The stamens are 1 ∞, generally the same number as the perianth parts, anisepalous. Anthers have thecae either divided along the connective or connate. The gynoecium is syncarpous, with an inferior or superior ovary (the latter sometimes termed nude because of lacking a perianth and therefore a point of reference for ovary position), and 2 3 carpels; locules are 2 3 belo w, 1 above. The styles are 2 3, distinct. Placentation is apical-axile, the ovules pendulous from the apex of the septa; ovules are anatropous, unitegmic or bitegmic, 1 2 per locule. The fruit is a nut or 2-winged samara, subtended by woody bracts of a cone-like infructescence or partially enclosed by leafy bracts. The seeds are with or without endosperm. Plants are wind pollinated.

The Betulaceae are distributed in northern temperate and mountainous, tropical regions. The family is usually divided into two subfamilies: Betuloideae (including Alnus, alders, and Betula, birches) with male flowers in groups of 3 (a full, simple dichasium), and the Coryloideae (including Corylus, hazels/filberts, Carpinus, ironwood, and Ostrya, hornbeam) with male flower units reduced to 1. Economic importance of the family includes lumber trees (some woods very dense), chemical derivatives, nuts (e.g., Corylus, hazels/filberts), cultivated ornamentals, and numerous uses by aboriginal people.

The Betulaceae are distinctive in being monoecious trees or shrubs with simple, toothed leaves, and bearing pendulous, elongate male catkins and pendulous to erect female catkins, each with numerous, bracteate dichasia, the fruit a nut or 2-winged samara.

Fagaceae Oak family (Latin for the beech tree). 8 genera / 700 species. (Figure 8.31)
CHAPTER 8 DIVERSITY AND CLASSIFICATION OF FLOWERING PLANTS: EUDICOTS

FIGURE 8.29 FABALES. Polygalaceae. A,B. Comesperma ericinum. A. Shrub. B. Flowers, showing winglike, petaloid sepals. C–J. Polygala dalmaisiana. C. Flower, showing two latero-posterior, petaloid sepals. D. Flower close-up, showing three of five sepals (one petaloid sepal removed) and petals of perianth, the anterior petal keel-shaped and apically fringed. E. Side view of two posterior petals, each two-lobed. F. Top view of two posterior petals. G. Androecium, the lamens basally fused into a staminal tube. H. Poricidal anthers. I. View of pistil, with style extending through middle of staminal tube. J. Style tip, showing two-lobed stigma. K. Ovary longitudinal-section, showing ovules with apical-axile placentation. M,N. Polygala desertorum.
The Fagaceae consist of monoecious, rarely dioecious, trees or shrubs. The leaves are simple, undivided to divided, usually spiral, rarely opposite or whorled, stipulate, the stipules deciduous. The inflorescence is usually unisexual, the male inflorescence a catkin or head of reduced dichasia, the female flowers located at the base of male inflorescences or solitary.

The flowers are small, unisexual, actinomorphic, the female flowers epigynous and involucrate, the involucral bracts often fused forming a cupule (e.g., acorn cup). The perianth is composed of 6 [4 9] tepals. The stamens are 6 12 [4 90], distinct. Anthers are longitudinal in dehiscence. The gynoecium is syncarpous, with an inferior ovary, and usually

FIGURE 8.31 FAGALES. Fagaceae. **A,B. Castanea dentata**, chestnut. **A.** Male spikes. **B.** Fruits, showing prickly involucral bracts. **C–E.** Quercus suber, cork oak. **C.** Outer bark, from which commercial cork is derived. **D.** Male owers of catkin. **E.** Female owers, showing styles and young involucral bracts. **F.** Quercus sp., showing catkins and female owers. **G.** Quercus chrysolepis, with mature acorns in which involucral bracts are fused into acorn cup. **H.** Quercus acutissima, with prominent, relatively distinct involucral bracts.
3 or 6 [2,7.12] carpels, the locules as many as carpels basally, opening to one locule apically. **The styles** are as many in number as carpels. **Placentation** is basally axile; **ovules** are anatropous, bitegmic, 2 per carpel. The **fruit** is a nut (sometimes termed a glans), with a usually hard pericarp and subtended by accrescent involucral bracts, forming the cupule. **The seeds** are exalbuminous. Plants are usually wind pollinated, although they are insect pollinated in *Castanea*.

The Fagaceae have a mostly worldwide distribution in nontropical regions. Economic importance includes important lumber trees, such as *Quercus* (oak), *Fagus* (beech), and *Castanea* (chestnut); the outer bark of *Quercus suber* is the source of commercial cork; the seeds of various species have been a traditionally important source of food for humans and other animals. See Manos et al. (2001) for a recent study of the Fagaceae.

The Fagaceae are distinctive in being **monoecious** (rarely dioecious) **trees** or **shrubs** with **simple leaves** (sometimes divided), the **flowers** **unisexual** and small, the male flowers **in catkins or heads of reduced dichasium**, the female at base of male inflorescences or solitary, with an inferior, multicarpel-late ovary, the fruit a **nut with subtending cupule of connate involucral bracts**.

| Male: | P 6 [4-9] A 6-12 [4-90] |
| Female: | P 6 [4-9] G (3,6) [(2,7-12)], inferior |

MALPIGHIALES

The Malpighiales, sensu APG II, 2003, contain ca. 29 (-31) families (Table 8.2), of which three are described here. Notable among the other members of the order are **Erythroxylaceae** (containing *Erythroxylum* spp., the source of the alkaloid cocaine), **Linaceae** (containing *Linum usitatissimum*, flax, the source of linen cloth), **Malpighiaceae** (containing edible fruit plants and hallucinogens such as *Banisteriopsis*), **Rhizophoraceae** (the mangrove family), and **Salicaceae** (*Salix*, the willows, being the original source of salicin, from which aspirin was derived). See Chase et al. (2002) for a recent phylogenetic analysis of families of this order.

Euphorbiaceae Spur ge family (after Euphorbus, physician to the king of Mauritania, 1st century). ca. 300 genera / ca. 8,000 species. (Figure 8.32)

The Euphorbiaceae consist of monoecious or dioecious, herbs, shrubs, vines, or trees, latex present in some major groups (Crotonoideae and Euphorbioideae). The **stems** are succulent and cactuslike in some (e.g., some Euphorbias). The **leaves** are simple, rarely trifoliolate or palmate, spiral, opposite, or whorled, stipules generally present, these sometimes modified as glands or spines (e.g., many succulent Euphorbias). The **inflorescence** is generally a cyme, modified as a cyathium in the Euphorbioideae. The **flowers** are unisexual, actinomorphic, rarely zygomorphic, bracteate in some, hypogynous. The **perianth** is bisericate, uniseriate, or absent, generally 5-merous. The **calyx** is usually aposepalous with 5 [rarely 0] sepals. The **corolla** is usually apopetalous with 5 [rarely 0] valvate or imbricate petals. The **stamens** are 1 ∞, distinct or connate. **Anthers** are longitudinal, poricidal, or transverse in dehiscence. The **gynoecium** is syncarpous, with a superior ovary, 3 [2 ∞] carpels and locules. **The styles** are as many as carpels, each style sometimes 2-branched. **Placentation** is apical-axile and pendulous, with an obturator (a protuberance arising from the funiculus or placenta at the base of the ovule); **ovules** are anatropous or hemitropous, bitegmic, 1 per carpel. **Nectaries** are often present. **The fruit** is a schizocarp, drupe, berry, or samara.

The Euphorbiaceae have traditionally been classified into five subfamilies: Phyllanthoideae, Oldfieldioideae, Acalyphoideae, Crotonoideae, and Euphorbioideae. The former two subfamilies have two ovules per carpel (biovulate); the latter three subfamilies have one ovule per carpel (uniovulate). In the APG II (2003) classification, only the latter three subfamilies are included within the Euphorbiaceae, as is designated here. The biovulate Phyllanthoideae and Oldfieldioideae are elevated to family rank, Phyllanthaceae and Picrodendraceae, respectively (in the Malpighiales). Of the three remaining subfamilies of the Euphorbiaceae, the Crotonoideae and Euphorbioideae are similar in having a usually milky (white) latex (red or yellow in some Crotonoideae), and the Euphorbioideae have a characteristic cyathium as an inflorescence. However, a recent phylogenetic study has suggested further subdivision of the family (see Wurdack and Chase, 2002).

Members of the Euphorbiaceae have worldwide distributions. Economic importance includes *Ricinus communis*, the source of castor bean oil and the deadly poison ricin; *Hevea brasiliensis*, the major source of natural rubber; *Manihot esculenta*, cassava/manioc, a very important food crop and the source of tapioca; and various oil, timber, medicinal, dye, and ornamental plants. Succulent *Euphorbia* species are major components of plant communities in southern Africa, as well as important ornamental cultivars.

The Euphorbiaceae are distinctive in having **unisexual** flowers with a superior, **usually 3-carpellate** ovary with 1 **ovule per carpel**, **apical-axile** in placentation; Crotonoideae and Euphorbioideae have a **red**, **yellow**, or **usually white** ("milky") **latex** and the Euphorbioideae alone have a characteristic **cyathium** inflorescence.

| K 5 [0] | C 5 [0] | A 1-∞ | G (3) [(2-∞)], superior |
Passifloraceae — Passion Flower family (Latin for passion flower, after events of the Christian Passion, signified in floral parts). 17 genera / 575 species. (Figure 8.33)

The Passifloraceae consist of lianas, shrubs, or trees. The stems have axillary tendrils in lianous species. The leaves are simple, rarely palmately compound, often palmately lobed, spirally arranged, stipulate or extipulate, the petioles often with extrafloral nectaries. The inflorescence is a cyme or a solitary flower. The flowers are bisexual or unisexual, bracteate, actinomorphic, usually perigynous, rarely hypogynous.
The calyx is aposepalous or basally synsepalous, with 5 [3 8] sepals or calyx lobes. The corolla is apopetalous or basally sympetalous, with 5 [3 8] petals or corolla lobes, and a corona of 1 or more whorls of filamentous or scalelike structures between the perianth and androecium. The stamens are 5 [4 ∞], alternipetalous, whorled, uniseriate, distinct or connate, free or adnate to an androgynophore. Anthers are longitudinal in dehiscence. The gynoecium is syncarpous, with a superior ovary, 3 [2 5] carpels, and 1 locule, usually arising from a prominent androgynophore, rarely from a gynophore or sessile. The styles and stigmas are as many as carpels and usually basally connate. Placentation is parietal; ovules are anatropous, bitegmic, and numerous per carpel. The fruit is a berry or capsule. The seeds are endospermous.

The Passifloraceae have a worldwide distribution in tropical and subtropical regions. Economic importance includes use of many species as cultivated ornamentals, and some, e.g., Passiflora edulis (passion fruit) as edible fruits.

The Passifloraceae are distinctive in being lianas, shrubs, or trees with actinomorphic, usually bisexual flowers, having one or more whorls of coronal appendages between perianth and androecium, an androgynophore usually present, and typically 5 stamens and 3 carpels, with parietal placentation, the fruit a berry or capsule.

K 5 C 5 A 5 [3] or (5) [(3)] G 3 [(2-5)], superior.

Oxalidales

The Oxalidales, sensu APG II, 2003, contain six families (Table 8.2), only one of which is described here. See Matthews and Endress (2002) and Kubitzki (2004) for recent information about this order.

Oxalidaceae — Oxalis family (Greek for sour, from the accumulation of oxalic acid in the tissues). 6 genera/775 species. (Figure 8.35)

The Oxalidaceae consist of herbs, shrubs, or small trees. The stems are bulbs or tubers in some herbaceous taxa. The leaves are pinnate, palmate, often trifoliolate, rarely unifoliolate or of phyllodes, spirally arranged, usually exstipulate, the leaflets often folded at night. The inflorescence is a cyme. The flowers are bisexual, actinomorphic, and hypogynous. The calyx is aposepalous with 5 imbricate sepals. The corolla is apopetalous or basally sympetalous with 5 [0], convolute to imbricate petals. The stamens are biseriate, 5+5, whorled, the outer fertile stamens shorter, filaments basally connate, with outer whorl of staminodes sometimes present. Anthers are longitudinal in dehiscence. The gynoecium is syncarpous, with a superior ovary, 5 [3] carpels, and 5 [3] locules. The styles are 5 [3,1]. Placentation is axile; ovules are anatropous or hemitropous, bitegmic, 2 ∞ [1] per carpel. Nectaries are often present at base of outer stamens. The fruit is a loculicidal capsule or berry. The seeds are endospermous and often with a basal aril.

The Oxalidaceae are mostly worldwide in distribution. Economic importance includes fruit trees, e.g., Averrhoa carambola (star-fruit), tuber plants, e.g., Oxalis tuberosa, and ornamental cultivars, e.g., Oxalis spp.

The Oxalidaceae are distinctive in being herbs, shrubs, or small trees with usually pinnate or palmate (often trifoliolate) leaves (leaflets often folding at night), bisexual, actinomorphic pentameric flowers, stamens usually biseriate, with outer, basal nectaries, the fruit a loculicidal capsule or berry.

K 5 C 5 or (5) [0] A 5+5 [5 staminodes] G (5) [(3)], superior.
The Rosales, sensu APG II, 2003, contain nine families (Table 8.2), three of which are described here. Of these, the large family Rosaceae is of particular economic importance. Notable among the other families are the Cannabaceae (containing the euphoric and fiber plant *Cannabis sativa*, marijuana/hemp, and the beer-flavoring agent *Humulus lupulus*, hops), Urticaceae (the elm family, source of important cultivars), and Urticaceae (stinging nettles and relatives). See Kubitzki (2004) for recent information on the order.

Moraceae Mulberry family (Latin name for mulberry). ca. 40 genera / 1100 species (Figure 8.36)

The Moraceae consist of monoecious or dioecious trees, shrubs, lianas, and herbs, often with laticifers bearing a milky latex. The roots are prop or buttress in some taxa. The leaves are simple [rarely compound], spiral or opposite, stipulate. The inflorescence is axillary and variable in morphology, consisting of a spike (catkinlike in *Morus*), raceme, head (in some taxa with flowers borne upon the surface of an invaginated compound receptacle), or in *Ficus* an enclosed hypanthodium. The flowers are unisexual, small, actinomorphic, hypogynous or epigynous. The perianth is uniseriate [rarely biseriate], 0,10, the perianth parts (often termed a calyx) connate, at least basally. The stamens are 1,6, opposite and usually as many as the perianth parts; anthers are dithecal or (in *Ficus* spp.) monothecal. The gynoecium is syncarpous, with a superior or inferior ovary and 2-3 carpels and locules. The styles are typically 2. Placentation is apical (to subapical); ovules are solitary, anatropous to campylotropous, and bitegmic. The fruit is a multiple of achenes, in some taxa with an enlarged compound receptacle or syconium. P (0-10) A 1-6 G (2) [(3)], superior or inferior.

Rhamnaceae — Buckthorn family (Greek name for buckthorn or other thorny shrubs). 49 genera / 900 species. (Figure 8.37)

The Rhamnaceae consist of trees, shrubs, or rarely herbs. The roots of some taxa are associated with nitrogen-fixing Actinomycetes bacteria. The stems are sometimes modified as thorns, tendrils, or hooks. The leaves are simple, sometimes rudimentary, pinnately or palmately veined, spiral or opposite, stipulate or extipulate, with stipular spines present in some taxa. The inflorescence is a cyme, thryse, fascicle, or rarely a solitary flower. The flowers are unisexual or bisexual, actinomorphic, perigynous to eiperigynous. The perianth typically has a hypanthium, sometimes adnate to staminal disk. The calyx is aposetalous with 4-5 sepals. The corolla is apopetalous with 4-5 petals [absent in some taxa], these often clawed, concave, and cucullate (hooded). The stamens are 4-5, whorled, alternisepalous, and apomosonous. Anthers are longitudinal in dehiscence. The gynoecium is syncarpous, with a superior to inferior ovary and 2-3 carpels and locules. Placentation is apical-axile; ovules are anatropous, bitetgmic, 1 [2] per carpel. Nectaries consist of a staminal disk, often fused to the hypanthium and/or (inferior) ovary. The fruit is a drupe with 1 many endocarps, a circumscissile capsule, or a schizocarp of mericarps. The seeds are exalbunmous.

The Rhamnaceae have a mostly worldwide distribution, especially in tropics. Economic importance includes edible fruits (e.g., *Ziziphus jujuba*, jujube, or *Z. lotus*, lotus fruit), ornamental cultivars, and dye, medicinal, soap, timber and varnish plants; *Ziziphus spina-christi* is purported to be the true Christ's crown of thorns. See Richardson et al. (2000) for a recent study of infrafamilial relationships in the Rhamnaceae.

The Rhamnaceae are distinctive in being trees, shrubs, lianas, or rarely herbs with simple, spiral or opposite leaves, unisexual or bisexual, perigynous to eiperigynous flowers, the perianth androecium 4-5-merous, petals sometimes absent, stamens alternisepalous, a nectariferous disk usually adnate to hypanthium, the fruit a drupe, circumscissile capsule, or schizocarp.

Rosaceae Rose family (Latin for various roses). 95 genera / 2800 species. (Figures 8.38, 8.39)

The Rosaceae consist of trees, shrubs, or herbs. The leaves are spiral (rarely opposite), simple or compound, undivided to divided, usually stipulate, the stipules often adnate to the
petiole base. The inflorescence is variable. The flowers are bisexual (usually), actinomorphic, perigynous or epipercy-

nous; the receptacle is sometimes expanded or sunken. The perianth is biseriate and dichlamydeous, usually pentam-

erous, imbricate, a hypanthium present. The calyx is aposepal-

ous with 5 [3–10] sepals. The corolla is apopetalous with

5 [0, 3–10] petals. The stamens are 20 ∞ [1,5], whorled, arising centripetally, usu. apostemonous. Anthers are longi-
tudinal or rarely poricidal in dehiscence and dithecal. The gynoecium is syncarpous or apocarpous, with a superior or

inferior ovary, 1 ∞ carpels, and 1 ∞ locules. The style(s) are terminal or lateral. Placentation is axile, basal, or marginal;

ovules are 1 ∞. Nectaries are often present on the hypan-

thium. The fruit is a drupe, pome, hip, follicetum, achenece-
tum, or capsule. The seeds are usually without endosperm.

The Rosaceae is traditionally classified into four subfami-
lies (some of which are likely paraphyletic; see Potter et al.
2002): Spiraeoideae, with an apocarpous gynoecium forming

a follicetum; Rosoideae, with an apocarpous gynoecium

forming an achenecetum or drupecetum, the receptacle vary-
ing from expanded and fleshy (e.g., Fragaria) to sunken (e.g., the hips of Rosa); Prunoideae, with a single, superior-

ovaried pistil bearing one ovule, the fruit a drupe; and

Maloideae, with an inferior ovary, forming a pome. Members

of the family have mostly worldwide distributions, but are

more concentrated in north temperate regions. The family is

very economically important as the source of many cultivated

fruits, including Fragaria (strawberry), Malus (apples),

Prunus (almond, apricot, cherry, peach, plum), Pyrus (pear),

and Rubus (blackberry, raspberry), as well as essential oils

(e.g., Rosa), and numerous ornamental cultivars, such as

Cotoneaster, Photinia, Prunus (cherries), Pyracantha, Rosa

(roses), and Spiraea. See Potter et al. (2002) for a recent study

of the Rosaceae.

The Rosaceae are distinctive in having usually stipulate

leaves (often adnate to petiole) and an actinomorphic, gener-

ally pentamerous flower with hypanthium present, variable in
gynoecial fusion, ovary position, and fruit type.

K 5[3-10] C 5[0,3-10] A 20–∞[1,5] G 1(–∞), superior or inferior,
hypanthium present.

EUROSIDS II

This second major subgroup of the Rosids contains 3 4 orders
(Table 8.2). Some of the orders are quite large, in terms of
both number of families and number of species. Among
the Eurosids II group are taxa of great agricultural impor-
tance, such as members of the Anacardiaceae (cashew
family), Brassicaceae (mustard family), and Rutaceae (citrus
family). Of course, many other groups are quite important
more locally.

BRASSICALES

The Brassicales are composed of ca. 15 17 families. Only
the largest and most economically important family, the
Brassicaceae, is described here. The order is generally united
in having glucosinolate secondary compounds (Figure 8.40).
Glucosinolates function to deter herbivory and parasitism and
also serve as flavoring agents in the commercially important

The Rose Family

The rose is a rose,
And was always a rose.
But the theory now goes
That the apple s a rose,
And the pear is, and so s
The plum, I suppose.
The dear only knows
What will next prove a rose.
You, of course, are a rose
But were always a rose.
Robert Frost (1874-1963)

- A. Hypanthium
- B. Ovary inferior
- C. Hypanthial tissue
- D. Perianth androecium
- E. Pistils
- F. Unit fruits
- G. Ovary superior
- H. Corolla
- I. Style
- J. Gynoecium
- K. Ovary
members of the Brassicaceae, such as broccoli, cauliflower, and mustard. Some well-known families of the order not described here include the Capparaceae (including capers, Capparis spinosa), Caricaceae (including the fruit tree Carica papaya, papaya) and Tropaeolaceae (including Tropaeolum majus, the ornamental nasturtium). See Rodman et al. (1997, 1998) and Kubitzki and Bayer (2002) for more information on the order.

Brassicaceae (Cruciferae) — Mustard family (name used by Pliny for cabbagelike plants). 365 genera / 3250 species. (Figures 8.41, 8.42)

The Brassicaceae consist of usually hermaphroditic herbs, rarely shrubs (pachycaulis in some). The leaves are simple [rarely compound], often lobed to divided, spiral [rarely opposite], extipulate. The inflorescence is usually a raceme, rarely of solitary, axillary flowers. The flowers are bisexual, rarely unisexual, usually actinomorphic, pedicellate, ebracteate, hypogynous; the receptacle is rarely elongate into a gynophore. The perianth is dichlamydeous, cruciate. The calyx is aposepalous [rarely synsepalous] with 2+2, decussate outer sepals, often basally gibbous. The corolla is apetalous, rarely basally connate, with 4 [rarely absent] petals, which are often clawed. The stamens are apostemonous, biseriate, 2+4 tetracyclous [rarely 2 or 4 or up to 16], the outer 2 shorter, antisepalous, the inner 4 longer, of two pairs, each pair (from a single primordium) flanking adjacent petals. Anthers are longitudinal in dehiscence. The gynoecium is syncarpous, with a superior ovary, 2 carpels, and 2 locules. The style is 1 or absent. Placentation is axile-parietal, each carpel with two rows of ovules, the placenta at junction of septum and ovary wall; ovules are anatropous or campylotropous, 1 ∞ per carpel. Nectaries are discrete or ringlike around stamens or pistil. The fruit is a silique or silicle, with a persistent septum termed a replum, rarely transversely dehiscent. The seeds are usually exalbuminous.

The Brassicaceae, sensu APG II (2003), include the traditional families Capparaceae and the Cleomaceae (these two in the past treated as subfamilies of the Capparaceae). Each of these three groups appear to be monophyletic. Thus, an alternative, acceptable classification is to treat them as three separate families, as done here: Brassicaceae, Capparaceae, and Cleomaceae (Table 8.2). The Capparaceae (Figure 8.42A,B) differ from the Brassicaceae largely in having a woody habit, an elongate gynophore or androgynophore, a generally larger number of stamens, a unilocular ovary with parietal placentation, and an indehiscent fruit type lacking a replum. The Cleomaceae (Figure 8.42C E) resemble the Capparaceae but are largely herbaceous and have a dehiscent fruit with a replum (but lacking a complete partition, thus the ovary unilocular). See Hall et al. (2002) for a recent phylogenetic analysis of the group.

The Brassicaceae have a worldwide distribution. Economic importance includes numerous vegetable plants (notably the crucifers or mustard plants), including broccoli, Brussels sprouts, cauliflower, cabbage, collards, kale (all cultivars of Brassica oleracea), rutabaga and canola oil (B. napus), mustard (B. nigra), turnip (B. rapa), and many more, plus numerous cultivated ornamentals, dye plants (Isatis tinctoria, woad), and some noxious weeds; Arabidopsis thalliana is noted as a model for detailed molecular studies.

The Brassicaceae as treated here are distinctive in being herbs, rarely shrubs, with glucosinolates (mustard oil glucosides), the perianth cruciate (petals usually clawed), the androecium with usually 2+4, tetracyclous stamens, the gynoecium with a superior, 2-carpellate/loculate ovary, with axile-parietal placentation and a usually 2-valved, dehiscent fruit with a replum (silique or silicle). K 2+2 C 4 A 2+4 [2,4-16] G (2), superior.

MALVALES

The Malvales, sensu APG II (2003), include nine families (Table 8.2). Of these nine families, only the Malvaceae (s.l.) will be covered here. More well-known among the others are the Bixaceae (containing Bixa orellana, anatto, commonly used as a natural food coloring), Cistaceae (the rock-rose family), Dipterocarpaceae (the dipterocarps of s.e. Asia, source of important hardwood timber trees and gum/resin plants), and Thymelaeaceae. The order as a whole may have chemical and anatomical apomorphies, including the presence of lysigenous mucilage canals in most members. See Kubitzki and Chase (2002) for more information.

Malvaceae [including Bombacaceae, Sterculiaceae, and Tiliaceae] — Mallow family (name used by Pliny, meaning soft). ca. 250 genera / 4230 species. (Figures 8.43 8.46)
The Malvaceae, sensu APG II (2003), consist of usually hermaphroditic, rarely monoecious or polygamous trees, shrubs, or herbs, often with either stellate trichomes or peltate scales. The leaves are simple or palmately compound, sometimes lobed to divided, palmately or pinnately veined, usually spiral and stipulate, the stipules often caducous. The inflorescence is of solitary or paired flowers or cymelike, sometimes complex. The flowers are bisexual [rarely unisexual], mostly actinomorphic, an epicalyx typically present, hypogynous, rarely perigynous. The perianth is biseriate, the petals alternating with the sepals. The calyx is aposepalous or basally synsepalous with 5 [less often 3 4], valvate sepals. The corolla is apopetalous [sometimes adnate to the base of an androecium tube; rarely absent], when present of 5 [3 4], sometimes clawed, convolute, valvate, or imbricate petals. The stamens are 5 ∞, the filaments usually connate, either as a tube surrounding the ovary, or as 5 15 bundles of stamens or a tube bearing bundles. Anthers are longitudinal or poricidal in dehiscence. The pollen is spinulose or smooth. The gynoecium is syncarpous, rarely apocarpous or with carpels fused only apically, with a superior [rarely inferior] ovary, 2 ∞ carpels, and 2 ∞ [1] locules. The style is unlobed, lobed, or branched at the apex. Placentation is usually axile, rarely marginal; ovules are 2 ∞ [1] per carpel. Nectaries consist of glandular trichomes typically present at the adaxial base of the calyx. The fruit is a loculicidal, septicidal, or indehiscent capsule, a schizocarp of mericarps, or rarely a berry or samara. The seeds are exalbuminous or endospermous (oily or starchy).

The Malvaceae s.l. as treated here were formerly (and still commonly) divided into four families: Malvaceae s.s., Bombacaceae, the Bombax family, Sterculiaceae, the chocolate family, and Tiliaceae, the Linden family. Recent morphological
Figure 8.45 Malvales. Cladogram of the Malavaceae s.l., after Bayer et al. (1999). Apomorphies listed are suggestive and may need further study for verification.

- Grewioideae
- Helicteroideae
- Tilioideae
- Byttnerioideae
- Dombeyoideae
- Bombacoideae
- Malvaceae s.l.
- Sterculioideae
- Brownlowioidae
- Bombacoideae
- Malvoideae

- staminal tube
- flowers unisexual
- gynoecium apocarpous
- androgynophore petals absent
- sepals connate
- thecae divergent
- petals hooded (cucullate)
- petals absent
- stellate trichomes
- rays dilated
- empicalyx
- trichomes stellate or lepidote
- calyx valvate
- inflorescence unit of bicolor type
- androsporangiate

Figure 8.46 Malvales. Possible apomorphies of the Malavaceae s.l. A. Valvate calyx (Hibiscus); also note epicalyx and convolute corolla. B,C. Stellate trichomes (Alyogyne and Fremontodendron, respectively). D. Dilated wood rays (Tilia).
and molecular analyses indicate that these groups are largely nonmonophyletic and best classified together. Bayer et al. (1999) tentatively recognized nine subfamilies, some putative apomorphies shown in Figure 8.45. The Malvaceae s.l. as a whole may be united by an inflorescence apomorphy, the occurrence of a bicolor unit (the term derived from *Theobroma bicolor*, where it was first observed), consisting of a modified, 3-bracted cyme, the trimerous epicalyx of family members possibly derived from these 3 bracts. Other apomorphies of the family may be a valvate calyx, stellate or lepidote trichomes, and dilated secondary tissue rays (Figures 8.45, 8.46). Members of the family are distributed worldwide, especially in tropical regions. Economic importance includes medicinal plants; several fiber plants, especially *Gossypium* spp. (cotton, the world’s most important fiber plant) and *Ceiba pentandra* (kapok), in both of which the seed trichomes are utilized, and *Corchorus* spp. (jute), a bast fiber plant and source of burlap; food and flavoring plants, such as *Theobroma cacao* (cacao, the source of chocolate), *Cola nitida* (cola), *Abelmoschus* spp., esp. *A. esculentus* (linden tree). Many others, such as *Adansonia digitata* (baobab, tropical Africa) are of great local economic or ecological importance. See Bayer (1999), Bayer et al. (1999), and references therein.

The Malvaceae are distinctive in being herbs, shrubs, or trees, often with *stellate trichomes*, typically with an *epicalyx*, the *calyx valvate*, the *corolla often convolute* [sometimes valvate or imbricate] the *stamens connate* as a tube or 5 = bundles, with *monothecal or dithecal anthers*, gynoecium syncarpous [rarely apocarpous], ovary superior [rarely inferior], ovules axile or marginal, the fruit a capsule, schizocarp of mericarps, berry, or samara.

K 3-5 or (3-5) C 3-5 [0] A 5-- G 2-- [1], superior [rarely inferior].

SAPINDALES

This order contains nine families, three of which are described here. Among the others, the *Burseraceae* is notable as the source of frankincense (*Boswellia* spp., esp. *B. sacra*) and myrrh (*Commiphora* spp., esp. *C. myrrha*). See Gadek et al. (1996) for a phylogenetic analysis of the order.

Anacardiaceae Cashew family (Gr. for heart-shaped, after swollen, red pedicel in cashew fruit). 70 genera / 875 species. (Figure 8.47)

The Anacardiaceae consist of trees, shrubs, lianas, or rarely perennial herbs, tissues of plant organs with resin ducts or laticifers, the resin allergenic in some taxa. The *leaves* are pinnate, trifoliolate, or simple, spiral, rarely opposite or whorled, exstipulate or stipules vestigial. The *inflorescence* is a terminal or axillary thrys. The *flowers* are bisexual or unisexual, actinomorphic, usually hypogynous; the receptacle is swollen and fleshy in some taxa (e.g., *Anacardium*). The *perianth* is biseriate and dichlamydeous, parts valvate or imbricate. The *calyx* is usually basally synsepalous with usually 5 sepals or lobes. The *corolla* is apopetalous with usually 5 [0] petals. The *stamens* are 5 10 [1, =], apostemalous or rarely basally connate. The *gynoecium* is syncarpous [rarely apocarpous], with a superior [rarely inferior] ovary, 1 3, or 5 [rarely 12] carpels, and usually 1 [sometimes as many as carpels] locule. *Placental* is apical/pendulous or basal; *ovules* are anatropous, bitegmic or unitegmic, 1 per carpel. *Nectaries* are present as a staminal, intrastaminal, or extrastaminal nectariferous disk. The *fruit* is a drupe, with the mesocarp usually resinous. The *seeds* have endosperm absent or scanty.

The Anacardiaceae have a broad distribution in tropical to temperate regions. Economic importance includes ornamental cultivars (e.g., *Schinus* spp.), fruit and seed trees, such as *Pistacia vera* (pistachio), *Rhus* spp. (sumacs), *Anacardium occidentale* (cashew), and *Mangifera indica* (mango), plus several dye, timber, and lacquer trees. *Toxicodendron* spp. (poison oak, poison ivy) and related taxa cause contact dermatitis, and fruits/seeds can be allergenic in sensitive individuals. See Pell and Urbatsch (2001) for a recent analysis of the family.

The Anacardiaceae are distinctive in being trees, shrubs, lianas, or perennial herbs with *resin ducts or laticifers* (some species causing allergenic responses), flowers generally 5-merous, with a *nectariferous disk* and single *ovule per carpel*, the fruit a *drupe* with a resinous mesocarp.

K usu. 5 or (5) C usu. 5 [0] A 5-10 [1, =] G (1-3,5) [(12)], superior, rarely inferior.

Rutaceae Rue / Citrus family (Latin for rue). 153 genera / 1800 species. (Figure 8.48)

The Rutaceae consist of trees, shrubs, lianas, or rarely herbs. The *stems* of some taxa have thorns. The *leaves* are simple, trifoliolate, or pinnate, sometimes pinnatifid, exstipulate, usually with pellucid glands. The *inflorescence* is a cyme or raceme, rarely of solitary flowers. The *flowers* are usually bisexual and actinomorphic, hypogynous, rarely epigynous. The *calyx* is aposepalous or synsepalous with 4 5 [2 3] sepals or lobes. The *corolla* is apopetalous or sympetalous with 4 5 [0, 2 3], imbricate or valvate petals or lobes.
CHAPTER 8 DIVERSITY AND CLASSIFICATION OF FLOWERING PLANTS: EUDICOTS

The stamens are 8 10 ∞, usually diplostemonous, in 2 [1 4] whorls, with staminodes present in some taxa; filaments are often basally connate. Anthers are longitudinal in dehiscence. The gyroecium is syncarpous, rarely apocarpous, with a superior ovary, 4 5 [1 ∞] carpels, and 4 5 [1 ∞] locules. Placentation is axile; ovules are anatropous or hemitropous, bitemgic, 2 [1 ∞] per carpel. Nectaries are usually present as an annular disk at the base of the ovary. The fruit is a schizocarp, berry, drupe, or hesperidium (the last with internal, swollen trichomes termed juice sacs). Secretory cavities containing ethereal oils are present in many tissues, including the leaves and pericarp.

Members of the Rutaceae have a worldwide distribution, especially in tropical regions. Economic importance includes many important fruits, among them Citrus spp. (oranges, grapefruits, lemons, limes, etc.), herbs such as Ruta graveolens (rue), timber trees, medicinal plants, and a number or ornamental cultivars. See Chase et al. (1999) for a recent phylogenetic analysis of the family.

The Rutaceae are distinctive in being trees, shrubs, lianas, or herbs, with simple to compound leaves and usually bisexual, actinomorphic, hypogynous, 4 5-merous flowers, typically with an annular, nectariferous disk, the fruit a schizocarp, berry, hesperidium, or drupe; secretory glands containing ethereal oils occur in many tissues, appearing as pellucid glands in the leaves and pericarp.

Sapindaceae [including Aceraceae] Soapberry / Maple family (name meaning Indian soap, from the use of soapberry). 133 genera / 1560 species. (Figures 8.49, 8.50)

The Sapindaceae consist of trees, shrubs, lianas, or herbaceous vines, tendrils present in some viney species. The leaves are simple, palmate, trifoliolate, pinnate, or bipinnate, usually spiral, but opposite in Acer and relatives, usually exstipulate. The inflorescence is a cyme or thyrs, rarely of solitary, axillary flowers, sometimes umbel- or corymblike. The flowers are usually unisexual, actinomorphic or zygomorphic, hypogynous, rarely perigynous. The perianth is with hypanthium present or absent. The calyx is aposepalous or basally sysepalous with 4 5 sepals or lobes. The corolla is apetalous with 4 5 [3, 6+, 0] petals or lobes. The stamens are 8 [4 10+], with filaments often bearing trichomes. Anthers are longitudinal in dehiscence. The gyroecium is syncarpous, with a superior ovary and 2 3 [6] carpels and locules. The styles are 1 2. Placentation is apical-axile; ovules are anatropous, orthotropous, to campylotropous, 1 ∞ per carpel. Nectaries consist usually of an extrastaminal or intrastaminal annular disk or pad. The fruit is variable, fleshy or dry at maturity, being a schizocarp of samaras in Acer. The seeds are exalbuminous, often with an aril or fleshy integuments. Tissues of many taxa contain soaplike saponins.

The Sapindaceae are distributed in tropical and temperate regions worldwide. Economic importance includes include edible fruits/seeds, such as Blighia (akee), Dimocarpus (longan), and Litchi (litchi nut); timber trees; oil seeds; medicinal plants; stimulating (caffeine-containing) beverages, especially Paulinia cupana (guarana, prepared in a soft drink, especially popular in parts of South America); ornamental cultivars, such as Koelreuteria (golden-rain tree) and Acer (maple) spp.; arrow or fish poisons, e.g., Jagera and Paulinia spp.; and various taxa (e.g., Sapindus saponaria) used locally as a soap.

The Sapindaceae sensu APG II (2003) are distinctive in being trees, shrubs, lianas, or herbaceous vines with simple, palmate, trifoliolate, or pinnate leaves, the flowers typically with a 4-5-merous perianth, extrastaminal or intrastaminal nectariferous disk, and superior, 2-3-carpellate ovary, the seeds often with an aril or fleshy seed coat (except in Acer and relatives); many taxa with soaplike saponins in tissues.

ASTERIDS

The Asterids are a major group of eudicots, comprising a large percentage of angiosperms in total. According to the APG II (2003) system of classification, Asterids are divided into 10 orders, plus several families unplaced in orders (Figure 8.51, Table 8.3). The Asterids include such well known plants as dogwoods, hydrangeas, blueberries, phlox, tea, borage, gentians, mints, snapdragons, tomatoes/potatoes, carrots, scheffleras, hollies, bluebells, daisies, and a host of others.

Asterids are generally united by three major characters. One of these common features is chemical: the presence of iridoid compounds (Figure 8.52A). In addition, most Asterids have a sympetalous corolla (Figure 8.52B) and unitegmic, tenuinecullate ovules (Figure 8.52C; see Chapter 11 for an explanation). It isn’t clear if any of these features are apomorphic for the entire group, as there is some variation and certainly homoplasy within.

The following are representative family descriptions of Asterids from most of the orders listed in Table 8.3. See Albach et al. (2001), Bremer et al. (2001, 2002), and references therein for more information about relationships within the Asterids.
CHAPTER 8 DIVERSITY AND CLASSIFICATION OF FLOWERING PLANTS: EUDICOTS

CORNALES

The Cornales, sensu APG II, 2003, consists of six families (Table 8.3) and is the most basal order of the Asterids. Only the Cornaceae is treated here. Notable among the other families is the Hydrangeaceae, including important cultivated ornamentals, such as Hydrangea. See Xiang et al. (2002), Kubitzki (2004), and references therein for information about relationships and families within the order.

Cornaceae [including Nyssaceae] Dogwood family (Latin for horn, after the hard wood). ca. 13 genera / 120 species. (Figure 8.53)

The Cornaceae consist of trees, shrubs, or rarely perennial, rhizomatous herbs. The leaves are simple, usually undivided [rarely pinnatifid], usually opposite [rarely spiral], and usually exstipulate. The inflorescence is a cyme or head of cymes, rarely a raceme, with showy, petaloid inflorescence bracts in some taxa. The flowers are bisexual [rarely unisexual], actinomorphic, and epigynous. The perianth is biseriate. The calyx is aposepalous, synsepalous and tubular in some unisexual male flowers, with 4 [5 7,0] sepals or calyx lobes. The corolla is apopetalous with 4 5 [10, 0 in unisexual female flowers] valvate or imbricate petals. The stamens are 4 5 [10], usually alternipetalous, uniseriate, rarely biseriate, and apostemonous. Anthers are longitudinal in dehiscence. The gynoecium is syncarpous, with an inferior ovary, 2 4 [9] carpels, and as many locules as carpels [rarely 1]. The style is solitary or as many as there are carpels. Placentation is apical and pendulous; ovules are anatropous, bitegmic [rarely unitegmic], 1 per locule. Nectaries usually consist of an infrastaminal annular disk. The fruit is a usually a drupe, the endocarp grooved, 1 5-locular. The seeds are endospermous.

The Cornaceae are generally distributed in northern temperate regions. Economic importance includes cultivated ornamentals, such as Cornus (e.g., C. florida, flowering dogwood) and some timber and edible fruit trees. See Xiang et al. (1997, 1998) for more detailed information about relationships of the family.
TABLE 8.3
Orders and families of the Asterids, after APG II (2003). Families in bold are described in detail. An asterisk denotes a deviation from APG II, with brackets indicating the more inclusive family recommended by APG II. A double asterisk indicates a change suggested by Angiosperm Phylogeny Website (Stevens 2001 onwards). Including = incl.

<table>
<thead>
<tr>
<th>CORNALES</th>
<th>EUASTERIDS I</th>
<th>EUASTERIDS II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cornaceae</td>
<td>Boraginaceae*</td>
<td>Bruniaceae</td>
</tr>
<tr>
<td>(incl. Nyssaceae)</td>
<td>Cordiaceae* [Boraginaceae]</td>
<td>Columelliaceae</td>
</tr>
<tr>
<td>Curtissiaceae</td>
<td>Ehrhtriaceae* [Boraginaceae]</td>
<td>Eremosynaceae</td>
</tr>
<tr>
<td>Grubbiaceae</td>
<td>Heliotropaceae* [Boraginaceae]</td>
<td>Escalloniaceae</td>
</tr>
<tr>
<td>Hydrangeaceae</td>
<td>Hydrophyllaceae* [Boraginaceae]</td>
<td>Paracyphiaceae</td>
</tr>
<tr>
<td>Hydrostachyaceae</td>
<td>Lennoaceae* [Boraginaceae]</td>
<td>Polyosmaceae</td>
</tr>
<tr>
<td>Loasaceae</td>
<td>Icacinaceae</td>
<td>Sphenostemonaceae</td>
</tr>
<tr>
<td></td>
<td>Oncothecaceae</td>
<td>Tribelaceae</td>
</tr>
<tr>
<td></td>
<td>Vahliaeae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GARRYALES</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eucormmiaceae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Garryaceae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GENTIANALES</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Apocynaceae (incl. Asclepiadaceae)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gelsmiaceae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gentianaceae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Loganiaceae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rubiaceae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LAMIALES</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acanthaceae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bignoniacese</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Byblidaceae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calceolariaeae (incl. some Scrophulariaeae, s.l.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carlemanniaceae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gesneriaceae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gratiorlaceae**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lamiaeae (Labiatae)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lentibulareae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Linderniaceae**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Martyriaceae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oleaceae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Orobancheaceae (incl. some Scrophulariaeae, s.l.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Paulowniaceae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pedaliaceae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phrymaceae (incl. some Scrophulariaeae, s.l.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plantaginaceae (incl. Callitrichaceae, Plantaginaceae, s.s., and some Scrophulariaeae, s.l.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Placospermataceae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Schlegeliaceae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Scrophulariaeae s.s. (incl. Myoporaceae)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stilbaceae (incl. some Scrophulariaeae, s.l.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tetrachondraceae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Verbenaceae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SOLANALES</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Convolvulaceae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hydrocoleaceae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Montiniaceae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solanaceae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sphenocleaceae</td>
<td></td>
</tr>
</tbody>
</table>

ERICALES		

Actinidiaceae		
Balsaminaceae		
Clethraceae		
Cyrillaceae		
Diapensiaceae		
Ebenaceae		
Ericaceae		
(incl. Empetraeceae, Epacridaceae, Monotropaceae, Pyrolaceae, etc.)		
Fouquieriaceae		
Lecythidaceae		
Maesaecae		
Marcgraviaeae		
Mitrastemonacae**		
Myrsinaceae		
Pentaphylacaceae**		
Polemoniaceae		
Primulaceae		
Roridulaceae		
Sapotaceae		
Sarraceniaceae		
Sladeniaecae**		
Syrracaceae		
Symplacoceae		
Tetrameristaceae (incl. Pellicieraceae)		
Theaceae		
Theophrastaceae		

ASEXTERALS		

Alseuosmiaceae		
Argophyllaceae		
Asteraceae (Compositae)		
Calyceraeceae		
Campanulaceae (incl. Lobeliaece)		
Goodeniaceae		
Menyanthaceae		
Pentaphragmataceae		
Phellinaceae		
Rousseaceae		
Styliadiaceae (incl. Donatiaece)		

DIPSACALES		

Adoxaceae		
Caprifoliaceae*		
Diervillaceae* [Caprifoliaceae]		
Dipsaceae* [Caprifoliaceae]		
Limnaeaceae* [Caprifoliaceae]		
Morinaceae* [Caprifoliaceae]		
Valerianaceae* [Caprifoliaceae]		
The Cornaceae are distinctive in being trees, shrubs, or rhizomatous herbs, with **simple, usually opposite and undivided leaves**, a usually **cymose inflorescence**, sometimes in **heads**, with **showy, petaloid bracts** in some taxa, the flowers usually biseriate and bisexual, **epigynous**, generally 4-5-merous, with an infrastaminal annual disk and **inferior ovary**, the fruit usually a multi-locular **drupe**.

K 4 [5-7, 0, connate in male flowers] **C** 4-5 [10, 0 in female flowers] **A** 4-5 [10] **G** (2-4) [-9], inferior.

The Ericales, sensu APG II (2003), is a large group of 23 (25) families (Table 8.3), only three of which are treated here. Notable among the families not described are the **Actinidiaceae** (containing *Actinidia chinensis*, kiwi fruit), **Ebenaceae** (including *Diospyros* spp., persimmon, and *Euclea pseudebenus*, black ebony), **Primulaceae** (the primrose family), **Sapotaceae** (source of important fruit and timber trees, as well as of *Palaquium gutta*, gutta-percha, and *Manilkara zapote*, chicle, the original chewing gum), **Sarraceniaceae** (pitcher plants), and **Theaceae** (including *Camellia sinensis*, tea). See Geuten et al. (2004) and Kubitzki (2004) for information about relationships within the order.

Ericaceae [including Empetraceae, Eparidaceae, Monotropaceae, Pyrolaceae] Heath family (from Erica, a name used by Pliny, adapted from Theophrastus). 106 genera / ca. 3355 species. (Figures 8.54, 8.55)

The Ericaceae consist of perennial, hermaphrodite or dioecious, shrubs and small trees, rarely lianas. Some taxa are achlorophyllous and mycotrophic (fungus feeding, i.e., obtaining nutrition from mycorrhizal fungi in the soil, which in turn obtain nutrition from roots of vascular plants). The **roots** have endotrophic mycorrhizae. The **leaves** are simple, exstipulate, spiral, opposite, or whorled, sometimes with a basal pulvinus, evergreen, generally coriaceous, variable in shape, ranging from linear and strongly abaxially concave-revolute (ericoid) to broad and relatively flat, with pinnate-netted venation. The **inflorescence** is a raceme, fascicle, headlike cluster, or of solitary flowers. The **flowers** are bisexual [rarely unisexual], actinomorphic, pedicellate, bracteate (with two bracteoles), hypogynous or epigynous. The **perianth** is biseriate and dichlamydeous or uniseriate, urceolate, tubular, or campanulate. The **calyx** is aposepalous with 5 [2 7], valvate or imbricate sepals. The **corolla** is sympetalous, rarely apopetalous, with 5 [2 7 or 0 in some], convolute or imbricate lobes or petals. The **stamens** are 5+5 [rarely >10, 2 4], whorled, usually obdiplostemonous and biseriate [rarely uniseriate], usually distinct and epipetalous. **Anthers** of all but basal members are developmentally inverted such that the anther base assumes an apical position, dehiscence poricidal or longitudinal and introrse at maturity by inversion, connective appendages present in some taxa. The **pollen** is typically shed in tetrahedral tetrads [monads in basal members]. The **gynoecium** is syncarpous, with a superior or less often inferior (e.g., *Vaccinium*) ovary, 5 [2 10] carpels, and 5 [2 10] locules. The **style** is solitary, terminal, hollow, fluted. **Placentation** is axile, apical-axile, basal-axile, or parietal; **ovules** are anatropous to campylotropous, unitegmic, 1 ∞ per carpel. **Nectaries** are present, as an intrastaminal disk. The **fruit** is a capsule, berry, or drupe. The **seeds** are endospermous (oily and proteinaceous).
The Ericaceae are now circumscribed to include the former families Empetraceae, Epacridaceae, Monotropaceae, Pyrolaceae, and others. The Ericaceae has recently been classified into 8 subfamilies: Enkianthoideae, Monotropoideae (including some achlorophyllous and parasitic members), Arbutoideae (including *Arbutus* and *Arctostaphylos*, the manzanitas), Cassiopoideae, Ericoideae (including *Erica*, *Rhododendron*, and the former Empetraceae), Harrimanelloideae, Styphelioideae (including the former Epacridaceae), and Vaccinioideae (including *Vaccinium*, blueberries, and relatives; see Kron et al., 2002.) Members of the family grow in acid soils typically; various species (e.g., *Erica*) are dominants in bog, moorland or heathland communities with distributions in worldwide in temperate and tropical
(mostly montane) regions. Economic importance includes cultivated ornamentals, especially *Rhododendron* [Azalea] and *Erica; Vaccinium* species (including blueberry and cranberry) are important fruit plants.

The Ericaceae are distinctive in being usually evergreen shrubs (some achlorophyllous and mycotrophic), with coriaceous, linear-revolute to broad-flat leaves, a sympetalous corolla, stamens usually developing by *anther inversion*, dehiscence often *poricidal* and an intrastaminal disk. See Kron et al. (2002) and references therein for information on phylogenetic relationships within the Ericaceae.

Fouquieriaceae Ocotillo family (after the Frenchman P. E. Fouquier). 1 genera / 11 species. (Figure 8.56)
FIGURE 8.56 ERICALES, Fouquieriaceae. A–C. *Fouquieria columnaris*, boojum or cirio, a pachycaulis plant native to deserts of Baja California, Mexico. A,B. Plant habit. C. Close-up of leaf of long shoot, the blade senescing, leaving a petiolar spine. D. *Fouquieria fasciculata*, a caudiciform species. E–K. *Fouquieria splendens*, ocotillo. D. Whole plant, a tall shrub ca. 4 m tall. F. In orescence. G. Close-up of shoot, showing petiolar spines (derived from original leaves of long shoot) plus fascicles (short shoots), having drought-deciduous leaves. H. Flowers, with exserted stamens. I. Flower base, showing calyx. J. Ovary longitudinal section. K. Ovary cross-section; note three carpels with axile placentation.
The Fouquieriaceae consist of xeromorphic shrubs or trees. The stems are woody to succulent, ridged. The leaves are simple, undivided, spiral, those of long shoots forming petiolar spines, these with axillary fascicles of drought-deciduous nonspiny leaves. The inflorescence is a terminal spike, raceme, or panicle. The flowers are bisexual, actinomorphic, and hypogynous. The calyx is aposepalous with 5 imbricate sepals. The corolla is sympetalous and with 5, tubular to salverform, imbricate lobes. The stamens are 10-18 [23], uniseriate, imbricate lobes. The ovules are anatropous to hemitropous, unitegmic. The fruit is a loculicidal capsule. The seeds are endospermous.

The Fouquieriaceae are distributed in southwestern North America. Economic importance is limited; Fouquieria splendens (ocotillo) is planted as a fence or hedge; Fouquieria columnaris (boojum, cirio) is a spectacular pachycaul of Mexican deserts.

The Fouquieriaceae are distinctive in being xeromorphic, sometimes succulent shrubs or trees, bearing long shoot leaves with petiolar spines, in axils of which develop fascicles of drought-deciduous, nonspiny leaves, the flowers mostly pentameric, with a sympetalous corolla and superior, tricarpellate ovary having axile-parietal placentaion. See Schultheis and Baldwin (1999) for more information about family systematics.

Polemoniaceae Phlox family (Greek, possibly from a King Polemon, name used by Pliny). 20 genera / 290 species. (Figure 8.57)

The Polemoniaceae consist of annual or perennial herbs, shrubs, lianas, or small trees. The leaves are simple or pinnate, divided in some, spiral, opposite, or whorled, exstipulate. The inflorescence is a head, cyme, or of solitary flowers. The flowers are bisexual, actinomorphic or zygomorphic, hypogynous. The perianth is biserate and dichlamydeous. The calyx is aposepalous with 5 imbricate sepals or lobes. The corolla is sympetalous and 5, tubular to salverform, with hypanthium absent. The stamens are 5 [4,6], whorled, rarely valvate. The ovules are endospermous. The fruit is a capsule, usually longitudinally dehiscent. The seeds are endospermous (oily). The stem xylem typically occurs in a continuous ring.

Members of the Polemoniaceae have distributions in the Americas (especially western North America) and Eurasia. Economic importance includes numerous cultivated ornamentals, such as Cobeae, Gilia, Ipomopsis, Phlox, and Polemonium. See Wilken (2004) for a general description and Porter (1997), Porter and Johnson (1998), and Prather et al. (2000) for data on infrafamilial relationships.

The Polemoniaceae are distinctive in being herbs, shrubs, or small trees with simple (divided in some) or pinnate leaves, a typically 5- [4,6] merous, synsepalous, sympetalous perianth, 5-4,6 epipetalous stamens, and a typically 3-2 [4,6] carpellate, superior ovary, the fruit a loculicidal capsule.

EUASTERIDS I

Euasterids I is an informal name used to denote a monophyletic grouping including four orders Garryales, Gentianales, Lamiales, and Solanales plus some families unplaced in orders (Table 8.3). Two, unplaced families are described first.

Boraginaceae s.s. — Borage family (possibly meaning shaggy coat, in reference to the leaves). 130 genera / 2300 species. (Figure 8.58)

The Boraginaceae s.s. consist of usually hermaphroditic herbs, often with hirsute or hispid vestiture. The leaves are simple, spiral, and exstipulate. The inflorescence unit is a monochasial (e.g., scorpioid or helicoid) cyme, rarely of solitary, axillary flowers. The flowers are usually bisexual, actinomorphic, hypogynous. The perianth is biserate and dichlamydeous, often salverform or rotate, with hypanthium absent. The calyx is aposepalous with five [4,8] imbricate, rarely valvate sepals or lobes. The corolla is sympetalous and with five [4,6] convolute or imbricate lobes. The stamens are 5 [4,6], whorled, and epipetalous. The ovules are longitudinal in dehiscence. The gynoecium is syncarpous, with a superior ovary, 2 carpels, and 4 locules. The style is solitary and gynobasic, with the ovary deeply 4-lobed by formation of false septa dividing each carpel; stigmas are 1-2. The placentaion is basal; ovules are anatropous to hemitropous, unitegmic, 2 per carpel. Nectaries are present in some taxa as a ring around the ovary base. The fruit is a schizocarp of usually four nutlets.

The Boraginaceae s.s., as treated here, are essentially equivalent to the subfamily Boraginae of an expanded
Boraginaceae (as classified by APG II 2003). Subfamilies Cortioideae, Ehretioideae, and Heliotropeoideae of Boraginaceae s.l. are treated here as separate families, after Gottschling et al. (2001) (Table 8.3). Members of the Boraginaceae s.s. have a worldwide distribution. Economic importance is limited, some used as herbs (e.g., Borago officinalis, borage), dyes, or cultivated ornamentals (e.g., Myosotis, forget-me-not).

The Boraginaceae s.s. are distinctive in being mostly herbs with simple, spiral leaves, an inflorescence of monochasial (helicoid or scorpioid) cymes, and actinomorphic, sympetalous flowers with a 4-ovuled, deeply 4-lobed ovary (by development of false septa) with a gynobasic style, the fruit a schizocarp of usually 4 nutlets. See Gottschling et al. (2001) for more information about relationships of the Boraginaceae to other groups.

Hydrophyllaceae — Waterleaf family (hydro, water, + phyllum, leaf). 18 genera / 270 species. (Figure 8.59)

The Hydrophyllaceae consist of herbs or shrubs, often odiferous with glandular trichomes or hirsute/hispid. The leaves are simple or pinnate, rarely palmate, pinnatisect in some, spiral to opposite, exstipulate. The inflorescence is a cyme, often helicoid, or of solitary flowers. The flowers are bisexual, actinomorphic to slightly zygomorphic. The perianth is biserate and dichlamydeous, hypophyti on. The calyx is usually synsepalous (only basally connate in some taxa) with five [4, 10] imbricate lobes or sepals. The corolla is sympetalous with five [4, 10] convolute lobes. The stamens are five [4, 10] 12], whorled, alternipetalous, epiptetalous, usually with scalelike structures at either side of the filament at the junction with the corolla tube. The gynoecium is syncarpous, with a superior ovary, 2 carpels, and 1 or 2 locules. The styles are 2 or 2-branched. Placentation is parietal or axile; ovules are anatropous to amphitropous, unitegmic, 2 ∞ per carpel. Nectaries are usually absent. The fruit is a capsule, sometimes irregularly or not dehiscent. The seeds are oily endospermous.

Members of the Hydrophyllaceae have a mostly worldwide distribution (except in Australia), with many in western North America. Economic importance includes some cultivated ornamentals. See Gottschling et al. (2001) for more information about relationships of the Hydrophyllaceae to other groups.

The Hydrophyllaceae are distinctive in being herbs, shrubs, or rarely trees with simple, pinnatisect, or pinnate, spiral leaves, an inflorescence often of helicoid cymes, and actinomorphic, sympetalous flowers, often with a pair of scales at junction of stamen filament with corolla tube, a 2 ∞ ovuled, unlobed, 2-carpellate, superior ovary, the fruit a capsule.

GENTIANALES

The Gentianales, sensu APG II, 2003, contain five families (Table 8.3), three of which are treated here.

Apocynaceae [incl. Asclepiadaceae] — Dogbane/Milkweed family (Greek for away from dog, in reference to some taxa used as dog poison). 411 genera / 4650 species. (Figures 8.60, 8.61)

The Apocynaceae consist of lianas, trees, shrubs, or herbs, with latex present in tissues. The stems are succulent in some taxa, e.g., the stapelioids. The leaves are simple, undivided, sometimes reduced, opposite, whorled, or rarely spiral, usually exstipulate. The inflorescence is a cyme (often umbelliform in Asclepiaidoids), raceme, or of solitary flowers. The flowers are usually bisexual, actinomorphic, and hypogynous. The calyx is usually synsepalous (at least basally) with 5 imbricate or valvate lobes. The corolla is sympetalous with 5 convolute (rarely valvate or imbricate) lobes. The stamens are 5, alternipetalous, epipetalous, apostemonous to monadelphous; in Asclepiadoids the stamens are connate to the stigma to form a gynostegium, often elaborate with appendages (hoods and horns). The pollen in Asclepiadoids is connate into pollinia, each consisting of a 2-lobed, glandlike corpusculum attached to two armlike retinacula, each bearing connate pollen grains from one of the thecae of separate, adjacent anthers. The gynoecium is syncarpous, often only apically (with ovaries distinct), with a superior, rarely half-inferior ovary, 2 [8] carpels, and 12 locules. The stigma(s) are capitate, a single, broad fusion product in Asclepiadoids. Placentation is apical and pendulous or marginal; ovules are anatropous, unitegmic, ∞ [1] per carpel. Nectaries are sometimes with 5 nectar glands or a disk at ovary base. The fruit is a variable and can be a berry, drupe, or follicle; in Asclepiadoids the fruit is a schizocarp of two follicles (one often not developing). The seeds are endospermous. Plants typically contain various glycosides and alkaloids. In Asclepiadoids, the glandlike corpusculum of the pollinia becomes attached to the legs of insect pollinators, the entire apparatus pulled through grooves in the side of the gynostegium.

The Apocynaceae is often treated as two families, Apocynaceae (Dogbane family) and Asclepiadaceae (Milkweed family), the latter now usually classified as subfamily Asclepiadoideae (Asclepiadoids). Members of the family have a mostly worldwide distribution, mostly in tropical regions. Economic importance includes uses as cultivated ornamentals, such as Nerium (oleander), Plumeria, Stapelia, and Vinca.
(periwinkle); medicinal uses, such as *Catharanthus roseus* (Madagascar periwinkle), from which vincristine/ vinblastine used to treat childhood leukemia, and *Rauvolfia serpentina*, from which the drug reserpine is derived; and uses as timber, fiber, rubber, dye, and poison plants. See Endress and Bruyns (2000) for an updated classification of the family.

The Apocynaceae are distinctive in being lianas, trees, shrubs, or herbs with a 5-merous perianth/androecium, the gynoe- cium usually with 2 carpels, the ovaries distinct in some taxa with stigmas connate (in Asclepiadoids *androecium adnate to single stigma forming a gynostegium* and pollen fused to form pollinia, each half derived from an adjacent anther), the fruits variable, but a schizocarp of follicles in the Asclepiadoids.

Gentianaceae Gentian family (after Gentius, king of Illyria). 78 genera / 1225 species. (Figure 8.62)

The Gentianaceae consist of trees, shrubs, or usually herbs. The stems of tree species are sometimes pachycaulous, and some taxa are achlorophyllous and mycotrophic (obtaining nutrition from mycorrhizal fungi in the soil). The leaves are simple (leaves scalelike in mycotrophic species), opposite (rarely whorled or spiral), and exstipulate. The inflorescence is a cyme, raceme, or of solitary flowers. The flowers are usually bisexual and actinomorphic, and hypogynous. The calyx is usually synsepalous with 4 5 [12], imbricate or valvate lobes. The corolla is sympetalous with 4 5 [rarely 3 or 8 10], actinomorphic or bilabiulate. The stamens are 4 5 [rarely 3 or 10], alternipetalous and epipetalous. The anthers are usually longitudinal (rarely poricidal) in dehiscence. The gyroecium is syncarpous, with a superior ovary, 2 carpels, and 1, rarely 2 locules. The style is solitary and terminal; the stigma is solitary, 2-lobed, or decurrent. The placenta is parietal with placenta sometimes protruding and branched, rarely axile or free-central; the ovules are anatropous, unigemmous, numerous. Nectaries are often present as pits on corolla lobes, with a nectariferous disk or glands usually at the ovary base. The fruit is a septicidal capsule, rarely a berry. The seeds are oily endospermous.

The Gentianaceae have a mostly worldwide distribution. Economic importance includes *Cinchona*, the source of quinine used to treat malaria, *Coffea arabica* and other species, the source of coffee, *Pausinystalia johimbe*, the source of the sexual stimulant yohimbine, some timber trees, fruiting plants, dye plants (such as *Rubia*, madder), and ornamental cultivars (e.g., *Pentas*, among others).

The Rubiaceae consist of terrestrial (rarely epiphytic or aquatic) trees, shrubs, lianas, or herbs. The leaves are simple, undivided and entire, usually decussate, rarely whorled or spiral by suppression, stipulate, stipules of opposite leaves connate, often bearing structures termed colleters, which produce mucilaginous compounds protecting the young shoot. The inflorescence is a cyme, rarely of solitary flowers. The flowers are usually bisexual and usually epignous. The perianth is usually biseriate, although the calyx is lost in some taxa. The calyx is synsepalous with 4 5 or 0 lobes. The corolla is sympetalous with 4 5 [rarely 3 or 8 10], actinomorphic or bilabiulate. The stamens are 4 5 [rarely 3 or 10], alternipetalous and epipetalous. The anthers are usually longitudinal (rarely poricidal) in dehiscence. The gyroecium is syncarpous, with a usually inferior [rarely superior] ovary, 2 [3 5+] carpels, and 1 2 [3 5+] locules. Placentation is axile, rarely parietal; the ovules are anatropous to hemitropous, unitegmic with a funicular obturator, 1 per carpel. The nectaries are often present as a nectariferous disk atop ovary. The fruit is a berry, capsule, drupe, or schizocarp. The seeds are usually endospermous.

The Rubiaceae have a mostly worldwide distribution, more concentrated in tropical regions. Economic importance includes *Cinchona*, the source of quinine used to treat malaria, *Coffea arabica* and other species, the source of coffee, *Pausinystalia johimbe*, the source of the sexual stimulant yohimbine, some timber trees, fruiting plants, dye plants (such as *Rubia*, madder), and ornamental cultivars (e.g., *Pentas*, among others).

The Lamiales, sensu APG II (2003), contain approximately 21 families (Table 8.3), many of which have undergone considerable changes in classification (e.g., see Scrophulariaceae s.l., discussed later). Seven families are described here.
Among those not described are the Gesneriaceae (a large family including many cultivated ornamentals, such as Saintpaulia, African violets, and Sinningia, gloxinia), Lentibulariaceae (containing the interesting carnivorous plants Pinguicula, butterwort, and Utricularia, bladderwort), Oleaceae (the olive family, containing olive, Olea europaea), Pedaliaceae (source of Sesamum, sesame), and Verbenaceae (the verbena family). See Kadereit (2004) for more information on classification in the order.

Acanthaceae Acanthus family (from Acanthus, prickly-one). 229 genera / 3450 species. (Figure 8.64)

The Acanthaceae consist of terrestrial or aquatic herbs, shrubs, or rarely trees. The leaves are opposite (usually) and simple. The inflorescence is a cyme, raceme, or of solitary flowers. The flowers are bisexual, zygomorphic, bracteate and bracteolate (the bracts often colored), and hypogynous. The perianth is biseriate and dichlamydeous, with hypanthium absent. The calyx is synsepalous with 5 [4,6], imbricate or valvate lobes. The corolla is symmetrical and usually bilabiate (the upper lip suppressed in some species) with 4-5 imbricate or convolute lobes. The stamens are 2, 4, or rarely 5, with staminodes present in some. Anthers are tetrasporangiate or bisporangiate, dithecal or monothecal, with parallel or divergent thecae. The pollen is tricolpate, triporate, diporate, pantoporate, or inaperturate. The gynoecium is syncarpous, with a superior ovary, 2 carpels, and 2 locules. The style is solitary and terminal. Placentation is axile; ovules are variable in type, 2 ∞ per carpel. Nectaries are usually present as a disk at the ovary base. The fruit is usually an explosively dehiscent, loculicidal capsule. The seeds have funiculi that function to catapult the seeds; these are termed funicular retinacula or jaculators. Cystoliths are characteristic of some taxa, appearing as streaks in the leaves.

Members of the Acanthaceae are distributed from the tropics to temperate regions. Economic importance includes several cultivated ornamentals, such as Acanthus mollis, Aphelandra, and Justicia [including Beloperone]. For information about intrafamilial relationships, see McDade et al. (2000).

The Acanthaceae are distinct in having simple, opposite leaves with zygomorphic, bracteate, usually bilabiate flowers, the fruit an explosively dehiscent, loculicidal capsule with distinctive funicular retinacula (jaculators) that function in seed dispersal, the funicular retinacula a presumed apomorphy of the family.

Bignoniaceae Bignonia family (after Abbé Jean-Paul Bignon, 1662 1743, court librarian at Paris, friend of Tournefort). 109 genera / 750 species. (Figures 8.65, 8.66)

The Bignoniaceae consist of trees, shrubs, and lianas, rarely herbs. The leaves are usually pinnate or ternate, less often simple or palmate, usually opposite, sometimes whorled, rarely simple, exstipulate, the terminal leaflets modified as tendrils in some taxa. The inflorescence is a cyme, raceme, or of solitary flowers. The flowers are bisexual, zygomorphic [corolla rarely actinomorphic], hypogynous. The calyx is synsepalous with 5 zygomorphic, often bilabiate lobes [sometimes unlobed or spathaceous, rarely calytrate]. The corolla is sympetalous with 5, usually bilabiate lobes [rarely actinomorphic]. The stamens are alternipetalous, whorled, usually didynamous, 2+2 or 2+2 + 1 staminode [rarely 2 + 3 staminodes]. The gynoecium is syncarpous, with a superior ovary, 2 carpels, and 1, 2, or 4 locules. The style is solitary and terminal, with two stigmas. Placentation is axile or parietal with intruding septae [false septa dividing each carpel into two locules in some]; ovules are anatropous or hemitropous, unitegmic, numerous. Nectaries are usually present as a ring or cup-shaped structure around ovary base. The fruit is a two-valved capsule, rarely fleshy or fibrous and indehiscent. The seeds are usually flat and winged in taxa with capsules, exalbuminous. The stem anatomy of members of the family with lianas is unique.

Members of the Bignoniaceae are distributed primarily in tropical [some temperate] regions. Economic importance includes important timber trees and many ornamental cultivars (e.g., Jacaranda, Spathodea). See Spangler and Olmstead (1999) and Olmstead et al. (2002) for recent phylogenetic studies of the family.

The Bignoniaceae are distinctive in being trees, shrubs, or vines with opposite leaves and usually zygomorphic, often bilabiate, flowers with didynamous stamens, a superior, 2-carpellate ovary having axile or parietal placenta-tion with numerous ovules, the fruit a capsule [rarely indehiscent] with usually flat, winged, exalbuminous seeds.

Lamiaceae (Labiatae) — Mint family (lamiun, gullet, after the shape of the corolla tube or old Latin name used by Pliny). 251 genera / 6700 species. (Figures 8.67, 8.68)

The Lamiaceae consist of hermaphroditic, sometimes gynodioecious, herbs, shrubs, or rarely trees, often with short-stalked glandular trichomes producing aromatic ethereal oils. The stems are usually 4-sided (square in cross-section), at least when young. The leaves are simple [rarely pinnate], opposite, sometimes whorled [rarely spiral], exstipulate. The inflorescence consists of lateral cyme units in a verticillaster or thyrse, or of solitary, axillary flowers. The flowers are bisexual [rarely unisexual], mostly zygomorphic, bracteate and bracteolate, hypogynous. The perianth is biserate and
the corolla usually bilabiate, sometimes actinomorphic, hypanthium absent. The calyx is synsepalous of 5 zygomorphic, sometimes bilabiate, lobes. The corolla is sympetalous, of 4 or 5 corolla lobes (if 4, by fusion of two lobes). The stamens are 2, 4, or 2 fertile + 2 staminodes, whorled, epipetalous (adnate to corolla tube). Anthers are longitudinal in dehiscence, with connective split in *Salvia* and relatives, separating the thecae of anthers (one theca lost in some taxa). The gynoecium is syncarpous, with a superior ovary, 2 carpels, and 4 locules. The style is solitary, often apically 2-branched, terminal or gynobasic with the ovary deeply 4-lobed (by formation of false septa dividing each carpel; stigmas are usually 2.

Placentation is basal; ovules are anatropous to hemitropous, unitegmic, 2 per carpel, 1 per locule. Nectaries are usually present as a disk or pad of tissue at base of ovary. The fruit is a schizocarp of usually four [1 3] nutlets, a drupe, or a berry. Plants often have ethereal oils and stachyose carbohydrate.

The Lamiaceae have a mostly worldwide distribution. Economic importance includes medicinal plants, culinary herbs (e.g., *Mentha*, mint; *Occimum*, basil; *Rosmarinus*, rosemary; *Salvia*, sage; *Thymus*, thyme), fragrance plants (e.g., *Lavandula*, lavender; *Pogostemon*, patchouli), and a number or cultivated ornamentals. See Harley et al. (2004) and references therein for treatments of the family.

The Lamiaceae are distinctive in being herbs or shrubs, often aromatic with ethereal oils, with usually 4-sided stems, opposite [or whorled] leaves, a verticillaster or thyrsed inflorescence [flowers solitary and axillary in some], and zygomorphic [rarely actinomorphic], usually bilabiate flowers having a superior ovary, often deeply 4-lobed (by formation of false septa) with a gynobasic style, the fruit a schizocarp of usually 4 nutlets or a berry or drupe.

SCROPHULARIACEAE S.L.

The Scrophulariaceae s.l. has traditionally been characterized as shrubs or herbs with usually opposite leaves and mostly pentamous, zygomorphic flowers, the stamens usually 2 or 4 (sometimes 5 or with staminodes), the ovary superior and usually 2-carpellate with axile or parietal placentaion with numerous ovules, the fruit a capsule, berry, or schizocarp. The floral formula for this family as traditionally defined can be summarized as:

\[K(4-5) [(2,3)] C(5) [0,(4-8)] A2,4,5 [some having 2 or 4 fertile stamens with one or more staminodes] G(2) [(-3)], superior.\]

Recent molecular studies demonstrate that the Scrophulariaceae as traditionally defined is not monophyletic. Several major clades that include at least some taxa that were formerly placed in the Scrophulariaceae s.l., are now recognized at the family rank (Olmstead et al. 2001; Oxelman et al. 2005; see Stevens, 2001 onwards): Calceolariaceae, Gratiolaceae, Linderniaceae, Orobanchaceae (Figure 8.70), Pawloniaceae, Phrymaceae (Figure 8.72), Plantaginaceae (Figure 8.71), Scrophulariaceae s.s. (Figure 8.69), and Stilbaceae. These families are difficult to diagnose and differentiate from one another morphologically. Their phylogenetic boundaries are still somewhat tentative, and they have yet to be characterized and thoroughly circumscribed in terms of number of genera and species. Four of these newly defined families are summarized briefly here, but only tentatively and superficially. See Fischer (2004) for a general treatment of the complex.

Scrophulariaceae s.s. [including Loganiaceae and Myopaceae] Figwort family (after Scrophula, from glands on the corolla). (Figure 8.69)
LEAVES
opposite

This clade, containing the type genus *Scrophularia*, also includes members of several subgroups of the traditionally defined *Scrophulariaceae* s.l., such as *Verbascum* and *Selago*. No morphological characteristics clearly differentiate this newly circumscribed family from other groups within the traditional, larger one. The *Scrophulariaceae* s.s. subsumes at least some members of other former families, including the *Buddlejaceae* (when recognized), *Loganiaceae*, and *Myoporaceae*. These latter two families might logically be treated as subfamilies [Loganioideae and Myoporoideae, respectively] within the *Scrophulariaceae* s.s., when further systematic studies are done.

The **Loganioids** [Loganiaceae] as traditionally defined contain approximately 29 genera and 570 species of trees,
shrubs, herbs, or lianas, with usually opposite, simple leaves. The flowers are rather typical of the Scrophulariaceae s.l. in having a 4 5-merous perianth and androecium, a mostly superior ovary with 2 [1 4] carpels, mostly axile placentation with 2 ∞ ovules, the fruit a capsule, berry, or drupe. This group is rather disparate with a varying history of classification, and much more additional work will be necessary to firmly place its members.

The Myoporoids [Myoporaceae] contain 3 genera and ca. 235 species. They can be distinguished from other members of the Scrophulariaceae s.s. in having simple, gland-dotted, usually spirally arranged leaves. This group, which is fairly well delimited, is largely Australian, with other taxa occurring primarily in lands bordering the Pacific or Indian oceans.

Orobanchaceae Broom-Rape family (Greek for le gume strangler, after the parasitic habit of most). (Figure 8.70)

The Orobanchaceae consist almost entirely of root parasites (Olmstead et al. 2001). Included within this group are the more traditionally delimited Orobanchaceae s.s., which contains achlorophyllous root parasites. Also included are members of the traditional Scrophulariaceae s.l. such as Castilleja, which are chlorophyllous root hemiparasites. Economic importance of the Orobanchaceae is minimal, with some species being a local source of food.

The traditionally defined Orobanchaceae s.s. might logically be treated as a subfamily of this expanded treatment of the family. The former are termed here as Orobanchoids and are briefly described next.

The Orobanchoids [Orobanchaceae s.s.] contain approximately 15 genera and 210 species with a mostly northern hemisphere distribution. They are distinctive in being achlorophyllous root-parasites. Also included are members of the traditional Scrophulariaceae s.l. such as Castilleja, which are chlorophyllous root hemiparasites. Economic importance of the Orobanchaceae is minimal, with some species being a local source of food.

The traditionally defined Orobanchaceae s.s. might logically be treated as a subfamily of this expanded treatment of the family. The former are termed here as Orobanchoids and are briefly described next.

The Phrymaceae s.l. consist of annual or perennial herbs or shrubs. The leaves are simple, opposite, exstipulate. The inflorescence is variable, including a spike or of solitary, axillary flowers. The flowers are bisexual, zygomorphic or actinomorphic, ebracteate, hypogynous. The androecium is sympetalous with 5, usually bilabiate corolla teeth-like lobes. The corolla is sympetalous with 5, usually bilabiate lobes, the upper lip 2-lobed. The stamens are 4, alternipetalous and epipetalous. Anthers are longitudinal in dehiscence. The gynoecium is unicarpellous or syncarpous, with a superior ovary, 2 carpels, (appearing as 1 in Phryma, but stigma 2-lobed) and 1 or 2 locules. The style is solitary, terminal; stigma(s) are 2 or 2-lobed, bilamellate and thigmonastic (functioning in pollination) in some taxa. Placentation is axile, parietal, or basal; ovules are anatropous, unitegmic, 1 ∞ per carpel. The fruit is a dehiscent capsule (opening late in some taxa), an achene with persistent calyx (Phryma), or a berry.

The Phrymaceae s.l. are recently expanded from a single species (Phryma leptostachya) to approximately 190 species, including the large genus Mimus. See Beardsley and Olmstead (2002) and Cantino (2004). Members have a mostly worldwide distribution, especially in western North America. Economic importance includes some cultivars in Mimus.

The Phrymaceae s.l. are distinctive in being herbs or shrubs with simple, opposite leaves, zygomorphic or actinomorphic synsepalous and sympetalous flowers, a superior, 1- or 2-carpellate ovary, the fruit a capsule, achene, or berry. K (5) [(3,4)] C (5) A 4 G (2), superior.

Plantaginaceae s.l. (including Callitrichaceae, Globulariaceae, Haloridaceae, Plantaginaceae s.s., and many members of the traditional Scrophulariaceae s.l.) Plantain/Speedwell family (L. for sole of the foot, after the leaves of some species that lie flat on the ground) (Figure 8.72)

The Plantaginaceae, as delimited by Olmstead et al. (2001) (which they tentatively termed the Veronicaceae, a name that is illegitimate, however) contains many taxa that have traditionally been placed in the Scrophulariaceae s.l., including Antirrhinum (snapdragons), Chelone (turtleheads), Collinsia (Chinese houses), and Digitalis (foxglove). Many members of the Plantaginaceae are important in the horticultural trade, e.g., Antirrhinum. Digitalis is both horticulturally and medicinally important, being the source of the cardiac glycoside digitoxin and others, used to treat heart ailments.

The Plantaginaceae as a whole cannot be readily delimited from other Scrophulariaceae s.l. based on morphological characteristics. Within the Plantaginaceae are clades that have previously been treated as the separate families Callitrichaceae, Globulariaceae, Haloridaceae, and Plantaginaceae s.s. It might be logical to treat some of these as subfamilies within the Plantaginaceae, but this awaits much more detailed studies. Two of these former families, the Callitrichaceae and Plantaginaceae s.s., are briefly described here, denoted simply as Callitrichoids and Plantaginoids.

The Callitrichoids [Callitrichaceae], commonly known as Starworts, contain 1 genus, Callitrichus, and approximately 17 species. The Callitrichoids are distinctive in being aquatic, submerged to floating herbs with decussate leaves and unisexual flowers lacking a perianth, the stamens usually solitary,
CHAPTER 8 DIVERSITY AND CLASSIFICATION OF FLOWERING PLANTS: EUDICOTS

the gynoecium of 2 carpels, each with 2 locules, and the fruit a schizocarp of 4 nutlets. The floral formula is: \(P_0 \ A_1 \ [2,3] \ G \ (2) \), superior. Members of the Callitrichoids have a mostly worldwide distribution. Economic importance includes some species grown as aquarium plants.

The **Plantaginoids** [Plantaginaceae s.s.], commonly known as Plantains (not to be confused with the bananas known as plantains) contain 3 genera and approximately 275 species, almost all of these in the genus *Plantago*. The Plantaginoids are distinctive in being herbs, rarely shrubs, the leaves spiral with parallel major veins, the flowers bisexual or unisexual, with 4 [3] connate, membranous to scarious sepals and petals, usually 4 [1 3] stamens, and a superior, 2-carpellate ovary, the fruit a circumscissile capsule or achene.

FIGURE 8.71 LAMIALES. Phrymaceae. **A.** *Mimulus guttatus*, seep monkey flower. **B–H.** *Mimulus aurantiacus*, coast monkey flower. **B.** Axillary, opposite flowers, face view. **C.** Winged calyx, side view. **D.** Androecium (didynamous) and style/stigma. **E.** Cross-section at base of flower, showing perianth and ovary. **F.** Ovary cross-section, with parietal placentation (septum incomplete). **G.** Bilamellate stigmas, open. **H.** Stigmas closed, 5 seconds after physical contact. **I, J.** *Phryma leptostachya*, hopseed; images courtesy of David G. Smith. **I.** Flower close-up, showing bilabiate corolla; note depressed orientation after flowering (below). **J.** Inflorescence, a spike.

SOLANALES

The Solanales, sensu APG II (2003), contain 5 families (Table 8.3). Of these, two families are described here.

Convolvulaceae — Morning Glory / Bindweed family (Latin for interwoven). 56 genera / 1600 species. (Figure 8.73)

The Convolvulaceae consist of herbaceous to woody vines, less commonly herbs, shrubs, or rarely trees. Some family members are achlorophyllous and parasitic (e.g., *Cuscuta*). The roots are haustorial in parasitic taxa. The stems of viney members are dextrorse (twining clockwise when moving away, like the grooves of a typical right-handed screw). The leaves are simple, undivided to divided, spiral, exstipulate, reduced and scalelike in *Cuscuta*. The inflorescence is a head, dichasium, or of solitary flowers, bracteate, of usually two, often accrescent bracts. The flowers are bisexual, actinomorphic, and hypogynous. The perianth is dichlamydeous. The calyx has 5 [3,4], sepals or lobes. The corolla is sympetalous, often infundibular, with 5 [3,4] lobes, with usually involute (plicate) aestivation (imbricate in *Cuscuta*). The stamens are 5 [3,4], filaments often unequal in length, the stamens epipetalous. Anthers are longitudinal or poricidal in dehiscence. The gynoecium is syncarpous with a superior ovary, 2 [rarely 1 or 4 5] locules. Placentation is axile, rarely basal; ovules are variable in type, unitegmic, ∞ [rarely 1 fe w] per carpel. The fruit is a berry, drupe, or capsule (often septi- dinal). The seeds are endospermous. Alkaloids and internal phloem (inner to the xylem, surrounding pith) are present in many family members.

The Solanaceae are currently classified into seven subfamilies (Olmstead et al. 1999). Members of the family have mostly worldwide distributions, concentrated in South America. Economic importance includes many edible plants, such as *Capsicum* (peppers), *Lycopersicon esculentum* (tomato), *Physalis philadelphica* (tomatillo), and *Solanum tuberosum* (potato), and the infamous fumatory *Nicotiana tabacum* (tobacco). Alkaloids from various taxa have medicinal properties (e.g., atropine from *Atropa belladona*), hallucinogenic properties (e.g., *Datura*, Jimson weed), or are deadly poisons (e.g., *Datura, Solanum spp.*) or known carcinogens (e.g., *Nicotiana tabacum*); some are used as ornamental cultivars, others are noxious weeds.

The Solanaceae are distinctive in being herbs, shrubs, trees, or lianas with internal phloem, spiral leaves, a usually actinomorphic, 5-merous perianth and androecium (corolla involute in aestivation), a usually bicarpellate, syncarpous gynoecium, and usually numerous ovules per carpel, the fruit a berry, drupe, or capsule.

K (5) C (5) [(4),(6)] A 5 [4 or 2+2 staminodes] G (2) [(3-5)], superior.

EUASTERIDS II

Euasterids II is an informal name used to denote a monophyletic grouping of four orders: Apiales, Aquifoliales, Asterales, and Dipsacales, plus several unplaced families (Table 8.3).

The Solanaceae consist of herbs, shrubs, trees, or lianas, with prickles present in some taxa, many with stellate trichomes. The leaves are simple, pinnate, or ternate, usually spiral and exstipulate. The inflorescence is of solitary flowers or cyme units. The flowers are bisexual, actinomorphic, rarely zygomorphic. The perianth is biseriate, dichlamydeous, usually tubular, rotate, or salverform, hypanthium absent. The calyx is synepalous, persistent, sometimes accrescent, with 5 calyx lobes. The corolla is sympetalous and with 5 [4,6] convolute, imbricate, or valvate lobes, with usually involute (plicate) aestivation. The stamens are 5 [rarely 4 or 2 + 2 staminodes], antisepalous and epipetalous, the anthers often connivent, with staminodes rarely present. Anthers are longitudinal or poricidal in dehiscence. The gynoecium is syncarpous, with a superior ovary, 2 [rarely 3 5] carpels, and 2 [rarely 1 or 4 5] locules. Placentation is axile, rarely basal; ovules are variable in type, unitegmic, ∞ [rarely 1 fe w] per carpel. The fruit is a berry, drupe, or capsule (often septi- dinal). The seeds are endospermous. Alkaloids and internal phloem (inner to the xylem, surrounding pith) are present in many family members.

The Solanaceae consist of herbs, shrubs, trees, or lianas. See Schwarzbach (2004).

APIALES

The Apiales contain 8-10 families (Table 8.3), of which the two most common are described here. See Chandler and Plunkett (2004) for more detailed information on the order.

Apciaceae (Umbelliferae) Carrot family (apium, used by Pliny for a celerylike plant). 446 genera/3540 species. (Figures 8.75, 8.76)

The Apiaceae consist of herbs, less often shrubs or trees. The leaves are usually pinnate, ternate, or decompound [rarely simple, palmate, or phyllodinous], spiral, with a broad sheathing base, stipular flanges sometimes present. The inflorescence is usually a compound umbel often with subtending involucral bracts, sometimes a head or simple umbel or reduced to a single flower or dichasium. The flowers are small, bisexual [marginal flowers sometimes sterile], actinomorphic, epigynous. The perianth is biseriate and dichlamydeous or uniseriate by loss of the calyx. The calyx is aposepalous with 5 lobes, which may be reduced or absent. The corolla is apetalous and with 5 [rarely 0], valvate petals. The stamens are 5, whorled, alternipetalous, and apostemonous. The gynoecium is syncarpous, with an inferior ovary, 2 carpels, and 2 [rarely 1] locules, often with a stylodium at apex of ovary. Placentation is apical-axile; ovules are anatropous, unitegmic, 1 per carpel. The fruit is a schizocarp of mericarps, supported by carpophore. The seeds are oily endospermous. Some taxa have anomalous secondary thickening.

The Apiaceae have a worldwide distribution. Economically important members include a number of food, herb, and spice plants, such as Anethum, dill; Apium, celery; Carum, caraway; Coriandrum, coriander; Cuminum, cumin; Daucus, carrot; Foeniculum, fennel; and Petroselinum, parsley; some species are poisonous, such as Conium maculatum, poisonous hemlock (an extract of which Socrates drank in execution); some are used as ornamental cultivars. See Plunkett et al. (1997) for a more detailed study of the Apiaceae.

The Apiaceae are distinctive in being herbs, with sheathing leaves (compound or simple, often decompound), the inflorescence usually an involucrate compound umbel [rarely a head, simple umbel, or reduced] with actinomorphic flowers having a 2-carpellate and 2-loculate, inferior ovary, each carpel with one, axile-apical, pendulous ovule, the fruit a schizocarp of mericarps.

K 5 or 0 C 5 [0] A 5 G (2), inferior.

Araliaceae — Ginseng family (possibly from French Canadian Aralie). 47 genera / 1325 species. (Figure 8.77)

The Araliaceae consist of trees, shrubs, lianas, or herbs. The stems of trees are often pachycaul. The leaves are palmate, pinnate, or simple (these often divided), usually spiral, rarely opposite or whorled, usually stipulate. The inflorescence is a usually terminal umbel, head, or secondary inflorescence (e.g., panicle) of umbels, rarely of solitary flowers. The flowers are usually bisexual, actinomorphic, epigynous (rarely hypogynous). The calyx is aposepalous with 5 [3 =∞] sepals, often reduced or absent. The corolla is apetalous, rarely basally sympetalous or calyptrate, with 5 [rarely 3 12], valvate or imbricate petals or lobes. The stamens are 5 10 [rarely 3 =∞]. Anthers are longitudinal in dehiscence. The gynoecium is syncarpous, with an inferior (rarely superior and secondarily derived) ovary, 2 5 [=∞] carpels, and 1 =∞ locules. The styles are 1 =∞. Placentation is apical-axile; ovules are anatropous, unitegmic, 1 [2] per carpel. Nectaries are sometimes present as an epigynous disk. The fruit is a drupe with multiple endocarps, berry, or schizocarp with carpophore. The seeds are oily endospermous. Plant tissues usually have secretory canals; leaf nodes are multilacunar.

The Araliaceae have a mostly worldwide distribution, mainly in tropical regions. Economic importance includes medicinal plants, especially Panax (ginseng); Tetrapanax papyrifera, used as Chinese rice paper; some timber plants; and several cultivated ornamentals such as Fatsia, Hedera (ivy), and Schefflera. See Wen et al. (2000) for a study of the Araliaceae.

The Araliaceae are distinctive in being mostly tropical trees, shrubs, lianas, or herbs with palmate or pinnate (rarely simple, then usually divided) leaves, an inflorescence of heads, umbels, or with umbel units, the flowers with often reduced calyx, apetalous to sympetalous corolla, and a =∞-carpellate inferior ovary with usually apical-axile placentation, the fruit a berry, drupe, or schizocarp. K 5 [0, 3 =∞] C 5 [3-12] A 5-10 [3=∞] G (2-5) [(=∞)], inferior, rarely superior.

ASTERALES

The Asterales, sensu APG II (2003), contain 11 families (Table 8.3), two of which are described here. Notable among the other families are the Campanulaceae (the bluebell/lobelia family, a large group containing a number of species used as ornamentals) and Stylidiaceae (including the trigger plants, with an interesting pollination mechanism; see Chapter 13). See Lundberg and Bremer (2003) for a detailed study of the Asterales.
FIGURE 8.75 APIALES. Apiaceae. **A–E.** *Apium graveolens*, wild celery. **A.** Flower, immature, with incurved petals. **B.** Flower at anthesis, showing stylopodium and alternipetalous stamens. **C.** Flower in side view; note inferior ovary. **D.** Leaf. **E.** In orence, a compound umbel. **F.** *Conium maculatum*, poison-hemlock, of Socrates fame. **G.** *Daucus carota*, wild carrot or Queen Anne’s lace, in orence. **H, I.** *Daucus pusillus*. **H.** In orence, showing subtending involucre. **I.** Infructescence, with bristly fruits. **J–L.** *Foeniculum vulgare*, wild fennel. **J.** Compound umbel, showing rays. **K.** Close-up of simple umbel unit. **L.** Ovary longitudinal section, showing two carpels and apical-axile placentation.
Asteraceae (Compositae) Sunflower family (after Aster, meaning star). 1528 genera / 22,750 species. (Figures 8.78 8.82)

The Asteraceae consist of herbs, shrubs, trees, or vines, with laticifers or resin ducts present in some taxa. The leaves are simple or compound, spiral or opposite [rarely whorled], exstipulate. The inflorescence consists of one or more heads (capitula) arranged in various secondary inflorescences, each head consisting of a flat to conical compound receptacle that bears one to many flowers (developing centripetally) and is subtended by one or more series of bracts, the phyllaries (collectively termed the involucre); heads of five general types: (1) discoid, with only disk flowers, all bisexual; (2) disciform, with only disk flowers, a mixture of pistillate and sterile with bisexual and staminate, in the same or different heads; (3) radiate, with central (bisexual or male) disk flowers and peripheral (female or sterile) ray flowers; (4) ligulate, with all ray flowers (typically with 5-toothed corolla apices); and (5) bilabiate, with all bilabiate flowers. The flowers are epigynous, bisexual or unisexual, subtended in some taxa by bracts, known as chaff, or bristles (as in the thistles). The perianth is biseriate or uniseriate with hypanthium absent. The calyx, known as the pappus, is modified as 2 = (sometimes connate) awns, scales, or capillary bristles (typically barbed or plumose), pappus absent in some. The corolla is sympetalous with 5 [rarely 4] lobes (reduced to 3 marginal teeth in some), of three structural types (also called flower types): (1) bilabiate, corolla zygomorphic with a short tube having upper and lower lips; (2) disk, corolla actinomorphic with short to elongate tube bearing 5 [4] teethlike or elongate lobes; or (3) ray or ligulate, corolla zygomorphic.

FIGURE 8.78 ASTERALES. Asteraceae. Argyroxiphium sandwicense, silversword. A. Whole plant at time of flowering. B. Close-up of basal leaves, showing silver, UV-reflectant, sericeous trichome layer. C. Close-up of head (capitulum), characteristic of the Asteraceae.
CHAPTER 8 DIVERSITY AND CLASSIFICATION OF FLOWERING PLANTS: EUDICOTS

with generally short tube having elongate, flat, extension bearing 3-5 apical teeth. The stamens are 5 [4], whorled, alternipetalous, usually syngenesious, the anthers fused into a tube through which the style grows. Anthers are basifixed, with apical extensions and sometimes basal lobes, longitudinal and intorse in dehiscence. The gynoecium is syncarpous, with an inferior ovary, 2 carpels, and 1 locule. The style is solitary and apically two-branched; stigmas are two, occurring as stigmatic lines on the adaxial surface of style branches. Placenta is basal; ovules are anatropous, unitegmic, 1 per ovary. Nectaries are usually present at apex of ovary. The fruit is an achene (or cypsela, an achene deri ved from an inferior ovary), typically a multiple fruit of achenes, an elongate beak forming between fruit and pappus in some taxa. The seeds are exalbuminous.

The Asteraceae has recently been classified into at least ten subfamilies (Panero and Funk, 2002). Members of the family have a worldwide distribution. Economic importance includes some food (e.g., Cynara scolymus, artichoke, and Helianthus annuus, sunflower), a number of ornamental cultivars, and various species used locally or industrially. See Bremer (1994, 1996) and Panero and Funk (2002) for more detailed information on relationships in the Asteraceae.

The Asteraceae are distinctive in being herbs, shrubs, vines, or trees, the inflorescence a head (capitulum) subtended by an involucre of phyllaries, flowers either bilabiate, disk, or ray/ligulate (heads of many taxa a mixture of central disk flowers and peripheral ray flowers), with the calyx, termed a pappus, modified as scales, awns, or capillary bristles (or absent), the androecium syngenesious, and with an inferior ovary with a single, basal ovule, the fruit a multiple of achenes. K 0-∞ (pappus) C (5) [(4)] or (3) in some ray flowers A (5) [(4)] G (2), inferior.

Goodeniaceae — Goodenia family. 12 genera / 400 species. (Figure 8.83)

The Goodeniaceae consist of shrubs, herbs, or rarely trees. The leaves are simple, alternate, spiral [rarely opposite or whorled], extipulate. The inflorescence is of solitary flowers or a head, raceme, or cyme. Flowers are bisexual, zygomorphic, epigynous [to hypogynous]. The perianth is dichlamydeous. The calyx is synsepalous with 5 [3] lobes, reduced in some taxa. The corolla is valvate, sympetalous with 5 lobes, bilabiate or unilabiate with the 5 lobes anterior. The stamens are 5, alternipetalous, epipetalous or free. Anthers are connivent or connate, forming a tube, longitudinal intorse in dehiscence. The gynoecium is syncarpous, with an inferior [rarely half-inferior or superior] ovary, 2 carpels, and 2 [rarely 1 or 4] locules. The style is solitary, growing through the tube formed by the anthers, the style having, below the stigma, a cupular indusium (having marginal hairs) that collects pollen and presents to a visiting insect. Placenta is axile; ovules are anatropous, unitegmic, 1 ∞ per carpel. Intrastaminal nectaries are present in some taxa. The fruit is a capsule, rarely a nut or drupe. The seeds are flat, winged in some taxa, and oily endospermous.

The Goodeniaceae are mostly Australian in distribution. Economic importance includes some taxa used as ornamental cultivars.

The Goodeniaceae are distinctive in being herbs, shrubs, rarely trees, the flowers 5-merous, with sympetalous, bilabiate or often unilabiate (with the 5 lobes anterior) corollas, stamens forming a tube, the style growing through the connivent or connate anthers with a cupular indusium that collects pollen, and a usually inferior ovary, the fruit a capsule, rarely a drupe or nut. K (5) [(3)] C (5) A (5) or 5 G (2), inferior [rarely half-inferior or superior].

DIPSACALES

The Dipsacales, as treated by APG II (2003), contain two families: Adoxaceae and Caprifoliaceae. The Adoxaceae includes Viburnum, with several species used as ornamentals, and Sambucus, elderberry, used as fruit and wine plants (Figure 8.84A,B). The Caprifoliaceae in APG II is united with five previously recognized families: Diervillaceae, Dipsacaceae, Linnaeaceae, Morinaceae, and Valerianaceae. However, these families are here treated separately (an option in APG II) for convenience of circumscription and description, the Caprifoliaceae cited as sensu stricto (Table 8.3). Three families are treated here. See Donoghue et al. (2001) and Zhang et al. (2003) for recent phylogenetic analyses of the Dipsacales.

Caprifoliaceae s.s. — Honeysuckle family (Latin for goat leaf). 15 genera / 420 species. (Figure 8.84C H)

The Caprifoliaceae consist of shrubs, trees, lianas, or herbs. The leaves are simple [rarely pinnate], opposite, extipulate or reduced-stipulate. The inflorescence is usually a cyme. The flowers are bisexual, epigynous, rarely epihypogynous. The calyx is synsepalous with 5 [4] imbricate or open lobes, the calyx often constricted below lobes. The corolla is sympetalous with 5 [4], imbricate or valvate lobes. The stamens are 5 [2,4], alternipetalous, and epipetalous. Anthers are longitudinal in dehiscence. The gynoecium is syncarpous, with an inferior ovary, 2 5 [8] carpels (not all carpels fertile in some taxa), and 1 5 [8] locules. The style is solitary or absent. Placenta is axile or parietal; ovules are anatropous,
FIGURE 8.83 ASTERALES. Goodeniaceae. A–G, Scaevola spp. A. Flower, face view, showing unilabiate corolla and style along cleft of corolla tube. B. Close-up of style, with cupular indusium. Note lower stamens. C. Bud stage, showing style during elongation between stamens, the cupular indusium collecting pollen grains. D. Flower base in longitudinal section, showing inferior ovary. E. Ovary cross-section, showing two carpels and locules. F. Fruits (berries). G. Flower, face view. H. Dampiera sp.
unitegmic, 1 ∞ per carpel. Nectaries are often present on inner corolla tube, with extrafloral nectaries present in some taxa. The fruit is a capsule, berry, or drupe. The seeds are oily endospermous.

The Caprifoliaceae have a mostly worldwide distribution. Economic importance includes several ornamental cultivars, such as *Abelia*, *Lonicera* (honeysuckles), and *Viburnum*.

The Caprifoliaceae are distinctive in being trees, shrubs, herbs, or lianas with opposite, usually simple (rarely pinnate) leaves, a cymose inflorescence, the flowers usually epigynous, with a 4–5-merous perianth, 5 [2,4] stamens, and 2 5 [8] carpels, not all fertile in some taxa, the fruit a berry, capsule, or drupe.

Dipsacaceae — Teasel family (from dipsa, thirst, relative to water-collecting, in reference to the water collecting leaf bases). 11 genera / 290 species. (Figure 8.85A D)

The Dipsacaceae consist of herbs or shrubs. The leaves are simple, opposite or whorled, and extipulate. The inflorescence is a head or raceme of cyme units, subtended by an involucre. The flowers are bisexual, usually bracteate, forming an epicalyx in some. The calyx is synsepalous or bristle-like with 4-5 [0,10] lobes or elements. The corolla is sympetalous with 4-5 imbricate lobes. The stamens are 4, alternipetalous, and epipetalous. Anthers are longitudinally dehiscent. The gynoecium is syncarpous, with an inferior ovary, 2 carpels, and 1 functional locule. The style is solitary. Placentation is apical; the solitary ovule is anatropous and unitegmic. A nectary is present, consisting of an annular disk at base of style. The fruit is an achene, usually enclosed by the epicalyx and with a terminal, persistent calyx. The seeds have an oily endosperm.

The Dipsacaceae are distributed in Eurasia and Africa. Economic importance includes some cultivated ornamentals.

The Dipsacaceae are distinctive in being herbs or shrubs with opposite or whorled leaves, an involucrate head of cyme units, the flowers usually bracteate with an epicalyx, the ovary inferior with 2 carpels and 1 locule (1 locule abortive) and a single, apical ovule, the fruit an achene usually with a persistent epicalyx and calyx.

Valerianaceae — Valerian family (Latin valere, to be strong, or Valeria, a Roman province where plant found, or perhaps after Valerianus, Roman emperor of 3rd century A.D.). 10 genera / 300 species. (Figure 8.85E K)

The Valerianaceae consist of herbs, rarely shrubs. The leaves are simple or pinnate, opposite, and exstipulate. The inflorescence is composed of cyme units. The flowers are usually bisexual, bracteate. The perianth is biseriate or uniseriate. The calyx is absent, composed of teeth, or of 5 sepals, forming an accrescent pappus in some taxa. The corolla is sympetalous with 5 [3,4] imbricate lobes and a basal, nectariferous spur, actinomorphic or zygomorphic, bilabiate in some. The stamens are 1-4 (less than the number of corolla lobes), whorled, epipetalous. Anthers are versatile and longitudinally dehiscent. The gynoecium is syncarpous, with an inferior ovary, 3 carpels, and 1 functional locule (2 locules abortive). The style is solitary. Placentation is apical; the ovule is solitary, anatropous and unitegmic. The fruit is an achene, sometimes winged, with a plumose, pappuslike calyx in some. The seeds have an oily endosperm.

The Valerianaceae are mostly worldwide in distribution. Economic importance includes some cultivated ornamentals (e.g., Centranthus) and minor edible, medicinal, or essential oil plants.

The Valerianaceae are distinctive in being herbs, rarely shrubs, with opposite leaves, a sympetalous, spurred corolla, 1-4 stamens, and a tricarpellate, inferior ovary with 1 functional locule (2 locules abortive) and a single, apical ovule, the fruit an achene, with a pappuslike calyx in some members.

REVIEW QUESTIONS

GENERAL AND BASAL EUDICOTS: RANUNCULALES AND PROTEALES
1. Name and describe the major apomorphy of the Eudicots.
2. Name three families in the order Ranunculales.
3. What is distinctive about the perianth of the Berberidaceae?
4. What is the corolla cycly and placentation of the Papaveraceae?
5. What economically important member of the Papaveraceae has shaped human history?
6. What is the etymology of the root name for Ranunculaceae?
7. What is the gynoecial fusion of the Ranunculaceae?
8. Name the three families of the Proteales.
9. For the Nelumbonaceae what is the family common name, plant habitat, leaf base/shape, floral formula, and placentation?
10. What is the fruit type of the Nelumbonaceae and what accessory tissue is part of this fruit?
11. What is the single genus and common name of the Platanaceae?
12. What is the stipule type, bud type, inflorescence type, flower sex, and fruit type of the Platanaceae?
13. How are the Nelumbonaceae and Platanaceae similar with regard to placentation?
14. For the Proteaceae, name the perianth cycly, perianth merosity, stamen number, ovary position, and placentation.
15. In what two regions of the world are most Proteaceae found?
CORE EU DICOTS: CARYOPHYLLALES, SANTALALES, AND SAXIFRAGALES
16. What three, basal orders and two major groups comprise the Core Eudicots?
17. What carnivorous plant families are found in the Caryophyllales?
18. Within the order Caryophyllales, name three apomorphies for the Core Caryophyllales.
19. Name and give the function of the major chemical apomorphy for the Higher Caryophyllales.
20. For the Aizoaceae, what is the leaf texture and typical leaf arrangement?
21. What is the perianth cycle of the Aizoaceae, and what structures appear like petals in many members?
22. What types of photosynthesis are found in many Aizoaceae?
23. What is distinctive about the perianth cycle, locule number, and placentation of the Amaranthaceae?
24. For the Cactaceae, what is the plant habit, stem texture, and geographic distribution?
25. What are the specialized axillary meristems of cacti termed, and what do these produce?
26. What is unusual about the perianth of the Cactaceae?
27. What type of photosynthesis is found in cacti and what is its physiological significance?
28. Give the floral formula, perianth/androecial position, and placentation for the Cactaceae.
29. What is the common name of the Caryophyllaceae, and what genus denotes this common name?
30. For the Caryophyllaceae, what is distinctive about the stem nodes, leaf arrangement, corolla (petal) type, and placentation?
31. What is the common name of the Polygonaceae, and what species denotes this common name?
32. What two perianth morphologies occur in the Polygonaceae?
33. What is the name of the distinctive stipular structures found in some Polygonaceae?
34. What is the ovule position and type of the Polygonaceae?
35. What former family is included within the Santalaceae, s.l. (sensu APG II 2003)?
36. What is the root type and plant nutrition of the Santalaceae, s.l.?
37. Name two economically important members of the Santalaceae.
38. What is the leaf arrangement and typical leaf texture of the Crassulaceae?
39. For the Crassulaceae, give the photosynthetic mechanism, inflorescence type, perianth cycle, gynoecium fusion, and fruit type.
40. Name a few common cultivars of the Crassulaceae.
41. For the Saxifragaceae, what is the leaf arrangement, and what is the variation of gynoecial fusion and ovary position?

ROSIDS: GERANIALES AND MYRTALES
42. What are some common features of members of the Rosids, sensu APG II, 2003?
43. Name five common families of the Rosids.
44. In the Geraniaceae, what is distinctive about the nectary position?
45. What is distinctive about the fruit type of the tribe Geranieae of the Geraniaceae?
46. What is distinctive about the leaf arrangement and venation in the Melastomataceae?
47. What is the ovary position, anther dehiscence, and anther connective form of the Melastomataceae?
48. How can the Myrtaceae often be recognized with respect to leaf structure?
49. What is the perianth/androecial position and stamen number of the Myrtaceae?
50. Name two spices, one fruit tree, and an important timber/pulp genus of the Myrtaceae.
51. What is the common name of the Onagraceae family?
52. Name the typical floral formula (including ovary position) of the Onagraceae.

EUROSIDS I: CUCURBITALES, FABALES, FAGALES, MALPIGHIALES, OXALIDALES, AND ROSALES
53. What is the typical plant habit, plant sex, and leaf morphology of the Cucurbitaceae.
54. Name the typical ovary position, perianth/androecial position, carpel number, and placentation of the Cucurbitaceae.
55. Name three economically important members of the Cucurbitaceae.
56. What is the alternate, traditional/classical name for the Fabaceae family?
57. What is distinctive about the typical gynoecial fusion, carpel number, placentation, and fruit type of the Fabaceae?
58. Prepare a table of the three subfamilies of the Fabaceae and for each listing the (a) flower symmetry; (b) position of the median posterior petal (where pertinent); (c) stamen number; and (d) stamen fusion.
59. Describe in detail a papilionaceous flower and indicate the subfamily (giving both acceptable names) having this type of flower.
60. Name several economically important members of the Fabaceae.
61. What is distinctive about the calyx of the Polygalaceae, and what other family and subfamily do the flowers superficially resemble?
62. What is the common name, plant sex, inflorescence type, and fruit type of the Betulaceae?
63. How does the Fagaceae differ from the Betulaceae?
64. For the Fagaceae what is distinctive about the (a) male inflorescence? (b) fruit accessory part?
65. What is the plant sex of members of the Euphorbiaceae?
66. What two groups (typically treated as subfamilies) of the Euphorbiaceae yield a latex?
67. What is the typical carpel and locule number in the Euphorbiaceae?
68. What is the inflorescence type of the Euphorbioidae?
69. Name three (scientific and common name) economically important members of the Euphorbiaceae.
70. Which Euphorbiaceae are important members of plant communities in southern Africa?
71. What is the common name of the Passifloraceae?
72. What two floral features are distinctive in the Passifloraceae?
73. What is the typical floral formula of the Violaceae?
74. Many members of the Violaceae with zygomorphic flowers have the anterior petal modified into what structure and for what function?
75. What is the anther orientation and placentation of the Violaceae?
76. What are the diagnostic features of the Oxalidaceae?
77. Name three diagnostic features of the Moraceae.
78. What are three economically important members of the Moraceae?
79. What is unusual about the roots in some members of the family Rhamnaceae?
80. What is the significance of *Ziziphus spina-christi*?
81. What is the characteristic perianth/androecial position and stamen position of the Rhamnaceae?
82. Name the traditional subfamilies of the Rosaceae and note how they differ with respect to gynoecial fusion, ovary position, and fruit type.
83. Name several economically important members (scientific and common names) of the Rosaceae.

EUROSIDS II: BRASSICALES, MALVALES, AND SAPINDALES
84. What is an apomorphy for most members of the Brassicales?
85. What is the alternate, traditional/classical name for the Brassicaceae family? the common name?
86. What is the corolla type for the Brassicaceae?
87. What is the stamen arrangement of the Brassicaceae?
88. How do the Brassicaceae differ from the Capparaceae and Cleomaceae with respect to placentation and fruit morphology?
89. Name several economically important members of the Brassicaceae.
90. Name four putative apomorphies for the Malvaceae, s.l.
91. What former three families are now included as part of the family Malvaceae?
92. For the Malvoideae and Bombacoideae together, name the (a) stamen fusion; (b) anther type.
93. What is the name of the specialized bracts that subtend the calyx in many Malvaceae?
94. What are the common names of *Gossypium* spp., *Theobroma cacao*, and *Cola nitida*?
95. Name the common name of and several economically important members of the family Anacardiaceae.
96. How is the Anacardiaceae distinctive with regard to (a) nectaries; (b) anatomy?
97. Name several economically important members of the family Rutaceae.
98. How is the Rutaceae distinctive with regard to (a) nectaries; (b) glandular secretions?
99. How are many Sapindaceae distinctive with regard to (a) leaf morphology; (b) nectaries; (c) chemistry?
100. What former family is now included within the Sapindaceae?
CHAPTER 8 DIVERSITY AND CLASSIFICATION OF FLOWERING PLANTS: EUDICOTS

ASTERIDS: CORNALES AND ERICALES

100. Name three potential apomorphies for the Asterids.

101. What is the common name of the Cornaceae, and how is the family distinctive with regard to (a) leaf arrangement; (b) inflorescence types; (c) ovary position; and (d) fruit type?

102. What is the common name of the Ericaceae, and how is the family distinctive with regard to (a) associated soil chemistry; (b) leaf morphology; and (c) leaf duration?

103. What is the anther dehiscence of many Ericaceae and how do these anthers develop?

104. Name some economically important members of the Ericaceae.

105. What is the common name of the Fouquieriaceae, and what is the (a) perianth cycle; (b) corolla fusion; (c) carpel number?

106. Describe in detail the shoot and leaf morphology of the Fouquieriaceae. How are these adaptive?

107. What is the common name and floral formula of the Polemoniaceae?

EUASTERIDS I: BORAGINACEAE, HYDROPHYLLACEAE, GENTIANALES, LAMIALES, AND SOLANALES

108. For the Boraginaceae, s.s., what is the inflorescence unit, corolla fusion, and corolla symmetry?

109. Describe the gynoecial morphology (including carpel, locule, and ovule number), style position, and fruit type for the Boraginaceae, s.s.

110. How does the Hydrophyllaceae resemble the Boraginaceae in corolla symmetry, stamen merosity, ovary position, and carpel number?

111. How is the Hydrophyllaceae different from the Boraginaceae in ovary shape, style position, and fruit type?

112. What class of chemical compounds are found in the tissues of the Apocynaceae?

113. What is unusual about the gynoecial fusion in many members of the Apocynaceae?

114. Describe the distinctive androecium and pollen fusion type found in the Asclepiadoids (milkweeds).

115. Name two medicinally important members of the Apocynaceae, including the compounds used and diseases these are used to treat.

116. Review the diagnostic features of the gentian family (Gentianaceae), noting the floral nectaries and glands.

117. Describe the leaf arrangement, stipular morphology, and ovary position of the Rubiaceae.

118. Name economically important members of the Rubiaceae with respect to uses as a medicine, beverage, and sexual stimulant.

119. For the Acanthaceae, describe the leaf arrangement, flower symmetry, and modified funiculus.

120. For the Bignoniaceae, describe the plant habit, leaf arrangement, flower symmetry, and seed morphology and nutrition.

121. How can the Lamiaceae be recognized with respect to (a) plant chemistry; (b) stem shape; (c) leaf type and arrangement; (d) corolla type; (e) style position (in most); and (f) fruit type (in most)?

122. What are the general characteristics of the traditionally defined Scrophulariaceae s.l.?

123. Name at least four families that the traditionally defined Scrophulariaceae s.l. has been subdivided into.

124. What is distinctive about the Orobanchaceae, as defined here? the Orobanchoids within that family?

125. What traditionally defined families are now included within the (expanded) Plantaginaceae?

126. What relatively large, mostly western North American genus is now classified in the Phrymaceae s.l.?

127. How are the Convolvulaceae and Solanaceae similar and how different?

128. Name an important agricultural species in the Convolvulaceae.

129. For the Solanaceae, what is the (a) flower symmetry; (b) corolla aestivation (in bud); (c) stamen number; (d) ovary position; (e) carpel number; and (f) ovule number (per carpel)?

130. Name three members of the Solanaceae of great economic importance.

EUASTERIDS II: APIALES, ASTERALES, AND DIPSACALES

131. Give the common name and list three economically important members of the family Apiaceae.

132. For the Apiaceae, what is the (a) leaf base; (b) inflorescence type; (c) ovary position; (d) fruit type?

133. How does the Araliaceae resemble the Apiaceae? How does it differ?

134. What is the alternate traditional/classical name for the Asteraceae?

135. What is the inflorescence type of the Asteraceae? On what criteria can these be subdivided?
136. Define (a) involucre; (b) phyllary; (c) chaff; (d) pappus.
137. Name and describe the three corolla types of the Asteraceae.
138. For the Asteraceae, what is the (a) stamen fusion; (b) ovary position; (c) fruit type?
139. Name two economically important members of the Asteraceae (used for food).
140. Name the diagnostic features of the Goodeniaceae.
141. Name two alternative ways to classify the Dipsacales.
142. What is the common name of the Caprifoliaceae?
143. For the Caprifoliaceae, name the leaf arrangement, inflorescence type, and ovary position.
144. What is distinctive about the carpel number, locule number, and fruit type in the Dipsacaceae?
145. What is distinctive about the carpel number, locule number, and corolla type in the Valerianaceae?

EXERCISES

1. Select a family of eudicots and learn everything you can about it. Perform a literature search (e.g., family name + systematics) on journal articles published in the last five years. Consult family descriptions, recent data on phylogenetic relationships, and information on intrafamilial groupings.
2. From this same family, collect living material of an exemplar. Describe this species in detail, using the character list of Appendix 1 as a guide (see Chapter 9). Illustrate the vegetative and reproductive parts (see Appendix 2).
3. Assimilate all of your information in a written report and computerized slide show and present it.

REFERENCES FOR FURTHER STUDY

GENERAL REFERENCES ON ANGIOSPERM RELATIONSHIPS AND EVOLUTION

REFERENCES ON SPECIFIC EUDICOT GROUPS

III
SYSTEMATIC EVIDENCE AND DESCRIPTIVE TERMINOLOGY
PLANT STRUCTURE .. 348
 Plant Organs ... 348
 Plant Habit .. 350
 Plant Habitat ... 350
 Roots .. 350
 Root Types .. 350
 Stems and Shoots 351
 Stem Types .. 352
 Stem Habit .. 354
 Stem Branching Pattern 354
 Twigs, Trunks, and Buds 355
 Leaves .. 356
 Leaf Parts ... 356
 Leaf Structural Types 357
 Leaf Type ... 359
 Leaf Attachment 361
 Leaf Venation 361
 Flowers .. 364
 Flower Parts .. 364
 Flower Sex and Plant Sex 365
 Flower Attachment 365
 Flower Cycls ... 366
 Flower Symmetry 366
 Flower Maturation 366
 Perianth .. 366
 Perianth Parts 366
 Perianth Arrangement/Cycls/Merosity 367
 Perianth Fusion 369
 Perianth Type 369
 Perianth Aestivation 370
 Androecium .. 371
 Stamen Type .. 371
 Stamen Arrangement, Cycls, Position 371
 Stamen Attachment and Insertion 372
 Stamen Fusion 373
 Anther Parts, Type, and Attachment 373
 Anther Dehiscence 373
 Nectaries .. 374
 Gynoecium, Carpels, and Pistil 374
 Gynoecial Fusion 376
 Carpel/Locule Number 376
 Ovary Attachment and Position 377
 Perianth/Androecial Position 377
 Placentation .. 377
 Style Position/Structural Type 378
 Stigma/Stigmatic Region Types 379
 In orescences ... 379
 In orence Parts 379
 In orence Position 379
 In orence Development 379
 In orence Type 380
 Secondary In orescences 382
 Specialized In orescences 382
 Fruits ... 382
 Simple Fruit Types 384
 Aggregate Fruit Types 386
 Multiple Fruit Types 386
 Seeds ... 387
 Seed Endosperm Type 388
 Seed Germination Type 389

GENERAL TERMINOLOGY 389
 Color .. 389
 Size .. 389
 Number ... 389
 Texture .. 389
 Fusion ... 389
 Shape .. 390
 Shape: Solid (Three-Dimensional) 390
 Shape: Plane (Two-Dimensional) 390
 Base ... 392
 Apex .. 392
 Shape Combinations 393
 Margin ... 393
 Division .. 394
 Disposition .. 396
 Position ... 396
 Arrangement ... 396
 Orientation ... 397
 Posture ... 398
 Surface ... 399
 Con guration 399
 Epidermal Exrescence 399
 Vestiture .. 400
 Trichome and Bristle Type 401
 Symmetry .. 402
 Temporal Phenomena 402

EXERCISES ... 403
REFERENCES FOR FURTHER STUDY 406
PLANT MORPHOLOGY

Plant morphology is a field of study dealing with the external and gross internal structure of plant organs. Morphology intergrades somewhat with plant anatomy, which is the study of tissue and cell structure of plant organs (see Chapter 10). Morphology forms the basis of taxonomic descriptions and generally constitutes the most important data in delimiting and circumscribing taxa.

The terms cited here are largely descended from those used by herbalists and botanists of the past, beginning perhaps with Theophrastus (370 – ca. 285 bc), one of the first to write detailed plant descriptions using technical terminology (as in Historia Plantarum). The terms have evolved tremendously over the years, especially since the invention of microscopes, having become more detailed and specific. Many of these terms were borrowed from classical Latin (or Greek converted to Latin) and used in new meanings; some were modified from preexisting terms, many invented, and some discarded along the way.

As with all fields of evidence, the terms used in plant morphological descriptions may vary from one source to the next. In using a particular flora, for example, its glossary (if present) should be checked to verify usage of terms. The terms cited below are from a number of sources but are largely derived and classified, with some exceptions, from Radford et al. (1974), which is a precise and logical system of organizing morphological terms (see also Bell 1991). By this classification scheme, the section on PLANT STRUCTURE includes characters and character states for specific plant organs and parts. This is followed by a section on GENERAL TERMINOLOGY, which lists characters and states that can be used to describe a variety of plant organs.

Note that some terms may need to be explained using other terms (especially those from the general terminology section). Please refer to the Glossary if an unknown term is encountered.

PLANT STRUCTURE

PLANT ORGANS

The basic structural components, or organs, of plants are delimited by and strongly correlated with their specific functions. Among the liverworts, hornworts, and mosses (see Chapter 3), these organs are components of the haploid gametophyte. The gametophyte of these taxa contain rhizoids, which are uniseriate, filamentous chains of cells functioning in anchorage and water/mineral absorption. The basic body of the gametophyte can either be a flat mass of cells, termed a thallus (found in some liverworts and all hornworts) or a shoot, consisting of a generally cylindrical stem bearing leaves (found in some liverworts and all mosses; see Chapter 3). It should be noted that the shoot systems of liverworts and mosses are gametophytic tissue.

The major organs of vascular plants are sporophytic roots and shoots. Roots are present in almost all vascular plants and typically function in anchorage and absorption of water and minerals. Roots consist of an apical meristem that gives rise to a protective root cap, a central endodermis-bounded vascular system, absorptive epidermal root hairs, and endogenously developed lateral roots (Figure 9.1).

The sporophytic shoots of vascular plants consist of stem plus leaves (Figure 9.1). Shoots contain an apical meristem of actively dividing cells that, through continued differentiation, result in the elongation of the stem and formation of leaves and buds (see later discussion). The stem is a generally cylindrical organ that bears the photosynthetic leaves. Stems typically function in conduction of water and minerals from the roots and in support and elevation of both leaves and reproductive structures, although some stems are highly modified for other functions (see later discussion). The leaf is that organ of the shoot that is generally dorsiventrally flattened and that usually functions in photosynthesis and transpiration. Leaves are derived from leaf primordia within the shoot apex and are often variously modified. In vascular plants, leaves contain one to many vascular bundles, the veins; in some mosses, the gametophytic leaves may contain a veinlike costa, consisting of specialized (although not truly vascular) conductive tissue. Buds are immature shoot systems, typically located in the axes of leaves. Buds may grow to form lateral vegetative branches or reproductive structures (see later discussion).

Among reproductive plant organs, the sporangium is the basic spore-producing part of all land plants. In heterosporous plants (including all of the seed plants) sporangia are of two types: male (microsporangium) or female (megasporangium). The sporangium of liverworts, hornworts, and mosses is known as a capsule and typically makes up most of the sporophyte. A cone, also called a strobilus, is a modified, determinate, reproductive shoot system of many nonflowering vascular plants, consisting of a stem axis bearing either sporophylls (in simple cones) or modified shoot systems (in compound cones). An ovule is a megasporangium enveloped by one or more protective integuments. A seed is the mature ovule of the seed plants, consisting of an internal embryo surrounded by nutritive tissue (comprising female gametophyte or endosperm) and enveloped by a protective seed coat. The reproductive organ of angiosperms is the flower, a modified, determinate shoot bearing sporophylls called stamens and carpels, with or without outer modified leaves (the perianth). An inflorescence is an aggregate of one or more flowers, the boundaries of which generally occur with the presence of vegetative leaves. A fruit is the mature...
FIGURE 9.1 General plant structure, showing primary root and primary shoot. Note that all parts of both root and shoot are derived from cell divisions of the root or shoot apical meristem.
ovary of flowering plants, consisting of the pericarp (mature ovary wall), seeds, and (if present) accessory parts.

Plant Habitat

Plant habit refers to the general form of a plant, encompassing a variety of components such as stem duration and branching pattern, development, or texture. Most plants can be clearly designated as an herb, vine, liana, shrub, or tree (with some subcategories; see later discussion); however, some species are difficult to accommodate into these categories. An herb is a plant in which any aboveground shoots, whether vegetative or reproductive, die back at the end of an annual growth season. Although the aboveground shoots are annual, the herb itself may be annual, biennial, or perennial, the last by means of long-lived underground rootstocks. Such perennial herbs, having a bulb, corm, rhizome, or tuber as the underground stem, are termed geophytes. A vine is a plant with elongate, weak stems, that are generally supported by means of scrambling, twining, tendrils, or roots; vines may be annual or perennial, herbaceous or woody. A liana (also spelled liane) is a vine that is perennial and woody; lianas are major components in the tree canopy layer of some tropical forests. A shrub is a perennial, woody plant with several main stems arising at ground level. A subshrub is a short shrub that is woody only at the base and that seasonally bears new, nonwoody, annual shoots above. Finally, a tree is defined as a generally tall, perennial, woody plant having one main stem (the trunk) arising at ground level. (Some plant ecologists will sometimes distinguish between shrubs and trees based primarily on an arbitrary height.)

Plant Habitat

Plant habitat refers to the general environment where the plant is growing. General habitat terms include whether the plant is terrestrial, growing on land; aquatic, growing in water; or epiphytic, growing on another plant. If aquatic, a plant can be emersed, occurring under water; floating, occurring at the water surface; or emergent, having roots or stems anchored to the substrate under water and aerial shoots growing above water. Other aspects of the habitat include the type of substrate that the plant is growing in (e.g., whether on sandy, loam, clay, gravelly, or rocky soil or saxicolous, directly on or in the cracks of rocks or boulders), the slope, aspect, elevation, moisture regime, and surrounding vegetation, community, or ecosystem. (See Chapter 17, Plant Collecting and Documentation.)

Roots

Roots are plant organs that function in anchorage and in absorption of water and minerals. Roots are found in all of the vascular land plants except for the Psilophytes *Psilotum* and relatives. (As discussed earlier, nonvascular land plants generally have rhizoids that assume a similar function.)

Roots, like shoots, develop by the formation of new cells within the actively growing apical meristem of the root tip. The apical meristem is covered on the outside by a rootcap, functioning both to protect the root apical meristem and to provide lubrication as the root grows into the soil. The epidermal cells away from the root tip develop hairlike extensions called root hairs; these function in greatly increasing the surface area available for water and mineral absorption. Roots of many (if not most) species of plants have an interesting symbiotic interaction with a species of fungus, known as mycorrhizae. Although the exact function of mycorrhizae is often unclear, in some species at least the fungus host aids the plant both in increasing overall surface area for absorption and in increasing the efficiency of mineral uptake, particularly phosphorus. Roots have a central vascular cylinder of conductive cells, xylem and phloem. This vascular cylinder is surrounded by a special cylinder of cells known as the endodermis. Lateral roots develop by cell divisions within the pericycle, a cylindrical layer of parenchyma cells located just inside the endodermis itself. (See Chapter 10 for more details of root anatomy.)

The first root to develop in a vascular plant is the radicle of the embryo. If the radicle continues to develop after embryo growth, it is known as the primary root. Additional roots may arise from internal tissue of either another root, the stem/shoot (often near buds), or (rarely) a leaf. Roots that arise from other roots are called lateral roots. Roots that arise from a nonroot organ (stem or leaf) are adventitious roots.

Root Types (Figure 9.2)

Various modifications of roots have evolved. If the primary root becomes dominant, it is called a taproot, and the plant is described as having a taproot system. If the primary root soon withers and subsequent roots are adventitious, the plant has a fibrous root system. Several plant species, particularly those that are biennials, have storage roots in which the tap-root has become greatly thickened, accumulating reservoirs of high-energy storage compounds (usually starch). Many plants that are epiphytic (grow on another plant), particularly tropical members of the monocot families Araceae and Orchidaceae, have aerial roots. These are adventitious roots that generally do not enter the soil and may absorb water and minerals from the air or from runoff from plants. Many plant species with bulbs or corms have contractile roots, roots that actually contract vertically, functioning to pull the rootstock further into the soil. Parasitic plants have specialized roots called haustoria that penetrate the tissues of a host plant.
Some adventitious roots called **prop roots** grow from the base of the stem and function to further support the plant. Some plant species that grow in swamps or marshes have **pneumatophores**, roots that grow upwardly from soil to air that function to obtain additional oxygen. **Buttress roots** are enlarged, horizontally spreading and often vertically thickened roots at the base of trees that aid in mechanical support; they are found in certain tropical or marsh/swamp tree species.

STEMS AND SHOOTS

Stems function both as supportive organs (supporting and usually elevating leaves and reproductive organs) and as conductive organs (conducting both water/minerals and sugars through the vascular tissue between leaves, roots, and reproductive organs). Structurally, stems can be distinguished from roots based on several anatomical features (see Chapter 10). As mentioned earlier, a **shoot** is a stem plus its associated leaves. Sporophytic shoots that are branched and bear leaves are an apomorphy for all extant vascular plants; the leafy shootlike structures of mosses and some liverworts are gametophytic and not directly homologous with shoots of vascular plants.

The first shoot of a seed plant develops from the **epicotyl** of the embryo (see Seeds). The epicotyl elongates after embryo growth into an axis (the stem) that bears leaves from its tip, which contains the actively dividing cells of the shoot **apical meristem**. Further cell divisions and growth results in the formation of a mass of tissue that develops into the immature leaf, called a **leaf primordium** (Figure 9.1). The point of attachment of a leaf to a stem is called the **node**. The region between two adjacent nodes is the **internode** (Figure 9.1). A bit later in development, the tissue at the upper (adaxial) junction of leaf and stem (called the **axil**) begins to divide and differentiate into a **bud primordium**. As the shoot matures, the leaves fully differentiate into an amazing variety of forms. The bud primordium matures into a **bud**, defined as an immature shoot system, often surrounded by protective scale leaves (see Buds). Buds have an architecture identical to the original shoot. They may develop into a lateral branch or may terminate by developing into a flower or inflorescence. **Vascular strands** run between stem and leaf, providing a vascular connection, composed of xylem and phloem, for water, mineral, and sugar transport. The vascular strands of leaves are termed **veins**.

The mostly parenchymatous tissue external to the vascular (conductive) tissue of a stem is termed the **cortex**. The **pith** is the central, mostly parenchymatous tissue, internal to the stem vasculature (e.g., in siphonosteles and eusteles). In monocots, in which there are numerous, scattered vascular...
bundles (an atactostele), the intervening parenchymatous tissue is termed ground meristem (see Chapter 10).

The stems of some vascular plants, notably the conifers and nonmonocot flowering plants, contain wood, which technically is secondary xylem tissue, derived from a vascular cambium (see Chapter 10). In these woody plants bark refers to all the tissues external to the vascular cambium, consisting of secondary phloem (inner bark), leftover cortex, and derivatives of the cork cambium (the last comprising the outer bark, or periderm; see Chapter 10).

STEM TYPES (Figure 9.3)
Various modifications of stems and shoots have evolved, many representing specific adaptations. For example, perennial and some biennial herbs have underground stems, which are generally known as rootstocks. Rootstocks function as storage and protective organs, remaining alive underground during harsh conditions of cold or drought. When environmental conditions improve, rootstocks serve as the site of new aerial shoots from the apical meristem or from previously dormant buds. Different types of rootstocks have evolved in various taxonomic groups. These include the following:

1. **Bulb**, in which the shoot consists of a small amount of vertical stem tissue (bearing roots below) and a massive quantity of thick, fleshy storage leaves (e.g., *Allium* spp., onions)
2. **Corm**, in which the shoot consists mostly of generally globose stem tissue surrounded by scanty, scale-like leaves (e.g., some *Iris* spp., irises)
3. **Caudex**, in which the rootstock consists of a relatively undifferentiated but vertically oriented stem
4. **Rhizome**, in which the stem is horizontal and underground, typically with short internodes (compare stolon, below) and bearing scalelike leaves (e.g., *Zingiber officinale*, ginger)
5. **Tuber**, which consists of a thick, underground storage stem, usually not upright, typically bearing outer buds and lacking surrounding storage leaves or protective scales (e.g., *Solanum tuberosum*, potato)

Rootstocks may function as reproductive structures in vegetative (clonal) propagation, either by splitting apart into separate plants or by forming proliferative structures that subsequently separate (and may even be dispersed by animals). For example, buds in the axils of the leaves of bulbs can develop into proliferative bulbels (e.g., garlic); some taxa (e.g., certain onions) can even form tiny, propagative bulbs within the aerial shoots or inflorescence of the plant, these termed bulbils. Cormose plants can, similarly from axillary buds, form proliferative corms, termed cormels. Tuberosous plants typically form numerous tubers at the tips of elongate stems; these tubers can become easily separated, growing into an individual plant. Tubers can even form on aerial shoots (e.g., *Dioscorea*, true yams), ultimately falling off and growing into a new individual. Rhizomes frequently become highly branched; when older parts die or become broken, the separated rhizomes function as separate individuals.

A stolon or runner is a stem with long internodes that runs on or just below the surface of the ground, typically terminating in a new plantlet, as in *Fragaria* (strawberry). Because stolons can be underground, they are sometimes termed rootstocks and resemble narrow, elongate rhizomes. Stolons function specifically as vegetative propagative structures, however, as the terminal plantlet often becomes separated from the parent plant.

Many modified types of stems that are aerial (above-ground) also have specific functions. For example, a cladode is a flattened, photosynthetic stem that may resemble and function as a leaf, found, e.g., in prickly-pear cacti, *Asparagus*, and *Ruscus*. Cladodes take over the primary photosynthetic function of leaves and may function to reduce water loss.

Some aerial stems may function for storage of food reserves or water. So-called succulent stems (the plants often referred to as stem succulents) contain a high percentage of parenchyma tissue that may store great quantities of water, allowing the plant to survive subsequent drought periods. The cacti of the New World and the stem succulent euphorbs of South Africa are classic examples of plants with succulent stems. Some of these, most notably the barrel cacti and the large columnar cacti such as saguaro’s or cardon’s, have fluted trunks that can expand rapidly following a rain, enabling the plant to store more water. Other aerial, storage stems include:

1. A caudiciform stem, which is a low, swollen, perennial storage stem (at or above-ground level), from which arise annual or nonpersistent photosynthetic shoots (e.g., *Calibanus*, some *Dioscorea* spp.)
2. A pachycaul, which is a woody, trunklike stem that is swollen basally, the swollen region functioning in storage (e.g., bottle trees, *Brachychiton* spp., and the boojum tree, *Fouquieria columnaris*)

Some stems or shoot types function as protective devices by deterring an herbivore from taking a bite of the plant. A thorn is a sharp-pointed stem or shoot. (A thorn is not to be confused with a spine, which is a sharp-pointed leaf or leaf part, or a prickle, which is a sharp-pointed epidermal structure found anywhere on the plant; see later discussion).
A very specialized type of shoot is the **areole**, a modified, reduced, nonelongating shoot apical meristem bearing leaf spines. Areoles are characteristic of the cactus family, Cactaceae.

Some stems are specialized for reproduction. For example, a **scape** is a naked (lacking vegetative leaves) peduncle (inflorescence axis), generally arising from a basal rosette of vegetative leaves and functioning to elevate flowers well above the ground. A **culm** refers to the flowering and fruiting stem(s) of grasses and sedges. A **tiller** is the general term for a proliferative grass shoot, typically growing in masses from axillary buds at the base of the stem.

Stems may have multiple or varied functions. A **lignotuber** or **burl** is largely a protective and regenerative stem following fires. Lignotubers or burls are typically swollen, woody stems, at or slightly below ground level, from which arise persistent, woody, aerial branches (e.g., some Manzanita spp.). A **pseudobulb** is a short, erect, aerial storage or propagative stem of certain epiphytic orchids. A **short shoot** or **fascicle** (also called a spur shoot or dwarf shoot) is a modified shoot with very short internodes from which flowers or leaves are borne. Short shoots enable the production of leaves or reproductive organs relatively quickly, with minimal stem (branch) tissue being formed. Short shoots may be found on...
so-called drought deciduous plants, which produce a quick flush of leaves from short shoots following a rain. Short shoots arise from the buds of more typical shoots (branches) with longer internodes, the latter termed, in contrast, long shoots. Finally, a **tendril** is a long, slender, coiling branch, adapted for climbing. Tendrils are typically found on weak-stemmed vines and function in support. (Note that most tendrils are leaves or leaf parts; see Leaf Structural Type.)

Stem Habit (Figure 9.4)

Stem habit is a character describing the relative position of the stem or shoot, but may also be based on stem structure, growth, and orientation. Stem habit features, like stem types, represent adaptations that enhance survival and reproduction. For example, a plant with an above-ground stem is **caulescent**; one that lacks an above-ground stem, other than the inflorescence axis, is termed **acaulescent**. Acaulescent plants bear major photosynthetic leaves only at ground level, often in a basal rosette, with the only shoot becoming aerial, being an inflorescence that eventually dies off. Acaulescent plants are often biennial herbs, in which a storage root develops in the first year and flowering (bolting) occurs in the second, or perennial herbs, in which the persistent stem remains underground and protected during extreme environmental conditions. Plants with caulescent stem habits include shrubs, trees, and herbs with aerial vegetative shoots and leaves. Some corresponding stem habit terms are **arborecent**, treelike in appearance and size; **frutescent**, having the habit of a shrub, with numerous, woody, aerial trunks; and **suffrutescent**, being basally woody and herbaceous apically, the habit of a subshrub. Vines are also types of caulescent plants. The stem habit of vines can be either **clambering** (also called **scandent**), sprawling across objects without specialized climbing structures, or **climbing**, growing upward by means of tendrils, petioles, or adventitious roots. Some plants are adapted to lying on the ground, at least in part. These include those that are **prostrate**, trailing or lying flat, not rooting at the nodes; **repent**, creeping or lying flat but rooting at the nodes; or **decumbent**, being basally prostrate but apically ascending. Finally, some plants have a **cespitose** stem habit, in which multiple aerial but short-stemmed shoots arise from the base, forming a much-branched cushion. Many grasses are cespitose, these being the so-called bunch grasses.

Stem Branching Pattern (Figure 9.5)

The below- or above-ground stems or shoots of a plant often exhibit characteristic branching patterns. Branching pattern is determined by the relative activity of apical meristems, both the original shoot apical meristem derived from the seedling epicotyl and apical meristems subsequently derived from lateral buds. One major feature of branching pattern has to do with the duration of apical meristematic growth of a
shoot. If a given shoot has the potential for unlimited growth, such that the apical meristem is continuously active, the growth is termed indeterminate. If instead a shoot terminates growth after a period of time, with either the abortion of the apical meristem or its conversion into a flower, inflorescence or specialized structure (such as a thorn or tendril), the growth is termed determinate. (Note that these same terms are used for inflorescence development; see later discussion.) Two other, related terms have to do with flowering. A determinate shoot that completely transforms into a flower or inflorescence is called hapaxanthic. An indeterminate shoot that bears lateral flowers but that continues vegetative growth is termed pleonanthic.

Many different models of stem branching pattern have been described (e.g., see HallØ et al. 1978). These models may be of taxonomic value and are interesting from a biomechanical perspective, as they may represent evolutionary adaptations to a given environment or life strategy. Three general terms focus on the developmental origin of a given branch or axis. If a given stem axis is derived from growth of a single apical meristem, the pattern is termed monopodial. The monopodial axis may grow indefinitely and thus be indeterminate. In contrast, if a given axis (which may appear to be a single, continuous structure) is made up of numerous units that are derived from separate apical meristems, the branching pattern is sympodial. These sympodial units arise from lateral buds that are proximal to the apical meristem of the original shoot. Many rhizomes have sympodial growth. Finally, a rare type of branching is dichotomous, in which a single apical meristem divides equally into branches, e.g., Psilotum.

TWIGS, TRUNKS, AND BUDS (Figure 9.6)

Twigs are the woody, recent-growth branches of trees or shrubs. Buds are immature shoot systems that develop from meristematic regions. In deciduous woody plants the leaves fall off at the end of the growing season and the outermost leaves of the buds may develop into protective bracts (modified leaves) known as bud scales. The bud of a twig that contains the original apical meristem of the shoot (which by later growth may result in further extension of the shoot) is called the terminal or apical bud. Buds formed in the axils of leaves are called axillary or lateral buds.

A given bud may be vegetative, if it develops into a vegetative shoot bearing leaves; floral or inflorescence, if it develops into a flower or inflorescence; or mixed, if it develops into both flower(s) and leaves. In some species more than one axillary bud forms per node. Two or more axillary buds that are oriented sideways are called collateral buds; two or more axillary buds oriented vertically are called superposed buds. If the original terminal apical meristem of a shoot aborts (e.g., by ceasing growth or maturing into a flower), then an axillary bud near the shoot apex may continue extension growth; because this axillary bud assumes the function of a terminal bud, it is called a pseudoterminal bud.

Several scars may be identified on a woody, deciduous twig. These include the leaf scar, leaf vascular bundle scars, stipule scars (if present), and bud scale scars. Bud scale
scars represent the point of attachment of the bud scales of the original terminal bud after resumption of growth during the new season. Thus, bud scale scars represent the point where the branch ceased elongation the previous growing season; the region between adjacent bud scale scars represents a single year’s growth.

Bark technically comprises all the tissue outside the vascular cambium of a plant with true wood (see Chapter 10). The outer bark, or periderm, are the tissues derived from the cork cambium itself. Morphologically, bark may refer to the outermost protective tissues of the stems or roots of a plant with some sort of secondary growth, whether derived from a true cork cambium or not. Bark types are often good identifying characteristics of plant taxa, particularly of deciduous trees during the time that the leaves have fallen. Various bark types include:

1. **Exfoliating**, a bark that cracks or splits into large sheets
2. **Fissured**, a bark split or cracked into vertical or horizontal grooves
3. **Plated**, a bark split or cracked, with flat plates between the fissures
4. **Shreddy**, bark coarsely fibrous
5. **Smooth**, a non-fibrous bark without fissures, fibers, plates, or exfoliating sheets

LEAVES

Leaves are the primary photosynthetic organs of plants, functioning also as the main site of transpiration. Leaves are derived from leaf primordia of the shoot apex and are, at least early in development, generally dorsiventrally flattened (i.e., with dorsal and ventral sides; see Position). A leaf can be gametophytic, in the leafy liverworts and mosses, or sporophytic, in the vascular plants. As mentioned earlier, sporophytic leaves characteristic ly are associated with buds, immature shoot systems, typically located in the axils of leaves. Buds may grow to form lateral vegetative branches or reproductive structures (see later discussion).

Leaf Parts (Figures 9.7, 9.8, 9.9)

The expanded, flat portion of the leaf, which contains the bulk of the chloroplasts, is termed the **blade** or **lamina**. Many leaves also have a proximal stalk, the **petiole** or (e.g., in ferns) the **stipe**. A leaf or leaf part (typically at the base) that partially or fully clasps the stem above the node is a leaf **sheath**, such as in the Poaceae (grasses) and many Apiaceae.
A pseudopetiole is a petiole-like structure arising between a leaf sheath and blade, found in several monocots, such as bananas and bamboos. As mentioned earlier, leaves contain one to many vascular bundles, the veins (also sometimes called nerves); similar specialized (although not truly vascular) conductive tissue is present in mosses.

Many leaves have stipules, a pair of leaflike appendages, which may be modified as spines or glands, at either side of the base of a leaf. If stipules are present, the leaves are stipulate; if absent, they are extipulate. A specialized, scarious, sheathlike structure arising above the node in some members of the family Polygonaceae, interpreted as modified stipules, is termed an ocrea (see Polygonaceae treatment in Chapter 8). Stipels are paired leaflike structures, which may also be modified as spines or glands, at either side of the base of the leaflet of a compound leaf, as in some Fabaceae. If stipels are present, the leaves are stipellate; if absent, they are exstipellate. Stipules and stipels may, in some cases, function to protect the young, developing leaf primordia. They often are small and fall off (are caducous) soon after leaf maturation. In some taxa, stipules or stipels may be highly modified into spines or glands. Extreme examples are some African acacias, in which the swollen stipular spines function as a home for protective populations of ants. In the Rubiaceae the inner surface of the connate stipules (from opposite leaves) bear colleters, structures that secrete mucilage (aiding to protect young, developing shoots).

Some leaves are compound (as discussed later), i.e., divided into discrete components called leaflets. The stalk of a leaflet is termed the petiolule. Some other specialized leaf parts, restricted to certain taxa, are:

1. Hastula, an appendage or projection at the junction of petiole and blade, as in some palms
2. Ligule, an outgrowth or projection from the inner, top of the sheath, at its junction with the blade, as in the Poaceae
3. Pulvinus, the swollen base of a petiole or petiolule, as in some Fabaceae

The pulvinus may, in some taxa, e.g., some Fabaceae (legumes), function in seismonasty, which is movement (closing) of the leaflets of a compound leaf as a response to touch or heat (e.g., as in Mimosa pudica, sensitive plant); a similar physiological response due to photoperiodism (darkness) is termed nyctinasty. These physiological responses may protect the leaf from mechanical damage or help to inhibit water loss through transpiration.

Leaf Structural Types (Figures 9.7, 9.8)

Leaf structural type (in contrast to leaf type, discussed later) deals with specialized modifications of leaves. One basic leaf structural type in vascular plants is whether the leaves are lycophyllous or euphyllous. Lycophylls are small, simple leaves with intercalary growth and a single, central vein that joins to the stem without a leaf gap (below). Lycophylls are found only in lycophytes and are similar to the type of leaf found in the earliest ancestors of vascular plants. Euphylls are larger, simple or compound leaves with marginal or apical growth, a leaf gap (region of parenchymatous tissue above the junction of the leaf and stem vasculature), and generally multiple veins. Euphylls are found in ferns (in the broad sense), gymnosperms, and angiosperms (see Chapter 4).

A leaf that is modified in shape and usually smaller than the major photosynthetic leaves is called a bract. In angiosperms bracts are typically associated with flowers (flower bracts) or the axes of inflorescences (inflorescence bracts).
A **bractlet** or **bracteole** (also called a **prophyll** or **prophyllum**), is a smaller or secondary bract often borne on the side of a pedicel in flowering plants. The term **bract** is also used for the largely nonphotosynthetic leaves that subtend the ovuliferous scales in conifer cones or that subtend the fascicles or short shoots of members of the pine family (Pinaceae). The term **scale** is used for a small, non-green leaf, either of a bud (bud scales), functioning to protect the delicate apical meristem and leaf primordia, or of an underground rootstock, e.g., along the internodes of a rhizome. Scales can also refer to the reduced bracts of sedge spikelets (Cyperaceae). A rudimentary scale leaf found in usually hypogeous (cryptocotylar) seedlings is termed a cataphyll.

Some bractlike leaves are found in specific taxonomic groups and are given specialized names. A group of bracts resembling sepals immediately below the true calyx is termed an **epicalyx**, found, e.g., in many members of the Malvaceae. Bracts subtending individual flowers of composites (Asteraceae) are collectively termed **chaff** or **palea** (singular, **palea**), e.g., as found in the tribe Heliantheae of that family. The specialized bracts of the grass (Poaceae) spikelet are given different terms: **glumes**, the two bracts occurring at the base of a grass spikelet; **lemma**, the outer and lower bract at the base of the grass floret; and **palea**, the inner and upper bract at the base of the grass floret (See Inflorescence Type, later, and treatment of Poaceae in Chapter 7.)

A **phyllary** is one of the involucral bracts subtending a head (see later discussion), as in the Asteraceae. A **spathe** is an enlarged, sometimes colored bract subtending and usually enclosing an inflorescence, e.g., that subtending the spadix of the Araceae. **Phyllodes** are leaves that consist of a flattened, bladelike petiole. Phyllodes are found in a group of mostly Australian Acacia species (the phyllodinous Acacias) and are derived from ancestrally compound leaves by loss of the rachis and leaflets. A **tendril** is a coiled and twining leaf or leaf part, usually a modified rachis or leaflet. (Tendril can also refer to a modified, coiling stem; see Stem Type).

A **spine** is a sharp-pointed leaf or leaf part. The typical spines of cacti (Cactaceae) are **leaf spines**, as they develop from the entire leaf primordia. A very small, deciduous leaf spine with numerous, retrorse barbs along its length is a **glochidium** (plural, **glochidia** or **glochids**), as found in the areoles of opuntioid cacti. Some taxa have spines that develop from a petiole, midrib, or secondary vein of a leaf, e.g., the **petiolar spines** of *Foquertia* spp. In some palms, e.g., *Phoenix*, the leaflets may be modified into sharp-pointed **leaflet spines**. Many plants, such as the stem-succulent *Euphorbias*, have **stipular spines**; these are typically paired, at the base of a leaf.

A **unifacial leaf** is **isobilateral**, i.e., flattened side-to-side and having a left and right side, except at the base, where they are often sheathing. Some monocots belonging to several different families have unifacial leaves, notably members of the Iridaceae, the Iris family. A **centric leaf** is one that is cylindrical in shape, e.g., *Fenestralia* of the Aizoaceae. Centric leaves are sometimes a subcategory of unifacial leaves.

Three types of leaves are very specialized adaptations of carnivorous plants. **Pitcher leaves** are those that are shaped like a container, which bears an internal fluid and functions in the capture and digestion of small animals. Several taxa have pitcher leaves, including *Darlingtonia*, *Nepenthes*, and *Sarracenia*, the pitcher plants. **Tentacular leaves** are those bearing numerous, sticky, glandular hairs or bristles that function in capturing and digesting small animals; these are characteristic of *Drosera* spp., the sundews. **Trap leaves** are those that mechanically move after being triggered, in the process capturing and digesting small animals; trap leaves are found in *Dionaea muscipula*, the Venus fly trap.

Leaf Type (Figure 9.9)

The pattern of division of a leaf into discrete components or segments is termed **leaf type**. A **simple leaf** is one bearing a single, continuous blade. A **compound leaf** is one divided into two or more, discrete **leaflets**. Leaf type should not be confused with leaf division; a simple leaf may be highly divided, but as long as the divisions are not discrete leaflets, it is still technically a simple leaf; see General Terminology. For either compound or divided leaves of ferns, the first (largest) division of a leaf is termed a **pinna**; the ultimate divisions are termed **pinnules**. If the leaves are compound or divided into more than two orders, the terms primary pinna, secondary pinna, etc. can be used, with the ultimate divisions or leaflets always being pinnules.

Simple leaves were the ancestral condition in the vascular plants, as in the lycophylls of the lycopsids. Simple leaves are also the norm among the psilophytes, equisetophytes, *Ginkgo*, and conifers (including the Gnetales). Compound leaves are characteristic of many ferns, and all of the cycads. Angiosperms have the greatest diversity of leaves, ranging from simple to highly compound.

Various types of compound leaves have evolved, perhaps as a means of increasing total blade area without sacrificing structural integrity. For example, the blade tissue of a compound leaf generally may have better structural support (e.g., under windy conditions) than that of a comparably sized simple leaf. Compound leaves tend to be more common in mesic to wet environments and simple leaves in dry environments, but there are many exceptions to this and no clear trends.
Compound leaves are defined based on the number and arrangement of leaflets. A **pinnately compound** or **pinnate** leaf is one with leaflets arranged (either oppositely or alternately) along a central axis, the **rachis**. If a pinnate leaf has a terminal leaflet (and typically an odd number of leaflets), it is **imparipinnate**; if it lacks a terminal leaflet (and has an even number of leaflets), it is **paripinnate**. A **bipinnately compound** or **bipinnate** leaf is with two orders of axes, each of which is pinnate (equivalent to a compound leaf of compound leaves). The central axis of a bipinnate leaf is still termed the **rachis**; the lateral axes that bear leaflets are termed **rachillae** (singular **rachilla**). Similarly, a compound leaf with three orders of axes, each pinnate, is termed **tripinnately compound** or **tripinnate**; etc.

A compound leaf in which four or more leaflets arise from a common point, typically at the end of the petiole, is termed **midvein**.

FIGURE 9.9 Leaf types/parts.
palmately compound or palmate. A costapalmate leaf type is one that is essentially palmately compound to divided, but has an elongate, rachis-like extension of the petiole (termed the costa), as occurs in some palms.

A compound leaf with only three leaflets is termed trifoliolate or ternately compound. (A leaf with two orders of axes, each ternately compound, is termed biternately compound. Further orders, e.g., triternately compound, can also occur.) Most ternately compound leaves are palmate-ternate, in which the three leaflets join at a common point (whether petiolate or sessile). Rarely, ternately compound leaves can be pinnate-ternate, in which the terminal leaflet arises from the tip of a rachis. Pinnate-ternate leaves are actually derived (by reduction) from an ancestral pinnately compound leaf; they are found, e.g., in some members of the Fabaceae.

Decompound is a general term for a leaf that is more than once compound, i.e., with two or more orders, being bi-, tri-, etc. pinnately, palmately, or ternately, compound. However, decompound is also used for a highly divided leaf; see Division.

A compound leaf consisting of only two leaflets is termed geminate (after Gemini, the twins, in Greek mythology). A compound leaf with two rachillae, each bearing two leaflets, is termed bigeminate. A compound leaf with two rachillae, each of these bearing a pinnate arrangement of leaflets, is termed geminate-pinnate. Finally, a very specialized type of leaf is one that appears superficially to be simple, but actually consists of a single leaftlet attached to the apex of a petiole, the junction between them clearly defined. This leaf type, known as unifoliolate, is interpreted as being derived by reduction of an ancestrally compound leaf.

In some taxa, e.g., many Araceae, the leaves exhibit heteroblasty (adjective, heteroblastic), in which the juvenile leaves are distinctly different in size or shape from the adult leaves (making species identification difficult).

Leaf Attachment
(Figure 9.10)

The nature of the joining of the leaf to the stem is termed leaf attachment (sometimes treated under Base; see General Mophology). In general, leaves may be petiolate, with a petiole, or sessile, without a petiole. Leaflets of a compound leaf are, correspondingly, either petiolulate or sessile. (The term subsessile is sometimes used for a leaf/leaflet with a small, rudimentary petiole/petiolule.) Sessile or petiolate leaves can also have a sheathing leaf attachment, in which a flattened leaf base (the sheath) partially or wholly clasps the stem, typical of the Poaceae (grasses) and many Apiaceae. If a leaf appears to extend down the stem from the point of attachment, as if fused to the stem, the leaf attachment is decurrent (e.g., as in many Cupressaceae). A decurrent leaf base is not actually caused by later fusion of the leaf to the stem, but by extension growth of actively dividing cells of the leaf primordium at the leaf stem junction. Last, specializations of sessile leaves may occur. If a leaf is sessile and clasps the stem most, but not all, of its circumference, the attachment is termed amplexicaul. If the leaf is sessile with the base of the blade completely surrounding the stem, it is termed perfoliate. A special case of the latter (involving fusion of leaves) is connate-perfoliate, whereby typically two opposite leaves fuse basally, such that the blade bases of the fusion product completely surrounds the stem.

Leaf Venation
(Figures 9.11, 9.12)

The sporophytic leaves of vascular plants contain vascular bundles, known as veins, which conduct water, minerals, and sugars between the leaf and the stem. The leaves of some vascular plants have only a single vein, but in most the veins are branched (termed ramified or anastomosing), sometimes in a very intricate pattern. Venation refers to this pattern of veins and vein branching. Although venation is usually described for vegetative leaves, it can also be assessed in other leaf homologues, such as bracts, sepals, petals, stamens, or carpels.

The major vein (or veins) of a leaf, with respect to size, is termed the primary vein. From the primary vein(s), smaller, lateral veins may branch off, these known as secondary veins; from secondary veins, even smaller tertiary veins may
arise, and so forth. [The distinctions between these vein classes can be difficult to determine in some taxa.] If a simple leaf has a single, primary vein, that vein is termed the **midrib** or **costa** (although *costa* may also be used for the nonvascularized conductive tissue found in the gametophytic leaves of mosses). The central, primary vein of the leaflet of a compound leaf is termed the **midvein**.

Venation patterns can be quite complex, and the terminology formidable (see later discussion). Four, very general venation classes are as follows (Figure 9.11):

1. **Uninervous**, in which there is a central midrib with no lateral veins, e.g., as in the lycophytes, psilophytes, and equisetophytes, as well as many conifers
2. **Dichotomous**, in which veins successively branch distally into a pair of veins of equal size and orientation, e.g., in *Ginkgo biloba*, in which there is no actual midrib
3. **Parallel**, in which the primary and secondary veins are essentially parallel to one another, the ultimate veinlets being transverse (at right angles), e.g., in most monocots
4. **Netted** or **reticulate**, in which the ultimate veinlets form an interconnecting netlike pattern, e.g., most nonmonocot flowering plants

Reticulate leaves can be **pinnately veined** (**pinnate-netted**), with secondary veins arising along length of a single primary vein (the midrib or, in a compound leaf, midvein); **palmately veined** (**palmate-netted**), with four or more primary veins arising from a common basal point; or **ternately veined** (**ternate-netted**), with three primary veins arising from a common basal point.

Similar to parallel venation in having transverse ultimate veinlets are **penni-parallel** (also called **pinnate-parallel**), with secondary veins arising from a single primary vein region, the former essentially parallel to one another (e.g., the Zingiberales); and **palmate-parallel**, with several primary veins (of leaflets or leaf lobes) arising from
one point, the adjacent secondary veins parallel to these (e.g., fan palms).

A more detailed classification system of venation (and many other leaf features) is that of Hickey (1973) and Hickey and Wolf (1975). This system is based on the pattern of primary, secondary, and tertiary venation. The following is a summary of the terms used in this system, illustrated in Figure 9.12.

Three general venation categories are used for a basically pinnate venation: craspedodromous, in which secondary veins terminate at the leaf margin; camptodromous, in which secondary veins do not terminate at the margin; and hyphodromous, with only the primary midrib vein present or evident and secondary veins either absent, very reduced, or hidden within the leaf mesophyll.

Subcategories of craspedodromous venation include simple craspedodromous, in which all secondary veins terminate at the margin; semicraspedodromous, in which the secondary veins branch near the margin, one terminating at the margin, the other looping upward to join the next secondary vein; and mixed craspedodromous (not illustrated), with some secondary veins terminating at the margin, but with many terminating away from the margin.

Subtypes of camptodromous venation include brochidodromous, in which secondary veins form prominent upward
loops near the margin, joining other, more distal, secondary veins; **eucamptodromous**, in which secondary veins curve upward near the margin but do not directly join adjacent secondaries; **cladodromous**, in which secondary veins branch toward the margin; and **reticulodromous**, in which secondary veins branch repeatedly, forming a very dense, netlike structure.

Parallelodromous venation is equivalent to parallel (defined earlier), in which two or more primary or secondary veins run parallel to one another, converging at the apex.

Venation is **actinodromous** if three or more primary veins diverge from one point (equivalent to ternate or palmate venation). **Palinactinodromous** is similar, but the primary veins have additional branching above the main point of divergence of the primaries.

For actinodromous and palinactinodromous types, the venation is **marginal** if the main, primary veins reach the blade margin, and **reticulate** (not to be confused with reticulate in the more general venation terminology) if they do not. **Flabellate** venation is that in which several equal, fine veins branch toward the apex of the leaf.

Campylodromous venation is that in which several primary veins run in prominent, recurved arches at the base, curving upward to converge at the leaf apex.

Finally, venation is **acrodromous**, if two or more primary veins (or strongly developed secondary veins) run in convergent arches toward the leaf apex (but are not recurved at the base, as in campylodromous).

For actinodromous, palinactinodromous, and acrodromous types, the venation is **basal** if the primaries are joined at the blade base, and **suprabasal** if the primaries diverge above the blade base. The venation is **perfect** if branching of the lateral primary veins and their branches cover at least two thirds of the leaf blade area (or reach at least two thirds of the distance toward the leaf apex), and **imperfect** if these veins cover less than two thirds of the leaf blade area (or reach less than two thirds of the way toward the leaf apex).

These complex venation types, along with many other details of the leaf, can be specific to certain taxonomic groups of plants. Although they are not widely used in standard morphological descriptions, their recognition can be important in identification (e.g., of many tropical and fossil plants) and classification (see Hickey and Wolf 1975).

FLOWERS
A major diagnostic feature of angiosperms is the flower. As discussed in Chapter 6, a **flower** is a modified reproductive shoot, basically a stem with an apical meristem that gives rise to leaf primordia. Unlike a typical vegetative shoot, however, the flower shoot is determinate, such that the apical meristem stops growing after the floral parts have formed. At least some of the leaf primordia of a flower are modified as reproductive sporophylls (leaves bearing sporangia). Flowers are unique, differing, e.g., from the cones of gymnosperms, in that the sporophylls develop either as stamens or carpels (see Chapter 6, and later discussion).

FLOWER PARTS (Figure 9.13)
The basic parts of a flower, from the base to the apex, are as follows. The **pedicel** is the flower stalk. (If a pedicel is absent, the flower attachment is **sessile**.) Flowers may be subtended by a **bract**, a modified, generally reduced leaf; a smaller or

![Figure 9.13 Flower parts, sex, and attachment.](image-url)
secondary bract, often borne on the side of a pedicel, is termed a bracteole or bractlet (also called a prophyll or prophyllum). Bracteoles, where present, are typically paired. In some taxa, a series of bracts, known as the epicalyx, immediately subtends the calyx (see later discussion), as in Hibiscus and other members of the Malvaceae. The receptacle is the tissue or region of a flower to which the other floral parts are attached. The receptacle is typically a small, obscure region (derived from the original apical meristem). In some taxa the receptacle can grow significantly and assume an additional function. From the receptacle arises the basic floral parts. The perianth (also termed the perigonium) is the outermost, nonreproductive group of modified leaves of a flower. If the perianth is relatively undifferentiated, or if its components intergrade in form, the individual leaflike parts are termed tepals. In most flowers the perianth is differentiated into two groups. The calyx is the outermost series or whorl of modified leaves. Individual units of the calyx are sepals, which are typically green, leaflike, and function to protect the young flower. The corolla is the innermost series or whorl of modified leaves in the perianth. Individual units of the corolla are petals, which are typically colored (nongreen) and function as an attractant for pollination. Some flowers have a hypanthium (floral tube), a cuplike or tubular structure, around or atop the ovary, bearing along its margin the sepals, petals, and stamens.

Many flowers have a nectary, a specialized structure that secretes nectar. Nectararies may develop on the perianth parts, within the receptacle, on or within the androecium or gynoecium (below), or as a separate structure altogether. Some flowers have a disk, a discoid or doughnut-shaped structure arising from the receptacle. Disks can form at the outside and surrounding the stamens (termed an extrastaminal disk), at the base of the stamens (staminal disk), or at the inside of the stamens and/or base of the ovary (intrastaminal disk). Disks may be nectar-bearing, called a nectariferous disk.

The androecium refers to all of the male organs of a flower, collectively all the stamens. A stamen is a microsporophyll, which characteristically bears two thecae (each theca comprising a pair of microsporangia; see Chapter 6). Stamens can be leaflike (laminar), but typically develop as a stalklike filament, bearing the pollen-bearing anther, the latter generally equivalent to two fused thecae.

The gynoecium refers to all of the female organs of a flower, collectively all the carpels. A carpel is the unit of the gynoecium, consisting of a modified megasporophyll that encloses one or more ovules. Carpels typically develop in a conduplicate manner. A pistil is that part of the gynoecium composed of an ovary, one or more styles (which may be absent), and one or more stigmas (see later discussion).

In some taxa, e.g. Aristolochiaceae and Orchidaceae, the androecium and gynoecium are fused into a common structure, known variously as a column, gynandrium, gynostegium, or gynostemium. A stalk that bears the androecium and gynoecium is an androgynophore, e.g., Passifloraceae.

Flower Sex and Plant Sex (Figure 9.13)

Flower sex refers to the presence or absence of male and female parts within a flower. Most flowers are perfect or bisexual, having both stamens and carpels. Bisexual flower sex is likely the ancestral condition in angiosperms. Many angiosperm taxa, however, have imperfect or unisexual flower sex. In this case, flowers are either pistillate/female, in which only carpels develop, or staminate/male, in which only stamens develop.

Plant sex refers to the presence and distribution of perfect or imperfect flowers on individuals of a species. A hermaphroditic plant is one with only bisexual flowers. A monoecious (mono, one + oikos, house) plant is one with only unisexual flowers, both staminate and pistillate on the same individual plant; e.g., Quercus spp., oaks. A dioecious (di, two + oikos, house) plant is one with unisexual flowers, but with staminate and pistillate on separate individual plants (i.e., having separate male and female individuals; e.g., Salix spp., willows). Plant sex can vary within individuals of a species, and there may also be a combination of perfect and imperfect flowers in different individuals. Polygamous is a general term for a plant with both bisexual and unisexual flowers. Andromonoecious refers to a plant with both staminate and perfect flowers on the same individual, and gynomonoecious is a plant with both pistillate and perfect flowers on the same individual. Trimonoeious refers to a plant with pistillate, staminate, and perfect flowers on the same individual. Androdioecious refers to a plant with male flowers on some individuals and perfect flowers on other individuals. Gynodioecious refers to a plant with female flowers on some individuals and perfect flowers on other individuals. Trioeiocius refers to a plant with pistillate, staminate, and perfect flowers on different individuals. All of these types of nonhermaphroditic plant sex may function as a mechanism of promoting increased outcrossing between individuals of a species. (However, many hermaphroditic plants can outcross by other means; see Chapter 13).

Flower Attachment (Figure 9.13)

Flower attachment is pedicellate, having a pedicel; sessile, lacking a pedicel; or subsessile, having a short, rudimentary pedicel. The terms bracteate, with bracts, and ebracteate, lacking bracts, may also be used with respect to flower attachment. The adaptive significance of pedicels is likely
correlated with the spatial positioning of flowers relative to pollination or eventual fruit or seed dispersal.

FLOWER CYCLE

Flower cycle refers to the number of cycles (series or whorls) or floral parts. The two basic terms used are complete, for a flower having all four major series of parts (sepals, petals, stamens, and carpels) and incomplete, for a flowering lacking one or more of the four major whorls of parts (e.g., any unisexual flower, or a bisexual flower lacking a corolla).

FLOWER SYMMETRY (Figures 9.14, 9.15)

Flower symmetry is an assessment of the presence and number of mirror-image planes of symmetry. Actinomorphic or radial symmetry (also called regular) is that in which there are three or more planes of symmetry, such that there is a repeating structural morphology when rotated less than 360° about an axis. Biradial symmetry means having two (and only two) planes of symmetry. (The difference between biradial and radial symmetry is sometimes not recognized, both being termed radial symmetry or actinomorphy; however, the distinction can be useful and is recognized here.) Zygomorphic or bilateral symmetry (also called irregular) is that in which there is only one plane of symmetry. An asymmetric flower lacks any plane of symmetry, usually the result of twisting of parts. Flower symmetry can sometimes be subtle and can even vary within a flower; if so, it should be separately described for calyx, corolla, androecium, and gynoecium to avoid confusion.

Two flower maturation terms dealing with the relative direction of development of parts can be important in describing taxonomic groups. Centrifugal refers to developing from the center toward the outside or periphery, whereas centripetal is development from the outside or periphery toward the center region. Both centrifugal and centripetal can be applied to parts of the perianth, calyx, corolla, androecium, or gynoecium; the terms are often used to describe the direction of development of stamens in a multiwhorled androecium.

PERIANTH

The perianth (or perigonium) is the outermost, nonreproductive group of modified leaves of a flower. (The term perianth has also been used for components of the reproductive structures of various Gnetales, but these are not homologous.) A perianth is absent in some flowering plants, typically those taxa that have very small, reduced flowers. The perianth, where present, functions both to protect the young flowering parts and to aid in pollination.

The units of the perianth arise like leaves as primordia from the apical meristem of the flower. Typically, they may retain leaflike characters. Sepals, in fact, are usually green with stomata and veins; even petals will have veins and may have vestigial stomata. However, the perianth can undergo significant developmental changes and be highly modified (and unleaflike) at maturity.

PERIANTH PARTS (Figure 9.19)

Various specialized terms are used for parts of the perianth. These include the following: anterior or ventral, referring to the lower, abaxial lobe(s) or side, toward a subtending bract; beard, a tuft, line, or zone of trichomes on a perianth or perianth part (see Vestiture); claw, an attenuate base of a sepal or petal; corona, a crownlike outgrowth between stamens and corolla, which may be petaline or staminal in

![Figure 9.14 Flower symmetry types.](image)
origin; **hypanthium** or **floral cup**, a generally tubular or cup-shaped structure at the top rim of which are attached the calyx, corolla, and androecium; **labellum**, a modified, typically expanded, median petal, tepal, or perianth lobe, such as in the Orchidaceae; **limb**, the expanded portion of corolla or calyx above the tube, throat, or claw; **lip**, either of two variously shaped parts into which a calyx or corolla is divided, usually into upper (posterior) and/or lower (anterior) lips, such as most Lamiaceae, Orchidaceae (Note: each lip may be composed of one or more lobes); **lobe**, a segment of a synsepalous calyx or sympetalous corolla; **petal**, a corolla member or segment; a unit of the corolla; **posterior** or **dorsal**, referring to the upper, adaxial lobe(s) or side, nearest to the axis, away from the subtending bract; **sepal**, a calyx member or segment, a unit of the calyx; **spur**, a tubular, rounded or pointed projection from the calyx or corolla, functioning to contain nectar; **tepal**, a perianth member or segment not differentiated into distinct sepals or petals; **throat**, an open, expanded region of a perianth, usually of a sympetalous corolla; **tube**, a cylindrically shaped perianth or region of the perianth, usually of a sympetalous corolla.

Perianth Arrangement/Cycl/merosity (Figures 9.16, 9.17)

A fundamental aspect of perianth structure is **perianth arrangement**, the position of perianth parts relative to one another. In some taxa, such as some magnolias and water lilies, the perianth parts have a **spiral** arrangement, i.e., spirally arranged with only one perianth part per node, not in distinct whorls. Typically, flowers with a spiral perianth arrangement have parts that are either undifferentiated (similar to one another) or that grade from an outer, sepal-like form to an inner petal-like form. In either case, the term **tepal** is used to describe undifferentiated or intergrading perianth parts. In most flowering plants the perianth parts have a **whorled** arrangement, in which the parts appear to arise from the same nodal region. (Note that, developmentally, the perianth parts may actually initiate as primordia at slightly different times and positions; however, at maturity, this is usually undetectable.)

Cycl refers to the number of whorls (cycles, series) of parts. (See General Terminology.) Thus, **perianth cycl** is the number of whorls of perianth parts. The most common

Figure 9.15 Flower symmetry examples. **A**, **B**. Actinomorphic/radial symmetry. **A**. Five planes of symmetry. **B**. Six planes of symmetry. **C**. Slight zygomorphy (bilateral symmetry), vertical plane of symmetry. **D**, **E**. Strong zygomorphy of all oral parts. **F**. Asymmetry, caused by twisting of oral parts.
type of perianth cycly by far is biseriate (also called dicyclic), in which there are two discrete whorls, an outer (= lower) and inner (= upper). A less common condition in flowering plants is a uniseriate perianth cycly, with perianth parts in a single whorl. Uniseriate perianths may arise by loss or reduction of one of the whorls of an ancestrally biseriate perianth. If it is known that the calyx was evolutionarily lost, what remains should be called a corolla; if the corolla was lost, what remains should be termed a calyx. If this directionality is not known, a uniseriate perianth is usually termed a calyx by tradition (although it may simply be called a perianth). Perianths may also rarely be triseriate (or tricyclic) = three-whorled, tetramerous (or tetracyclic) = four-whorled, etc. The term multiseriate may be used to mean composed of three or more whorls. Other cycly terms evaluate the similarity of the whorls of parts to one another. Dichlamydeous describes a perianth composed of a distinct outer calyx and inner corolla; in most cases, a dichlamydeous perianth is also biseriate, but it may be multiseriate (i.e., the calyx or corolla containing more than one whorl). Homochlamydeous refers to a perianth composed of similar parts, each part a tepal. Most monocots have a homochlamydeous perianth, whereas most eudicots have a dichlamydeous one. In some cases, the distinction between dichlamydeous and homochlamydeous can be difficult, as it may be difficult to assess whether outer and inner series are similar or different.

Merosity refers to the number of parts per whorl or cycle. (See General Terminology.) Thus, perianth merosity is the number of parts per whorl of the perianth. General terms for perianth merosity are isomerous, having the same number of members in different whorls (e.g., five sepals and five petals) and anisomerous, having a different number of members in different whorls (e.g., two sepals and five petals). Merosity may be described separately for each whorl of the perianth, e.g., calyx merosity and corolla merosity. It is assessed for numbers of discrete petals, sepals, and tepals, or, if perianth fusion occurs, for numbers of calyx, corolla, or perianth lobes (see later discussion). Perianth, calyx, or corolla merosity is
usually designated as a simple number, although terms such as bimerous (a whorl with two members), trimerous (a whorl with three members), tetramerous (a whorl with four members), pentamerous (a whorl with five members), etc., can be used. Terms for absence of parts include achlamydeous, lacking a perianth altogether, apetalous, having no petals or corolla, and asepalous, having no sepals or calyx.

PERIANTH FUSION (Figure 9.18)
The term perianth fusion deals with the apparent fusion of perianth parts to one another. (This character may be treated separately as calyx or corolla fusion.) If sepals, petals, or tepals appear to be fused (even slightly at the base), the respective terms asepalous, apopetalous, and apotepalous are used. The fusion of perianth parts does not usually occur as a separate event, e.g., petals fusing together after they are individually formed. Perianth fusion results in the development of a tubelike or cuplike structure (the region of fusion) in the calyx, corolla, or perianth. If little fusion occurs, the tubelike region occurs only at the base and gives rise to calyx, corolla, or perianth lobes.

PERIANTH TYPE (Figure 9.19)
Perianth type can include aspects of the entire perianth; however it could include aspects of only the calyx, corolla, or hypanthium (if present). Generally, perianth type is based on the structure of the corolla alone, in which case it could logically be termed corolla type. The terminology for perianth type takes into account various aspects of shape, fusion, orientation, and merosity. Perianth type is often of systematic value and may be diagnostic for certain clades of angiosperms. The perianth type typically reflects adaptive features related to pollination biology, such as attracting a pollinator or better effecting the transfer of pollen. Some perianths are highly modified for other functions, such as the lodicules of grasses, which are reduced perianth parts that, upon swelling, open up the grass floret (see Inflorescence Type, later, and Poaceae of Chapter 7).

Specific perianth types include the following: bilabiate, two-lipped, with two, generally upper and lower segments, as in many Lamiaceae; calyptate/operculate, having calyx and corolla fused into a cap that falls off as a unit, as in Eucalyptus; campanulate, bell-shaped, with a basally rounded flaring tube about as broad as long and flaring lobes, as in Campanula (may also be used for bell-shaped apopetalous corolla or apotepalous perianth); carinate, keeled, with a sharp median fold, usually on the abaxial side; coronate, with a tubular or flaring perianth or staminal outgrowth, as in Narcissus, Asclepias spp.; cruciate, with four distinct petals in cross form, as in many Brassicaceae; cucullate/galeate, hooded, with an abaxially concave posterior lip; disk, having an actinomorphic, tubular corolla with flaring lobes, as in some Asteraceae; infundibular, funnel-shaped, with a tubular base and continuously expanded apex, as in Ipomoea, morning glory; lingulate/ray, strap- or tongue-shaped, as in certain Asteraceae; papilionaceous, with one large posterior petal (banner or standard), two inner, lateral petals (wings), and two usually apically connate lower petals (keel), the floral structure of the Faboideae (Fabaceae); personate, two-lipped, with the upper arched and the lower protruding into the corolla throat, as in Antirrhinum, snapdragon; ray, having
a short, tubular corolla with a single, elongate, strap-like apical extension, as in some Asteraceae; rotate, with a short tube and wide limbs oriented at right angles to the tube, as in Phlox; saccate, having a pouchlike evagination; salverform, trumpet-shaped; with a long, slender tube and flaring limbs at right angles to tube; tubular, mostly cylindrical; unguiculate, clawed, as in many Brassicaceae, Caryophyllaceae; unilabiate, one-lipped; and urceolate, urn-shaped, expanded at base and constricted at apex, as in many Ericaceae.

Perianth Aestivation (Figure 9.20)
Perianth aestivation is defined by the position, arrangement, and overlapping of floral perianth parts. Aestivation can be an important systematic character for delimiting or diagnosing
some flowering plant taxa. In practice, aestivation is best observed by making hand sections of mature flower buds, because after anthesis, the perianth aestivation may be obscured. For very small flowers, histological sectioning may be needed to clearly see the aestivation type.

Some standard perianth aestivation terms are as follows: **imbricate**, general term for overlapping perianth parts; **convolute** or **contorted**, imbricate with perianth parts of a single whorl overlapping at one margin, being overlapped at the other, as in the corolla of many Malvaceae; **imbricate-alternate**, imbricate with the outer whorl of perianth parts (sepals or outer tepals) alternating with (along different radii) the inner whorl of perianth parts (petals or inner tepals); **quincuncial**, imbricate with perianth parts of a single pentamerous whorl having two members overlapping at both margins, two being overlapped at both margins, and one overlapping only at one margin; **valvate**, with a whorl of perianth parts meeting at the margins, not overlapping; and **involute**, valvate with each perianth part induplicate (folded longitudinally inward along central axis).

ANDROECIUM

The androecium consists of all the floral male (pollen-producing) reproductive organs, the units of which are stamens. Stamens are interpreted as being modified, sporangia-bearing leaves or microsporophylls. Stamens initiate as primordia from the flower apical meristem, but at maturity are attached to the receptacle, corolla (having an epipetalous stamen fusion; see below), hypanthium rim, or **staminal disk**, a fleshy, elevated, often nectariferous cushion of tissue.

Stamen Type (Figure 9.21)

There are two basic **stamen types**: laminar and filamentous (although intermediates can occur). **Laminar** stamens possess a leaflike, dorsiventrally flattened structure bearing two **thecae** (pairs of microsporangia), these typically on the adaxial surface. Laminar stamens may represent the ancestral type in flowering plants, although they have evolved secondarily in some groups. **Filamentous** stamens are far more common, having a stalklike, generally terete **filament** with a discrete pollen-bearing part, the **anther**.

In some taxa one or more stamens will initially form but will be nonfertile. Such a sterile stamen is termed a **staminode** or **staminodium**. Staminodes may resemble the fertile stamens and can only be identified by determining if viable pollen is released. Other staminodes may be highly modified in structure, being petaloid, clavate (clublike), nectariferous, or very reduced and vestigial. Staminodes may or may not possess an **antherode**, a sterile antherlike structure.

Stamen Arrangement, Cyly, and Position

Stamen arrangement (Figure 9.22) is the placement of stamens relative to one another (see General Terminology). Two basic stamen arrangements are **spiral**, with stamens arranged in a spiral, and **whorled**, with stamens in one or more discrete whorls or series. Additional stamen arrangement types consider the relative lengths of stamens to one another: **didymous**, with stamens in two equal pairs; **didynamous**, with stamens in two unequal pairs (as in many Bignoniaceae, Lamiales, Scrophulariaceae, etc.); and **tetradynamous**, with stamens in two groups of four long and two short (typical of the Brassicaceae).
Stamen cycle (Figure 9.23) refers to the number of whorls or series of stamens present (applying only if the stamens are whorled to begin with). The two major types of stamen cycle are uniseriate, having a single whorl of stamens, and biseriate, with two whorls of stamens. If additional whorls are present, the terms triseriate, tetraseriate, etc., can be used.

Stamen position (Figure 9.23) is the placement of stamens relative to other, unlike floral parts, in particular to the sepals and petals. An antisepalous (also called anteseptal) stamen position is one in which the point of stamen attachment is in line with (opposite) the sepals or calyx lobes; similarly, alternipetalous means having the stamens positioned between the petals or corolla lobes. Antisepalous and alternipetalous are usually synonymous because (in a biseriate perianth) petals/corolla lobes are almost always inserted between sepals/calyx lobes; however, one should describe only what is evident, such that either or both terms may be used. Antisepalous or alternipetalous stamens are very common in taxa with uniseriate stamens.

An antipetalous (also called antepetalous) stamen position is one in which the point of attachment is in line with (opposite) the petals or corolla lobes; alternisepalous means that the stamens are positioned between the sepals or calyx lobes. Antipetalous and alternisepalous are usually synonymous (for the same reason cited earlier). An antipetalous/alternisepalous stamen position is relatively rare and may be diagnostic for specific groups, such as the Primulaceae and Rhamnaceae.

Two other stamen position terms apply to stamens that are biseriate: diplostemonous, in which the outer whorl is opposite the sepals and the inner opposite the petals, and obdiplostemonous, in which the outer whorl is opposite petals, the inner opposite sepals. Among taxa with biseriate stamen cycly, a diplostemonous position is much more common; obdiplostemonous stamens are relatively rare, being diagnostic, e.g., for some Crassulaceae.

Stamen attachment and insertion

Stamen attachment refers to the presence or absence of a stalk, being either filamentous, with a filament present, sessile, with filament absent, or subsessile, with filament very short and rudimentary. Laminar stamens are, by default, sessile.

Stamen insertion (Figure 9.24) can refer to either of two things. First, it can indicate whether stamens extend past the perianth or not, the two terms being exserted (also termed phanerantherous), with stamens protruding beyond the perianth, and inserted (also termed cryptanterous), with stamens included within the perianth. Insertion may also correspond to the point of insertion, which is the point of adnation of an epipetalous stamen to the corolla (see later discussion). Examples of the latter usage are the stamens are inserted halfway up the corolla tube or stamens are inserted unequally (meaning they are inserted at different levels along the length of, say, a corolla tube). Stamen insertion, by either usage, is generally indicative of an adaptation for some particular pollination mechanism, functioning to present the anthers effectively to an animal pollinator.
Stamen Fusion (Figure 9.25)

Stamen fusion refers to whether and how stamens are fused. The general terms *distinct* (unfused to one another), *connate* (fused to one another), *free* (unfused to a different structure), and *adnate* (fused to a different structure) may be used (see General Terminology). Common specialized terms are *apostemonous*, with stamens unfused (both distinct and free); *diadelphous*, with two groups of stamens, each connate by filaments only, as in many Faboideae (Fabaceae), which typically have nine stamens fused most of their length and one fused only at the base or not at all; *epipetalous* (also called *petalostemonous*), with stamens adnate to (inserted on) petals or the corolla (the terms *epitepalous* and *episepalous* can be used for adnation of stamens to tepals or sepals, respectively); *monadelphous*, with one group of stamens connate by their filaments, as in Malvaceae; and *syngenesious*, with anthers connate but filaments distinct, diagnostic of the Asteraceae. Stamen fusion, like stamen insertion, typically functions as a presentation mechanism for animal pollination.

Anther Parts, Type, and Attachment (Figure 9.26)

Anthers are discrete pollen containing units, found in the stamens of the great majority of angiosperms. Anthers typically consist of two compartments called *thecae* (singular *theca*), with each theca containing two microsporangia (the fusion product of which is a *locule*). (Thus, anthers are typically tetrasporangiate.) The tissue between and interconnecting the two thecae is termed the *connective*, to which the filament (if present) is attached. *Microsporangia* are the sites of production of pollen grains, the immature male gametophytes of seed plants.

Various anther types occur, as determined by their internal structure. The typical anther is *dithecal*, having two thecae with typically four microsporangia. In a very few taxa, such as the Cannaceae and Malvaceae, anthers are *monothecal*, having one theca with typically two microsporangia. Finally, an extreme type of anther is the *pollinium*, a typically dithecal anther in which all the pollen grains of both thecae (Orchidaceae) or of adjacent thecae (Asclepias) are fused together as a single mass. The pollinia of the Orchidaceae and Asclepias have different developmental origins and structures.

Anther attachment refers to the position or morphology of attachment of the filament to the anther. Standard anther attachment types are *basifixed*, anther attached at its base to apex of the filament; *dorsifixed*, anther attached dorsally and medially to the apex of the filament; and *subbasifixed*, anther attached near its base to the apex of the filament. A *versatile* anther attachment is one in which the anther freely pivots (teeter-totters) at the point of attachment with the filament; versatile anthers may be dorsifixed, basifixed, or subbasifixed.

Anther Dehiscence

Anther dehiscence refers to the opening of the anther in releasing pollen grains. *Anther dehiscence type* (Figure 9.27) is the physical mechanism of anther dehiscence. The most common, and ancestral, anther dehiscence type is *longitudinal*, dehiscing along a suture parallel to the long axis of the thecae. Other types are rare and specific to given groups, including *poricidal*, dehiscing by a pore at one end of the thecae, such as the Ericaceae; *transverse*, dehiscing at right angles to the...
CHAPTER 9 PLANT MORPHOLOGY

Anther Type and Parts

Anther Attachment

dithedal monothedal basifixed dorsiixed subbasifixed dorsiixed basifixed versatile

FIGURE 9.26 Anther types, parts, and attachment (c.s. = cross-section)

long axis of the theca; and valvular, dehiscing through a pore covered by a flap of tissue, as in the Lauraceae.

Anther dehiscence direction (Figure 9.28) indicates the position of the anther opening relative to the center of the flower or to the ground. Anther dehiscence direction is best detected when the anthers are immature (e.g., in bud) or just beginning to open. After dehiscence, the anthers usually shrivel and twist, obscuring the original direction in which they opened. Common types of dehiscence direction are: extrorse, dehiscing outward, away from the flower center; introrse, dehiscing inward, toward the flower center; and latrorse, dehiscing laterally, to the sides. In horizontally oriented flowers, anthers may face upward or downward, relative to the ground.

One fine point of anther dehiscence direction concerns some flowers, in which at least some of the stamens have one direction early in development but become reoriented to another direction at maturity. In such a case, the dehiscence direction can be described both in the early developmental stage and in the mature stage. For example, a common condition is one in which the anthers are introrse early in development, but reorient to the top of the flower, with all the anthers facing downward. Such a dehiscence direction can be described as introrse early in development (based on observation of buds), and downward at maturity (see Figure 9.28). (In another example, the poricidal anthers of members of the Ericaceae are extrorse early in development, but introrse at maturity by inversion; see Chapter 8.)

NECTARIES

Nectaries are specialized nectar-producing structures of the flower (Figure 9.13). Nectar is a solution of one or more sugars and various other compounds and functions as an attractant (a reward) to promote animal pollination. Nectaries may be padlike, developing as a discrete pad of tissue extending only part-way around the base of the flower. Commonly, a floral disk, consisting of a disk-like or doughnut-shaped mass of tissue surrounding the ovary base or top, functions as a nectary. These nectariferous disks may be inner to (intrastaminal), beneath (staminal), or outer to (extrastaminal) the androecium. A perigonal nectary is one on the perianth, usually at the base of sepals, petals, or tepals.

Septal nectaries are specialized tissues embedded within the septae of an ovary, secreting nectar via a pore at the ovary base or apex.

Note that other specialized glands may secrete non-sugar compounds that function as a pollination reward, such as waxes by members of the Krameriacae. These are not termed nectaries, but are simply called glands, e.g., wax glands.

GYNOECIUM, CARPEL, AND PISTIL

The gynoeicum refers to all female organs of a flower (Figure 9.29). The unit of the gynoeicum is the carpel, defined as a modified, typically conduplicate megasporophyll that encloses one or more ovules (see Chapter 6). The carpel is one of the major features (apomorphies) that make angiosperms
unique within the seed plants. Like all flower parts, a carpel is interpreted as a modified leaf, in this case a megasporophyll, defined as a reproductive leaf bearing megasporangia (which in seed plants are components of the ovules). Carpels, in fact, may develop as dorsiventrally flattened leaves that fold conduplicately, ultimately enclosing the ovules.

A **pistil** is that part of the gynoecium composed of an **ovary**, one or more **styles**, and/or one or more **stigmas** (see later discussion). The **ovary** is the part of the pistil containing the ovules. A **style** is a generally stalklike, non-ovule-bearing portion of the pistil between the stigma and ovary. Styles may be absent in some pistils. A **stigma** is the pollen-receptive portion of the pistil. Stigmas may be discrete structures or they may be a region (the **stigmatic region**) of a style or style branch, e.g., the stigmatic lines on the styles of Asteraceae pistils. Finally, the term **stipe** is used for a basal stalk of the pistil; stipes are usually absent. [Note that *stipe* is also used as a synonym for a leaf petiole, especially that of ferns.]

Pistils or ovaries may be **simple**, composed of one carpel, or **compound**, composed of two or more carpels (see Carpel Number). By convention, if there is more than one ovary, style, or stigma, but if any of these appear fused in any way
(e.g., three apparent ovaries fused at the base), they are all part of the same pistil. (One unique case are the Asclepiadoids, in which the gynoecium consists of two carpels made up of two distinct ovaries and styles but a single stigma joining the styles; because the stigmas of the two carpels are connate, the whole structure is termed a single pistil.)

Within the ovary, a **septum** (plural **septa**) is a partition or cross-wall. A **locule** is an ovary cavity, enclosed by the ovary walls and septa. Locule number may be an important systematic character; the term **unilocular** may be used for an ovary with one locule, **pleurilocular** for an ovary with two or more (typically many) locules. **Placenta** are the tissues of the ovary that bear the ovules, the immature seeds. A **funiculus** is a stalk that may lead from the placenta to the ovule. A **column** is the central axis to which septae and/or placentae are attached in axile or free-central placentation (see later discussion).

GYNOECIAL FUSION (Figures 9.30, 9.31)
Fusion of carpels is a very important systematic character, the features of which are characteristic of major taxonomic groups. An **apocarpous** gynoecial fusion is one in which the carpels are distinct. An apocarpous gynoecium is generally thought to be the ancestral condition in the angiosperms. In contrast, a **syncarpous** gynoecial fusion is one in which carpels are connate (the pistil **compound**) and is the most common type in flowering plants. In a syncarpous gynoecium, the degree of carpel fusion can vary considerably; from connation only at the extreme base (having a strongly lobed ovary), to fusion into one, unlobed ovary but distinct styles and/or stigmas, to complete fusion with one ovary, style, and stigma. Fusion of carpels can determine the placentation type (Figure 9.31; see later discussion). Last, if the gynoecium is composed of a single carpel (in which fusion is really inapplicable), the term **unicarpellous** is used.

CARPEL/LOCULE NUMBER (Figure 9.30)
Carpel and locule number are important characters in angiosperm systematics. **Locule number** is generally easy to determine from ovary cross- and/or longitudinal sections, being equivalent to the number of wall-enclosed chambers within the ovary. In a general sense, ovaries may be **unilocular**, with a single locule, or **plurilocular**, having two or more locules. In some angiosperms, septa may divide the ovary into chambers in one region, such as the ovary base, but not in another region, such as the ovary apex; in such a case, the chambers below are continuous with one chamber above, and the locule number is technically 1, or unilocular.

Carpel number is often critical in classification and identification of flowering plants. It is determined as follows. If the gynoecium is apocarpous, the number of carpels is equal to the number of pistils; this is because each pistil is equivalent to a single carpel in any apocarpous gynoecium. If there is a single pistil, that pistil can be equivalent to one carpel (i.e., unicarpellous) or be composed of any number of fused carpels. For one pistil the carpel number is determined (in sequence) as follows. First, carpel number is equal to the number of styles or stigmas, if either of these is greater than 1. This is true regardless of the structure of the ovary because each of the styles or stigmas is a part of a carpel or is interpreted as a vestige of an ancestral carpel. (For example, pistils of all members of the Asteraceae have two styles and stigmas, and thus carpel number is interpreted as 2. This is true even though there is but one locule, ovule, and placenta; the two styles are interpreted as ancestral vestiges of a two-carpellate pistil, which became evolutionarily reduced to a single ovuled and loculed structure.) Second, if a single pistil has only one style and stigma, the ovary must be dissected to reveal the carpel number. If the ovary is plurilocular, then locule number is generally equal to the number of carpels. Each locule, in such a case, represents the chamber of the

![Gynoecial fusion, carpel number, and locule number.](image)
original ancestral or developmental carpel (except in some gynobasic taxa; see later discussion). Finally, if the ovary is unilocular, the number of carpels is equal to the number of placentae. For example, a violet, with one pistil, one style/stigma, and one locule, has three carpels because of the three placentae (having parietal placentation). (Exceptions to the last two rules are the gynobasic taxa of the Lamiaceae and Boraginaceae, s.s. In both of these groups, each of the two carpels is bisected early in development by a so-called false septum, such that the mature ovary typically has four locules, each with a single placenta and ovule. Thus, in this case, the number of locules and placentae, which is four, is twice that of the number of carpels.)

Ovary Attachment and Position

Ovary attachment deals with the presence or absence of a basal stalk or stipe. A sessile ovary is one lacking a stipe and is by far the most common situation. A stipitate ovary is one having a stipe and is relatively rare (Figure 9.30).

Ovary position (Figure 9.32) assesses the position or placement of the ovary relative to the other floral parts: hypanthium, calyx, corolla, and androecium. A superior ovary is one with sepals, petals, and stamens, and/or hypanthium attached at the base of the ovary. An inferior ovary position has sepals, petals, and stamens attached at apex of an inferior ovary. A half-inferior ovary is used for sepals, petals, and stamens attached at middle of the ovary, the ovary being half-inferior.

Other perianth/androecial position terms denote the presence of a hypanthium, with the sepals, petals, and stamens attached to the hypanthium rim. Perigynous denotes a hypanthium attached at the base of a superior ovary. Epiperigynous denotes a hypanthium attached at the apex of an inferior ovary. (The awkward term epihypoperigynous may be used to describe a hypanthium attached at the middle of a half-inferior ovary.)

Placentation (Figure 9.33)

Placentation refers to the positioning of the ovules and takes into account the number and position of placentae, septa, and locules. Determining placentation requires probing or making a cross and/or longitudinal section of the ovary.
Standard placentation types are **axile**, with the placentae arising from the column in a compound ovary with septa, common in many flowering plants such as the Liliaceae; **apical** or **pendulous**, with a placenta at the top of the ovary; **apical-axile**, with two or more placentae at the top of a septate ovary, as occurs in the Apiaceae; **basal**, with a placenta at the base of the ovary, as occurs in the Asteraceae and Poaceae; **free-central**, with the placentae along the column in a compound ovary without septa, such as in the Caryophyllaceae; **laminar**, with ovules arising from the surface of the septae; **marginal**, with the placentae along the margin of a unicarpellate (simple) ovary, as in the Fabaceae; **parietal**, with the placentae on the ovary walls or upon intruding partitions of a unilocular, compound ovary, such as in the Violaceae; **parietal-axile**, with the placentae at the junction of the septum and ovary wall of a two or more loculate ovary, such as in the Brassicaceae; and **parietal-septate**, with placentae on the inner ovary walls but within septate locules, as in some Aizoaceae.

Style Position/Structural Type (Figure 9.34)

Style position is the placement of the style relative to the body of the ovary. A **terminal** or **apical** style position is one arising at the ovary apex; this is by far the most common type. A **subapical** style arises to one side, near and slightly below the ovary apex. A **lateral** style position is one arising at the side of an ovary, as in members of the Rosaceae, such as *Fragaria*. Finally, a **gynobasic** style arises from the base of the ovary. Gynobasic styles are characteristic of the Boraginaceae, s.s. and of most Lamiales, in which the style arises from the base and center of a strongly lobed ovary.

Styles may be structurally specialized in some taxa. One specialized **style structural type** is a stylar **beak**, a persistent, extended style or basal (to subbasal) stylar region.
A beak is typically accrescent and elongates during fruit formation. Beaks function in fruit dispersal, as in members of the Asteraceae (e.g., *Taraxacum*, dandelion) or Geraniaceae (e.g., *Geranium*).

STIGMA/STIGMATIC REGION TYPES (Figure 9.34)
The term **stigma** is used for a discrete structure that is receptive to pollen on the entire surface, whereas **stigmatic region** may be used for that portion of a larger structure (generally a style or style branch) that is receptive to pollen. General shape terms may be used to describe **stigma** or **stigmatic region types**. A few common stigma or stigmatic region types are **discoid**, with stigma(s) disk-shaped; **globose**, with stigma(s) spherical in shape; **linear**, with stigmas or stigmatic tissue long and narrow in shape; and **plumose**, stigmas with feathery, trichome-like extensions, often found in wind-pollinated taxa (e.g., in Cyperaceae, Poaceae).

INFLORESCENCES
An inflorescence is a collection or aggregation of flowers on an individual plant. Inflorescences often function to enhance reproduction. For example, the aggregation of flowers in one location will make them visually more attractive to potential pollinators. Other inflorescences are related to very specialized reproductive mechanisms, examples being the spadices and associated spathes of some Araceae or the syconia of figs (see later discussion).

The structure of an inflorescence can be complicated, its elucidation requiring detailed developmental study.

INFLORESCENCE PARTS
Several terms deal with leaflike structures found in the inflorescence. An **inflorescence bract** is one that subtends not an individual flower but an inflorescence axis or a group of flowers. (Bracts that subtend an individual flower should be termed **floral bracts**; however, some sources do not make the distinction or will use **inflorescence bract** to refer to either.) A group or cluster of bracts subtending an entire inflorescence is termed an **involucre** (adjective **involucrate**); a similar group of bracts subtending a unit of the inflorescence is an **involucel**. A **spathe** (adjective **spathaceous**) is an enlarged, sometimes colored bract subtending and usually enclosing an inflorescence; many Araceae are good examples of spathes, which subtend the spadix inflorescence (see later discussion). An **awn** is a bristlelike, apical appendage on the glumes or lemmas of grass (Poaceae) spikelets.

Other terms deal with various (stem) axes in an inflorescence. A **peduncle** (adjective **pedunculate**) is the stalk of an entire inflorescence. A **compound receptacle** (also called a **torus**) is a mass of tissue at the apex of a peduncle that bears more than one flower. A peduncle that lacks well-developed leaves, arising from a basal rosette of vegetative leaves is termed a **scape** (adjective **scapose**), the plant habit in such a case being acaulescent. A **rachis** is a major, central axis within an inflorescence. However, the central axis of a grass or sedge spikelet is a **rachilla**. Finally, a **ray** is a secondary axis of a compound umbel (see later discussion).

INFLORESCENCE POSITION
There are three major **inflorescence positions**, defined based on where the inflorescence develops: (1) **axillary**, in which the entire inflorescence is positioned in the axil of the nearest vegetative leaf; (2) **terminal**, in which the inflorescence develops as part of a terminal shoot that gave rise to the nearest vegetative leaves; and (3) **cauliflorous**, in which the inflorescence grows directly from a woody trunk. Three specialized inflorescence position terms for palms are **infrafoliar**, in which the inflorescence arises below the crownshaft, **interfoliar**, in which it arises within the crownshaft, and **suprafoliar**, in which it arises above the leaves of the crownshaft.

INFLORESCENCE DEVELOPMENT
Inflorescence development is a major aspect of defining inflorescence type. The two major inflorescence developmental types are determinate and indeterminate. A **determinate** inflorescence is one in which the apical meristem of the primary inflorescence axis terminates in a flower; typically, the terminal flower matures first, with subsequent maturation occurring from apex to base. Determinate inflorescences are characteristic of cymes. An **indeterminate** inflorescence is one in which the apical meristem of the primary inflorescence axis does not develop into a flower; typically, the basal flower matures first, with maturation occurring from base to apex. Indeterminate inflorescences include a number of types, such as spikes, racemes, and panicles (see later discussion).
Inflorescence Type (Figures 9.35-9.37)
Inflorescences that have a common development and structure with respect to presence, number, arrangement, or orientation of bracts, axes, and certain specialized structures, define an inflorescence type. One difficulty with determining inflorescence type is simply delimiting its boundaries. Generally, an inflorescence is bounded by the lowest vegetative leaf. However, there may be a gradation between lower or basal vegetative leaves and small floral bracts, such that the delimitation of the inflorescence is somewhat arbitrary.

(Note that if an inflorescence consists of a single flower, it is termed solitary; a scapose inflorescence is one with one or more flowers on an essentially leafless peduncle or scape, usually arising from a basal rosette.)

Inflorescence types are valuable characters in systematics and are often characteristic of specific groups, such as the compound umbels of the Apiaceae, heads of the Asteraceae, and helicoid or scorpioid cymes of the Boraginaceae. Some inflorescence types are quite specialized adaptations for reproduction, such as the cyathia of Euphorbioids.

The term cyme (Figure 9.35) can be used as a general term to denote a determinate inflorescence. One type of cyme is the dichasium, one that develops along two axes, forming one or more pairs of opposite, lateral axes. A simple dichasium is a three-flowered cyme, having a single terminal flower and two, opposite lateral flowers, the pedicels of all of equal length; bracts typically subtend the two lateral flowers, although the bracts may be absent. (The term cymule may be used for a small, simple dichasium.) A compound dichasium is a many-flowered cyme of repeatedly branching simple dichasia units. In a compound dichasium, the branches are typically decussately arranged and are thus in multiple planes. Finally, a compound cyme is a branched cyme, similar to a compound dichasium but lacking a consistent dichasial branching pattern. Some compound cymes actually have the same branching pattern as a compound dichasium but with certain internodal axes being reduced or missing, yielding a more congested appearance.

A monochasium (Figure 9.35) is a cyme that develops along one axis only. (The terminology for monochasial cymes can vary from author to author, the following being just one.) A helicoid cyme or bostryx is a monochasium in which the axes develop on only one side of each sequential axis, appearing coiled at least early in development. A scorpioid cyme or cincinnus is a monochasium in which the branches develop on alternating sides of each sequential axis, typically resulting in a geniculate (zig-zag) appearance. Both helicoid cymes and scorpioid cymes have branches or axes that are in more than one plane and can be viewed as being derived by reduction from the decussate branches of a compound dichasium. Two other monochasial cymes have, by definition, axes that are in one plane. A drepanium is a monochasium in which the axes develop on only one side of each sequential axis; like a helicoid cyme, drepania typically appear coiled at least early in development. (Drepania are treated as helicoid cymes in some terminology.) A rhipidium is a monochasium in which the branches develop on alternating sides of each sequential axis; like scorpioid cymes, rhipidia typically have a geniculate (zig-zag) appearance. (Rhipidia are treated as scorpioid cymes in some terminology.) In reality, these four monochasial structures may intergrade with one another. For example, a monochasium intermediate between a helicoid cyme and a scorpioid cyme could have axes that develop on one side of each sequential axis, appearing coiled at least early in development, but with some branches or axes being reduced or missing, yielding a more congested appearance.

A simple umbel (determinate) is a monochasium in which the branches develop on alternating sides of each sequential axis; like scorpioid cymes, rhipidia typically have a geniculate (zig-zag) appearance. (Rhipidia are treated as scorpioid cymes in some terminology.) In reality, these four monochasial structures may intergrade with one another. For example, a monochasium intermediate between a helicoid cyme and a scorpioid cyme could have axes that develop on one side of each sequential axis, appearing coiled at least early in development, but with some branches or axes being reduced or missing, yielding a more congested appearance.

A simple umbel (indeterminate) is a monochasium in which the branches develop on alternating sides of each sequential axis; like scorpioid cymes, rhipidia typically have a geniculate (zig-zag) appearance. (Rhipidia are treated as scorpioid cymes in some terminology.) In reality, these four monochasial structures may intergrade with one another. For example, a monochasium intermediate between a helicoid cyme and a scorpioid cyme could have axes that develop on one side of each sequential axis, appearing coiled at least early in development, but with some branches or axes being reduced or missing, yielding a more congested appearance.
cyme and a drepanium may occur. Thus, simply using the term *monochasial cyme* may be best in lieu of more detailed observations and descriptions.

Several indeterminate inflorescence types are recognized (Figure 9.36). All of these generally lack a flower at the top of the main axis and develop from base to apex. A *spike* is an indeterminate inflorescence, consisting of a single axis bearing sessile flowers. Similarly, a *raceme* is an indeterminate inflorescence in which the single axis bears pedicellate flowers. A *panicle* is like a branched raceme, defined as an indeterminate inflorescence having several branched axes bearing pedicellate flowers. Finally, a *corymb* is an indeterminate inflorescence consisting of a single axis with lateral axes and/or pedicels bearing flat-topped or convex flowers. Corymbs can be either simple or compound. A *simple corymb* is unbranched, consisting of a central axis bearing pedicellate flowers, the collection of flowers being flat-topped or convex; simple corymbs are like racemes in which the lower pedicels are much more elongate than the upper. A *compound corymb* is branched, consisting of two or more orders of inflorescence axes bearing flat-topped or convex, pedicellate flowers; compound corymbs are like panicles in which the lower axes and pedicles are much more elongate than the upper.

Some inflorescences may be either determinate or indeterminate (Figure 9.37). A *simple umbel* is a determinate or indeterminate, flat-topped or convex inflorescence with pedicels attached at one point to a peduncle. Two inflorescences in which the flowers at the point of attachment appear congested are the fascicle and glomerule. A *fascicle* is a racemelike or paniclelike inflorescence with pedicellate flowers in which internodes between flowers are very short. A *glomerule* is an inflorescence of sessile or subsessile flowers in which the internodes between flowers are very short.

In some taxa an inflorescence will appear to be one type, but (upon detailed examination) is actually a modification of another type. For example, the term *pseudoumbel* is used for an inflorescence appearing like a simple umbel, but actually composed of condensed, monochasial cymes, as in the Alliaceae and Amaryllidaceae.

Secondary Inflorescences (Figure 9.38)
Secondary inflorescences are defined as aggregates of unit inflorescences (also called primary or partial inflorescences); each *unit inflorescence* is a subunit of the secondary inflorescence that resembles an inflorescence type, per se. Examples of secondary inflorescences are a *panicle* of spikelets, a *corymb* of heads, or a *raceme* of spikes.

Two specific types of secondary inflorescences are the thyrse and verticillaster. A *thyrse* is essentially a raceme of cymes, in which the main axis is indeterminate but the opposite, lateral, unit inflorescences are pedicellate cymes, typically either simple dichasia, compound dichasia, or compound cymes, occasionally monochasial cymes. A *verticillaster* is essentially a spike of opposite cymes, similar to a thyrse in having an indeterminate main axis but differing in that the lateral cymes have very reduced to absent internodal axes and pedicels, giving a congested appearance. Verticillasters are found in several members of the Lamiaceae, the mint family. A *compound umbel* is another secondary inflorescence in which the peduncle bears secondary axes called *rays* that are attached at one point and unit, simple umbels attached at the tip of the rays, as in many Apiaceae.

Specialized Inflorescences (Figure 9.39)
Some inflorescences are quite specialized and often restricted to certain taxonomic groups. A *catkin* (also called an *ament*) is a unisexual, typically male spike or elongate axis that falls as a unit after flowering or fruiting, as in *Quercus*, *Salix*. A *cyathium* is an inflorescence bearing small, unisexual flowers and subtended by an involucre (frequently with peltoid glands), the entire inflorescence resembling a single flower, as in *Euphorbia* and relatives. A *head* or *capitulum* is a determinate or indeterminate, crowded group of sessile or sub sessile flowers on a compound receptacle, often subtended by an involucre. Heads are typical of the Asteraceae and some other groups. (Note that some inflorescences resemble a head but lack a compound receptacle; these can be termed *head-like*.) A *hypanthodium* is an inflorescence bearing numerous flowers on the inside of a convex or involuted compound receptacle, as in *Ficus*. A *pseudanthium* is a unit that appears as and may function like a single flower, but that typically consists of two or more flowers fused or grouped together. A *spadix* is a spike with a thickened or fleshy central axis, typically with congested flowers and usually subtended by a spathe, as in the Araceae. A *spikelet* literally means a small spike and refers to the basic inflorescence unit in the Cyperaceae, the sedges, and Poaceae, the grasses. Sedge spikelets are like a small spike, with sessile (reduced) flowers on an axis (*rachilla*), each flower subtended by a bract (also called a *scale*). A grass spikelet consists of an axis (*rachilla*), typically bearing two basal bracts (*glumes*) and one or more short lateral branch units called *florets*, each of which bears two bracts (*lemma* and *palea*) that subtend a terminal, reduced flower. (See family treatments of Cyperaceae and Poaceae in Chapter 7.)

FRUITS
Fruits are the mature ovaries or pistils of flowering plants plus any associated accessory parts. *Accessory parts* are organs attached to a fruit but not derived directly from the ovary or ovaries, including the bracts, axes, receptacle,
UNIT III SYSTEMATIC EVIDENCE AND DESCRIPTIVE TERMINOLOGY

Figure 9.38
Secondary inflorescences.

- **Thyrse**
- **Verticillaster**
- **Compound raceme**
- **Simple corymb of heads**
- **Compound umbel** (indeterminate)
- **Raceme of spikes**
- **Panicle of spikelets**

Figure 9.39
Specialized inflorescence types.

- **Catkin/ament**
- **Spadix**
- **Hypanthodium**
- **Cyathium**
- **Spikelet** (grass)
- **Head/capitulum**
compound receptacle (in multiple fruits), hypanthium, or perianth. The term **pericarp** (rind, in the vernacular) is used for the fruit wall, derived from the mature ovary wall. The pericarp is sometimes divisible into layers: endocarp, mesocarp, and exocarp (see fleshy fruit types, discussed later).

Fruit types are based first on fruit development. The three major fruit developments are **simple** (derived from a single pistil of one flower), **aggregate** (derived from multiple pistils of a single flower, thus having an apocarpous gynoecium), or **multiple** (derived from many coalescent flowers; see later discussion). In aggregate or multiple fruits, the component derived from an individual pistil is called a **unit fruit**. The term **infructescence** may be used to denote a mature inflorescence in fruit.

As mentioned in Chapter 6, the evolution of fruits was correlated with the evolution of carpels and is a significant adaptation for seed dispersal in the angiosperms.

Simple Fruit Types (Figures 9.40, 9.41)
The simple fruit type, as well as unit fruit types of aggregate and multiple fruits, are classified based on a number of criteria, including (1) whether fleshy (succulent) or dry at maturity; (2) whether **indehiscent** (not splitting open at maturity) or **dehiscent** (splitting open along definite pores, slits, or sutures); (3) if dehiscent, the type (e.g., location, shape, and direction) of dehiscence; (4) carpel and locule number, including presence of septa; (5) seed/ovule number; (6) placentation; (7) structure of the pericarp wall; and (8) ovary position.

One class of simple fruits are those that are dry and indehiscent at maturity (Figure 9.40). An **achene** is a one-seeded, dry, indehiscent fruit with seed attached to the pericarp at one point only, such as the unit fruits of sunflowers. An **anthocarp** is a generally simple, dry, indehiscent fruit in which one or more flower parts function as accessory tissues, as in *Pontederia*, in which an accrescent perianth surrounds and fuses to the achene. A **grain** or **caryopsis** is a one-seeded, dry, indehiscent fruit with the seed coat adnate to pericarp wall; grains are the fruit type of all Poaceae (grasses). (The embryo of grain crops is known as **germ**, as in wheat germ; the pericarp and seed coat together are the **bran**.) A **nut** is a one-seeded, dry indehiscent fruit with a hard pericarp, usually derived from a one-loculed ovary. (Nuts and achenes may intergrade; the terms are sometimes used interchangeably.) A **nutlet** is a small nutlike fruit; for example, the mericarps (see schizocarp) of the Boraginaceae and Lamiaceae are termed nutlets. A **samara** is a winged, dry, usually indehiscent fruit, as in *Acer* (maple) and *Ulmus* (elm). A **tryma** is a nut surrounded by an involucre that dehisces at maturity, such as in *Carya* (pecan). Finally, a **utricle** is a small, bladder or inflated, one-seeded, dry fruit; uticles are essentially achenes in which the pericarp is significantly larger than the mature seed, as in *Atriplex* (salt bush).

Other simple fruits are dry and dehiscent at maturity (Figure 9.41). Most dry, dehiscent fruits open by means of a valve, pore, or mericarp (see later discussion). However, some, of various fruit types, are **explosively dehiscent**, i.e., will open with force (by various mechanisms), functioning to eject the seeds.

A general type of dry, dehiscent fruit is the capsule. **Capsules** are generally dry (rarely fleshy), dehiscent fruits derived from compound (multicarpeled) ovaries. Four types of capsules can be recognized based on the type or location of dehiscence. **Loculicidal capsules** have longitudinal lines of dehiscence radially aligned with the locules (or between the placentae, if septa are absent). **Septicidal capsules** have longitudinal lines of dehiscence radially aligned with the ovary septa (or with the placentae, if septa are absent). Both loculicidal and septicidal capsules split into **valves**, a portion of the pericarp wall that splits off, but does not enclose the seed(s); valves may remain attached to the fruit or may fall off, depending on the taxon. A **circumscissile capsule** (also called a **pyxis** or **pyxide**) has a transverse (as opposed to longitudinal) line of dehiscence, typically forming a terminal lid or operculum, as in *Plantago*. A **septifragal** or **valvular**

FIGURE 9.40 Fruits: simple, dry, and indehiscent fruit types. (l.s. = longitudinal section)
capsule is one in which the valves break off from the septa, as in *Ipomoea*, morning glory. **Poricidal capsules** have dehiscence occurring by means of pores, as in *Papaver*, poppy. Other capsules can be defined by the location of dehiscence, such as **acrocial capsules**, dehiscing by means of apical slits, or **basicidal capsules**, dehiscing by means of basal slits, as in *Aristolochia* spp.

Some other dry, dehiscent fruit types are really just specialized capsulelike structures. A **follicle** is a dry, dehiscent fruit derived from one carpel that splits along one suture, such as in the unit fruits of *Magnolia*. A **legume** is a dry, dehiscent fruit derived from one carpel that splits along two longitudinal sutures; legumes are the diagnostic fruit type of the Fabaceae, the legume family. Some legumes retain the vestige of the two, longitudinal sutures, but have become secondarily modified, such as **loments**, which split transversely into one-seeded segments, and **indehiscent legumes**, which don’t split open at all (e.g., peanut). **Silicles** and **siliques** are dry, dehiscent fruits derived from a two-carpeled ovary that dehisces along two sutures but that has a persistent partition, the **replum** (the mature septum, generally with attached seeds). The two fruit types differ is that a silicle is about as broad or broader than long, a sique is longer than broad; both are characteristic fruit types of the Brassicaceae, the mustard family.

Finally, a **schizocarp** is a dry, dehiscent fruit type derived from a two or more loculed compound ovary in which the locules separate at maturity. The individual unit fruits containing each locule can be defined based on other simple fruit types. For example, a **schizocarp of follicles** is a fruit in which the (generally two) carpels of a pistil split at maturity,
each carpel developing into a unit follicle, as in Asclepias, milkweed. A **schizocarp of mericarps** is one in which the carpels of a single ovary split during fruit maturation, each carpel developing into a unit mericarp, as in the Apiaceae. **Mericarps** are portions of the fruit that separate from the ovary as a distinct unit completely enclosing the seed(s); in the Apiaceae the two mericarps are typically attached to one another via a stalklike structure called the **carpophore**. Lastly, a **schizocarp of nutlets** is distinct in that a single ovary becomes lobed during development, each lobe developing at maturity into nutlets, which split off. (Note that nutlets here may be viewed as specialized types of mericarps.) Schizocarpic nutlets are typical of the Boraginaceae and most Lamiaceae, which have gynobasic styles attached between the ovary lobes.

Another class of simple fruits includes those that, at maturity, are fleshy or succulent (also termed baccate or carnose; see Texture) (Figure 9.42). Fleshy fruits are general adaptations for seed dispersal by animals, the succulent pericarp being the reward (with at least some seeds either falling out or passing through the animal’s gut unharmed). Fleshy fruits are generally indehiscent, but may rarely be dehiscent, as in some Yucca spp. The pericarp of some fleshy fruits may be divided into layers. These pericarp wall layers, if present, are termed the **endocarp** (the innermost wall layer), **mesocarp** (the middle wall layer), and **exocarp** (the outermost wall layer); if only two layers are evident, the terms endocarp and exocarp alone are used. A **berry** is the general, unspecialized term for a fruit with a succulent pericarp, as in *Vitis*, grape. A **drupe** is a fruit with a hard, stony endocarp and a fleshy mesocarp, as in *Prunus* (peach, plum, cherry, etc.). The term **pyrene** can be used either for a fleshy fruit in which each of two or more seeds is enclosed by a usually bony-textured endocarp, or pyrene can refer to the seed covered by a hard endocarp unit itself, regardless of the number. A **hesperidium** is a septate fleshy fruit with a thick-skinned, leathery outer pericarp wall and fleshy modified trichomes (juice sacs) arising from the inner walls, as in *Citrus* (orange, lemon, grapefruit, etc.). A **pepo** is a nonseptate fleshy fruit with parietal placentation and a leathery exocarp derived from an inferior ovary, the fruit type of the Cucurbitaceae. A **pome** is a fleshy fruit with a cartilaginous endocarp derived from an inferior ovary, with the bulk of the fleshy tissue derived from the outer, adnate hypanthial tissue, as in *Malus* (apple) and *Pyrus* (pear). Finally, a **pseudodrupe** is a nut surrounded by a fleshy, indehiscent involucrum, as in *Juglans* (walnut); thus, pseudodruses have accessory tissue serving as the fleshy component.

Aggregate Fruit Types (Figure 9.43)

An **aggregate fruit** is one derived from two or more pistils (ovaries) of one flower. In determining the aggregate fruit type, one first identifies the **unit fruit** that corresponds to a single pistil. The aggregate fruit type is then indicated either as aggregate fruit of the particular unit fruits or by adding the suffix -acetum to the unit fruit term.

An **acheneacetum** is an aggregate fruit of achenes. A common example is *Fragaria*, strawberry, in which the achenes are on the surface of accessory tissue, an enlarged, fleshy receptacle. A **drupeacetum** is an aggregate fruit of drupes, as in *Rubus*, raspberry or blackberry. A **follicetum** is an aggregate fruit of follicles, as occurs in *Magnolia*. A **syncarpetum** is an aggregate fruit, typically of berries, in which the unit fruits fuse together, as in *Annona*.

Multiple Fruit Types (Figure 9.44)

A **multiple fruit** is one derived from two or more flowers that coalesce. In determining the multiple fruit type, one may also identify the unit fruit corresponding to a single pistil of a single flower; the fruit type may be indicated as a multiple fruit of the particular unit fruit present.

Some specialized multiple fruit types are as follows. A **bur** is a multiple fruit of achenes or grains surrounded by a prickly involucrum, such as in *Cenchrus*, sandbur (Poaceae), or

FIGURE 9.42 Fruits: simple, fleshy fruit types. (c.s. = cross-section; l.s. = longitudinal section)
Xanthium, cocklebur (Asteraceae). A **sorosis** is a multiple fruit in which the unit fruits are fleshy berries and are laterally fused along a central axis, as in *Ananas*, pineapple. A **syconium** is a multiple fruit in which the unit fruits are small achenes covering the surface of a fleshy, inverted compound receptacle (derived from a hypanthodium), as in *Ficus*, fig.

SEEDS (Figure 9.45)

Aspects of seed morphology can be important systematic characters used in plant classification and identification. Some valuable aspects of seed morphology are size and shape, as well as the color and surface features of the seed coat or testa, the outer protective covering of seed derived
from the integument(s). A seed coat that is fleshy at maturity may be termed a sarcotesta (although this may be confused with an aril, which is separate from the integuments; see later discussion). Also important are the shape, size, and color of the hilum, the scar of attachment of the funiculus on the seed coat, and of the raphe, a ridge on the seed coat formed from an adnate funiculus. Some seeds have an aril (adj. arillate), a fleshy outgrowth of the funiculus, raphe, or integuments (but separate from the integuments) that generally functions in animal seed dispersal. Arils may be characteristic of certain groups, such as the Sapindaceae. Similar to the aril is a caruncle, a fleshy outgrowth at the base of the seed; caruncles also function in animal seed dispersal, such as the carunculate seeds of Viola, violets, with regard to seed dispersal by ants.

Specific details of the embryo, the immature sporophyte, can be studied. These include aspects of the epicotyl (the immature shoot), radicle (the immature root; not to be confused with a radical position; see later discussion), hypocotyl (the transition region between the root and epicotyl), and cotyledon(s) (the first leaf/leaves of the embryo, often functioning in storage of food reserves). Some members of the Poaceae, the grass family, have the epicotyl surrounded by a protective sheath known as the coleoptile, and the radicle surrounded by a protective sheath known as the coleorhiza. Cotyledon aestivation (or ptyxis) can be a valuable systematic feature.

SEED ENDOSPERM TYPE

All angiosperms form endosperm, the food reserve tissue derived from fusion of sperm with the polar nuclei of the female gametophyte. The typical angiosperm seed is albuminous or endospermous, having endosperm as the food reserve in mature seeds. In some angiosperms endosperm develops, but very little to none is deposited in mature seeds, a feature termed exalbuminous or nonendospermous, as in orchid seeds. Finally, some flowering plants are cotylespernous
in which the main food reserve is stored in the cotyledons. Cotylespernum seeds are typical of beans and peas.

SEED GERMINATION TYPE

Seed germination type requires observation of young seedlings during germination and describes positioning of the cotyledons. Hypogeous [cryptocotylar] refers to a type in which the cotyledon(s) remain in the ground during germination. Epigeous [phanerocotylar] has cotyledon(s) elevated above the ground during germination.

GENERAL TERMINOLOGY

Many plant morphological terms can apply to a number of different plant organs (or even to features of other types of organisms). These general terms are defined below.

COLOR

Color is a measure of the wavelengths of light reflected from or transmitted through an object. When describing color, that of each component organ or part should be precisely designated. For example, instead of just stating flowers yellow, describe as corolla and filaments yellow, anthers maroon, pollen white, ovary green. Color itself may be defined in a very precise way, utilizing components of hue, value, and chroma. For precise designation of color, a color chart is invaluable (see Tucker et al. 1991).

Color pattern is a measure of the distribution of colors on an object. Common color pattern terms are maculate, spotted, with small spots on a more or less uniform background; pellicid, having translucent spots or patches; and variegated, with two or more colors occurring in various irregular patterns, generally used for leaves.

SIZE

Of course, measuring the size of plant organs and parts is important in description and identification. Generally, size of parts refers to linear measurements, as in leaf length or corolla width. Metric units should be used throughout.

NUMBER

Number refers to a simple count of parts. Of course, number of parts can be very valuable information in systematic studies. With whorled structures, a distinction is made between cycly and merosity.

Cycly is the number of cycles or whorls of parts. It may simply be designated as a number, or terms may be used such as monocyclic or uniseriate, with a single whorl of parts; dicyclic or biseriate, with two whorls of parts; tricyclic or triseriate, with three whorls of parts; etc. Cycly is most commonly used for parts of the perianth or androecium (see earlier discussion).

Merosity is the number of parts per whorl or cycle. Merosity may also be designated as a simple number, or the terms bimerous, a whorl with two members, trimerous, a whorl with three members, tetramerous, a whorl with four members, pentamerous, a whorl with five members, etc., may be used. Two general merosity terms are isomerous, having the same number of members in different whorls, and anisomerous, having a different number of members in different whorls. Merosity is most commonly designated for floral parts: the calyx, corolla, androecium, and gynoecium (equivalent to carpel number in a syncarpous gynoecium).

TEXTURE

Texture is the internal structural consistency of an object; some texture terms also take color into account. Texture is often described for leaves but can be used for any plant part, such as bracts or flower parts. Texture may be correlated with plant habitat and can be representative of the amount of water storage tissue (as in leaf or stem succulent plants), fibers, vascular bundles, lignin, suberin, or other internal anatomical features of a plant organ. Common texture terms include cartilaginous, with the texture of cartilage; hard and tough but flexible, usually whitish; chartaceous, opaque and of the texture of writing paper; coriaceous, thick and leathery, but somewhat flexible; herbaceous, having a soft or slightly succulent texture; indurate, hardened and inflexible; membranous, thin and somewhat translucent, membranelike; mesophytic, having an intermediate texture, between coriaceous and membranous (typical of many, common leaves); ruminate, unevenly textured, coarsely wrinkled, looking as if chewed (e.g., the endosperm of the Annonaceae); scarious, thin and appearing dry, usually whitish or brownish; succulent [bacate or carnose], fleshy and juicy; and woody, having a hard, woodlike texture.

FUSION

Fusion refers to the apparent joining (or lack of joining) of two or more discrete plant organs or parts. Objects that are fused may have developed separately and then come into contact and joined later. This process, known as congenital fusion, may happen, e.g., when anthers are fused. However, it is more likely that apparently fused objects actually developed from the same meristematic tissue. In this process, the primordia that would normally grow into separate objects are elevated by the more basal, actively growing tissue, a typical example being the fusion of corolla and stamens (epipetal). (See also Perianth Fusion, Stamen Fusion, and Gynoecial Fusion.)
Fusion terms are distinguished as to whether fusion is between like or unlike parts. **Connate** is integral fusion of *like* parts, such that the parts are not easily separable. **Adnate** is a similar integral fusion of *unlike* parts. Thus, saying stamens are connate means that they are fused to one another (e.g., monadelphous, diadelphous, syngenesious, etc.), whereas stamens adnate means they are fused to something else (e.g., to the corolla). Two similar terms to represent partial or incomplete fusion are **coherent**, with *like* parts joined but only superficially and easily separable; and **adherent**, with *unlike* parts joined, but likewise only superficially and easily separable.

Some terms designate lack of fusion. **Distinct** means with *like* parts unfused and separate. **Free** is with *unlike* parts unfused and separate. Lastly, **contiguous** means with parts touching but not connate, adnate, coherent, or adherent. Contiguous plant parts may appear fused, but are only in close contact.

SHAPE
Shape terms may be used for stems, leaves, leaflets or other leaf parts, bracts, sepals, petals, stamens, pistils, trichomes, or other plant parts. Shape is an important feature in plant description and identification. Shape may be classified as solid (three-dimensional) versus plane (two-dimensional). The latter, plane shape, may be divided into overall plane shape, base, margin, apex shape, apical process, and division.

SHAPE: SOLID (THREE-DIMENSIONAL) (Figure 9.46)
Several specific three-dimensional shapes are widely used. **Capitate** is head-shaped, spherical with a short basal stalk. The term for spherical is **globose**; that for half-sphere-shaped is **hemispheric**. An ellipsoid shape with the long axis parallel to the point of attachment is termed **prolate**; one extended perpendicular to the point of attachment is **oblate**. **Clavate** means club-shaped, cylindrical with a gradually tapering, thickened and rounded end. **Discoid** is disk-shaped, and **fusiform** is spindle-shaped, narrowly ellipsoid with two attenuate ends. **Filiform** means threadlike or filamentous, being long, thin, and typically flexuous. **Fistulose** or **fistular** means cylindrical and hollow within. **Lenticular** means lens-shaped, disk-shaped with two convex sides. **Ligulate** is tongue-shaped; flattened and somewhat oblong in shape, as in the ligulate (ray) corollas of some Asteraceae. **Pilate** means with a long cylindrical stalk terminating in a globose or ellipsoid apical thickening, as in pilate-glandular trichomes (see later discussion). **Terete** is the general plant term meaning cylindrical. **Turbinate** means turban or top-shaped, as in turbinate heads or compound receptacles of the Asteraceae.

In addition to these specific terms, other three-dimensional shape terms can be derived from those for two-dimensional shapes (next) by adding the suffix -*oid*; as in ellipsoid, oblanceoloid, ovoid.

SHAPE: PLANE (TWO-DIMENSIONAL) (Figure 9.47)
Overall plane or two-dimensional shape has been standardized (see Systematics Association Committee for Descriptive Terminology, 1962). These shape terms are based, in part, on the ratio of the length to the width of the shape outline, the common length width ratios being >12:1, 12:1 6:1, 6:1 3:1, 2:1 3:2, approximately 6:5, and approximately 1:1. (Note that the bases, apices, and details of the margin can vary in these general planar shape terms; see later discussion.)

Shapes in which the margins (sides) of the object are straight and approximately parallel are **acicular**, needle-like with length : width ratio greater than 12:1; **ensiform**, sword-shaped, with length : width ratio greater than 12:1, e.g., leaves of *Iris* spp.; **strap-shaped**, flat, not needle-like but with length : width ratio greater than 12:1; **elliptic**, length : width ratio between 12:1 and 6:1; **narrowly elliptic**, length : width ratio approximately 6:5; and **oblanceolate**, length : width ratio between 2:1 and 3:2.

Shapes in which the margins are symmetrically curved, with the widest point near the midpoint of the object, are **narrowly elliptic**, length : width ratio between 6:1 and 3:1; **elliptic**, length : width ratio between 2:1 and 3:2; **widely elliptic**, length : width ratio approximately 6:5; and **orbicular** (circular), length : width ratio approximately 1:1.
Shapes in which the margins are curved, with the widest point near the base, are **lanceolate**, length : width ratio between 6:1 and 3:1; **lance-ovate**, length : width ratio between 3:1 and 2:1; **ovate**, length : width ratio between 2:1 and 3:2; **widely ovate**, length : width ratio approximately 6:5; and **very widely ovate**, length : width ratio close to 1.

Shapes in which the margins are curved, with the widest point near the apex, are **oblanceolate**, length : width ratio between 6:1 and 3:1; **oblance-ovate**, length : width ratio between 3:1 and 2:1; **obovate**, length : width ratio between 2:1 and 3:2; **widely obovate**, length : width ratio approximately 6:5; and **very widely obovate**, length : width ratio close to 1.

Three-sided shapes, in which the sides are approximately straight, are **narrowly triangular**, length : width ratio between 6:1 and 3:1; **triangular**, length : width ratio between 2:1 and 3:2; **widely triangular**, length : width ratio approximately 6:5; and **deltate**, length : width ratio approximately 1.

Four-sided, parallelogram-like shapes are **rhombic**, widest near middle, length : width ratio between 2:1 and 3:2; and **trullate**, widest near base; length : width ratio between 2:1 and 3:2.

Finally, some specialized shapes are **cordate (cordiform)**, shaped like an inverted Valentine heart, approximately ovate with a cordate base (see Base); **falcate (falciform)**, scimitar-shaped, lanceolate to linear and curved to one side; **lyrate**,
pinnatifid, but with a large terminal lobe and smaller basal and lateral lobes; **pandurate**, violin-shaped, obovate with the side margins concave; **reniform**, kidney-shaped, wider than long with a rounded apex and reniform base (see Base); **spatulate**, oblong, obovate, or oblanceolate with a long attenuate base; and **subulate**, awl-shaped, approximately narrowly oblong to narrowly triangular.

Base (Figure 9.48)
Base shapes in which the sides are incurved or are approximately straight are **attenuate**, basal margins abruptly incurved (concave), intersection angle less than 45°; **narrowly cuneate**, basal margins approximately straight, intersection angle less than 45°; **cuneate**, basal margins approximately straight, intersection angle 45° - 90°; **obtuse**, basal margins approximately straight, intersection angle greater than 90°; and **truncate**, basal margin cut straight across, intersection angle approximately 180°.

Base shapes in which the sides are curved are **rounded**, basal margins convex, forming a single, smooth arc; **cordate**, with two rounded, basal lobes intersecting at sharp angle, the margins above lobes smoothly rounded; and **reniform**, with two rounded, basal lobes, smoothly concave at intersection of lobes.

Bases in which there are two protruding lobes are **auriculate**, with two rounded, basal lobes, the margins above lobes concave; **hastate**, with two basal lobes, more or less pointed and oriented outwardly, approximately 90° relative to central axis; and **sagittate**, with two basal lobes, more or less pointed and oriented downward, away from the apex.

Finally, some other, specialized base shapes are **oblique**, having an asymmetrical base; **peltate**, with the petiole attached away from the margin, on the underside of the blade, as in *Tropaeolum*; and **sheathing**, having a basal, clasping leaf sheath. (Note: see also Leaf Attachment.)

Apex (Figures 9.49, 9.50)
Apex shape (Figure 9.49) refers to the shape of the apical region below the apical process or vein extension, if present (see later discussion). For a leaf or bract, this refers to the shape of the blade tissue at the apex.

An **acuminate** apex is one with the apical margins abruptly incurved (concave), the apical intersection angle <45°. Two other apex shapes are specialized variants of acuminate: **caudate**, abruptly acuminate into a long, narrowly triangular (tail-like) apical region; and **cuspidate**, abruptly acuminate into a triangular, stiff or sharp apex.

Four apex shapes have straight, not curved, sides. A **narrowly acute** apex is one with the apical margins approximately straight, the intersection angle less than 45°. (Thus, narrowly acute differs from acuminate, caudate, and cuspidate in part by having straight margins.) An **acute** apex also has more or less straight margins, with the intersection angle between 45° and 90°. An **obtuse** apex shape has apical margins approximately straight, the intersection angle between 45° and 90°. A **truncate** apex has the apical margin cut straight across, the angle approximately 180°.

A **rounded** apex has convex apical margins, forming a single, smooth arc. An **oblique** apex has an asymmetrical

FIGURE 9.48 Bases. Note that bottoms of drawings are points of attachment.
shape (see Base). Finally, two terms that describe an apical cleft (differing only in the depth of that cleft) are **emarginate**, having an apical incision cut $\frac{1}{8}$ of the distance to midrib, midvein, or junction of primary veins; and **retuse**, having an apical incision cut up to $\frac{1}{16}$ of the distance to midrib, midvein, or junction of primary veins.

Apical process (Figure 9.50) generally denotes an extension of a vein (typically the midvein); thus, most of the apical process is vascular tissue. A given apical process can be associated with virtually any type of apical shape.

Common apical processes are **apiculate**, with a flexible apical process, length : width ratio >3:1, usually slightly curled; **aristate**, with a stiff apical process, length : width ratio >3:1, usually prolonged and straight; **cirrhose**, with a flexible, greatly curled apical process; **mucronate**, with a stiff, straight apical process, the length : width ratio 1:1 3:1; **mucronulate**, with a stiff, straight apical process, length : width ratio \leq1:1; and **spinose** or **pungent**, with a sharp, stiff, spikelike apical process.

SHAPE COMBINATIONS (Figure 9.51)

The overall shape, base shape, and apex shape can be used in combination to describe a variety of two-dimensional forms. For example, Figure 9.51 shows five leaves, all with a more or less elliptic overall shape, but differing in the shape of the base and apex.

Margin (Figure 9.52)

Margin refers to the sides of an object, usually a leaf, bract, sepal, or petal. Many margin terms describe the presence and morphology of **teeth**, small sharp-pointed or rounded projections or lobes along the sides. Technically, teeth extend no more than $\frac{1}{8}$ of the distance to the midrib, midvein, or (in a palmately lobed leaf) junction of the primary veins; if further than $\frac{1}{8}$ of this distance, then the object is described as **lobed**, **cleft**, **parted**, or **divided** (see Division).

A margin without teeth is termed **entire**. (However, the plane may be divided; see later discussion.) A margin with teeth can be generally termed **toothed**, but more specific terms are preferable. Margin terms describing sawlike teeth, i.e., sharp-pointed and ascending (the lower side longer than the upper) are **serrate**, teeth cut $\frac{1}{16}$ of the distance to midrib, midvein, or junction of primary veins; **serrulate**, diminutive of serrate, teeth cut to $\frac{1}{16}$ of the distance to midrib, midvein, or junction of primary veins; and **doubly serrate**, with large, serrate teeth having along the margin smaller, serrate teeth.

Margin terms describing sharklike teeth that point outward at right angles to the margin outline (the upper and lower sides about the same length) are **dentate**, with teeth cut $\frac{1}{6}$ of the distance to midrib, midvein, or junction of primary veins; and **denticulate**, diminutive of dentate, cut to $\frac{1}{6}$ of the distance to midrib, midvein, or junction of primary veins.

<table>
<thead>
<tr>
<th>Shape</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>truncate</td>
<td>$\geq 180^\circ$</td>
</tr>
<tr>
<td>emarginate</td>
<td>narrow</td>
</tr>
<tr>
<td>narrowly acute</td>
<td>$< 45^\circ$</td>
</tr>
<tr>
<td>cuspidate</td>
<td>$< 45^\circ$</td>
</tr>
<tr>
<td>acuminate</td>
<td>$< 45^\circ$</td>
</tr>
<tr>
<td>caudate</td>
<td>$< 45^\circ$</td>
</tr>
</tbody>
</table>

FIGURE 9.49 Apices. Note that bottoms of drawings are basal.

- **FIGURE 9.50** Apical processes.
Margin terms describing rounded to obtuse teeth, that point outward at right angles or shallowly ascend, are **crenate**, with teeth cut $\frac{1}{16}$ to $\frac{1}{8}$ of the distance to midrib, midvein, or junction of primary veins; and **crenulate**, diminutive of crenate, teeth cut to $\frac{1}{64}$ of the distance to midrib, midvein, or junction of primary veins.

The relative size and density of teeth may also be described, with terms such as **coarsely**, to describe large and uneven teeth (e.g., coarsely crenate), **finely**, to describe relatively small, evenly spaced teeth (e.g., finely denticulate), or **sparsely**, to describe teeth that are few in number or spaced well apart (e.g., sparsely serrate).

Margins with teeth bearing sharp, stiff, spinelike processes are termed **spinose**. **Praemorse** describes a margin having a jagged, chewed appearance, as in some palms.

Terms describing margins with trichomes (plant hairs; see later discussion) are **ciliate**, with trichomes protruding from margins, and **ciliolate**, with minute trichomes protruding from margins, minutely ciliate. The term **eciliate** describes a margin without trichomes, regardless of presence or absence of teeth. Finally, the term **filiferous** refers to margins bearing coarse, fiberlike structures (e.g., fibrovascular bundles, as in the leaf margins of some *Yucca* species).

(Terms that are often treated as features of margin, but treated here as longitudinal posture, are **involute**, with margins rolled upward, and **revolute**, with margins rolled under; see later discussion.)

Division (Figure 9.53)

Division is a shape character referring to the presence and characteristics of **sinuses** (incisions), the sinuses defining **lobes** or **segments**. Division character states are sometimes treated as features of **margin**.

Four division terms that precisely denote the degree of division are: **lobed**, sinuses extending $\frac{1}{8}$ to $\frac{1}{4}$ of the distance to the midrib, midvein, or vein junction; **cleft**, sinuses extending $\frac{1}{4}$ to $\frac{1}{2}$ of the distance to the midrib, midvein, or vein junction; **parted**, sinuses extending $\frac{1}{2}$ to $\frac{3}{4}$ of the distance to the midrib,
midvein, or vein junction; and divided, sinuses extending \(\frac{1}{2} \) to almost to the midrib, midvein, or vein junction.

Lobed, cleft, parted, and divided should be prefaced by terms that denote further the type of division: pinnately (e.g., pinnately lobed or pinnately cleft) to specify a division along a central axis (typically the midvein), and palmately (e.g., palmately divided) to specify a division relative to a point (typically the basal junction of major veins). (Note that the terms lobed and divided are sometimes used generally, for any extent of division; as used here, these terms refer to specific degrees of division.)

Some useful, general terms that indicate the general form, but not the extent, of division are pinnatifid, pinnately lobed to divided; pinnatisect, pinnately divided, almost into discrete leaflets but confluent at the midrib; bipinnatifid, bipinnately lobed to divided; palmatifid, palmately lobed to divided; and palmatisect, palmately divided, almost into discrete leaflets but confluent at the lobe bases. Decompound denotes deeply divided into numerous segments such that leaflets are not clearly defined. (Note that decompound can also be used for a multiply compound leaf; see Leaf Type.)

Some division terms refer specifically to the shape of the sinuses and lobes. Dissected means divided into very fine, often indistinct segments. Bifid means 2-lobed to 2-divided, especially at the apex. Incised means the sinuses are sharp and deeply cut, usually jaggedly. Sinuate, in contrast, refers to sinuses being shallow and smooth, wavy in a horizontal plane (compare with undulate, under Longitudinal Posture).

FIGURE 9.53 Division.
Lacerate refers to sinuses that are irregularly cut, the lobes appearing torn. **Laciniate** denotes lobes that are cut into narrow, ribbonlike segments. **Pectinate** means comblike, being pinnately divided with close, very narrow lobes.

DISPOSITION

Disposition refers to the relative placement of objects, e.g., of plant organs or parts of plant organs. Disposition is logically broken down into position, arrangement, orientation, and posture.

Position (Figure 9.54)

Position is the placement of parts relative to other, unlike parts. Some general position terms, which may apply to leaves, bracts, and flower parts, have to do with development. **Adaxial** (also known as **ventral**) corresponds to the upper or inner surface of an organ. Adaxial literally means toward the axis; in early development of the primordia of leaves or floral parts, the surface that is initially facing toward or nearest the axis will typically become the upper surface. Confusion arises when the organ in question bends downward or twists later in development; in such cases, it is clearer to state that a particular surface is **developmentally adaxial**. Correspondingly, **abaxial** (also known as **dorsal**) corresponds to the lower or outer surface of an organ, i.e., the surface most distant from the axis early in development. (Note that **ventral** and **dorsal** are used in an opposite sense to that for animals; for this reason, these terms are best avoided in plant descriptions, although they are still frequently used to refer to certain inflorescence, floral, or fruit features.)

With respect to a horizontally oriented structure, **posterior** refers to the upper lobe or part; **anterior** refers to the lower lobe or part. **Posterior** and **anterior** are widely used for horizontally oriented floral parts and correspond to **adaxial** and **abaxial**, respectively. **Basal** or **radical** (not to be confused with the **radicle** of a seed embryo) indicates at or near the bottom or base of a structure. **Proximal** is similar to basal or radical and means near the point of origin or attachment, as in the point of attachment of a leaf. **Apical** or **terminal** means at or near the top, tip, or end of a structure. **Distal** is similar to **apical** or **terminal** and means away from the point of origin or attachment, e.g., the apex of a structure. Proximal and distal always refer to the point of attachment of an organ and are especially valuable for structures that loop around, in which the original base and apex are obscured. Some other general position terms are **lateral** or **axillary**, on the side of a structure or at the **axil** (the adaxial region of a node), as in a lateral or axillary bud; **central**, at or near the middle or middle plane of a structure; and **circumferential**, at or near the circumference of a rounded structure.

Some position terms are used primarily to describe the position of structures relative to the stem. In this sense, the general terms **radical** or **basal** mean positioned at the base of the stem; **cauline** means positioned along the length of the stem (as in cauline leaves or flowers); and **acrocaulis** means positioned at the apex of the stem.

Arrangement (Figure 9.55)

Arrangement is the placement of parts with respect to similar, like parts. Some arrangement terms, used primarily for leaves, bracts, or flower parts, describe the number of organs per node. **Alternate** refers to one leaf or other structure per node. Subcategories of alternate are **monistichous**, alternate with points of attachment in one, vertical row/rank, e.g., as in the Costaceae; **distichous**, alternate, with points of attachment in two vertical rows/ranks, e.g., as in the grasses...
(Poaceae); **tristichous**, alternate, with points of attachment in three rows/ranks, as in the sedges (Cyperaceae); and **spiral** (also termed **polystichous**), alternate, with points of attachment in more than three rows/ranks.

Opposite describes two leaves or other structures per node, i.e., on opposite sides of a stem or central axis. Two subcategories of opposite are **decussate**, opposite leaves or other structures at right angles to preceding pair; and **nondecussate**, opposite leaves or other structures not at right angles to preceding pair. Most leaves, if opposite, are decussate; in fact, nondecussate leaves may be superficially the result of stem twisting. Leaflets of a compound leaf are typically nondecussate.

The term **subopposite** refers to two leaves or other structures on opposite sides of stem or central axis but at different nodes slightly displaced relative to one another. **Whorled** or **verticillate** means having three or more leaves or other structures per node.

More arrangement terms denote more specialized conditions. **Equitant** refers to leaves with overlapping bases, usually sharply folded along the midrib. **Fasciculate** refers to leaves or other structures in a fascicle or short shoot, a cluster with short internodes. **Imbricate** is a general term for leaves or other structures overlapping. **Valvate** means the sides are enrolled, so that the margins touch. **Rosulate** means in a **rosette**, an arrangement in which parts (usually leaves) radiate from a central point at ground level (e.g., the leaves of *Taraxacum officinale*, dandelion). **Secund** or **unilateral** refers generally to flowers, inflorescences, or other structures on one side of the axis, often due to twisting of stalks.

Orientation (Figure 9.56)

Orientation denotes the angle of a structure relative to a central (often vertical) axis. Precise orientation terms utilize ranges of angles in degrees, \(0^{\circ} \leq 15^{\circ} \) or \(15^{\circ} < 45^{\circ}\), from the upper axis, the horizontal axis, or the lower axis. These terms are (from top to bottom): **appressed**, pressed closely to axis upward, with divergence angle of \(0^{\circ} \) from upper axis; **ascending**, directed upward, with divergence angle of \(15^{\circ} \leq 45^{\circ}\) from upper axis; **inclined**, directed upward, with divergence angle of \(15^{\circ} \leq 45^{\circ}\) from horizontal axis; **divergent** or **horizontal**, more or less horizontally spreading with divergence angle of \(\leq 15^{\circ}\) up or down from the horizontal axis (also termed **divaricate** or **patent**); **reclined** or **reclinate**, directed downward, with divergence angle of \(15^{\circ} \leq 45^{\circ}\) from horizontal axis; **descending**, directed downward, with divergence angle of \(15^{\circ} \leq 45^{\circ}\) from lower axis; and **depressed**,
pressed closely to axis downward, with divergence angle of 0° 15' from lower axis.

Other orientation terms are more general. **Antrorse** means bent or directed upward, usually referring to small appendages; **retrorse** means bent or directed downward. **Connivent** means convergent apically without fusion, as in anthers that come together in a flower (e.g., *Solanum*). **Erect** is pointing upward (usually without reference to an axis). **Pendant** or **pendulous** means hanging downward loosely or freely. **Deflexed** means bent abruptly downward, and **reflexed** means bent or turned downward.

Posture (Figure 9.57)

Posture refers to the placement relative to a flat plane. It may be further classified as transverse, longitudinal, twisting/bending posture, or ptyxis/vernation.

Transverse posture is the placement of the *tip* (distal end) of an object with respect to a starting plane. Transverse posture terms are **recurved**, tip gradually curved outward or downward (abaxially); **cernuous**, tip *drooping* downward (abaxially); **squarrose**, sharply curved downward or outward (abaxially) near the apex, as phyllaries of some Asteraceae; **incurved**, tip gradually curved inward or upward (adaxially); **plane** or **straight**, flat, without vertical curves or bends; and **flexuous**, the central axis and tip curved up and down.

Longitudinal posture is the placement of the *margins* of an object with respect to a starting plane. (Note: see also Aestivation.) Common longitudinal posture terms are **conduplicate**, longitudinally folded at central axis, with adjacent adaxial sides facing one another; **revolute**, with margins or outer portion of sides rolled outward or downward over the abaxial surface; **involute**, with margins or outer portion of sides rolled inward or upward over adaxial surface; **cup-shaped**, concave-convex along entire surface (may be abaxially or adaxially concave); **PLICATE**, pleated, with a series of longitudinal folds (subcategories of plicate used, e.g., for palm leaves are **induplicate**, plicate with adjacent adaxial sides facing one another, V-shaped in cross-section; or **reduplicate**, plicate with adjacent abaxial sides facing one another, Λ-shaped in cross-section); and **undulate** or **repand**, the margins wavy in a vertical plane (compare *sinuate*, under Division).

Twisting/bending posture refers to the posture of a twisting or bending object relative to a starting plane. **Resupinate** means inverted or twisted 180°, as in leaves of Alstroemeriaeae or ovaries of most Orchidaceae flowers. **Geniculate** is having a zig-zag posture, as in the inflorescence rachis of some grasses. **Twining** is twisted around a central axis, as in many vines. The stems of twining vines may be **dextrorse**, twining helically like a typical, right-handed screw, as in some Convolvulaceae; or **sinistrorse**, twining helically like a left-handed screw, as in some Caprifoliaceae.

Ptyxis, also termed **vernation**, refers to the posture of embryonic structures, such as cotyledons within a seed or immature leaves or leaf parts. Many of the same terms used for posture of mature organs can be used to designate ptyxis. Some specialized ptyxis terms include **circinate**, with the blade (including rachis and rachillae, if present) coiled from apex to base, as in young fern and cycad leaves (see Chapters 4, 5); and **supervolute**, with one half of a simple leaf coiled tightly around the midrib, the other half coiled (in the opposite direction) around the first half, as in members of the Zingiberales (see Chapter 7).
SURFACE
Numerous terms describe the surface of organs or plant parts. Surface features can be broken down into three characters: configuration, epidermal excrescence, and vestiture. Aspects of all three characters may be described as surface features. In addition, trichome type and bristle type may be described as surface features.

Configuration (Figure 9.58)
Configuration refers to the gross surface patterns of the epidermal cells other than that caused by venation (see Leaf Venation, earlier), or excrescences (next). Configuration terms include canaliculate, longitudinally grooved, usually in relation to petioles or midribs; fenestrate, having windowlike holes in the surface (e.g., Monstera deliciosa, Araceae); punctate, covered with minute, pitlike depressions; rugose or bullate, covered with coarse reticulate lines, usually with raised blisterlike areas between; ruminate, unevenly textured, coarsely wrinkled, looking as if chewed (also used for texture); smooth or plane, with a smooth configuration; striate, with fine longitudinal lines; wrinkled, with irregular, fine lines or deformations.

Epidermal Excrescence (Figure 9.58)
Epidermal excrescence refers to surface patterns caused by secretions or structural outgrowths of the epidermis (other than trichomes or bristles). Terms that denote epidermal

FIGURE 9.57 Posture. (c.s. = cross-section)
secretions are glandular, covered with minute, blackish to translucent glands; glaucous, covered with a smooth, usually whitish, waxy coating (that can be rubbed off with touch); shining (nitid or laevigate), appearing lustrous or polished; and viscid or glutinous, having a shiny, sticky surface. Terms that denote epidermal outgrowths are aculeate or prickly, with prickles, sharp nonspine, nonthorn appendages; farinaceous (scurfy or granular), finely mealy, covered with small granules; muricate, having coarse, radially elongate, rounded protuberances; papillate, tuberculate, or verrucate, having minute, rounded protuberances; and scabrous, having a rough surface, like that of sandpaper (also treated under Vestiture).

Vestiture (Figure 9.58)

Vestiture denotes trichome cover. Trichomes are surface hair-like structures that may function by protecting the plant from herbivory, reflecting visible and UV light, and inhibiting water transpiration. Vestiture terms encompass a combination of trichome type, length, strength, shape, density, and color.
Glabrous is the term meaning without trichomes at all. (A glabrous surface is often, but not necessarily, smooth or plane, which is used to denote a flat configuration.) Subglabrous means nearly glabrous (with just a few, scattered trichomes) and glabrate means the same or can mean becoming glabrous with age by loss of trichomes.

Bearded means with a single tuft or patch of trichomes arising from the surface of an object, e.g., from a petal. Comose is similar, but refers to an apical tuft of trichomes, e.g., from a seed. Two terms that are also treated under margin are ciliate, with conspicuous marginal trichomes, and ciliolate, with tiny or small marginal trichomes.

Pubescent is a common vestiture type meaning with more or less straight, short, soft, somewhat scattered, slender trichomes. (Note that pubescent can be used as a general term, meaning simply having trichomes.) Puberulent means minutely pubescent, i.e., pubescent but with very short or sparse (scattered) trichomes. Canescent or incanous means whitish-pubescent, covered with dense, fine grayish to white trichomes. Tomentose means covered with very dense, interwoven trichomes. Tomentulose is minutely tomentose, i.e., tomentose but with very short trichomes.

Villous or lanate means covered with long, soft, crooked trichomes; although lanate has shorter trichomes than villous, these terms intergrade and are probably best treated synonymously. Pilose means having soft, straight to slightly shaggy trichomes, generally at right angles to the surface. Arachnose or arachnoid means having trichomes forming a dense, cobwebby mass (but which resemble villous and can be confused with that type).

Scabrous means having rough trichomes, like that of sandpaper; scaberulous means minutely scabrous. (Scabrous is also treated under Epidermal Excrescence, because the scabrosity can be caused by either outgrowths or trichomes.) Hirsute means having long, rather stiff trichomes (but not quite skin-penetrating), whereas hispid means having very long, stiff trichomes, often capable of penetrating skin. The term urent means having hispid trichomes that are stinging, as in Urtica, stinging nettle.

Strigose is covered with dense, coarse, bent and mostly flat trichomes often with a bulbous base. Strigulose is minutely strigose, i.e., with the same morphology but a much smaller size. Sericeous describes long, appressed trichomes that have a silky appearance or sheen.

Floccose means having dense trichomes that are in several patches or tufts. Lepidote means covered with scales or scalelike structures (intergrading with an epidermal excrescence character).

Trichome Type (Figure 9.59)
Trichome type refers to the specific, microscopic structure of individual trichomes and may come under the realm of plant anatomy (see Chapter 10) and constitute a systematically valuable character. Although trichome type and vestiture may be correlated, vestiture refers to the gross appearance of masses of trichome. For example, a tomentose vestiture could have any number of trichome types, e.g., dendritic, stellate, multiseriate tapering, or uniseriate tapering.

Trichome type may assess the number of cells per trichome. A unicellular trichome consists of a single cell and is

![Figure 9.59 Trichome and bristle types.](image-url)
usually quite small. A multacellular trichome contains two or more cells. Multicellular trichomes can be either uniseriate, having a single vertical row of cells, or multiseriate, having more than one vertical row of cells. The number of cell layers in a trichome can also be diagnostic.

Many trichomes are diagnosed based on their general shape and morphology. Tapering trichomes are those ending in a sharp apex. Malpighian or two-armed trichomes are those with two arms arising from a common base. (Malpighian is named after the family Malpighiaceae, where this trichome type is common.) Glandular trichomes are secretory or excretory trichomes, usually having an apical glandular cell. Glandular trichomes can be pilate-glandular, with a glandular cell atop an elongate basal stalk, or capitate-glandular, with a glandular cell having a very short or no basal stalk. Branched trichomes include two types: stellate, which are star-shaped trichomes having several arms arising from a common base (either stalked or sessile); and dendritic, which are treelike trichomes with multiple lateral branches. Peltate trichomes are those with a disk-shaped apical portion atop a peltately attached stalk.

Trichomes may also be delimited based on their position and function. For example, trichomes found in the axils of typically sheathing leaves, which may function in secreting protective mucilage, are termed intravaginal (or axillary) squamules (found, e.g., in many Alismatales).

Bristles are similar to trichomes but are generally much stouter (although bristles and trichomes may intergrade). Some so-called bristles are actually modified leaves, such as the glochidia of cacti. Major bristle types include barbed or barbellate, with minute, lateral, sharp appendages (barbs, which may be antrorse or retrorse in orientation) arising along the entire bristle surface; plumose, featherlike, covered with fine, elongate, ciliate appendages; uncinate or hooked, with an apical hooklike structure; and glochidiate, with apical, clustered barblike structures.

SYMMETRY
Although symmetry is usually used with reference to flowers (see Flower Symmetry), it can be a general feature to describe any plant organ or part. Symmetry is defined by the presence and number of mirror-image planes of symmetry. Zygomorphic or bilateral symmetry (also termed irregular) is that with one plane of symmetry. Biradial symmetry means having two (and only two) planes of symmetry. Actinomorphic or radial symmetry (also termed regular) is that with three or more planes of symmetry. Asymmetric describes a structure lacking any plane of symmetry. (Note that the distinction between biradial and radial symmetry is sometimes not recognized, both being termed radial symmetry or actinomorphy; however, that distinction is often useful and is recognized here.)

TEMPORAL PHENOMENA
Temporal phenomena deal with any consideration specifically time-based. These are logically broken down into duration, maturation, and periodicity.

Duration refers to the length of life of a plant or part of a plant. Plant duration describes the length of life of an entire plant: annual, biennial, and perennial. An annual is a plant living 1 year or less, typically living for one growing season within the year. Annual plants are herbs (although herbs can be either annuals, biennials, or perennials). Annuals can usually be detected in that they lack an underground rootstock and show no evidence of growth from a previous season (e.g., there are no thickened, woody stems, dormant buds, or old fruits). Biennials are plants living 2 years (or two seasons), usually flowering in the second year. Biennial plants typically form a basal rosette of leaves during the first year and bolt (grow an elongate inflorescence stalk) in the second year. Biennials may be hard to detect without actually observing plants over two seasons. A perennial is a plant living more than 2 years. Perennials include herbs with rootstocks, shrubs, lianas, and trees.

Other duration terms describe plant parts, e.g., of leaves (in which the term leaf duration is used). Evergreen means persistent two or more growing seasons, as in the leaves of most conifers. Deciduous means parts persistent for one growing season, then falling off, as the leaves of Acer, maples. (Note that evergreen and deciduous can refer to the plants themselves, as in eastern deciduous forest.) Caducous means dropping off very early (compared with what is typical) and usually applies to floral parts. Marcescent means ephemeral but with persistent remains, withering but persistent, such as corollas that remain attached during fruit formation. Accrescent refers to plant parts that persist and continue to grow beyond what is normal or typical, as with the calyx of Physalis (Solanaceae), which expands considerably and functions as an accessory part enclosing the fruit. Finally, monocarpic refers to a plant that flowers and fruits only once, then dies; the plant itself can be an annual or perennial, but the term is usually used only for perennials (because all annuals are, by definition, monocarpic).

Maturation refers to the relative time of development of plant parts. The term anthesis refers to the time of flowering, when flowers open with parts available for pollination. Protandrous (meaning male first) refers to stamens or anthers developing before the carpels or stigma. Protagynous (meaning female first) refers to the stigma or carpels maturing before the stamens or anthers. Both protandry and protogyny are general mechanisms to promote outcrossing within a species (see Chapter 13).
Periodicity refers to periodically repeating phenomena. Terms that refer to the time of day are diurnal (during the day), nocturnal (at night), matutinal (in the morning), and vespertine (in the evening). These terms are usually used with respect to when flowers of a given taxon open. Other terms correspond to seasons, such as vernal (appearing in spring), aestival (appearing in summer), or autumnal (appearing in fall).

REVIEW QUESTIONS

PLANT STRUCTURE: GENERAL, ROOTS, AND STEMS/SHOOTS
1. Name the major plant organs.
2. What are the continuously actively dividing cell regions of a plant called and where are they located?
3. What is meant by plant habit and what are the types of plant habit?
4. Name various types of plant habitat.
5. What is the function of roots?
6. What are the root cap, root hair, adventitious root, and lateral root?
7. What is the difference between a taproot and a fibrous root system?
8. What is a shoot?
9. What is a bud, where do buds typically develop, and what do they develop into?
10. Define node, internode.
11. What is the difference between a bulb, corm, and tuber? between a rhizome, caudex, and stolon (runner)?
12. What is the difference between a caudiciform stem and a pachycaul?
13. What is thorn and how does it differ from a spine or prickle?
15. Name the difference between acaulescent and caulescent; between prostrate, repent, and decumbent. What is the corresponding character for all of these?
16. What is the difference between monopodial and sympodial?
17. Draw a typical twig and label terminal bud, axillary bud, leaf scar, vascular bundle scars, lenticels.
18. What is the difference between an axillary, terminal, and pseudoterminal bud? a collateral and superposed bud?

PLANT STRUCTURE: LEAVES
19. What is the difference between a bract and a scale?
20. Name some specialized modifications of leaves associated with flowers or inflorescences.
21. From what is a phyllode derived?
22. What is a spine and what are the three major types?
23. Name three modifications of leaves found in carnivorous plants.
24. Name five leaf types.
25. What are the basic components of a simple leaf?
27. What is the difference between unipinnate and paripinnate? trifoliolate and palmate? geminate-pinnate and bipinnately compound? unifoliolate and simple?
28. Name four different types of leaf attachment.
29. What is the difference between parallel and penni-parallel? between pinnate-netted, palmate-netted, and ternate-netted?
30. Name four major types of specialized venation types.

PLANT STRUCTURE: FLOWERS AND PERIANTH
31. Draw a typical flower and label all the parts, including collective terms.
32. Name the two basic types of flower sex.
33. Name the three basic types of plant sex. What is the corresponding type of flower sex for each?
34. Draw a zygomorphic corolla and label anterior lobe(s) and posterior lobe(s).
35. What is the difference between radial and biradial symmetry?
36. What is the difference between protandrous and protogynous? between centrifugal and centripetal?

37. What is a claw, corona, hypanthium, limb, lip, lobe, spur, throat, tube?

38. What are the two major types of perianth arrangement?

39. What is perianth cycly?

40. What is the difference between dichlamydeous and homochlamydeous?

41. Name two types of calyx fusion; of corolla fusion.

42. Define or draw the following perianth types: bilabiate, campanulate, rotate, salverform, urceolate.

43. Draw and label a petal with a claw and limb. What is the name of this perianth type?

44. Define convolute, imbricate, and valvate. What is the corresponding character?

PLANT STRUCTURE: ANDROECIUM

45. Name the two parts of a stamen; the two parts of an anther.

46. What is the difference between stamen arrangement and stamen position?

47. What is the difference between didymous, didynamous, and tetradynamous? What is the character?

48. What is the difference between antipetalous, antisepalous, and diplostemonous?

49. Do the above terms refer to stamen arrangement or to stamen position?

50. What is the difference between exserted and inserted? What is the character?

51. What is the term for fusion of stamens to the corolla?

52. What is the term for fusion of all the filaments together?

53. What is the term for fusion of the filaments into two groups?

54. What is a monothecal anther?

55. Name three types of anther attachment.

56. Name two types of anther dehiscence with regard to (a) the shape of the opening; (b) the direction of the opening.

57. What is a nectary and what are some types of nectaries?

PLANT STRUCTURE: GYNOECIUM

58. What is the difference between a gynoecium, carpel, and pistil?

59. What are the three parts of a pistil? What is a locule?

60. Name the two types of gynoecial fusion.

61. How is carpel number determined?

62. Name and draw the two basic types of ovary attachment and ovary position.

63. What does perianth/androecial position mean? Name and distinguish between four of these.

64. What is the difference between axile and parietal placentation? between basal and apical?

65. What is a gynobasic style?

PLANT STRUCTURE: INFLORESCENCES

66. What are two types of specialized bracts associated with inflorescences?

67. What is the difference between a pedicel and a peduncle?

68. Define compound receptacle.

69. What are three types of inflorescence position?

70. What is the difference between determinate and indeterminate inflorescence development?

71. What is a dichasium?

72. How does a monochasium differ and what are two major types?

73. What is a ray in an inflorescence?

74. What is the difference between a raceme and a spike? What is the inflorescence development of both?

75. What is the difference between a raceme and a panicle?

76. What is the difference between an umbel and a corymb? between an umbel and compound umbel?

77. What is the difference between a thyrse and verticillaster?

78. Name a taxonomic group characterized by a compound umbel; cyathium; head; hypanthodium; spadix.
PLANT STRUCTURE: FRUITS
79. What are the differences between simple, aggregate, and multiple fruits?
80. What features are used to define and classify fruit types?
81. What is a schizocarp? a mericarp? a valve?
82. What are the similarities and differences between an achene grain (caryopsis) and a nut?
83. What are the differences between loculididal, septicidal, and circumscissile capsules?
84. What are the similarities and differences between a follicle, legume, and silique?
85. What is the difference between a siliqua and a siliqua? What family do they occur in?
86. What is the name given to a winged fruit?
87. How does a berry differ from a drupe or a hesperidium?
88. What is the placentation, ovary position, and texture of a pepo? In what family are they found?
89. A pome consists of much outer fleshy tissue derived from what? What is the ovary position? What is an example of a plant with pomes?
90. Name two types of aggregate fruits.
91. What types of fruits are burs, soroses, and syconia?
92. Name two types of seed based on endosperm type; seed germination type.

GENERAL TERMINOLOGY: COLOR, NUMBER, TEXTURE, AND FUSION
93. What is the difference between color and color pattern? Name and define a color pattern character state.
94. What is the difference between cycly and merosity? Give an example of each.
95. What is the difference between coriaceous and indurate? between scarious and succulent? What is the character for these?
96. What is the difference between connate and distinct? between adnate and free? between adherent and coherent? What is the character for these?

GENERAL TERMINOLOGY: SHAPE
97. Define the following terms for three-dimensional shapes: capitate, clavate, filiform, pilate, terete.
98. What is the difference between lanceolate, ovate, and lance-ovate? between lanceolate and oblanceolate? (Draw.)
99. What is the difference between ovate and obovate? between oblanceolate and spatulate? (Draw.)
100. What is the difference between elliptic and oblong? between oblong and linear? (Draw.)
101. What is the difference between hastate and sagittate? (Draw.)
102. What does peltate mean?
104. What is the difference between entire, crenate, serrate, and dentate? What character do these refer to?
105. What is the difference between crenate and crenulate? serrate and serrulate? dentate and denticulate?
106. Define ciliate, ciliolate, filiferous.
107. What is the difference between rounded and truncate (apex and base)?
108. What do pinnatifid and bipinnatifid mean?
109. Draw the following: (a) simple, sessile, ovate, acute, crenate leaf; (b) simple, petiolate, oblanceolate, serrulate leaf; (c) pinnately compound, petiolate, stipulate and stipellate leaf with sessile, entire, narrowly elliptic, cuneate, acuminate leaflets; (d) trifoliolate (ternately compound), petiolate leaf with petiolulate obovate, narrowly cuneate, apically obtuse, mucronate leaflets; (e) simple, lanceolate, mucronate, sagittate, dentate leaf.
CHAPTER 9 PLANT MORPHOLOGY

GENERAL TERMINOLOGY: DISPOSITION
115. What is the difference between position and arrangement?
116. What is the difference between abaxial (dorsal) and adaxial (ventral)?
117. What is the difference between proximal and distal?
118. What does radical mean?
119. Name the three basic (general) types of arrangement (e.g., for leaves).
120. What is the difference between alternate and distichous? between opposite and decussate?
121. Describe the difference between equitant, imbricate, secund, valvate, and rosulate.
122. Define orientation and name three types (character states).
123. What is the difference between transverse posture and longitudinal posture? Give two examples of each.

GENERAL TERMINOLOGY: SURFACE, SYMMETRY, TEMPORAL PHENOMENA
125. Surface refers to three features: configuration, epidermal excrescence, and vestiture. How do they differ?
126. Define rugose. For what character is this a character state?
127. What is the difference between glaucous, scabrous, and viscid? For what character are these character states?
128. What is the difference between hirsute, pubescent, and tomentose? For what character are these character states?
129. What do stellate, pilate, and uniseriate refer to? For what character are these character states?
130. What is the difference between actinomorphic (radial) and zygomorphic (bilateral)? For what character are these character states?
131. What is the difference between annual, biennial, and perennial? For what character are these character states?
132. What is the difference between caducous and accrescent? For what character are these character states?
133. What is the difference between protandrous and protogynous?

EXERCISES
1. Select a plant species and thoroughly describe its morphology using the comprehensive character list of Appendix 1. Fill in every applicable character with a character state, noting that several characters will not apply to your taxon. Try to examine several populations, individuals, or plant organs/parts and note the range of variation. For characters that are variable, either list the range of variation (e.g., Lea ves oblaceolate to narrowly elliptic, crenate to dentate . . .) or list the most common morphology and in brackets list the exceptions (e.g., Lea ves trifoliolate [rarely pinnate with 5 leaflets] or Lea ves 4 7 [2.5 10] cm long . . .).
2. From the character listing of Appendix 1, write a detailed description, using the family descriptions of Chapters 7 and 8 as a model. Note to list only the plant organ or plant part, not the character. For example, the description format should be Leaves are opposite, simple, and evergreen and not Leaf arrangement is opposite, leaf type is simple, leaf duration is evergreen. (Note that a word processing merge file is often useful for this.) Edit this description such that it reads smoothly and avoids repetition.
3. Make detailed drawings, using a hard (2H or 3H) pencil, of various parts of your species, such as leaves, inflorescence, whole flower, flower in longitudinal section, anther close-up, ovary close-up, ovary cross- or longitudinal section, fruit, and seed. Be sure to include a scale bar, in metric measurements, beside each drawing. Make copies or tracings of these drawings and trace the outlines with a fine, black ink rapidograph. Attempt to do some fine stippling in various regions to show venation, shading, and depth. (See Appendix 2.)
4. Compare your description and drawings with that of standard references, including floras and monographic treatments. Note that yours is probably much more detailed and comprehensive than that of most floras, but perhaps comparable in detail to a monograph.

REFERENCES FOR FURTHER STUDY
Plant anatomy is the study of the tissue and cell structure of plant organs. The term *anatomy*, as applied to plants, generally deals with structures that are observed under a high-powered light microscope or electron microscope. (In zoology, the term *anatomy* refers to the study of internal organs; histology is the study of cells and tissues of animals.) Plant physiology is the study of metabolic processes in plants. A limited explanation of plant physiology is presented, dealing specifically with photosynthesis. Physiology and anatomy are tightly correlated, as cell and tissue structure has changed with respect to the evolution of novel functional mechanisms.

The following is a summary of basic plant anatomy and physiology, with a focus on the sporophytes of vascular plants. Plant anatomical and physiological features may provide valuable characters and character states in assessing homology and elucidating phylogenetic relationships among plants. Moreover, the evolution of anatomical and physiological characters is of great interest, as many of these features are of significant adaptive value and have been among the major selective pressures in plant evolution.

PLANT CELL STRUCTURE

In the 1600s the English biologist Robert Hook first coined the term *cell* after observing that plant tissues, such as cork, are divided into little cavities separated by walls. Since then, the *cell theory* has been perfected, providing a unifying theme in biology, stating the following. First, all life is composed of one or more cells. Second, cells arise only from preexisting cells, occurring either through cell division (meiosis or mitosis) or cell fusion (e.g., fertilization of egg and sperm). Third, cells are the units of metabolic processes; thus, each cell contains the necessary chemical compounds and cellular components to carry on the biosynthetic pathways needed for basic physiological processes. Fourth, each cell contains a set of DNA, the hereditary material that is transferred from one cell to another that codes for the structural and functional features of the organism.

Plant cells are bounded by a *plasma membrane* that is composed of a phospholipid bilayer with embedded proteins. The membrane functions as the boundary of the cell, to contain the cellular components. It also functions in cell recognition and in transport of compounds. Everything inside the plasma membrane is called the *protoplasm*. The protoplasm contains *organelles*, which carry on some vital metabolic function, and *ergastic substances*, which do not function in metabolism and have a variety of functions such as storage, waste secretion, and protection.

Cellular organelles include the following (Figure 10.1): (1) a *nucleus*, which is double-membrane bound and contains DNA, the hereditary material of the cell (Note: Everything...
inside the plasma membrane but not including the nucleus is called **cytoplasm**; (2) **mitochondria** (singular, **mitochondrion**), which are double membrane-bound, with invaginations called **cristae** that function in the electron transport reactions of respiration; (3) a **vacuole**, which is a large (often occupying most of the volume of plant cells), internal, membrane-bound sac that functions in storage of compounds such as pigments (e.g., anthocyanins or betalains), acids (e.g., malic acid involved in CAM photosynthesis), or ergastic substances (see later discussion); (4) **endoplasmic reticulum**, which is composed of interconnected phospholipid membranes and functions as the site of protein synthesis and material transport; (5) **golgi bodies**, which are composed of parallel stacks of flattened membranes and function in transport and modification of compounds; (6) **chloroplasts**, which are double membrane-bound with internal thylakoid membranes (composed of lamellae and grana in the green plants), functioning in the reactions of photosynthesis; and (7) **ribosomes**, which function as the site of protein synthesis.

Ergastic substances are cellular materials that are not actively metabolized, functioning, e.g., as storage reserves or wastes. Ergastic substances include (1) **chromoplasts** (Figure 10.2A), which are carotenoid-containing bodies that function to provide yellow, orange, or red pigmentation for a plant organ, as in petals or fruits; (2) **amyloplasts** or **starch grains** (Figure 10.2B,C), which are lamellate deposits of starch (alpha-1,4-glucopyranoside, a polysaccharide polymer of glucose units with alpha-1,4 chemical bonding) which functions as the high-energy storage compound in green plants; (3) **aleurone grains** (=**proteinoplasts**), which are granular protein deposits, functioning as storage compounds; (4) **tannins**, which are phenol derivatives that may function to deter herbivory and parasite growth; (5) **fats, oils, waxes**, which are types of triglyceride compounds that may function as high energy storage compounds or secretion products; and (6) **crystals**, which may be composed of silica or calcium oxalate in various forms, such as **druses** (spherical crystals with protruding spikes; Figure 10.2D), **raphides** (bundles of needle-like crystals; Figure 10.2E), **styloids** (single, elongate, angular crystals; Figure 10.2F), or **prismatic** (shorter, prism-shaped crystals; Figure 10.2G). Crystals may function as waste products, as calcium ion sinks (a means of removing excess calcium for certain cellular functions), or as an irritant to deter herbivory.

In land plants, a pectic-rich **middle lamella** layer is formed between the plasma membrane of adjacent cells (Figure 10.3). The middle lamella functions to bind adjacent cells together. During plant cell development, a **cell wall** is secreted outside the plasma membrane. The cell wall that is secreted soon after cell division and that is maintained during cell growth is called the **primary (1st) cell wall** (Figure 10.3). As discussed earlier, an apomorphy for the green plants is a cell wall composed of **cellulose**, a polysaccharide polymer of glucose sugar units chemically bonded in the beta-1,4 position (=beta-1,4-glucopyranoside). Recall that cellulose is constructed of
Unit III Systematic evidence and descriptive terminology

Microscopic fiberlike units (called microfibrils) that are further intertwined into larger fibril units, forming a meshwork outside the plasma membrane. Its function is to impart rigidity to the cells, acting as a cellular skeleton. Within the primary cell wall, ultramicroscopic pores may form, termed plasmodesmata. These tiny openings function to allow for a continuity of membranes between cells, allowing for intercell exchange of compounds. A group of plasmodesmata is called a primary pit field (Figure 10.3).

In certain plant cells (e.g., sclerenchyma and tracheary elements) an additional wall layer, called a secondary (2nd) wall, is secreted externally, between the primary cell wall and plasma membrane (Figure 10.4). A secondary wall is generally formed after the plant cell has ceased growth. In vascular land plants the secondary wall is composed partly of cellulose but also contains lignin, a complex polymer of phenolic compounds that binds the cellulose microfibrils together. Lignin imparts significant strength and rigidity to the cell wall.

In virtually all plant cells with lignified cell walls, there are holes in the secondary wall called pits. Pits of adjacent cells often occur opposite one another, as pit-pairs (Figure 10.4). The actual chamber and opening of a pit may assume different morphological forms. Pits function in allowing communication between cells during their development and differentiation. They may also have specialized functions in fluid conducting cells (see later discussion).

Plant growth

Plant cell growth is defined here in the broad sense as the initiation, expansion, and specialization of cells. The haploid spore or diploid zygote of land plants initially undergoes more or less continuous, sequential mitotic cell divisions.
Later, as gametophytes or sporophytes mature, active cell divisions become restricted to certain regions of the plant. This region of actively dividing cells is known as a meristem. In the vascular plants apical meristems are located at the apices of roots and shoots (Figure 10.5), resulting in growth in height or length. In woody plants both apical meristems and lateral meristems occur. Lateral meristems are cylindrical sheaths of cells (Figures 10.18, 10.19), which function in growth that increases width or girth (see later discussion).

Apical meristematic cells are small and roughly isodiametric in shape, whereas those of the lateral meristems are elongate. A single meristematic cell undergoes a mitotic cell division, by which two cells are derived from one. Each of the two daughter cells undergoes some initial expansion. The derivatives themselves may continue to divide several more times, but only those cells that remain near the meristem will do so indefinitely. The others eventually cease mitosis and undergo further differentiation.

Cell differentiation refers to the series of changes that a cell undergoes from the point of inception to maturity, involving the transformation of a meristematic cell into one that assumes a particular structure and function. Differentiation involves two processes: cell expansion, in which the cell grows in size (often by elongation, in which growth in the axial direction is greatest); and maturation or specialization, in which the cell acquires the structural and functional features at maturity. Cell specialization means simply that cells may differ from one another, becoming specialized for a particular structure and function within the whole plant. Cell differentiation results in the development of various cell types (discussed next).

PLANT TISSUES AND SPECIALIZED CELL TYPES

A tissue is a group of cells having a common function or structure. Plant tissues of the vascular plants are often categorized
into three broad classes: **ground**, **vascular**, and **dermal**; see later discussion. In addition, tissues may be classified as simple or complex. A **simple tissue** consists of only one type of cell; thus, a particular term may refer either to the simple tissue or the cell type. A **complex tissue** contains more than one cell type.

Ground tissue is that occurring inside the epidermis but not part of the vascular tissue. Three cell types (which are simple tissues) make up the ground tissue: parenchyma, collenchyma, and sclerenchyma. **Parenchyma** (Gr. *para*, beside + *en-chein*, to pour; in reference to the analogy that parenchyma is poured beside other tissues to fill up space) are cells that most resemble the unspecialized, undifferentiated cells of actively dividing meristematic tissue (Figure 10.6A). Structurally, parenchyma cells are (1) isodiametric to elongate; (2) have a primary (1°) cell wall only (rarely with secondary wall); and (3) are living at maturity and potentially capable of cell division. Parenchyma cells function in metabolic activities (e.g., respiration, photosynthesis, transport, storage) and in wound healing and regeneration, being capable of transforming into a meristem to form new roots or shoots.

Collenchyma (Gr. *colla*, glue + *enchyma*, infusion; in ref. to thick, glistening cell walls) are cells that structurally (1) are elongate; (2) have only a primary cell wall that is unevenly thickened and rich in pectins (glistening white in the light microscope); and (3) are living at maturity (Figure 10.6B). Collenchyma cells function in mechanical support and are often found at the periphery of stems or leaves. They can be stretched during elongation growth of the organ.

Sclerenchyma (Gr. *scleros*, hard + *enchyma*, infusion, in ref. to hard, lignified cell walls) are cells that structurally (1) have thick, lignified secondary (2°) cell walls, which may have pits; and (2) are (usually) dead at maturity. There are two general types of sclerenchyma, which sometimes intergrade: (a) **fibers**, which are long, very narrow cells with sharply tapering end wall (Figure 10.7A C); and (b) **sclereids**, which are isodiametric to irregular in shape and often branched (Figure 10.7D F). Fibers function in mechanical support in various organs and tissues, sometimes making up the bulk of the tissue. Fibers often occur in groups (or bundles) and may be components of the xylem and/or phloem or may occur independently of the vascular tissue. Sclereids may also function in structural support, but their role in some plant organs is unclear (e.g., possibly aiding in providing protection from herbivory).

Vascular tissues are made up of xylem and phloem, each of which are complex tissues (having more than one cell type). **Xylem** (Gr. *xylos*, wood) is a tissue composed of **tracheary elements** plus some parenchyma and sometimes sclerenchyma. Structurally, **tracheary elements** (1) are elongate to short; (2) have lignified, secondary (2°) cell walls, with pits; and (3) are dead at maturity, in which protoplasts degrade, leaving only cell walls (Figure 10.8). Tracheary elements are joined end-to-end, forming a tubelike continuum. They function to conduct water and dissolved essential mineral nutrients, generally from the roots to other parts of the plant.

There are two types of tracheary elements: **tracheids** and **vessel members**. These differ with regard to the junction between adjacent end-to-end cells, whether **imperforate** or **perforate**. **Tracheids** are imperforate, meaning that water

![Figure 10.6](image)
and mineral nutrients flow between adjacent cells through pit-pairs (holes in the lignified 2° cell wall), in which there are intermediate primary cell walls (Figure 10.8A). Vessel members are perforate, meaning that there are one or more continuous holes between adjacent cells through which water and minerals may pass. (The term vessel refers to several vessel members attached end-to-end, forming a continuous, conductive tube.) The contact area of two adjacent vessel members is called the perforation plate. The perforation plate may be compound, if composed of several pores (pit-pairs with no primary cell walls) or simple if composed of a single opening (Figure 10.8A,B). Vessel members may differ considerably in length, width, angle of the end walls, and degree of perforation. As previously discussed, tracheids are the primitive type of tracheary element. Vessels are thought to have evolved from preexisting tracheids independently in several different groups, including a few species of *Equisetum*, a few leptosporangiate ferns, all Gnetales, and almost all angiosperms (although not always found in all plant organs).

Phloem (Gr. *phloem*, bark) is a tissue composed of specialized cells called **sieve elements** plus some parenchyma and often some sclerenchyma. Structurally, sieve elements (1) are elongate cells; (2) have only a primary wall (no lignified 2° wall); (3) are semiaalive at maturity, losing their nucleus and other organelles but retaining the endoplasmic reticulum, mitochondria, and plastids; and (4) have specialized pores, aggregated together into **sieve areas** (Figure 10.9). Each pore of the sieve area is a continuous hole that is lined with a substance called **callose**, a polysaccharide composed of beta-1,3-glucose. (Note the different linkage from cellulose, which is a polymer of beta-1,4-glucose.) Like tracheary elements, sieve elements are oriented end-to-end, forming a tubelike continuum. Sieve elements function to conduct dissolved sugars from sugar-rich to sugar-poor regions of the plant. Sugar-rich regions include the leaves or other photosynthetic regions, where sugars are synthesized during photosynthesis, or storage roots or stems, where sugars may be produced by the hydrolysis of starch.

There are two types of sieve elements: **sieve cells** and **sieve tube members**. **Sieve cells** have only sieve areas on both end and side walls (Figure 10.9A). **Sieve tube members** have both sieve areas and **sieve plates** (Figure 10.9A C). Sieve plates consist of one or more sieve areas at the end wall.
CHAPTER 10 PLANT ANATOMY AND PHYSIOLOGY

Junction of two sieve tube members; the sieve pores of a sieve plate, however, are significantly larger than those of sieve areas located on the side wall (Figure 10.9C). Both sieve cells and sieve tube members have parenchyma cells associated with them. Parenchyma cells associated with sieve cells are called albuminous cells; those associated with sieve tube members are called companion cells. The two differ in that companion cells are derived from the same parent cell as sieve tube members, whereas albuminous cells and sieve cells are usually derived from different parent cells. Both albuminous cells and companion cells function to load and unload sugars into the cavity of the sieve cells or sieve tube members. Sieve cells (and associated albuminous cells) are the primitive sugar-conducting cell and are found in all nonflowering vascular plants. Sieve tube members (and associated companion cells) are found only in angiosperms, the flowering plants.

Dermal tissue makes up the outer region of the plant and functions in mechanical protection of inner tissues and inhibition of water loss. Dermal tissue consists of the epidermis or, in woody plants, the periderm (see later discussion).

The epidermis (Figure 10.10) makes up the outermost layer of all primary plant organs. Structurally, epidermal cells (1) are usually tabular (flattened, tilelike) in shape; (2) have a cutinized (infiltrated with cutin, a polymer of fatty acids) or suberized (infiltrated with suberin) outer cell wall; (3) secrete a layer of cutin (called a cuticle) outside the cell wall; and (4) are usually living at maturity. As previously discussed, the cuticle (Figure 10.10) was a major innovation in the evolution of land plants, providing the primary protection from desiccation.

Specialized types of epidermal cells include stomates and trichomes. Trichomes (plant hairs) are cellular appendages that grow from the epidermal cells. They come in an amazing variety of shapes, sizes, and densities (see Chapter 9 for vestiture and trichome types). Trichomes may function in providing protection from UV light or herbivory; trichomes of carnivorous plants even function in digestion. Stomates are epidermal cells specialized for gas exchange. (See Leaf Structure and Function.)

Secretory structures are cells that secrete compounds, either internally (and stored within the cell) or externally.
(outside epidermis or into a canal or duct). These include (1) **glandular** (Figure 10.11A) or **stinging** (urent) trichomes that secrete fluid to outside at tip of trichome; (2) **nectaries** (Figure 10.11B), specialized cells secreting sugar (or protein)-rich fluids to the outside that may be floral (associated with flowers as a reward for pollination) or extrafloral (often as a reward for protection); (3) **hydathodes**, which secrete excess transported water (usually due to root pressure) from leaf margins; (4) **resin/oil/mucilage** ducts or canals, which contain cells a lining of cells that secrete resin, oil, or mucilage; and (5) **laticifers** (Figure 10.11C), cells located in the periphery of some tissues that secrete and store latex. The last two may function both to deter herbivory and to seal and protect plant tissue upon wounding.

ROOT STRUCTURE AND FUNCTION

Roots are plant organs that function in anchorage and in absorption of water and minerals. Roots are found in the sporophytes of all land plants except for the nonvascular liverworts, hornworts, and mosses (in which the sporophytes are attached to the gametophytes) and the psilophytes (e.g., *Psilotum*). Land plants lacking roots generally have uniseriate (one-cell-thick), filamentous **rhizoids** that assume a similar function.

The first root to develop, in the embryo, is termed the **radicle**. If the radical continues to develop after embryo growth, it is known as the **primary root**. Additional roots may arise from internal tissue of either another root, the stem/shoot (often near buds), or (rarely) a leaf. Roots that arise from other roots are called **lateral roots**. Roots that arise from a nonroot organ (stem or leaf) are called **adventitious roots**. Various modifications of roots have evolved, such as storage roots, aerial roots, fibrous roots, tap roots, contractile roots, haustoria, prop roots, and pneumatophores (see Chapter 9).

Roots, like shoots, develop by the formation of new cells within the actively growing **apical meristem** of the root tip (Figures 10.5B, 10.12A), a region of continuous mitotic divisions. At a later age (and further up the root) these cell derivatives elongate significantly. This cell growth, which occurs by considerable expansion both horizontally and vertically, literally pushes the apical meristem tissue downward. Even later in age and further up the root, the fully grown cells differentiate into specialized cells.

Roots can be characterized by several anatomical features. First, the apical meristem is covered on the outside by a **root-cap** (Figure 10.5B, 10.12A). The rootcap functions both to protect the root apical meristem from mechanical damage as the root grows into the soil and to provide lubrication as the outer cells slough off. Second, the epidermal cells proximal to the root tip develop hair-like extensions called **root hairs** (Figure 10.12A; see Figure 4.10A); root hairs function to greatly increase the surface area available for water and mineral absorption. Third, roots have no exogenous (externally developing) organs; all **lateral roots arise endogenously** from the internal tissues of the root. Lateral roots grow from cell divisions within the **pericycle**, a cylindrical layer of parenchyma cells located just inside the endodermis itself.

Two other features of roots may or may not distinguish them from stems, as the stems of some land plants are very
similar in these features to roots. All roots have a central **vascular cylinder** of xylem and phloem. Often, ridges of xylem alternate with cylinders of phloem (i.e., the **xylem and phloem are on alternate radii**). As with stems, the mostly parenchymatous region between the vasculature and epidermis is called the **cortex**; the center of the vascular cylinder, if vascular tissue is lacking there, is called a **pith**. In addition, the vascular tissue of all roots is surrounded by a special cylinder of cells known as the **endodermis**. In the general region of the root hairs, where most absorption takes place, each cell of the endodermis has a **Casparian strip**, which is a tangential band of suberin that infiltrates the cell wall (Figure 10.13). As discussed in Chapter 4, the Casparian strip functions as a water-impermeable binding material to the plasma membrane of the endodermal cells. This forces absorbed water and nutrients to flow through the endodermal plasma membrane, as opposed to within the intercellular spaces (between the cells or through the cell wall). The function of the endodermis and Casparian strips is to allow selectivity as to what mineral nutrients are and are not absorbed by the plant; e.g., toxic minerals may be selectively excluded.

Some anatomical specializations of roots are found in certain taxa. For example, the aerial roots of many Orchidaceae and Araceae lack root hairs and have a specialized, multilayered epidermis called a **velamen**. The velamen may function in protection, prevention of water loss, or water and mineral absorption.

FIGURE 10.12 Root anatomy. A. Root longitudinal section. B. Root cross-section, close-up at right.

FIGURE 10.13 The Casparian strip, a specialized feature of cells of the endodermis.
SHOOT AND STEM STRUCTURE AND FUNCTION

A shoot is a stem plus its associated leaves. Sporophytic shoots are an apomorphy for all vascular plants. The leafy shootlike structures of mosses and some liverworts are gametophytic and not homologous with shoots of vascular plants.

The first shoot of a vascular plant develops from the epicotyl of the embryo. The epicotyl elongates after embryo growth into an axis (the stem), which bears leaves from its outer surface. The tip of a shoot contains the actively dividing cells of the apical meristem (Figure 10.14). As in the root, these cells undergo continuous mitotic divisions. A bit down from the apical meristem, the cells undergo considerable expansion, literally pushing the cells of the apical meristem upward (or forward). Proximal to the shoot tip, the fully expanded cells differentiate into specialized cell types.

Slightly down from the apical meristem region, the outermost cell layers of a shoot begin to repeatedly divide. Further cell divisions and growth result in the development of a mass of tissue that forms an immature leaf, the leaf primordium. Vascular strands run between stem and leaf, providing a connection for fluid transport (Figures 10.14, 10.15). As the shoot matures, the leaves fully differentiate into an amazing variety of forms. A bit later in development, the tissue at the upper junction of leaf and stem (called the axil) begins to divide and differentiate into a bud primordium. The bud primordium matures into a bud, defined as an immature shoot system. Buds have an architecture identical to that of the original parent shoot. Buds may develop into a vegetative, lateral branch or may terminate by developing into a flower or inflorescence.

Stems function both as supportive organs (supporting and usually elevating leaves and reproductive organs) and as conductive organs (conducting both water/minerals and sugars through the vascular tissue between leaves, roots, and reproductive organs). Stems can be distinguished from roots in at least three ways. First, the apical meristem of stems is not covered by an outer protective layer (like the root cap; Figure 10.14). Second, the epidermal cells of the stem do not form structures resembling root hairs. However, the epidermal cells of stems and leaves may divide and differentiate into separate, one-to-many-celled trichomes, described earlier (see also Chapter 9). Third, stems bear leaves exogenously; no organs are born endogenously (except in cases of adventitious roots potentially arising from the internal parenchyma cells of stems).

Stems, particularly underground stems, may possess an endodermis similar to that of roots in structure and function. The aerial stems of many plants lack an endodermis. Numerous modifications of stems and shoots have evolved, such as bulbs, corms, caudices, rhizomes, stolons (=runners), cladodes, pachycauls, and thorns (see Chapter 9).

The primary vasculature of stems is organized into arrangements of xylem and phloem known as steles (Figure 10.16). In some groups of non-seed vascular plants, such as the lycophytes, the stem stelar type is a protostele (Figures 10.15A, 10.16A), in which there is a central cylinder of vascular tissue.

Protosteles are the most ancestral type of stem vasculature, one that most resembles the vasculature of a root. The vasculature of fern stems is typically a siphonostele, in which a ring of xylem is surrounded by a continuous layer of phloem (Figure 10.16B,C). The stems of seed plants contain discrete vascular bundles in which xylem and phloem are grouped together along a common radius, usually with xylem to the inside and phloem to the outside, a type known as a collateral vascular bundle. (In some angiosperms the stem vascular bundles have phloem to both the inside and outside of the xylem, a type known as bicollateral.) These collateral vascular bundles may be organized as a single ring, known as a eustele (Figures 10.15B, 10.16D). The eustele is an apomorphy for many seed plants, including all that are extant. For both siphonosteles and eusteles, the central region of tissue in the stem is called pith; the region between the vasculature and the outer epidermis is called the cortex. Stems of monocots (of the angiosperms) have a modification of the eustele called an atactostele (Figure 10.16E). The atactostele, which represents an apomorphy for the monocots, consists of numerous, collateral vascular bundles positioned throughout the stem tissue (appearing scattered but actually having a precise and complex disposition). In an atactostele, there is no pith; the region of tissue between vascular bundles is called ground meristem. Vascular bundles typically are associated with sclerenchyma fibers, which may surround the entire bundle or occur in outer patches called bundle caps (e.g., Figure 10.15B). Parenchyma, collenchyma, or sclerenchyma cells make up the tissues of the pith, cortex, and ground meristem.

FIGURE 10.15 Stem anatomy. A. Lycopodium stem cross-section, showing close-up of vascular tissue, with xylem, phloem, and outer fibers. B. Helianthus stem cross-section, showing close-up of vascular bundle, with xylem, phloem, and associated fibers.
The vasculature of stems (and roots) can vary also with respect to the sequence of maturation of tracheary elements in the xylem. **Protoxylem** refers to the first xylem that matures in a group of vascular tissue; protoxylem cells are often smaller in diameter. **Metaxylem** is the xylem that develops later and usually consists of larger-diameter cells. Three general types of protoxylem orientation are recognized: (1) **exarch**, in which the protoxylem is oriented toward the outside relative to metaxylem, as occurs in some protosteles (Figure 10.17A); (2) **endarch**, in which the protoxylem is oriented toward the center of the stele, relative to the metaxylem, as occurs in eustele and atactosteles (Figure 10.17B); and (3) **mesarch**, in which the protoxylem is surrounded by metaxylem within the vascular tissue, as can occur in siphonosteles.

SECONDARY GROWTH

In vascular plants, the growth in height or length of a stem or root is brought about by the elongation and differentiation of cells derived from the apical meristem. This is termed...
primary growth, and the tissues formed by primary growth are called primary tissues (e.g., as in primary xylem or primary phloem). However, in many seed plants, roots and stems may grow in girth or width by means of cells produced not from the apical meristems, but from lateral meristems. This process is termed secondary growth, and the tissues formed by secondary growth are called secondary tissues.

Two types of lateral meristems function in secondary growth: the vascular cambium and the cork cambium. These lateral meristems represent apomorphies for the woody plants, including all extant seed plants plus several fossil groups (although lateral meristems have been lost in some angiosperms, most notably the monocots). The vascular cambium is a cylindrical sheath of cells that typically forms by cell divisions of undifferentiated parenchyma cells. In eustelic stems the vascular cambium forms from parenchyma cells both between the primary xylem and phloem of vascular bundles and in the adjacent region between the bundles (Figures 10.18, 10.19). In woody roots the vascular cambium develops from parenchyma cells between xylem and phloem and from the adjacent pericycle. The cells of the vascular cambium divide more or less synchronously, and mostly in a tangential plane, the initial result being the formation of two layers of cells (Figure 10.18). One of these layers continues as the vascular cambium and divides indefinitely; the other layer eventually differentiates into either secondary xylem (=wood), if produced to the inside of the cambium, or secondary phloem, if produced to the outside of the cambium (Figures 10.18, 10.20A). Generally, much more secondary xylem is produced than is secondary phloem. As the secondary tissue is formed, the inner cylinder of wood expands. As this growth in girth continues, some cells of the

![Image of the vascular cambium](image_url)
vascular cambium undergo radial divisions (parallel to a radius), enabling the vascular cambium to grow larger in circumference.

The cork cambium is similar to the vascular cambium, only it differentiates near the periphery of the stem or root axis. The cork cambium forms cork to the outside and phelloderm to the inside, the latter usually much thinner (Figure 10.20G). The cork cambium and all of its derivatives constitute the periderm. The outer cork cells contain a waxy polymer called suberin (chemically related to cutin), which is quite resistant to water loss. In the wood industry, the term inner bark refers to all the tissue between the vascular cambium and the periderm (including all of the secondary phloem). Outer bark is equivalent to the periderm.

The vascular cambium and cork cambium are of significant adaptive value. Secondary xylem (wood) functions in structural support, enabling the plant to grow tall and acquire massive systems of lateral branches. Thus, the vascular cambium was a precursor to the formation of intricately branched shrubs or trees with tall overstory canopies, a significant ecological adaptation. Cork produced by the cork cambium functions as a thick layer of dermal tissue cells that protects the delicate vascular cambium and secondary phloem from mechanical damage, predation, and desiccation.

Secondary xylem, or wood, consists mostly of longitudinally oriented tracheary elements, either tracheids (in cycads, Ginkgo, and conifers, excluding Gnetales) or vessels (Gnetales and almost all angiosperms; Figures 10.18 10.21). Other longitudinally oriented cells may include fibers and axial parenchyma. The vascular cambium also forms cells that are radially oriented (parallel with a stem or root radius). These radially oriented cells occur in bandlike strands called rays (Figure 10.19B E); their function is lateral translocation of water, minerals, and sugars.

In most woody plants with regular, annual growth seasons (in temperate regions caused by seasonal cold, in tropical regions by seasonal drought), the vascular cambium and cork cambium actively divide only near the start of the growing season; further secondary growth is delayed until the next growing season. As a result of this periodic growth, there are differences in the structure of the secondary xylem from the first part of the growing season (spring wood) versus the latter part of the growth season (summer wood). For example, the tracheary elements of spring wood tend to be larger in diameter with thinner walls; those of summer wood tend to be smaller in diameter with thicker walls (Figure 10.20C,D). The overall result of this discrepancy in structure between spring and summer wood results in the formation of annual rings (Figures 10.20A,B, 10.21A,B). Each annual ring represents the accumulation of secondary xylem (or phloem) over a single growing season. Annual rings are evident because of the structural difference between the last cells of the summer wood and the first cells of the subsequent spring wood.

Wood may be cut in three major planes: transverse (cross-sectional), radial (longitudinal and ca. parallel to a stem radius), or tangential (longitudinal and perpendicular to a stem radius); these planes of section are often abbreviated X, R, T, respectively (Figure 10.22). These different cuts
FIGURE 10.20 Conifer wood. A,B. *Pinus* sp. stem cross-section, showing 3 years growth. C–E. *Libocedrus decurrens* wood sections. C. Transverse- or cross-section, showing junction of summer wood (of previous year) and spring wood (of following year). D. Radial-section, showing transverse ray and border of annual ring (summer wood to left; spring wood to right). E. Tangential section, showing vertical tracheids and rays. F. *Pinus*, circular bordered pits of tracheids (radial face). G. *Pinus* periderm, showing cork cambium, phelloderm, and cork.
Figure 10.21 Eudicot wood. A,B. Woody stem cross-section, *Tilia* sp. A. One year's growth. B. Three years' growth. Note rays and rings with spring and summer wood. C. Ring-porous wood, *Quercus*, with vessels much larger in spring wood (above), smaller to absent in summer wood (below). D. Diffuse-porous wood, *Salix*, having vessels evenly distributed in annual ring. E,F. Ray types. E. Uniseriate rays. F. Biseriate rays (some uniseriate also present). G. Multiseriate rays (some uniseriate also present).
are used for different purposes in the wood industry and influence the figure, or general appearance of the wood. The three cuts are also used by wood anatomists to view the cells from three different directions, often necessary for precise description or identification of wood samples (see Figures 10.20, 10.21).

In the wood industry, the term softwood is used for a wood product derived from a conifer and hardwood is used for one derived from a nonmonocotyledonous angiosperm. Softwoods from conifers (such as pine) are indeed usually softer and easier to work with than hardwoods (such as oak), as the latter typically contain numerous wood fiber cells. However, there are exceptions; some so-called hardwoods, such as balsa, are quite soft.

Wood anatomy may be very complex. Its structure may provide several characters that may be of systematic importance; these characters include tracheary element type (whether having only tracheids, termed nonporous, or having vessels, termed porous), tracheary element anatomy (size, shape, and pit or perforation plate structure), distribution of vessels (if present), ray anatomy, presence of resin ducts, distribution of axial parenchyma, and presence/distribution of fibers or fiberlike cells. For example, in some angiosperms there may be differences in the formation of vessel elements associated with the annual rings. The vessels may form only in the spring wood, with summer wood either lacking or having relatively small vessels and usually containing mostly fibers; this type of growth is called ring-porous (the term porous referring to the presence of pores, the vernacular term for vessels; Figure 10.21C). The alternative, in which vessels develop more or less uniformly throughout the growth season, is called diffuse-porous (Figure 10.21D). Another feature of systematic importance is ray anatomy. Rays can be uniseriate (with a single, vertical row of cells, as in Figure 10.21E), biseriate (with two vertical rows of cells, as in Figure 10.21F), or multiseriate (with many vertical rows of cells, as in Figure 10.21G). Wood anatomical characters may be useful in phylogenetic inference and are valuable for microscopic identification of the species.

Some aspects of wood anatomy are ecologically significant. In fact, wood (both extant and fossil) may be used to trace the history of climatic conditions in a given region. This field of study is called dendrochronology. When growth conditions are good (e.g., high rainfall), annual rings will be wide; when conditions are poor, they will be narrow. By correlating the width of annual rings with time, assessment of past conditions may be made, e.g., cycles of cold or drought and even sunspot cycles.

LEAF STRUCTURE AND FUNCTION

Leaves are the plant organs that function primarily in photosynthesis. However, leaves or leaflike homologs have been co-opted for innumerable other functions in plants.

As discussed earlier, leaflike structures occur on the gametophytes of mosses and leafy liverworts. However, sporophytic leaves evolved first in the vascular plants; thus, leaf is here equated with sporophytic leaf. True leaves evolved with the development of a continuous strand of
vascular tissue running from the stem into the leaf. As discussed in Chapter 4, the first sporophytic leaves, having only a single, generally unbranched vein and lacking a leaf gap, are called lycophylls (essentially equivalent to microphylls); lycophylls also possess an intercalary meristem (at the proximal side of the leaf base; Figure 10.23). Among extant plants lycophylls are restricted to the lycophytes. A major innovation occurred in the monilophytes and lignophytes/seed plants, the evolution of euphyls (essentially synonymous with megaphyll, a more traditional term). Euphyls are leaves that (1) have multiple, branched vascular strands in the leaf blade; (2) have a leaf gap, in which parenchymatous tissue replaces vascular tissue in the region just distal to the point of departure of the vasculature from stem to leaf (Figure 10.23); and (3) grow by means of either marginal or apical meristems. The evolution of megaphylls allowed for a much bigger, broader, morphologically diverse leaf structure. This has undoubtedly been adaptive in several habitats, permitting, e.g., maximization of photosynthetic rate.

Leaves have a characteristic development and structure (Figure 10.24). As previously discussed, leaves arise as leaf primordia on shoots. During development, the cells along the margins generally divide more rapidly, resulting in a flattened, dorsi ventral structure with an upper (adaxial) and lower (abaxial) surface. Thus, leaves have both an upper epidermis and lower epidermis. The cuticle, which is an apomorphy of all land plants, is often quite thickened on leaf epidermal cells. As discussed in Chapter 3, the stomate was a major innovation in the evolution of land plants. Stomates consist of two chlorophyllous guard cells with an opening or stoma between (Figure 10.25A,B). The guard cells can alter turgor pressure by changes in ion gradients, which results in opening or closing the stoma. In vascular plants, stomates occur mostly on the leaves, and there they are predominate on the lower (abaxial) surface. Stomates function to regulate gas exchange. An open stomate permits carbon dioxide to enter the leaf, and oxygen and water to exit. Stomates are the only epidermal cell to have chloroplasts (which function in regulation of the stoma). Stomates are often associated with subsidiary cells, specialized epidermal cells that are contiguous with the stomate and that may function in ion exchange and therefore stomate opening and closing. The number, size, and placement of subsidiary cells varies between taxa and can be a useful anatomical systematic character (Figure 10.25C E).

The nonvascular cells located between upper and lower epidermal layers comprise the mesophyll (Figure 10.24). The mesophyll is composed primarily of chlorophyllous cells, the chloroplast-containing parenchyma cells that function as the site of photosynthesis. Typically (but not always), they are of two morphological types: (1) columnar palisade mesophyll cells, which occur in the upper (adaxial) region and have relatively small intercellular spaces; and (2) irregularly...
FIGURE 10.24 Cross-section of a typical vascular plant leaf.

FIGURE 10.25 Stomata. **A.** Illustration of stomate in face view, closed and open. **B.** Stomate in cross-sectional view. **C–E.** Stomates of various taxa, showing the differences in subsidiary cells.
shaped **spongy mesophyll** cells, which occur in the lower (abaxial) region and have large intercellular spaces. The **veins** of a leaf have the anatomy of typical vascular bundles. In almost all veins the xylem is oriented to the adaxial side, phloem to the abaxial side, corresponding to their orientation in the stem. Veins may very often have a ring of cells surrounding the xylem and phloem called a **vascular bundle sheath**. This sheath may be composed of fiber cells, which function in structural support of the vein within the leaf tissue, or of parenchyma cells. The parenchymatous, chloroplast-containing bundle sheath cells of some plants function in C4 photosynthesis (discussed later).

PHOTOSYNTHESIS

The tremendous importance of plants is directly related to the photosynthetic process. Photosynthesis occurs by the fixation of carbon dioxide in the following net reaction:

\[\text{CO}_2 + \text{H}_2\text{O} \rightarrow (\text{CH}_2\text{O})_n + (\text{nO}_2). \]

Interestingly, this net reaction actually occurs via two series of interdependent reactions: light reactions and dark reactions. In the **light reactions**, which occur within the thylakoid membranes and require photons of light, water (H\(_\text{2}\text{O}\)) is broken down into hydrogen ions (H\(^+\)), electrons (\(\text{e}^-\)), and molecular oxygen (also called dioxygen, O\(_2\)). This splitting of water molecules occurs via a complex series of enzymes and cofactors embedded within the thylakoid membranes of the chloroplast (Figure 10.26). The hydrogen ions resulting from the splitting of water become concentrated in the space within the thylakoids. These hydrogen ions are transported across the thylakoid membrane into the outer region called the stroma; that transport results in a net transfer of energy, used to synthesize a high-energy molecule of ATP (adenosine triphosphate; Figure 10.26). The electrons produced by the splitting of water are also transported across the thylakoid membrane to the stroma. There, the electrons react with hydrogen ions and a compound called NADP\(^+\) (nicotinamide adenine dinucleotide phosphate) to produce a higher energy product, NADPH.

In the **dark reactions** (or Calvin cycle) atmospheric carbon dioxide (CO\(_2\)) makes its way into the stroma of the chloroplast, where it reacts with a five-carbon molecule to form two molecules, each containing three carbon atoms; hence, photosynthesis in these plants is called **C3 photosynthesis** and the plants are called **C3 plants** (Figure 10.26). This initial binding, or fixation, of CO\(_2\) is catalyzed by a very important enzyme called **ribulose-bisphosphate carboxylase** (RuBP-carboxylase, which is thought to be the enzyme with the greatest worldwide biomass). The two three-carbon molecules then undergo a series of further reactions, each catalyzed by a separate enzyme, to ultimately produce a net molecule of glucose. The chemical reactions resulting in glucose production require the input of high-energy compounds, notably ATP and NADPH. As these compounds are converted into lower energy products in the dark reactions, they are regenerated in the light reactions. Thus, light and dark reactions are interdependent; each comes to a halt without the concerted action of the other (Figure 10.26).

In some species of vascular plants, the parenchymatous bundle sheath cells function in a different type of photosynthesis called **C4 photosynthesis** (Figure 10.27). In C4 plants carbon dioxide is initially fixed in the mesophyll cells by a different enzyme, **PEP carboxylase**. The initial molecule of carbon fixation is a four-carbon molecule, which, in the form of malic acid, is then transported to the bundle sheath cells. Chloroplasts of the bundle sheath cells are typically much larger than those of the mesophyll cells, this type of anatomy termed **Kranz anatomy** (Figure 10.28). In the bundle sheath cells, the carbon dioxide is released and fixed by the typical (and ancestral) enzyme, **ribulose-bisphosphate carboxylase** (RuBP-carboxylase). C4 photosynthesis actually requires more energy (one more ATP per CO\(_2\) molecule) than C3 photosynthesis. However, C4 photosynthesis has apparently been selected for in plants growing under conditions of high light intensity or drought. Under water-stressed conditions, the stomata of plants generally remain closed to inhibit excess water loss, but this also inhibits the flow of CO\(_2\) into the leaf. The enzyme PEP carboxylase has a much greater affinity for CO\(_2\) molecules than does the enzyme RuBP carboxylase. Thus, under conditions of low CO\(_2\) (occurring under drought conditions), the initial fixation of CO\(_2\) is much more efficient in C4 plants than in C3 plants. By fixing, transporting, and releasing CO\(_2\) into the bundle sheath cells, it becomes more concentrated than in the mesophyll cells and can more readily be catalyzed by RuBP carboxylase in the Calvin Cycle. C4 photosynthesis has evolved in a number of angiosperms, one common example being corn (**Zea mays**, Figure 10.28).

Another different mechanism of photosynthesis is **CAM: crassulacean acid metabolism** (Figure 10.29). CAM plants are often succulents; as with C4 plants, CAM plants are generally adapted to xeric conditions. CAM photosynthesis is adaptive in minimizing water loss due to evapotranspiration. In CAM plants initial fixation of CO\(_2\) occurs at night, when (unlike other plants) stomata are open. The CO\(_2\) is initially fixed by the enzyme **PEP carboxylase** to form malic acid, which is temporarily stored within vacuoles of the mesophyll cells. (This is experimentally detected by a lowering of the pH.) During the day the stomata close and CO\(_2\) is released from the vacuoles into the cytoplasm, where it is fixed in the chloroplasts by the Calvin cycle.
CAM and C4 photosynthesis are very similar to one another. Both are adaptations to xeric conditions and involve initial fixation of CO\textsubscript{2} utilizing the enzyme PEP carboxylase and final fixation of CO\textsubscript{2} with RuBP carboxylase. The essential difference between the two is that initial and final CO\textsubscript{2} fixation differ spatially in C4 plants and temporally in CAM plants.

ANATOMY AND SYSTEMATICS

Plant anatomy can provide valuable characteristics in phylogenetic analyses, but these are less frequently acquired today than in the past. However, anatomical features, whether used directly to generate a cladogram or merely traced on an existing
cladogram, can give insight into major adaptational shifts. In that sense, they are quite important in understanding different selective pressures.

A summary of major anatomical apomorphies for the land plants is seen in Figure 10.30, taken from the cladograms of Chapters 3–6. As can be seen, many of the apomorphies discussed and presented in these chapters are anatomical. Anatomical and physiological traits are worthy of study at a lower taxonomic level as well, and are often correlated with adaptational strategies and ecological shifts.

Figure 10.27 C4 photosynthesis. ADP = adenosine diphosphate; PEP = phosphoenolpyruvate; Pi = phosphate. See text for other abbreviations.

Figure 10.28 Kranz anatomy, illustrated by Zea mays leaf cross-section. A. Low magnification. B. Close-up of vascular bundle with enlarged bundle sheath cells, surrounded by mesophyll cells.
CHAPTER 10 PLANT ANATOMY AND PHYSIOLOGY

FIGURE 10.29 CAM photosynthesis. ADP = adenosine diphosphate; PEP = phosphoenolpyruvate; Pi = phosphate.

PLANT ANATOMY TECHNIQUE

Material dissection and preparation:
A wealth of information can be gained by careful dissection and observation of plants. Look first at the outer form of the plant, noting the basic plant organs (root, stem, leaves, buds, flowers, fruits) and specific aspects of these organs. Gently pull apart the plant organs to better see their morphology. For flowers and fruits, use both your hands and naked eye and dissecting needles under a dissecting scope to examine the components.

Careful anatomical studies usually involve time-consuming embedding and microtome sectioning. However, a simple technique of hand sectioning with a razor blade will allow you to see considerable detail of cell and tissue anatomy. Stout material, such as an herbaceous stem, can be held upright in the left hand between thumb and index finger (assuming you are right-handed). More flimsy material, such as a leaf, can be sandwiched between two small pieces (cut only slightly larger than the material) of Styrofoam; the end is moistened and both Styrofoam and plant material are sectioned together. In either case, rest the side of the razor blade on your index finger and position your thumb a bit lower (so that if you do slip, you won’t cut yourself). There are tricks of the trade to successful sections:

1. As you cut, move the razor blade toward you, as well as across the material; thus, the cut is somewhat diagonal.
2. Make an initial cut to level off (discarding this piece) and then make several thin slices, keeping the sections on the razor blade until they get too crowded; then, transfer the sections to water in a Syracuse dish or Petri plate. Clean your razor blade and make a few more sections.
3. Select the thinnest sections, pull out with a brush, and place in a few drops of stain in another dish. After staining, rinse your sections very briefly in water and place in a drop of water or (for a semipermanent mount) 50% glycerol. Cover with a cover slip, avoiding air bubbles and adding more fluid to the side if necessary.

Most important is to make those sections THIN!! Although you will want at least one complete section, other sections may be partial, as long as they are thin. Clean your razor blade afterward and you may reuse it.
FIGURE 10.30 Summary cladogram of Land Plants, showing major anatomical apomorphies.
For tough, fibrous, or woody tissue place the material down on a plastic Petri plate and make downward slices with your razor blade. This same technique can be used with softer, small plant material if it is sandwiched between two layers of Parafilm and the material sectioned in a dicing motion.

The following are some vital stains (i.e., used with live material):

<table>
<thead>
<tr>
<th>Stain</th>
<th>Compound for which stain is specific</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcian blue</td>
<td>Pectins</td>
<td>Blue</td>
</tr>
<tr>
<td>Aniline blue</td>
<td>Callose</td>
<td>Blue (UV-fluoresces Yellow)</td>
</tr>
<tr>
<td>IKI</td>
<td>Starch</td>
<td>Blue to black</td>
</tr>
<tr>
<td>Phloroglucinol/HCl</td>
<td>Lignin</td>
<td>Red (NOTE: Takes sev. mins. to react)</td>
</tr>
<tr>
<td>Sudan III or Sudan IV</td>
<td>Oil droplets</td>
<td>Reddish</td>
</tr>
<tr>
<td>Toluidine blue</td>
<td>Metachromatic (will stain a variety of</td>
<td>Lignified tracheary elements</td>
</tr>
<tr>
<td></td>
<td>cell walls different shades of blue/green):</td>
<td>Sclerenchyma</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parenchyma</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Collenchyma</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sieve tubes and companion cells</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Callose/starch</td>
</tr>
</tbody>
</table>

Drawings:
Making careful drawings not only gives you a record of what you observe, it also helps you become a careful observer. When forced to draw it, you often see more than you otherwise would. Make drawings with a #2 or #3 hard lead pencil. Draw the outlines of organs or tissues (e.g., of a root cross-section) at low magnification to record the overall structure. Then draw a portion of the whole (e.g., a pie slice of the root section, showing some of the individual cells of a vascular bundle) to show details.

REVIEW QUESTIONS

PLANT CELL STRUCTURE AND PLANT GROWTH
1. What is plant anatomy and how does it differ from animal anatomy?
2. What is the cell theory and its four tenets?
3. Name and give the function of the major components and organelles of a typical plant cell.
4. Name the various types of ergastic substances.
5. What are chromoplasts and what is their function?
6. What is an amyloplast and what is its chemical composition?
7. Of what is an aleurone grain composed?
8. Name four types of crystals based on their shape. What two different substances make up plant crystals?
9. Characterize a primary cell wall in terms of development and structure.
10. How does cellulose differ from starch?
11. What are plasmodesmata and what is their function?
12. Where is the secondary cell wall formed in relation to the plasma membrane and the primary cell wall?
13. What are the name, properties, and function of the compound (other than cellulose) making up a secondary cell wall?
14. What is a pit and what is the function of pit-pairs?
15. What are meristems and what are the two major types?
16. Explain the processes of cell differentiation.

PLANT TISSUES AND SPECIALIZED CELL TYPES
17. What is a tissue and what are the three general tissue types?
18. How are parenchyma and collenchyma similar and how different with respect to structure and function?
19. What are the characteristics and two general cell types of sclerenchyma?
20. What is the function of xylem and why is it a complex tissue?
21. What are the names and characteristics of the two types of water-conductive cells of xylem?
22. What is the function of phloem and why is it a complex tissue?
23. What are the names and characteristics of the two types of sugar-conductive cells of xylem?
24. What tissue occurs as the outermost cell layer of plant organs?
25. Describe the characteristics and function of the epidermis, stomata, trichomes, and secretory structures.

ROOT STRUCTURE AND FUNCTION
26. From what in an embryo does the first root arise?
27. Distinguish between a primary, lateral, and adventitious root.
28. Name three ways that roots can be distinguished from shoots/stems.
29. What is a Casparian strip and endodermis and what are their function?
30. What is the function of the pericycle?
31. What is a velamen?

SHOOT/STEM STRUCTURE AND FUNCTION
32. What is the definition of a shoot?
33. From what in an embryo does the first shoot arise?
34. What is a bud primordium and where are buds typically located?
35. What are three ways that stems differ from roots?
36. What is a stele? Name five stele types and distinguish between them.
37. Distinguish between protoxylem and metaxylem; between exarch, endarch, and mesarch.

SECONDARY GROWTH
38. What is secondary growth and from what general type of meristem does it arise?
39. Where does the vascular cambium arise?
40. What two products does the vascular cambium give rise to and in what direction?
41. What is the technical name for wood?
42. Where does the cork cambium form, and what two tissues does it give rise to?
43. Describe the adaptive significance of the lateral meristems.
44. What is a ray and what is its function?
45. What is an annual ring and what is the structural difference between spring wood and summer wood?
46. Define and draw the three major sections of wood.
47. What is the difference between a softwood and a hardwood?
48. Distinguish between nonporous, ring-porous, and diffuse-porous wood.
49. Distinguish between uniseriate, biseriate, and multiseriate rays.
50. What is dendrochronology and for what can it be used?

LEAF STRUCTURE AND FUNCTION
51. What is the difference between a lycoophyll and a euphyll?
52. What are the structure and function of stomates and of subsidiary cells?
53. What is the name of the leaf cells located between upper and lower epidermal layers? What are the two types called?

PHOTOSYNTHESIS
54. Describe the basic pathway of C3 photosynthesis.
55. What enzyme functions to fix carbon dioxide in C3 photosynthesis?
56. How does C4 photosynthesis differ from C3?
57. What is Kranz anatomy?
58. What enzyme functions to fix carbon dioxide in C4 photosynthesis?
59. How does CAM photosynthesis differ from C3 and C4 and how does this function for plants living in dry conditions?

ANATOMY AND SYSTEMATICS
60. Draw a general cladogram of land plants, illustrating several anatomical apomorphies.

EXERCISES

1. Obtain live material of a plant species and prepare hand sections of the root, stem, and leaf, if feasible. Stain these with the appropriate stain (see PLANT ANATOMY TECHNIQUE), and describe all the cell and tissue types. Note the differences between the three organs.

2. Obtain live material of the leaves of a few monocot and eudicot species. Prepare epidermal peels of the leaves and note the differences between the stomata and subsidiary cells. Can you determine a correlation with taxonomic group?

3. Observe the trichomes of various plant organs (e.g., leaves, stem axes, or flower parts) by peeling the epidermal tissue bearing the trichomes or scraping them from the surface. Place this material on a microscope slide in a drop of water or (to preserve for some time) 50% glycerol. The material may be stained with, e.g., toluidine blue. Carefully draw the various trichome types. Is the trichome anatomy the same from organ to organ or does it vary? What might be the adaptive significance of trichomes?

REFERENCES FOR FURTHER STUDY

Plant embryology is the study of the development of sporangia, gametophytes, and embryos in the land plants, the embryophytes. Among the seed plants, the spermatophytes, embryological studies encompass the development of microsporangia (within anthers in the angiosperms), microspores, pollen grains, ovules, megaspores, female gametophytes, and seeds. Because most plant embryological data have been acquired and utilized for the flowering plants, this chapter focuses on processes and terminology for the angiosperms.

As characters used in phylogenetic studies, plant embryological data are generally most useful at higher taxonomic levels, as in the characterization of traditional plant families. However, the data may be useful at any taxonomic level.

ANTHER AND POLLEN DEVELOPMENT

ANTHER TYPE
In the angiosperms an important embryological character, one often treated as a standard morphological character, is the number of microsporangia per anther. Microsporangia are typically tubular in shape and occur in pairs, which coalesce during development by the breakdown of the cell layers between them. Each pair of microsporangia is termed a theca. The great majority of angiosperm species have anthers composed of two thecae, termed bithec al or tetrasporangiate (Figure 11.1A), which is the ancestral condition. However, some angiosperm taxa, such as the Malvaceae, Cannaceae, Marantaceae, and species of Salvia (Lamiaceae), have a derived anther type with only one theca, termed monothecal or bisporangiate (Figure 11.1B).

ANTHER WALL DEVELOPMENT
A cross-section of an anther reveals a division between the internal microsporangium, the cells of which undergo meiosis, and an outer anther wall. The development of the anther wall has provided some useful embryological features. A mature anther wall consists of few to several layers of cells. The outermost cell layer (just inside the epidermis) is termed the endothecium, which typically consists of enlarged cells with secondary wall thickenings functioning in anther dehiscence. The secondary wall thickenings function by providing tensile force that pulls back the anther walls from the line or region of dehiscence. The innermost cell layer is termed the tapetum, which consists of metabolically active cells that...
function in the development of pollen grains. Additional wall layers, termed middle layers, may occur between the endothecium and tapetum. Both the total number of wall layers and their developmental origin define various anther wall types. Early in development an anther contains two layers of cells, an outer epidermis and an inner layer of primary parietal cells. Cells of the primary parietal layer divide tangentially (parallel to the outer surface) to give rise to two layers of cells, secondary parietal cells. Based on the derivation of cell lineages, four general types of anther wall development have been defined (Figure 11.2): (1) basic, in which both secondary parietal cell layers divide to yield two middle layers; (2) dicotyledonous, in which only the outer secondary parietal cell layer divides to yield the endothecium...
and a single middle layer; (3) monocotyledonous, in which only the inner secondary parietal cell layer divides to yield the tapetum and a single middle layer; and (4) reduced, in which the secondary parietal cells do not divide further and develop directly into the endothecium and tapetum, respectively.

Another embryological character concerns the development of the tapetum, with two basic types defined (Figure 11.3). In some angiosperms the tapetum remains intact with no breakdown of cell walls. This tapetal type is called secretory (or glandular; Figure 11.4A,B) because of the implication that compounds are secreted into the locule of the anther that function in pollen development. In other angiosperm taxa the tapetal cell walls break down, with release of the cytoplasm of the tapetal cells into the locule. This latter tapetal type is called amoeboid (plasmodial or periplasmodial; Figure 11.4C,D) because the cytoplasmic contents surround developing pollen grains like an amoeba surrounds food. Subtypes of the secretory and amoeboid tapetal types have been proposed by some, based on fine developmental differences.

A final embryological character dealing with the anther wall is endothelial anatomy. Two basic types of endothelial cells have been defined based on the structure of the secondary wall thickenings. A girdling endothecium is one in which the secondary wall thickenings form rings with cross bridges between them (Figure 11.5). A spiral endothecium is one in which the secondary wall thickenings are spiral or helical in shape.

POLLEN DEVELOPMENT

Development of microspores from microsporocytes is termed microsporogenesis. There are two basic types of microsporogenesis as determined by the timing of cytokinesis, which is the formation of a plasma membrane and cell wall that divides one cell into two (Figure 11.6A). If cytokinesis occurs after meiosis I, then microsporogenesis is successive (Figure 11.6B). Successive microsporogenesis results in two cells after meiosis I and four cells after meiosis II. If cytokinesis doesn’t occur until after meiosis II, then microsporogenesis is simultaneous (Figure 11.6C). Simultaneous microsporogenesis results in cell formation only after meiosis II.

Development of pollen grains (male gametophytes) from microspores is called microgametogenesis, technically beginning with the first mitotic division of the single microspore nucleus. One embryological character concerning microgametogenesis is the number of nuclei present in the pollen grain at the time of anthesis, or flower maturation (Figure 11.7). Most angiosperms have pollen grains that are binucleate (Figure 11.7), containing one tube cell/nucleus and one generative cell/nucleus. The generative cell divides to form two sperm cells only after pollen tube formation. In many angiosperm taxa, however, the pollen at anthesis is trinucleate (Figure 11.7), caused by division of the generative cell prior to pollen release.

OVULE DEVELOPMENT

The development of the ovule provides a number of significant embryological characters used in plant systematics studies.

OVULE PARTS

Ovules are immature seeds, consisting of a stalk, the funiculus, a megasporangium (also called the nucellus), from which develops the megasporocyte and female gametophyte, plus one or two surrounding integuments. The micropyle is the pore or canal within one or more integuments through which (in angiosperms) a pollen tube traverses prior to fertilization. (In nonangiospermous seed plants, the micropyle receives pollen grains directly.) The structure of the outer versus inner integument can be used to define various micropylar types (below).

The region of the nucellus where the micropyle is located is called the micropylar region; that opposite the micropyle...
is called the chalazal region. A vascular strand typically traverses from the base of the funiculus to the nucellus. In most angiosperm ovules, the ovule curves during development (see Ovule Type), displacing the micropyle to a location near the funiculus base. In this type, the body of the funiculus appears fused to the body of the nucellus. This region where the funiculus is adnate (or decurrent) to the nucellus is called the raphe, which is sometimes visible in the mature seed as a ridge (see later discussion).

NUCELLUS TYPE
The type of nucellus, or megasporangium, is defined based on the number of cell layers comprising it (especially at the micropylar end) and the derivation of those cells. An immature ovule contains a single large cell known as an archesporial cell. In some taxa the archesporial cell undergoes a single periclinal division, resulting in the formation of an outer parietal cell and inner megasporocyte (Figure 11.8). The parietal cell undergoes additional mitotic divisions, the products of which form an inner layer of nucellus cells; this type of nucellus is called crassinucellate, composed of two (sometimes more by additional divisions) layers of cells (Figure 11.8). On the contrary, if the archesporial cell does not divide and develops directly into the megasporocyte, the nucellus will generally be composed of a single layer of cells, the original outer layer; this type of nucellus is called tenuinucellate (Figure 11.8). However, in a few taxa, no parietal cell is formed, yet periclinal divisions occur in the single outer layer, forming an additional inner layer of nucellar cells; this type of nucellus is called pseudocrassinucellate because it appears at maturity to resemble the crassinucellate type in having two nucellar layers, but the inner layer has a
different derivation. The fact that crassinucellate and pseudo-
crassinucellate ovules resemble one another at maturity empha-
sizes the need for early developmental studies to distinguish
between them.

Some taxa may have a proliferation of cell divisions of the
nucellus at the micropylar region of the ovule; this mass of
cells is typically termed a nucellar beak.

MEGASPOROGENESIS

Megasporogenesis refers to the development of megaspores
from the megasporocyte, the cell that undergoes meiosis. Meiosis of the megasporocyte nucleus results in the forma-
tion of four haploid megaspore nuclei. In most taxa, meiosis
is followed by cytokinesis, resulting in four megaspore
cells. This pattern is termed monosporic megasporogene-
sis; because of the four megaspores produced, only one of
them contributes to the female gametophyte (Figures 11.9,
11.10A-D). In some angiosperm taxa, however, cytokinesis
occurs after the first meiotic division, but not the second,
resulting in two cells, each of which contain two haploid
nuclei. This developmental pattern is termed bisporic
megasporogenesis because one of the binucleate cells, con-
taining two megaspore nuclei, contributes to the female
gametophyte (Figure 11.9). Finally, in other taxa cytokinesis
does not occur at all after meiosis, resulting in a single cell
with four haploid nuclei. Because all four haploid megaspore
nuclei contribute to the female gametophyte, this pattern is
termed tetrasporic megasporogenesis (Figure 11.9).

MEGAGAMETOGENESIS

Megagametogenesis is development of the female gameto-
phyte from the haploid product(s) of meiosis. The particular
type of megagametogenesis is a function of mitotic divisions,
the formation of new cells, and the fusion of existing nuclei
or cells. This sequence of events defines what are termed
female gametophyte (or embryo sac) types. The type of
female gametophyte is dependent in part on the pattern of
megasporogenesis, whether tetrasporic, bisporic, or mono-
sporic. The most common and presumably ancestral type of
female gametophyte in the angiosperms is one that devel-
ops from the chalazal haploid megaspore, the result of mono-
sporic megasporogenesis. This haploid megaspore nucleus
then divides mitotically to yield two nuclei, each of those two
nuclei divide to yield four, and each of those four divide to
yield eight. The eight nuclei arrange themselves into seven
cells: three antipodals at the chalazal end, a large central
cell having two polar nuclei, and one egg cell flanked by two
synergids at the micropylar end. (The egg and two synergid
cells are together termed the egg apparatus.) This sequence
of nuclear and cell divisions gives rise to the Polygonum type
of female gametophyte (named after the genus Polygonum
where it was first described), the most common and the
ancestral type among the angiosperms (Figures 11.9, 11.10E).
However, numerous other types of female gametophytes
occur in various taxa of angiosperms (Figure 11.9). For exam-
ple, the Fritillaria type develops from a tetrasporic mega-
sporogenesis in which three of the four megaspores fuse to form
a triploid nucleus (Figures 11.9, 11.10F,G). Two sequential
mitotic divisions of the haploid and triploid nuclei ultimately
result in an 8-nucleate female gametophyte in which the three
antipodals and one of the polar nuclei are triploid (the other
polar nucleus and the cells of the egg apparatus remaining
haploid).

INTEGUMENT TYPE (Figure 11.11)

The ovules of angiosperms have either one or two integu-
ments. If two, the ancestral condition for the angiosperms,
the ovule is called bitegmic. If one, the ovule is unigtegmic.
Unitegmic ovules have evolved in several different angiosperm
groups, including the bulk of the Asteridae. Very rarely,
ovidules may lack any integument; this condition is termed
ategmic.

MICROPYLE TYPE (Figure 11.12)

In a typical, bitegmic angiosperm ovule, the micropyle is
typically formed or delimited by both integuments; this is
termed an amphistomal micropyle type. If the micropyle
is delimited by only the inner integument (the outer one being
foreshortened), it is termed endostomal; if by only the
CHAPTER 11 PLANT EMBRYOLOGY

442

outer integument (the inner one foreshortened), it is termed **exostomal**. In some angiosperms the micropyle is **zig-zag**, meaning that the micropylar pore of the outer integument is spatially displaced relative to the inner integument. If the ovule is unitegmic, the micropyle type may be called **unistomal** by default.

OVULE TYPE (Figure 11.13)

Ovule types are defined primarily on the curvature of the funiculus and nucellus/female gametophyte. The following terms are useful, yet different ovule types can be difficult to define and may require quantitative analyses. An **anatropous** ovule is one in which curvature during development results in displacement of the micropyle to a position adjacent to the funiculus base; a vasculature strand traverses from the base of
the funiculus to the nucellar region opposite the micropyle. The anatropous ovule type is the most common in the angiosperms and is presumed to be ancestral for the group. An orthotropous ovule is one in which no curvature takes place during development; the micropyle is positioned opposite the funiculus base, and the vasculature traverses from the base of the funiculus to the chalazal nucellar region. Orthotropous ovules have evolved independently in various groups of angiosperms. Both anatropous and orthotropous ovules have a straight (unbent) nucellus. (An ovule somewhat intermediate in curvature between anatropous and orthotropous is sometimes termed hemitropous or hemianatropous.)

Four other ovule types that have been defined exhibit a curvature of the ovule during development such that the micropyle is displaced adjacent to the funiculus base, similar to an anatropous ovule. These four additional ovule types differ from an anatropous ovule in having a bent or curved nucellus, as viewed in mid-sagittal section (i.e., a section along the plane of symmetry). Traditionally, these four types were divided into only two: the amphitropous type, in which the nucellus is bent along both upper and lower sides, and the campylotropous type, in which the nucellus is bent only along the lower side. The amphitropous and campylotropous ovule types may often be cited in plant systematic literature. However, these may be subdivided into additional types (ana- and ortho-) based on the orientation of the vasculature. An ana-amphitropous ovule is one in which a vascular strand curves, traversing from the base of funiculus to the chalazal region of the nucellus; the nucellus is bent sharply in the middle along both the lower and upper sides, often with differentiated cells (called a basal body) at the angle of the bend. An ana-campylotropous ovule is similar

FIGURE 11.8 Nucellar type.
<table>
<thead>
<tr>
<th>Female Gametophyte Type</th>
<th>Megasporogenesis</th>
<th>Megagametogenesis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mega-sporocyte</td>
<td>Meiosis I</td>
</tr>
<tr>
<td>Monosporic 8-nucleate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polygonum type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monosporic 4-nucleate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oenothera type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bisporic 8-nucleate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allium type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrasporic 16-nucleate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peperomia type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrasporic 16-nucleate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penaea type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrasporic 16-nucleate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drusa type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrasporic 8-nucleate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fritillaria type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrasporic 8-nucleate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plumbagella type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrasporic 8-nucleate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plumbago type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrasporic 8-nucleate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adoxa type</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 11.9 Female gametophyte types, based on type of megasporogenesis and sequence of divisions and cell fusions during megagametogenesis. Note: micropyle above in all illustrations. Terminology after Maheshwari, 1950.
to the ana-amphitropous type in vasculature, differing in that the nucellus is bent only along the lower side, with no basal body. An ortho-amphitropous ovule is one in which the vasculature is straight, leading from the funiculus base to the middle of the nucellus; the nucellus is bent sharply in the middle along both the lower and upper sides, often with a basal body present. An ortho-campylotropous ovule is similar to that of the ortho-amphitropous type, except that the nucellar body is bent only along the lower side, with no basal body.

OVULE POSITION (Figure 11.14)

Ovule position refers to the placement of the micropyle and raphe relative to the distal end (apex), proximal end (base), or sides of the floral axis.
An **epitropous** ovule is one in which the micropyle points distally. This type can be further divided into **epitropous-dorsal**, in which the raphe is dorsal (abaxial, pointing away from the central floral or ovary axis) or **epitropous-ventral**, in which the raphe is ventral (adaxial, pointing toward the central floral or ovary axis).

A **hypotropous** ovule is one in which the micropyle points proximally. This type can be further divided into **hypotropous-dorsal**, in which the raphe is dorsal (abaxial, pointing away from the central floral or ovary axis) or **hypotropous-ventral**, in which the raphe is ventral (adaxial, pointing toward the central floral or ovary axis).

A **pleurotropous** ovule is one in which the micropyle points to the side. This type can be further divided into **pleurotropous-dorsal**, in which the raphe is above or **pleurotropous-ventral**, in which the raphe is below.

A **heterotropous** ovule is one that varies in orientation.

OBTURATOR PRESENCE/ABSENCE

Rarely, a protuberance of tissue, typically arising from the funiculus or placenta, may develop at the base of the ovule. This mound of tissue, termed an **obturator**, may be typical of certain groups, e.g., the Euphorbiaceae.

SEED DEVELOPMENT

EMBRYOGENY

Embryogeny refers to the development of the embryo within the seed. The sequence of divisions of the zygote (the product of fertilization of egg and sperm) can define various embryogeny types, which have been named after the major taxonomic groups where they occur.

Typically, the first division of the zygote is transverse (perpendicular to the long axis of the female gametophyte and nucellus), initiating the formation of a very young embryo, often termed the **proembryo**. This transverse division delimits two cells, a basal cell at the chalazal end and an apical (terminal) cell at the micropylar end. The terminal cell will divide prolifically, generally forming all or most of the **embryo proper**, which will eventually grow into the new sporophyte. Mitotic divisions of the original basal cell may
also contribute to the mature embryo and/or may develop into a column of cells termed the **suspensor** (Figure 11.15A,B), a non-persistent structure that functions in transport of nutrients to the mature embryo during its development.

Five embryogeny types have been defined based on the sequence of divisions of the basal and terminal cells and which cell derivatives contribute to the mature embryo:

1. **asterad type**, in which the terminal cell divides longitudinally, with both basal and terminal cell derivatives contributing to the mature embryo;
2. **caryophyllid** type, in which the terminal cell divides transversely, with only terminal cell derivatives contributing to the mature embryo;
3. **chenopodiad** type, in which the terminal cell divides transversely, with both basal and terminal cell derivatives contributing to the mature embryo;
4. **crucifer** or **onagrad** type, in which the terminal cell divides longitudinally, with only terminal cell derivatives contributing to the mature embryo;
5. **solanad** type, in which the terminal cell divides transversely, the basal cells derivatives forming a suspensor but otherwise not contributing to mature embryo development.

Finally, a sixth embryogeny type, the **piperad type**, is defined if the zygote divides longitudinally (i.e., parallel to the axis of the female gametophyte and nucellus), thus not forming a basal and terminal cell.

EMBRYO TYPE

The mature embryo type is based on its form and size. The shape and size of the radicle and cotyledons is most important. Various embryo types have been defined primarily on **ptyxis**, the aestivation of the cotyledons (Chapter 9). An embryo may be either **achlorophyllous** (lacking chloroplasts) or **chlorophyllous** (green, having chloroplasts) at maturity.

ENDOSPERM DEVELOPMENT

Development of the endosperm (Figure 11.15A-C) is described based on early mitosis and cytokinesis of the usually triploid,
endosperm cell (the second product of double fertilization). A **cellular** endosperm is one in which the endosperm cell divides mitotically, regularly followed by cytokinesis. Thus, each endosperm nucleus is contained within a cell wall from the beginning. A **nuclear** endosperm is one in which the early mitotic divisions are not followed by cytokinesis. Thus, numerous nuclei are contained within a single cell, at least early in development; later, cell walls typically surround the nuclei. A **helobial** endosperm is one in which the first mitotic division is followed by cytokinesis, delimiting two cells. However, the nucleus of one cell continues a nuclear type of development; that of the other cell divides in a cellular fashion.

SEED STORAGE TISSUE ORIGIN
The most common, and ancestral, type of storage tissue in angiospermous seeds is endosperm. This typical seed type is called **endospermous** or **albuminous** (Figures 11.15, 11.16). In some taxa, however, double fertilization and endosperm development occur, but the endosperm soon stops growing; the mature seed is termed **exalbuminous**. This is typical, for example, of all orchids, which have very reduced seeds in general. In other exalbuminous taxa, the early endosperm tissue may be absorbed, with other tissues taking its place as a storage tissue. A **cotylespermous** seed storage tissue type is one in which the cotyledons enlarge and assume the function of storage tissue (Figure 11.16). Cotylespermous seeds are found, e.g., in many legumes, such as peas and beans. A **perispermous** type of seed storage tissue is one in which the chalazal nucellar cells enlarge and store energy-rich compounds.

SEED STORAGE TISSUE COMPOSITION
The storage tissue of a seed (usually endosperm) can be defined by the chemical composition of the energy-rich compounds within its cells. Storage tissue can contain primarily **starch** (in the form of starch grains or amyloplasts), **oil** (in the form of oil bodies), or **protein** (in the form of protein bodies).

SEED COAT ANATOMY
The integument(s) of the ovule matures into the **seed coat** (also called the **testa**) of the seed. Features of the anatomy of

FIGURE 11.16 Seed morphology.
the mature seed coat can be significant embryological characters. These include the number of cell layers in each seed coat layer (versus the number in the integuments) and specialized cell anatomy of the cells (including cell shape, cell wall thickness, and cell wall composition) of each seed coat layer. In addition, in some taxa an extra, fleshy layer may form outside the seed coat. If the fleshy layer more or less envelopes the seed coat, it is known as an **aril** (Figure 11.16). The aril generally functions as an attractant in animal dispersal. A **caruncle** is a fleshy layer that does not surround the seed coat, but forms as a basal appendage, typically near the **hilum** (the scar of the funiculus). The caruncle functions like an aril, as a food reward in animal seed dispersal (Figure 11.16).

SEED MORPHOLOGY

Aspects of mature seed morphology include shape, size, color, and sculpturing. In addition, some taxa have a prominent raphe, funicular scar, or hilum (micropylar scar; Figure 11.15).

EMBRYOLOGY AND SYSTEMATICS

As noted earlier, the collection of embryological features can be very valuable in delimiting or aiding in phylogenetic inference. An example of embryological features in a group of angiosperms is portrayed in Table 11.1.

<table>
<thead>
<tr>
<th>Embryo</th>
<th>female gametophyte development</th>
<th>Polygonum-type or Plumbago-type</th>
<th>Female Gametophyte (Embryo Sac) type</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Embryo type]</td>
<td>[Embryogeny]</td>
<td>[Micropyle Type]</td>
<td>[Ovule Type]</td>
</tr>
<tr>
<td>Ovule</td>
<td>Nucellus type</td>
<td>[Nucellus type]</td>
<td>[Obturator Presence/Absence]</td>
</tr>
<tr>
<td>anatropous</td>
<td>(ana-)campylotropous</td>
<td>or orthotropous</td>
<td>[Ovule Presence]</td>
</tr>
<tr>
<td>[Embryo type]</td>
<td>[Endosperm Presence/Absence]</td>
<td>[Seed Storage Tissue Origin]</td>
<td>[Seed Storage Tissue Origin]</td>
</tr>
<tr>
<td>Embryo</td>
<td>Embryo sac development</td>
<td>Polygamous-type or Plumbago-type</td>
<td>[Female Gametophyte (Embryo Sac) type]</td>
</tr>
<tr>
<td>without chlorophyll</td>
<td>or with chlorophyll</td>
<td>[Embryo type]</td>
<td>[Seed coat anatomy]</td>
</tr>
<tr>
<td>Seeds</td>
<td>Exotestal layer of seed not thickened or thickened</td>
<td>[Seed coat anatomy]</td>
<td>[Seed coat anatomy]</td>
</tr>
<tr>
<td>loose</td>
<td>Endotestal layer of seed thickened or not</td>
<td>[Seed coat anatomy]</td>
<td>[Seed coat anatomy]</td>
</tr>
<tr>
<td>Exotegmic layer of seed tracheidal</td>
<td>Brous or palisade, or unspecialized</td>
<td>[Seed coat anatomy]</td>
<td>[Seed coat anatomy]</td>
</tr>
<tr>
<td>[Seed coat anatomy]</td>
<td>Endotegmic layer of seed not thickened or thickened</td>
<td>[Seed coat anatomy]</td>
<td>[Seed coat anatomy]</td>
</tr>
</tbody>
</table>

EMBRYOLOGICAL TECHNIQUE

Material Dissection and Preparation:

As with anatomical studies, the study of plant embryology can involve very time-consuming embedding, microtome sectioning, staining, and slide preparation. Often, it is critical to obtain a range of developmental stages, in order to trace the changes that occur from inception to maturity. Female gametophyte development is particularly difficult to study, as some developmental changes occur rapidly and are hard to catch.

For all embryological studies, plant material must first be fixed in a chemical solution. The *fixative* preserves the material close to its original state and often clears it somewhat such that it can be better resolved under the microscope. Fix a number of flowers, from very young buds to developing fruits, by placing the material in a jar or vial of 70%–95% ethanol. The buds and flowers (or large ovaries or anthers) should generally be cut open to allow for better penetration of the fixative. Fix for a minimum of 10–15 minutes, although 1–2 days is better; store in 70% ethanol. [Note that, for more detailed studies, the material should be fixed in FAA, which is a mixture of formalin, acetic acid, alcohol. One recipe for FAA is: 66 ml of 95% ethanol, 21 ml water, 8 ml commercial (37%) formalin, and 5 ml glacial acetic acid. Formalin is dangerous to inhale, and glacial acetic acid is very caustic, so the solution should be mixed very carefully in a laboratory hood. Once mixed, it can be stored indefinitely, in a properly sealed container.]

Ovule Morphology:

Many features of the ovule can be observed with some relatively simple techniques. Place mature flowers that have been chemically fixed in a small dish (Petri or Syracuse dish) filled with 70% ethanol. Dissect the material with needles and forceps to remove and open up the ovary. Use fine needles to detach the ovules. During the dissection, observe the general ovule type (e.g., is the micropyle pointing toward the point of attachment of the funiculus [anatropous] or away from it [orthotropous]) and ovule position (the placement of the micropyle and funicular raphe relative to the flower axis). Place some ovules (using forceps or a pipette) on a microscope slide in a drop of water or 50% glycerol and cover with a cover slip.

For more detailed studies, the ovules can be cleared and observed using phase contrast or (preferably) differential interference contrast (DIC or Nomarski) optics. One useful clearing fluid is Herr’s solution. [A recipe is 1 part 85% lactic acid : 1 part chloral hydrate : 1 part phenol crystals : 1 part clove oil : % xylene (all parts by weight; after Herr, J. M., Jr. 1971. American Journal of Botany 58: 785 790.)]
CHAPTER 11 PLANT EMBRYOLOGY

REVIEW QUESTIONS

ANTHER AND POLLEN DEVELOPMENT
1. What are the two major anther types and how do they differ?
2. What criteria are used to define the four types of anther wall development?
3. What is the tapetum? What are the two types of tapetum development and how do they differ?
4. What are two types of anther endothecial anatomy?
5. What is microsporogenesis and what are the two major types?
6. What is microgametogenesis and what are the two major types?

OVULE DEVELOPMENT
7. Name the parts of a typical ovule.
8. What is meant by the chalazal region? a raphe?
9. Name and distinguish between the three types of nucellus. Which two resemble one another at maturity?
10. Name and distinguish between the three types of megasporogenesis.
11. What criteria are used to distinguish between the numerous female gametophyte development types?
12. Which female gametophyte type is most common and probably ancestral in the angiosperms?
13. What are the two major integument types?
14. What are the differences between endostomal, exostomal, amphistomal, unistomal, and zig-zag micropylar types?
15. What criteria are used to distinguish between ovule types? Which type is most common and ancestral in the angiosperms?
16. Define and give three examples of ovule position.

SEED DEVELOPMENT
17. What is embryogeny and on what criteria are different embryogeny types based?
18. What is ptyxis and what does it define?
19. Name the three basic types of endosperm development and describe how they differ.
20. Other than endosperm, what two other seed storage tissue origins occur in angiosperms?
21. Name four seed storage tissue origin types. Of what three major chemicals are seed storage tissue composed?
22. What are arils and caruncles, and what is their function?

EMBRYOLOGY AND SYSTEMATICS
23. Name some features of embryology that may be valuable in plant systematics.

EXERCISES

1. Obtain flowering material of a species and fix the material according to the procedures noted above (Embryological Technique). Dissect ovules from the ovaries and prepare a slide for light microscope observations. If possible, clear the ovules for phase contrast or differential interference contrast (DIC) microscopy. Note, from the dissected or cleared ovules, the (a) ovule position (epitropous, hypotropous, pleurotropous (and whether dorsal or ventral), or heterotropous; (b) integument type (bitegmic or unitegmic); (c) female gametophyte shape; (d) vasculature; and (e) specific ovule type (ana-amphitropous, ana-campylotropous, ortho-amphitropous, or ortho-campylotropous). Draw and record this information.
2. Obtain anthers of various stages and dissect them open to make slide preparations. Stain with acetocarmine. Observe stages of meiosis and pollen development.

3. Obtain mature seeds of various flowering plants. Observe outer components of the seed, including seed coat morphology, funicular scar, raphe, caruncle, or aril (if present). Dissect the seeds by cutting with a razor blade. Observe the embryo and the seed nutritive type (endospermous or albuminous, exalbuminous, cotylespermous, or perispermous). Stain the seed sections with IKI, which stains starch a dark purple or brown, to determine if the nutritive tissue is starchy at maturity.

REFERENCES FOR FURTHER STUDY

INTRODUCTION

Palynology (Gr. palynos, dust) is the study of spores and pollen grains. Spores and pollen grains have a number of morphological and ultrastructural features. These palynological features have provided a wealth of characters that have been important in inferring phylogenetic relationships of plants. In addition, the features of spores and pollen grains can often be used to identify a particular plant taxon. For this reason, palynological studies are used extensively to examine the fossil record, a field called paleo-palynology. The identity, density, and frequency of pollen grains at a particular stratigraphic level can give information as to the plant species present at that time and place. Paleo-palynological studies are thus used to determine plant community structure and to gauge, by extrapolation over time, shifts in climate.

PALYNOLOGICAL TERMINOLOGY

The terminology applied to pollen morphology and ultrastructure varies from author to author. The following terminology follows the suggestions of Reitsma (1970), Walker and Doyle (1975), and Punt et al. (1994).

POLLEN NUCLEUS NUMBER

The number of nuclei at the time of pollen release can be phylogenetically informative. Two types occur in angiosperms. Binucleate grains (Figure 12.1) contain one tube cell and nucleus and one generative cell and nucleus; this is the most common and ancestral type in the angiosperms. Trinucleate grains contain one tube cell and nucleus and two sperm cells, the latter resulting from precocious division of the generative cell. Trinucleate grains are relatively rare in the angiosperms, being a diagnostic feature and possible apomorphy for some Caryophyllales. Pollen nuclear number is also listed as an embryological character (see Chapter 11).

POLLEN STORAGE PRODUCT

Pollen grains contain high-energy storage reserves. These are composed of either starch or oil. The distribution of storage product type can be phylogenetically informative in the angiosperms.

POLLEN UNIT

Pollen unit refers to the number of pollen grains united together at the time of release. Most commonly, the four microspores formed after microsporogenesis separate prior to pollen (or spore) release. Such single, unfused pollen grains are called monads, found in the great majority of angiosperms.
Rarely, pollen grains will fuse in pairs, each pair known as a dyad. More commonly, the four haploid products of meiosis remain fused together, comprising a tetrad. Five types of tetrads are recognized, based on the arrangement of pollen grains: (1) tetrahedral tetrads (Figure 12.2A), in which the four grains form the points of a tetrahedron, e.g., as in members of the family Ericaceae; (2) linear tetrads, in which the four pollen grains are arranged in a straight line, e.g., as in Typha spp.; (3) rhomboidal tetrads, in which the four grains are in one plane, with two of the grains separated from one another by the close contact of the other two; (4) tetragonal tetrads (Figure 12.2B), in which the four grains are in one plane and are equally spaced apart; and (5) decussate tetrads (Figure 12.2C), in which the four grains are in two pairs arranged at right angles to one another.

Pollen grains that are connate in precise units of more than four are called polyads (Figure 12.2D). Polyads are common in the Mimosoideae of the Fabaceae and generally consist of a multiple of eight fused grains. Fusion of pollen grains in large, often irregular numbers, but less than an entire theca,
are called massulae (singular massula) (Figure 12.2E). Finally, the fusion of all pollen grains of an entire theca is called a pollinium (plural pollinia), found in the families Apocynaceae (Figure 12.2F) and Orchidaceae (Chapter 7).

POLLEN POLARITY

Pollen polarity refers to the position of one or more apertures (see later discussion) relative to a spatial reference. This spatial reference defines a polar axis as the extended pollen grain diameter that passes through the center of the original pollen tetrad (Figure 12.3). The intersection of the polar axis with the grain surface near the center of the tetrad is the proximal pole, the surrounding area being the proximal face or proximal hemisphere; that away from the tetrad center is the distal pole, the surrounding area being the distal face or distal hemisphere. Just as with a globe, the intersection with the pollen surface of a plane at a right angle to the pole and passing through the center of the grain defines the pollen equator, the surrounding area being the equatorial region. Observing a pollen grain from the direction of either pole is known as a polar view; observing from the equatorial direction is an equatorial view (Figure 12.3).

The three general types of pollen polarity are (1) isopolar, in which the two polar hemispheres are the same but can be distinguished from the equatorial region; (2) heteropolar, in which the two polar hemispheres are different, because of differential displacement of one or more apertures; and (3) apolar, in which polar and equatorial regions cannot be distinguished after pollen grain separation from the tetrad. Note that pollen polarity is with reference to the microspore or pollen tetrad. Unless the mature pollen unit is a tetrad (above), pollen grain polarity can be directly determined only by observing the position of apertures during the early tetrad stage. Because this is rarely observed, polarity is generally inferred by comparison with taxa for which polarity has been directly observed.

POLLEN APERTURE

A pollen aperture (Figures 12.4, 12.5) is a specially delimited region of the pollen grain wall. (See Pollen Wall Structure.)

![Figure 12.3](image-url) Pollen polarity.
CHAPTER 12 PALYNOLOGY

Figure 12.4 Pollen aperture.
The function of the aperture is primarily to serve as the site of formation of a pollen tube exiting from the pollen grain body. Apertures may also function to allow volume changes of the pollen grain with changes in water content, e.g., humidity. This feature is known as harmomegathy. Harmomegathy allows the pollen grain apertures to contract with water loss, effectively sealing the apertures via the surrounding desiccation resistant exine wall (see later discussion).

Pollen aperture type refers to the shape, number, position, and arrangement of the aperture(s) of a pollen grain, often with an implied reference to the polar axis. Rarely, pollen grains lack any recognizable aperture; these are termed imperturate.

Two general types of apertures correspond to shape. A colpus (plural, colpi) is an elongate aperture with a length/width ratio of greater than 2:1 (Figure 12.4). Colpi can be elliptic, oblong, or fusiform in outline shape. A porus (plural, pori) is a circular to slightly elliptic aperture with a length/width ratio of less than 2:1 (Figures 12.4, 12.5C,D,F); if pori occur globally on the pollen grain surface, the aperture type is called pantoporate (Figures 12.4, 12.5J,K). An aperture that is shaped like a colpus but has a circular region in the center is termed colporate (Figures 12.4, 12.5B,I).

Pollen grains with apertures occurring in the equatorial region may be termed zonaperturate (or stephanoaperturate), e.g., as in zonocolpate or zonoporate. The terms colpus and porus are often restricted to apertures occurring in a region of the pollen grain other than the poles, often in the equatorial region. By this terminology an elongate aperture similar in shape to a colpus (length/width ratio >2:1) occurring at the (usually distal) pole is called a sulcus (Figure 12.5A). Comparably, a circular to slightly elliptic aperture similar in shape to a porus (length/width ratio <2:1) occurring at the (usually distal) pole is called an ulcus (Figure 12.5G). Disulculate refers to a pollen grain with two elongate apertures on opposite sides of the grain, e.g., parallel to the equatorial plane (Figure 12.5H); trisulculate is similar but with three apertures.

The number of apertures of any shape can be designated by appending the prefix mono-, di-, tri-, tetra-, penta-, hexa-, or poly- (more than six) to the terms colporate or porate. Thus, a tricolpate pollen grain is one with three, elongate apertures occurring in the equatorial region. A pentaporate pollen grain is one with five, approximately circular apertures occurring in the equatorial region.

Some aperture types are rather rare and specialized. Syncolpate refers to a pollen grain in which the colpi are joined, e.g., at the poles. Trichotomosulcate refers to an aperture type that is three-branched. Sulcate and ulcerate pollen grains typically have only a single aperture; these terms are usually equivalent to monosulcate and monoulcerate, respectively. Spiraperturate refers to one or more apertures that are spirally shaped (Figure 12.5E).

POLLEN SYMMETRY
Pollen symmetry is generally either radially symmetric, i.e., with two or more planes of symmetry, or bilaterally symmetric, with a single plane of symmetry. Symmetry is often incorporated or assumed as part of a shape term (see Pollen Shape).

POLLEN SIZE
Pollen size can vary tremendously across taxa. Size is typically measured in terms of both the polar diameter and the equatorial diameter (see Pollen Shape).

Typical pollen grains are ca. 25–50 μm in diameter, but pollen diameter can range from <5 μm (approaching the size of some bacteria!) to >200 μm.

POLLEN SHAPE
Pollen shape (Figure 12.6) may refer to the three-dimensional shape of a pollen grain; e.g., boat-shaped, ellipsoid, fusiform, or globose/spheroidal. Shape may also be assessed by the two-dimensional outline shape either in polar view or equatorial view, e.g., as viewed by focusing under a light microscope. The outline shape in polar view is known as amb. Amb can be nonangular, e.g., circular, elliptic, or angular, e.g., triangular, rhombic, rectangular, five-angled. For angular ambits, the shape of the sides may be described as straight, concave, or convex (Figure 12.6).

Another measure of pollen shape is the ratio of the polar diameter to the equatorial diameter, termed the P/E ratio. If the P/E ratio is approximately equal to 1, the grains are termed spheroidal. If P/E is >1.2, the grains are termed prolate (i.e., elongate along the polar axis, like a cucumber); if P/E <0.8, the grains are oblate (compressed along the polar axis, like a tangerine). (The subcategories prolate-spheroidal and oblate-spheroidal are sometimes used for grains that are slightly prolate or oblate, respectively.)

POLLEN SCULPTURING
Pollen sculpturing (Figure 12.7) refers to the external features of the pollen grain wall. Sculpturing features may be viewed with light microscopy, but much greater detail can be detected with scanning electron microscopy.

Specialized pollen sculpturing terms include: baculate, having rod-shaped elements, each element termed a baculum, plural baculi; clavate, having club-shaped elements, each element called a clava, plural clavae;
Figure 12.6 Pollen shape.

echinate, having spinelike elements > 1 m long, each element termed an echina, plural echinae;
fossulate, having longitudinal grooves.
foveolate, having a pitted surface caused by pores in the surface;
gemmate, having globose or ellipsoid elements, each element termed a gemma, plural gemmae;
psilate, having a smooth sculpturing;
reticulate, having a netlike sculpturing, each element termed a murus (plural muri) and the space between muri termed a lumen (plural lumina);
rugulate, having irregular to sinuous, tangentially oriented elements, often appearing brainlike;
spinulose (also termed scabrate), having spinelike elements <1 m long, each element termed a spinulum, plural spinuli;
striate, having thin, cylindrical, tangentially oriented elements;
verrucate, having short, wart-like elements, each element termed a verruca, plural verrucae.

POLLEN WALL STRUCTURE
The pollen grain wall functions primarily to provide structural support and protection of the cytoplasm from mechanical damage and dessication. The wall may also function to facilitate pollination. For example, entomophilous (insect-pollinated) flowers tend to have elaborately sculptured pollen; these sculpturing elements may function to attach pollen grains to one another in masses and to appendages on the insect. Anemophilous (wind-pollinated) flowers tend to be smooth (psilate), functioning as a more efficient aerodynamic mechanism for wind transport.

The pollen grain wall may also function to store proteins involved in incompatibility reactions. Sporophytic incompatible taxa tend to have incompatibility proteins stored in the intine, derived from the microspore/pollen cytoplasm.

Pollen wall structure (Figure 12.8) refers to the internal form of the pollen grain wall. Early in development, microspores typically have a thick cell wall composed of callose, the same substance that lines the pores of sieve elements. During pollen development, however, the callose wall breaks down completely. Mature pollen walls almost always consist of two major layers: intine and exine. The intine is the innermost layer, which is composed primarily of cellulose and pectines, resembling the primary cell wall of a typical parenchyma cell. The exine is the hard, outermost, desiccation-resistant wall layer that provides the major structural support for the cytoplasm. Exine is impregnated with a substance called sporopollenin, a polymer of oxidative carotenoids and/or carotenoid esters. Sporopollenin is very tough and resistant to mechanical damage and decay. The presence of sporopollenin accounts for the fact that pollen grains may often be preserved in the fossil record. The sporopollenin-impregnated exine is also resistant to acetolysis, which is a standard acid treatment used to dissolve all but the exine in order to better observe pollen wall structure with the light microscope.

The exine of many taxa may be divided into two layers, an inner endexine and an outer ektexine. These two layers differ chemically and have different staining properties as viewed with transmission electron microscopy. The endexine typically forms a more or less homogeneous, inner layer. The ektexine may exhibit a variety of structural forms. The most common type of ektexine in angiosperms is termed tectate-columellate (Figures 12.8, 12.9) and consists of an inner foot layer, a middle layer of radially elongate columellae, and an outer, rooflike layer called the tectum. In some taxa, the middle layer (given the generalized term interstitium) may not be

![FIGURE 12.8 Pollen wall structure.](image)
composed of columellae, but may instead consist of irregular or granular elements.

A tectate-columellate wall structure that lacks pores or perforations in the tectum is termed tectate-imperforate. In some taxa, the tectum contains tiny pores, a structure known as semi-tectate. A semi-tectate structure typically corresponds with a foveolate sculpturing type. A wall structure in which the tectum has large openings is called tectate-perforate. This may correspond, e.g., with a reticulate sculpturing.

Exinous elements on top of the tectum (described as supratectal) may account for sculpturing types such as baculate or echinate. However, in some taxa, a tectum may be absent; in these taxa protruding sculpturing elements such as baculae or echinae may be homologous to modified columellae. Only by viewing the wall structure internally may these differences be noted.

In addition to the tectate-columellate wall structure, various angiosperm taxa may have a wall that ancestrally lacks a tectum, termed an atectate wall structure. The exine wall of atectate taxa may be structurally solid, termed homogeneous, or granular, containing small, granular elements with intervening air spaces. Additional types of exine wall structure include lamellar, having stacked, tangentially oriented, planar structures, often constituting the inner wall layer; and alveolar, having numerous, spherical air pockets within the exine.

The layers of the exine can be precisely observed only using transmission electron microscopy. However, because many aspects of pollen wall structure may be observed using light microscopy, the terms nexine and sexine are sometimes applied to describe exine wall layers (Figure 12.8). Nexine refers to the inner layers, which may include both endexine and the foot-layer of the ektexine. Sexine refers to the outer, protruding layers, which may include columellae, tectum, and supratectal sculpturing elements (if present).

FIGURE 12.9 Example of tectate-columellate wall structure.

FIGURE 12.10 *Fuchsia* sp. (Onagraceae), having triangular, triporate pollen grains with viscin threads (arrow). A. Equatorial region in focus. B. Polar region in focus.
POLLENKIT AND VISCIN THREADS

Pollenkit is a yellowish or orange, carotenoid-like material adhering to the exine. It functions to stick pollen grains in masses, better effecting transfer of pollen by animal (esp. insect) pollinators.

Viscin threads (Figure 12.10) are long strands of carbohydrate material that, like pollenkit, function in sticking pollen grains together.

PALYNOLOGY AND SYSTEMATICS

Palynological features have been very valuable in delimiting taxa or aiding in phylogenetic inference. An example of palynological features in a group of angiosperms is portrayed in Table 12.1.

| Pollen shed in binucleate or trinucleate condition [Pollen nuclear number] |
| Plastid-DNA not transmitted through pollen or transmitted |
| Aperturate pollen with furrows or not [Pollen aperture] |
| Aperturate pollen without pores or with pores [Pollen aperture] |
| Apertures simple or compound [Pollen aperture] |
| Number of apertures basically three, 4-7, or >7 [Pollen aperture] |
| Zonocolpate apertures (>3) absent or present [Pollen aperture] |
| Pollen surface not spinulose or spinulose [Pollen sculpturing] |
| Pollen surface punctate/perforate or not punctate/perforate [Pollen sculpturing] |
| Pollen surface not reticulate or reticulate [Pollen sculpturing] |

PALYNOLOGICAL TECHNIQUE

Material preparation:

For studies of pollen morphology, it is best to obtain living material of anthers, just at the time they are dehiscing, and fix these in a chemical solution, such as alcohol or FAA (see Chapter 10). [For transmission electron microscope studies, other fixatives, such as gluteraldehyde, formalin, or osmium tetroxide are used.] Collect plenty of material, and store in vials.

Light microscopic observations:

Pollen grains can be observed simply by making a wet mount on a microscope slide. A single anther can be removed from the fixative material, placed in a drop of water or 50% glycerol (the latter to prevent the material from drying out), and dissected with needles to extrude the pollen grains; the anther wall material should then be removed and a cover slip applied.

In addition, the pollen can be stained with either toluidine blue or acetocarmine, in order to better visualize details of the apertures and wall sculpturing. Simply dissect the anthers in a drop of stain, remove the anther wall, and add a cover slip.

Another technique is to clear the pollen grains in a clearing solution and visualize them using phase contrast or differential interference contrast (DIC, also called Nomarski) optics. A useful clearing solution is called Hoyer’s clearing fluid. (Recipe: soak 30 g arabic gum lump in 50 g of water for 24 hours; add 200 g chloral hydrate (note: a controlled substance) until all the material dissolves; then add 20 g glycerine.) Dissect the anthers in a drop of Hoyer’s as before, add a cover slip, and observe under phase contrast or DIC optics. The pollen grains may need time to clear, but once they do, you can visualize many details of the wall and apertures.

The presence or absence of starch in pollen grains can be examined by staining the pollen with IKI stain; starch changes to a dark blue or black in the presence of this stain. In addition, pollen grains can be mounted in 50% glycerol and viewed with polarization optics; starch grains are birefringent and show a Maltese cross type pattern under polarized light.

REVIEW QUESTIONS

1. What is the study of spores and pollen called?
2. What are the two types of pollen nuclear number? of pollen storage product?
3. What does pollen unit refer to?
4. What is the difference between a monad, tetrad, polyad, and pollinium?
5. What is pollen polarity?
6. What is the difference between an isopolar and heteropolar pollen grain?
7. What is the definition and function of a pollen aperture?
8. What is the difference between a colpus, porus, sulcus, and ulcerus?
9. What is a tricolporate pollen grain? a pentaporate pollen grain?
10. What is the size range of angiospermous pollen grains?
11. Name and define six terms that specify pollen sculpturing.
12. Name three functions of the pollen grain wall.
13. What are the two major layers of a pollen grain wall and how do they differ in chemical composition?
14. Name the two layers of exine.
15. Name and describe the most common type of exine wall structure.
16. What do nexine and sexine refer to?
17. What is the function of pollenkit or viscin threads?

EXERCISES

1. Using the simple procedures described earlier (Palynological Technique), examine pollen grains of various groups of angiosperms, including Magnoliids, Monocots, and several Eudicots, including a member of the Ericaceae (with permanent tetrads). Tabulate the differences in pollen unit, aperture type, aperture number, sculpturing type. Also, note the presence or absence of starch in the pollen grains.
2. Peruse journal articles in plant systematics, e.g., *American Journal of Botany*, *Systematic Botany*, or *International Journal of Plant Sciences*, or in specific palynological journals such as *Grana* or *Pollen et Spores* (see Appendix 3: Scientific Journals in Plant Systematics). Note those that describe palynological features in relation to systematic studies. Identify all pollen characters and character states described.

REFERENCES FOR FURTHER STUDY

Plant reproductive biology is the study of the mechanisms and processes of sexual and asexual reproduction in plants. It may encompass study of pollination mechanisms, gene flow, genetic variation, and propagule dispersal between and within populations. A knowledge of the reproductive mechanisms of plants can help assess the adaptive significance and homology of descriptive characters used in plant systematics. Studying reproductive biology can also give insight into the delimitation and classification of species and infraspecies.

The following is a very abbreviated summary of the concepts and terms used in reproductive biology as they may be significant in studies of plant systematics.

SEXUAL REPRODUCTION

In nonseed plants, sexual reproduction entails the release of motile sperm from a free-living gametophyte into the outside environment. The sperm swims in a film of water into the neck of an archegonium, fertilizing the egg to form a zygote and then embryo. Completion of this phase of the life cycle is dependent on survivorship of the gametophytes, on the effective development and operation of antheridia and archegonia, and on the proper external conditions. The sporophytes of nonseed plants generally release massive numbers of spores into the environment, which are transported by wind or, more rarely, by water. These spores may, upon encountering the proper environmental conditions, germinate and grow into a gametophyte, completing the cycle (see Chapters 3, 4).

In seed plants, separate male and female gametophytes are produced within male and female spores (microspores and megaspores). Sex involves the transfer of endosporic male gametophytes, the pollen grains, either to the micropyle of an ovule (in gymnosperms) or to the stigma of a pistil (in angiosperms). Sperm cells are ultimately released (into or just outside of the female gametophyte of the ovule), where one sperm cell fuses with the egg, initiating development of an embryo within the seed. Seeds are then transported by a variety of mechanisms to a new environment (see Chapters 5, 6).

Two major processes in sexual reproduction of seed plants, then, are **pollination**, the transfer of pollen grains from microsporangia to the ovule or stigma, and **fertilization**, union of sperm and egg. Many of the structural modifications of seed plants function in this transfer of pollen and the subsequent development and propagation of seeds.

In gymnosperms cycads *Ginkgo*, conifers, and Gnetales pollen grains are almost entirely transported by wind. Because transport by wind is indirect, it necessitates the production of relatively large numbers of pollen grains to overcome the very low probability that any given pollen grain will make it to the ovule. In contrast, the great majority of angiosperms are animal (mostly insect) pollinated, which appears to be the ancestral condition for the family (Chapter 6), although wind
pollination has arisen secondarily in several groups of flowering plants (see later discussion).

FLOWERING PLANTS
Angiosperms have largely evolved very specialized floral structures that are adaptive in promoting animal pollination. Animal pollination is much more directed and precise, necessitating the synthesis of many fewer pollen grains to effect fertilization of the eggs within ovules.

The basic adaptive strategy of animal-pollinated flowering plants has been the evolution of an attractant and a reward. The attractant works to entice the animal to the flower, either by vision or by odor. A visual attractant is usually a showy perianth (corolla and/or calyx) that may be brightly colored or otherwise contrasting with the external environment, e.g., a white perianth at night. Other floral parts, such as stamens (e.g., *Hibiscus*), staminodes (e.g., members of the Aizoaceae, Cannaceae, or Zingiberaceae), corona (e.g., *Crinum*, *Narcissus*, *Passiflora*), or even the gynoecium, may replace or augment the perianth as a visual attractant. Individual flowers may actually be small, but the accumulation of flowers in an inflorescence may provide a significant visual attractant. Olfactory attractants include the volatile compounds emitted by flowers, usually from the surface of the perianth. Most odiferous flowers have a sweetish smell (e.g., *Jasminum*), but others emit compounds that mimic the smell of rotting flesh (e.g., *Aristolochia*, *Arum*, *Stapelia*).

Many species of flowering plants have evolved structures or exudates that act as a reward, ensuring that the animal pollinator will consistently return to transport pollen. The most common floral reward is nectar, a fluid primarily rich in sugars, secreted from specialized regions or organs of the flower called nectaries (Chapter 9). Nectaries are specialized tissues or organs that may be located within the gynoecium (e.g., the septal nectaries of many monocots), on the perianth, or at the base of and often surrounding the gynoecium or androecium. (Although nectar usually functions as a food source and reward for the prospective pollinator, some nectaries are extra-floral and may function as a re ward for insects, such as ants, that protect the plant from herbivory by other animals.) Another pollination reward is pollen itself, which is a relatively rich source of protein. Some flowering plants produce waxes (e.g., *Krameria*) or oils as a reward. Finally, in some rare cases, insects may obtain specific chemical compounds that are used to attract a mate.

Although the general strategy of pollination in most flowering plants is to provide a reward (thus, presumably, increasing the fitness of both plant and animal), not all animal-pollinated flowers do this. Some flowers have evolved structures or mechanisms to trick the animal to transport pollen, possibly with an adverse affect on the reproductive success of the animal. For example, in certain water lilies and orchids, the nectar may actually function to trap or even drown the insect to promote pollination. Other species of orchids actually mimic (visually and olfactorily) the female of an insect (usually a wasp), fooling the male to attempt to copulate with the flower, which, in the process, transports pollen.

POLLINATION MECHANISMS
Many, if not most, species of angiosperms have evolved specialized pollination mechanisms in which structural modifications are correlated with a specific agent of transferring pollen. Knowledge of the pollination agent can give insight into the function, homology, and evolution of associated floral features. The following are a summary of these general correlations or syndromes.

Insect pollination (or entomophily) is undoubtedly the most common type in angiosperms. Bee pollination (melittophily or hymenopterophily) is correlated with flowers that tend to be showy, colorful, and fragrant. The flowers often have specialized color patterns called nectar guides (Figure 13.1A), which function to attract and orient the bee to maximally effect pollination. In many bee pollinated flowers, nectar guides may be correlated with the anterior perianth part(s) (usually petals or corolla lobes) modified as landing platforms (Figure 13.1A), on which the bee lands to more efficiently gather nectar or pollen and more effectively cause pollination.

Butterfly pollination (psychophily) is associated with showy, colorful, and fragrant flowers, usually with no nectar guides. The flowers tend to have long, nectar-filled tubes or spurs (Figure 13.1B), preventing all but an insect with a long proboscis from acquiring the nectar.

Moth pollination (phalaenophily) is correlated with large, white, and fragrant flowers, with no nectar guides; as with butterfly pollination, the flowers often have long, nectar-filled tubes (Figure 13.1C) or spurs. One interesting example of moth pollination occurs in species of the monocots *Hesperoyucca* and *Yucca* (Agavaceae), which are exclusively pollinated by yucca moths (*Parategeticula* and *Tegeticula* spp.). Yucca moths, in addition to pollinating *Yucca* flowers, deposit their eggs only within the ovary of *Yucca* plant species. Thus, the *Yucca* plant and yucca moths are obligately dependent upon each other for procreation.

Fly pollination (sapromyiophily) is correlated with flowers that are often maroon or brown in color and emit a fetid odor that simulates the smell of rotting flesh. Examples of these are *Arum* and *Stapelia* spp. (Figure 13.1D). In some of these flowers, flies may lay their eggs, which will fail to develop because of the absence of a suitable food source.
Bat pollination (cheiropterophily) is correlated with flowers that open at night (have a nocturnal anthesis), and are large, white or colorful, with copious production of pollen or nectar (often secreted into a hypanthium or perianth tube), either or both of which may serve as a reward. When pollen is the reward, stamens tend to be numerous (Figure 13.1E,F).

Bird pollination (ornithophily) tends to occur in red, relatively large, and often tubular flowers that secrete copious nectar (Figure 13.1G,H). Sometimes the tube results from tightly wrapped but distinct perianth parts (e.g., the cactus Cleistocactus, pollinated by hummingbirds).

Wind pollination (or anemophily) is correlated with small, numerous, often unisexual flowers that tend to have a reduced, nonshowy, or absent perianth (Figure 13.1I). Pollen is produced in large quantities and pollen grains tend to have a smooth (psilate) wall sculpturing. Styles tend to be highly branched as a more efficient means of catching pollen grains in air currents. Anthers and styles may be erect or pendant. Wind pollination is found in several flowering plant groups, such as the Fagaceae (e.g., oaks), Betulaceae (e.g., birches), Salicaceae (poplars and willows), and many Poales (grasses and their close relatives). Some wind-pollinated taxa are quite specialized, such as Alexgeorgea (Rentionaceae, a grass relative), in which the flowers are underground but in which the emergent styles and stamens undergo wind pollination.

Water pollination (hydrophily) may occur in aquatic plants with flowers either at or under the water surface. For example, Vallisneria (Hydrocharitaceae) releases tiny male flowers that float to the surface, where they may float to the enlarged stigmas of a relatively large female flower. Some sea grasses, such as Phyllospadix (Figure 13.2) have very elongate, filiform pollen grains (Figure 13.2C), making them considerably more efficient in being captured by the styles and stigmas of female flowers in ocean currents (Figure 13.2A).

Other, less common pollination syndromes include beetle pollination (cantharophily), carrion beetle pollination (necrocoleopterophily), and ant pollination (myrmecophily).

BREEDING SYSTEMS

Plants can be predominately outbreeding, inbreeding, or some mixture of the two. In many flowering plants specific mechanisms have evolved that promote one of these systems.

Outbreeding, also called **outcrossing**, **allogamy**, or **xenogamy**, is the transfer of gametes from one individual to another, genetically different individual. The general advantage of outbreeding is to promote an increase in phenotypic variability within a population. This generally enables plants to adapt to a wider range of environmental conditions and increases the likelihood for survival and evolutionary change. One disadvantage of outbreeding is that it requires a transfer of gametes between individuals. If individuals are far apart, or if pollinators are scarce, sexual reproduction may not occur at all in obligately outbreeding species.

The probability of outbreeding can be increased by a variety of mechanisms. **Dioecy**, in which individual plants have either male (staminate) or female (pistillate) flowers, ensures that outbreeding will always occur. Many flowering plants exhibit a modified type of dioecy in which some individuals have flowers of one sex but others have bisexual (perfect) flowers. These include **gynodioecy** (some individuals with pistillate flowers only, others with perfect flowers), **androdioecy** (some individuals with staminate flowers only, others with perfect flowers), and **trioecy** (some individuals with staminate flowers only, some with pistillate flowers only, and some with perfect flowers). These alternative mechanisms may
promote outcrossing but also allow for some inbreeding (see later discussion), ensuring that at least some seed will be set.

Another outcrossing mechanism is the result of differences in timing of maturation of male and female floral parts, a feature known as dichogamy, of which there are two general types. Protandry (Figure 13.3A,B) is the precocious development of the androecium, as occurs, e.g., in many members of the Apiaceae, Asteraceae, and Campanulaceae. In protandrous species the pollen matures and is released prior to the maturation and receptivity of the gynoecium. Protogyny (Figure 13.3C) is the precocious development of the gynoecium, as occurs, e.g., in some Chenopodiaceae. Both protandry and protogyny promote outcrossing when flowers of different individuals mature at slightly different rates. Thus, the pollen from one flower will not normally pollinate that same flower, but can pollinate a different flower in which the gynoecium is receptive. In protandrous and protogynous species, outcrossing is ensured only if the flowers from a given individual mature at the same time. In reality, most of these species have flowers aggregated together into inflorescences, in which a range of developmental stages may be present. In any case, at least some outcrossing may occur, and pollination within a single flower is normally prevented. However, if the pollen is not removed from a flower, it may in some cases pollinate the gynoecium of that same flower. This provides a fail-safe mechanism for producing seeds even in times or environments where pollinators are lacking.

Outcrossing has also been enhanced by evolutionary changes in floral structure, particularly the spatial separation of anthers and stigmas, a phenomenon known as hercogamy, also spelled herkogamy. (However, hercogamy may also function to prevent interference of male and female functions in the flower, by physically separating them.) One type of hercogamy is heterostyly, in which the relative lengths or heights of stigmas versus anthers vary among different flowers. (Most flowers are monomorphic or homostylous, whereby the height of stigmas and anthers is relatively constant.) In so-called distylos species, two floral morphologies occur: pin flowers, with a long style and short stamens, and thrum flowers, with a short style and long stamens (Figure 13.4A). In this syndrome, an insect visiting a pin flower is likely to have pollen deposited on its body in a location that would effect pollination of a thrum flower rather than another pin flower, and vice versa. This increases the probability of pollination between flowers rather than within flowers. If individuals tend to have one floral type or the other, outcrossing would be ensured. A rarer, more complex situation occurs in species that are tristylos, with three heights of styles and stamens; the principle for cross-pollination is the same (Figure 13.4B).

Another type of hercogamy is enantiostyly (or enantio-morphy), the curvature of the style to either the left or the right (as viewed from the front), defining left-handed and right-handed flowers (Figure 13.5). This style curvature usually corresponds with a curvature of at least one stamen to the side opposite the style. As with heterostyly, enantiostyly results in the preferential deposition of pollen on one side of, say, an insect pollinator’s body. For example, an insect visiting
a left-handed flower would tend to get pollen deposited on the right side of its body. Thus, the insect would more likely pollinate a right-handed flower as opposed to another left-handed flower. If an individual plant is relatively constant as to floral handedness, enantiostyly will greatly promote the probability of outcrossing.

Yet another type of hercogamy involves movement of floral parts. One type of movement hercogamy is the rapid closure of the stigmas upon their being touched by a potential animal pollinator (e.g., *Mimulus*, Phrymaceae). If the stigmas first receive pollen from a pollinator, their rapid closure can physically prevent pollen from the same flower being transferred to the stigmatic region, effectively preventing intra-floral self-pollination. Another type of movement hercogamy involves trigger mechanisms (e.g., *Kalmia*, *Stylidium*), in which an insect pollinator triggers the sudden movement of one or more stamens, dusting the insect with pollen at the point of contact (Figure 13.6). This pollen is then at a position to be more effectively transmitted to the stigma of another flower.
Finally, outcrossing can be promoted by genetically determined self-incompatibility mechanisms. **Self-incompatibility** refers to the inability for fertilization to occur between gametes derived from an individual genotype. Because this is genetically determined, the incompatibility operates both within a single flower and between flowers of one individual. There are two basic types of self-incompatibility. Gametophytic self-incompatibility is controlled by the genetic composition of the male gametophyte. Sporophytic self-incompatibility is controlled by the genetic composition of the sporophyte, specifically the stigma and style of the pistil.

Inbreeding, also called **selfing**, is the union of gametes derived from a single individual. In flowering plants, inbreeding may occur either within a single flower, known as **autogamy** (infrafloral selfing) or between flowers derived from one individual, known as **geitonogamy**. (The genetic product of autogamy is identical with that of geitonogamy.) A major evolutionary advantage of inbreeding is enabling reproduction to occur when there are relatively few (or even one) individuals present in a population or at times when pollinators are rare, e.g., in ephemeral habitats. The disadvantage of inbreeding is that it reduces variation in a population and can even result in the accumulation of deleterious alleles, a phenomenon known as inbreeding depression.

Some plant species have both outcrossing and selfing flowers, a breeding system known as **allautogamy**. For example, species of *Viola* (Violets) and *Clarkia* have two types of flowers. **Chasmogamous** flowers are typical ones in which the perianth opens and exposes the sexual organs, with subsequent cross-pollination common. Other flowers, however, are **cleistogamous**, in which the perianth remains closed, such that pollen produced from within the flower pollinates only the stigma(s) of that flower. In still other species, both self- and cross-pollination may occur within the same flower. For example, *Myosurus*, mousetail, has numerous, small pistils born on a receptacle that elongates during flower maturation. When the flower first blooms, the receptacle is short, and the pistils that mature tend to be pollinated by the low, surrounding anthers. As the receptacle elongates, however, the pistils are positioned high above the anthers and are more likely to be pollinated by an insect visitor carrying pollen from another flower. All autogamous breeding systems are adaptive in promoting some outcrossing, which may increase overall genetic variation, but also ensuring seed set regardless of availability of pollinators via inbreeding.

Breeding systems may be correlated with overall timing of sexual reproduction. **Iteroparous** plants are those that reproduce more than one time in the life of the plant, typically in regular cycles. Iteroparity is very common in angiosperms, ensuring regular seed set. **Semelparous** plants are those in which plant resources are utilized entirely for one episode of reproduction, followed by degeneration and death of the entire plant (i.e., the plants are **monocarpic**; Chapter 9). Semelparity occurs in all annual and biennial plants, but in very few perennials (occurring, e.g., in *Agave* and *Bambusa* spp.). Semelparity in perennial plants may be a strategy for deceiving or overwhelming potential seed predators, the former by not reproducing seasonally, the latter by producing seeds in such numbers that predators cannot consume them all.

Other temporal phenomena may be correlated with the breeding system of a plant species. For example, in annual or deciduous plants, the relative timing of leaf versus flower...
development may influence pollination and/or seed dispersal. Two general temporal patterns are synanthous, in which leaves and flowers develop at the same time, and hysteranthous, in which leaf and flower development do not coincide. Wind-pollinated plants are sometimes hysteranthous (e.g., in the willows, *Salix* spp.), with flowers maturing and releasing pollen before leaves form, thus, more effectively transmitting pollen in the canopy region of a community of trees.

SEED AND FRUIT DISPERSAL

The evolution of the numerous types of fruits and seeds (Chapter 9), which are used to delimit many taxa, is strongly correlated with their function as dispersal devices. Many mechanisms for dispersal of seeds and fruits have evolved in the angiosperms, including (1) wind dispersal (or anemochory), as in the samaras of *Ulmus*, elms, and *Acer*, maples, and the winged seeds of *Liquidambar*, sweetgum), including those wind dispersed by tumbling (e.g., the tumble weeds, such as *Salsola*); (2) water dispersal (or hydrochory), as occurs in the ocean-dispersed fruits of *Cocos nucifera*, coconut; (3) dispersal by explosive dehiscence of fruits, as in the explosively dehiscent capsules of *Ceanothus* or *Impatiens*; (4) self-dispersal (or autochory), as in *Arachis hypogaea*, peanut, which buries its own fruits; or (5) animal dispersal (or zoochory). Zoochory is divided into ectozoochory, in which propagules are carried on the outside of an animal (as in the burs of *Xanthium*, cocklebur, or the loments of *Desmodium*, sticktight), and endozoochory, in which seeds are eaten (the fruit pericarp or fleshy seed coat or aril being an award or attractant) but are passed through the gut of the animal unharmed.

ASEXUAL REPRODUCTION

Many species of land plants will regularly produce offspring without sex. The advantage of asexual reproduction is that numerous propagules can be generated relatively quickly and efficiently, without reliance on the transfer of gametes. However, the major evolutionary disadvantage is that no genetic variability results. One type of asexual reproduction is vegetative reproduction, the production of genetic clones from vegetative tissue. (Clones of an individual are known as ramets, whereas genetically different individuals are called genets.) Vegetative plant clones are produced by the formation of aerial plantlets (e.g., develop along the leaf margins of *Kalanchoe daigremontiana*, maternity plant). Cloning may also result from stolons, rhizomes, bulbels, cormels, etc., that may become dispersed or physically detached from the genetically identical parent plant. Some clones of creosote bush (*Larrea* sp.) are calculated to have persisted in nature for several thousands of years and may represent the oldest known clonal organisms on earth.

Agamospermy is the production of seeds without fertilization. In some species, agamospermy requires pollination to form seeds, though fertilization never occurs. Embryos of agamospermic seeds are genetically identical to the parent plant. The embryo may develop from a cell of an abnormal, diploid female gametophyte, such as a diploid egg, this being parthenogenesis. Alternatively, the embryo may arise from a cell of the surrounding tissue, such as megasporangial or integument tissue, which is called adventive embryony. Agamospermy may be facultative, occurring in addition to normal sexual reproduction if flowers are unpollinated. Alternatively, some species are obligate agamosperms, as the example being *Taraxacum officinale*, the common dandelion. Evidence for agamospermy includes (1) the occurrence of viable seed in absence of males or after experimental bagging or emasculation of flowers (see later discussion); (2) precocious embryo formation, i.e., prior to anthesis or pollen maturation; (3) adventive embryos, budding from nucellar or integument tissues; (4) multiple embryo and seedling formation from a single seed; (5) rarity or absence of males in nature, e.g., in dioecious species.

HYBRIDIZATION, INTROGRESSION, AND POLYPLOIDY

Hybridization is usually defined as sexual reproduction between different species, specifically termed *interspecific hybridization* (although the term can be used for sexual reproduction between different populations or infraspecific taxa within a species). Hybridization is thought to be relatively common in plants, more so than in most groups of animals.

Two different species of plants will not interbreed if they are geographically isolated or if they exhibit one or more of a variety of genetically determined traits that prevent or inhibit gene exchange. These genetic, reproductive isolating features include (1) differences in habitat; (2) differences in timing of reproduction; (3) differences in floral morphology; or (4) differences in pollinators. (For example, one species that is adapted to a wet environment may not be capable of interbreeding with one that is adapted to a dry environment, simply because the two species are rarely in close enough proximity to allow pollination.)

Hybridization between two plant taxa may only occur if these taxa are genetically similar enough. Any hybrid progeny that are produced may be fertile (capable of sexual reproduction) or sterile, the latter often the result of
FIGURE 13.7 Polyploidy. A, B. Mechanisms by which tetraploidy and triploidy can arise in nature by meiotic nondisjunction, resulting in diploid gametes. C. Mechanism by which a tetraploid individual can arise by somatic chromosome doubling in a sterile hybrid. D. Pollen development in *Cylindropuntia* sp., showing normal tetrad of haploid microspores (left) and abnormal dyad of diploid microspores (right), the latter precursors to diploid pollen grains. E. Chromosome squash (*Cylindropuntia prolifera*, a sterile triploid), showing groupings of three homologous chromosomes (trivalents) during meiosis, indicative of triploidy. F. Evolution of wheat, *Triticum* spp., via polyploid events. (Photos at D and E courtesy of Jon Rebman.)
irregularities in meiosis, resulting in sterile or noncompatible gametes.

Introgression is hybridization between two species followed by backcrossing to one or both parents. The importance of introgression is that it can be a mechanism of promoting some gene flow between two different species, ultimately increasing the genetic variability or fitness of one or the other species.

Polyploidy is a mutation in which offspring have a multiple of some ancestral set of chromosomes. Polyploidy can occur either within a species (autopolyploidy) or between different species (allopolyploidy).

Polyploidy can occur in two general ways. One way that polyploidy can occur is by the production of gametes that have more than one set of chromosomes (Figure 13.7A,B). Diploid gametes can result from an irregularity during meiosis termed **nondisjunction**, in which homologous chromosomes do not segregate; if this occurs with all homologous chromosome pairs, then the daughter cells may be unreduced (i.e., diploid, not haploid). [An unreduced (diploid) pollen grain can sometimes be detected microscopically, whereby only two, larger microspores (see Chapter 12) are detected in the tetrad phase (Figure 13.7D).] If both parents (either of the same or different species) produce diploid gametes, then the offspring possesses four sets of chromosomes, which is a **tetraploid** (Figure 13.7A). Tetraploids are normally fertile, as they can produce viable, diploid gametes. If, however, one parent contributes a haploid gamete and the other a diploid gamete, the offspring will be **triploid** (Figure 13.7B). Triploids are generally sterile, as any gametes they produce will generally lack a full complement of chromosomes because of meiotic irregularities, forming groupings of three homologs (trivalents; e.g., Figure 13.7E), instead of the normal two (bivalents). Triploids might persist as a population, however, if they can continue to reproduce asexually.

A second way that polyploidy can occur is by the spontaneous doubling of chromosome number in an individual plant after normal sexual reproduction. For example, hybridization between two different species might produce living diploid offspring, but the offspring often cannot produce viable gametes because of the genetic dissimilarities between the two parents (Figure 13.7C). However, if this sterile offspring can persist, e.g., if it can also reproduce vegetatively, it might (rarely) undergo a rare **somatic** (i.e. in a nonreproductive cell) chromosome doubling during mitosis in a critical region, e.g., the apical meristem of a shoot, such that this entire shoot becomes tetraploid. The tetraploid is now potentially capable of producing viable, diploid gametes and, therefore, fertile offspring (Figure 13.7C). This type of polyploid event may be rare, but has been documented in species of *Spartina* (cordgrass), in which a new tetraploid species evolved from two, separate diploid parents.

Polyploidy is thought to be a major mechanism in plant evolution, as chromosome studies have demonstrated that most plants have undergone a polyploid event during some time of their history. The evolution of both emmer wheat and bread wheat occurred via ancestral, allopolyploid events, resulting in tetraploid (4n) and hexaploid (6n) individuals (Figure 13.7F).

Testing for Breeding Mechanism

Experimental methods may be used to assess the type of breeding mechanism. Flower buds may be bagged or caged, i.e., covered with a fine netting that excludes potential pollinators. Also, flower buds may be emasculated, in which the anthers are removed prior to pollen release. An example of an experimental regime to test the breeding system is seen in Table 13.1. The determination of seed set for each experiment allows inference as to the breeding system.

In addition to these manipulative experiments, embryological observations may be made to determine, e.g., if pollen tubes are growing through the style of the flower. (Fluorescence microscopy may be used to detect pollen tubes; Figure 13.8.) Absence or inhibition of pollen tube growth indicates some type of genetic incompatibility. In addition, observations of female gametophyte or embryo development and/or chromosome counts of these tissues may detect the occurrence of agamospermy.

Table 13.1

<table>
<thead>
<tr>
<th>SEED PRODUCTION</th>
<th>+ Fertile</th>
<th>− Infertile</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Flowers left to develop normally, a control.</td>
<td>+ Self-fertile</td>
<td>− Not Self-fertile</td>
</tr>
<tr>
<td>2. Flowers caged, then self-pollinated by hand.</td>
<td>+ Self-pollinating</td>
<td>− Not Self-pollinating</td>
</tr>
<tr>
<td>3. Flowers caged, then left alone.</td>
<td>+ Autogamous</td>
<td>− Not Autogamous</td>
</tr>
<tr>
<td>4. Flowers emasculated and caged.</td>
<td>+ Outcrossing</td>
<td>− Not Outcrossing</td>
</tr>
<tr>
<td>5. Flowers caged, emasculated, and outcrossed.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Normal seed set = + and greatly reduced to zero seed set = −.
REVIEW QUESTIONS

1. What is plant reproductive biology?
2. What is pollination?
3. What two general features have evolved in flowers that function to effect animal pollination?
4. What products serve as a reward for animal pollinators?
5. What is a nectar guide? A landing platform?
6. For the following pollination mechanisms, name some floral syndromes (correlated structural modifications): (a) bee; (b) butterfly; (c) moth; (d) wind; (e) bird; (f) bat.
7. What are the two major or extreme types of breeding systems?
8. What are the advantages and disadvantages of outbreeding?
9. What is dichogamy? Name two specific types of dichogamy that can promote outcrossing.
10. What is hercogamy?
11. Define and explain: heterostyly, distyly (pin and thrum), tristyly, enantiostyly, movement hercogamy, trigger mechanisms. What is the overall function of these floral mechanisms?
12. What is self-incompatibility and what is its significance in plant reproductive biology?
13. What are the advantages and disadvantages of inbreeding?
14. What is the difference between allogamy, autogamy, geitonogamy, and allautogamy?
15. Name some types of inbreeding mechanisms.
16. What is agamospermy? How can it be detected?
17. What is hybridization? introgression?
18. Define polyploidy.
19. Cite the ways that polyploidy can occur.
20. How can one test the breeding mechanism in plants? (cite specific ways to test)
21. If the following experiments are performed for plant species A D, what can you say about the breeding mechanism based on the pattern of seed set?

<table>
<thead>
<tr>
<th>Seed Production</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Flowers left to develop normally, a control.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>2. Flowers caged, then self-pollinated by hand.</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>3. Flowers caged, then left alone.</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>4. Flowers emasculated and caged.</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>5. Flowers caged, emasculated, and outcrossed.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
EXERCISES

1. Examine specimens of two species of plants plus any putative hybrids between them. (a) Study both vegetative and floral characters, from original observations or using a manual of the area, and note which diagnostic features distinguish the two species. (b) Decide upon which characters to measure in the specimens available. (c) Record 10-25 measurements of each of the parameters chosen. Compare these by preparing graphs in order to recognize discontinuities (or lack thereof) of the three taxa.

2. Locate a population of a Composite (Asteraceae) species that has both disk and ray flowers. Observe insect visitors (potential pollinators) in each of two subsets of plants (or inflorescences): one undisturbed and another with all ray flowers removed. Count the number and type of visitors over a time period (e.g., 10-30 minutes) and record.

3. If material is available, observe ultraviolet light sensitive regions in the perianth by placing a flower into a jar saturated with ammonium vapors. Bees can detect these UV-reflective regions of the flower, enabling them to find flowers and orient to pollen or nectar more efficiently.

4. Fix the styles of a species of flowering plant in 70% alcohol. Remove the style and place in drops of aniline blue on a microscope slide, covered by a cover slip. If this style is small enough, it may be squashed by applying firm pressure on the cover slip (using, e.g., a cork). Observe under fluorescence microscopy. Pollen tubes regularly deposit callose, which differentially picks up the aniline blue stain. This method allows for detection of pollen tube growth and can be used to test whether self-incompatibility is occurring.

5. If time permits, select a plant species and perform the crossing and caging experiments described in the text. These techniques are used to test the potential and degree of self-pollination versus cross-pollination.

6. Peruse journal articles on plant systematics, e.g., American Journal of Botany, Systematic Botany, or International Journal of Plant Sciences, and note those that describe aspects of reproductive biology in relation to systematic studies. Identify the techniques used and the problems addressed.

REFERENCES FOR FURTHER STUDY

Molecular systematics encompasses a series of approaches in which phylogenetic relationships are inferred using information from macromolecules of the organisms under study. Specifically, the types of molecular data acquired include that from DNA sequences, DNA restriction sites, allozymes, microsatellites, RAPDs, and AFLPs. (The use of data from other, generally smaller molecules, such as secondary compounds in plants, is usually relegated to the field of chemosystematics and will not be reviewed here.)

A revolution in inferring the phylogenetic relationships of life is occurring with the use of molecular data. The following is a review of the types of data, methods of acquisition, and methods of analysis of molecular systematics.

ACQUISITION OF MOLECULAR DATA

Plant samples from which DNA is to be isolated may be acquired by various means. It is vital to always collect a proper voucher specimen, properly mounted and accessioned in an accredited herbarium, to serve as documentation for any molecular systematic study (see Chapter 17). Live samples may be collected and immediately subjected to chemical processing, e.g., for allozyme analysis (see later discussion). For many DNA methods, pieces of leaves (from which chloroplast, mitochondrial, and nuclear DNA can be isolated) are removed from the live plant and immediately dried, typically in a container of silica gel. Alternatively, plant samples may be frozen or placed in concentrated extraction buffer. With any of these procedures, DNA is usually preserved intact. Useable DNA is often successfully isolated from dried herbarium sheets, attesting to the toughness of the molecule.

DNA SEQUENCE DATA

Perhaps the most important method for inferring phylogenetic relationships of life is that of acquiring DNA sequences. DNA sequence data basically refers to the sequence of nucleotides (adenine = A, cytosine = C, guanine = G, or thymine = T; Figure 14.1) in a particular region of the DNA of a given taxon. Comparisons of homologous regions of DNA among the taxa under study yield the characters and character states that are used to infer relationships in phylogenetic analyses.

The first step of acquiring DNA sequence data is to identify a particular region of DNA to be compared between species. Much prior research goes into identifying these regions and determining their efficacy in phylogenetic analysis.

POLYMERASE CHAIN REACTION

After a gene sequence of interest is identified, the DNA from a given plant sample is first isolated and purified by various
chemical procedures. Following this, the DNA sequences of interest are amplified using the polymerase chain reaction (or PCR). The invention of this technology was crucial to modern DNA sequencing, as it permitted rapid and efficient DNA amplification, the replication of thousands of copies of DNA.

The polymerase chain reaction work as follows (see Figure 14.2). Prior research establishes the occurrence of relatively short regions of DNA that flank (occur at each end of) the gene or DNA sequence of interest and that are both unique (not occurring elsewhere in the genome) and conserved (i.e., invariant) in all taxa to be investigated.

FIGURE 14.1 Molecular structure of the four DNA nucleotides. Adenine and guanine are chemically similar purines; cytosine and thymine are chemically similar pyrimidines.

FIGURE 14.2 Polymerase chain reaction, using cycle sequencing to produce multiple copies of a stretch of DNA.
These short, conserved, flanking regions are used as a template for the synthesis of multiple, complementary copies, known as **primers**. Primers ideally are constructed such that they do not bind with one another.

In the polymerase chain reaction, a solution is prepared, made up of (1) the isolated and purified DNA of a sample; (2) multiple copies of primers; (3) free nucleotides; (4) DNA polymerase molecules (typically Taq polymerase, which can tolerate heat); and (5) buffer and salts. This solution is heated to a point at which the sample DNA denatures, whereby the two strands of DNA separate from one another. Once the sample DNA denatures, the primers in solution may bind with the corresponding, complementary DNA of the sample (Figure 14.2). Following binding of the primer to the sample DNA, individual nucleotides in solution attach to the 3′ end of the primer, with the sample DNA acting as a template; DNA polymerase catalyzes this reaction. A second primer, at the opposite end of the DNA sequence of importance, is used for the complementary, denatured DNA strand. Thus, the two denatured strands of DNA are replicated. After replication, the solution is cooled to allow for annealing of the replicated DNA with the complementary DNA single strands. This is followed by heating to the point of DNA denaturation, and repeating the process. A typical PCR reaction can produce more than a million copies of DNA in a matter of hours.

DNA SEQUENCING REACTION

After DNA is replicated, it is sequenced. The most common sequencing technology involves a machine that reads fluorescent dyes with a laser detector. The production of dye-labeled DNA is very similar to DNA replication using the PCR. The replicated DNA is placed into solution with DNA polymerase, primers, free nucleotides, and a small concentration of synthesized compounds called dideoxynucleotides (discussed later) that are each attached to a different type of fluorescent dye. As in the polymerase chain reaction, the sample DNA is heated until the double helix unwinds and the two complementary DNA chains separate (Figure 14.3). At this point, a primer attaches to a conserved region of one of the strands of DNA, and free nucleotides in solution join to the 3′ end of the primer, using the sample DNA as a template and catalyzed by DNA polymerase (Figure 14.3). Thus, a replicated copy of the DNA strand begins to form. However, at some point a dideoxynucleotide joins to the new strand instead of a nucleotide doing so. The dideoxynucleotides (dideoxyadenine, dideoxycytosine, dideoxyguanine, and dideoxothymin) resemble the four nucleotides, except that they lack a hydroxyl group. Once a dideoxynucleotide is joined to the chain, absence of the hydroxyl group prevents the DNA polymerase from joining it to anything else. Thus, with the addition of a dideoxynucleotide, synthesis of the new DNA strand terminates (Figure 14.3).

The ratio of dideoxynucleotides to nucleotides in the reaction mixture is carefully set and is such that the concentration of dideoxynucleotides is always much smaller than that of normal nucleotides. Thus, the dideoxynucleotides may terminate the new DNA strand at any point along the gene being replicated. For example, some of the new DNA strands will be the length of the primer plus one additional base (in this case the dideoxynucleotide); some will be the primer length plus two bases (a nucleotide plus the terminal dideoxynucleotide); some will be the primer length plus three bases (two nucleotides plus the terminal dideoxynucleotide); etc. There are many thousands, if not millions, of copies of the sample DNA. Thus, there will be an equivalent number of newly replicated DNA strands, of all different lengths.

The final step of DNA sequencing entails subjecting the DNA strands to electrophoresis, in which the DNA is loaded onto a flat gel plate or in a thin capillary subjected to an electric current. Because the phosphate components of nucleic acids give DNA a net negative charge, the molecules are attracted to the positive pole. The DNA strands migrate through the medium over time, the amount of migration inversely proportional to the molecular weight of the strand (i.e., lighter strands migrate further). Each strand is terminated with a dideoxynucleotide to which a fluorescent dye is attached; each of the four dideoxynucleotides has a different type of fluorescent dye, which (upon excitation) emits light of a different wavelength. Thus, as the multiple copies of DNA of one particular length migrate along the gel or capillary, the wavelength of emitted light is detected and recorded as a peak, which measures the light intensity. Because a given emitted wavelength (color) is determined by one of the four dideoxynucleotides, the corresponding nucleotide can be inferred and its position identified by the timing of migration of the DNA strands. In this way, the sequence of nucleotides of the DNA strand can be inferred (Figure 14.3).

TYPES OF DNA SEQUENCE DATA

For plants, the three basic types of DNA sequence data stem from the three major sources of DNA: nuclear (nDNA), chloroplast (cpDNA), and mitochondrial (mtDNA). Nuclear DNA is, of course, transmitted from parent(s) to offspring by nuclear division (meiosis or mitosis) via sexual or asexual (somatic) reproduction. Chloroplasts and mitochondria, however, replicate and divide independently of the nucleus and may be transmitted to offspring in a different fashion. For example, in angiosperms these organelles are usually (with some exceptions) sexually transmitted only maternally, being
CHAPTER 14 PLANT MOLECULAR SYSTEMATICS

Figure 14.3 DNA sequencing reactions.

- **A** = dideoxyadenine; **C** = dideoxycytosine; **G** = dideoxyguanine; **T** = dideoxythymine.

Diagram Description:

- **Sample DNA (many copies):**
 - Primer molecules, nucleotides, DNA polymerase, dideoxynucleotides

- **Solution heated, DNA denatures:**
 - New DNA strands denatured from sample DNA; after numerous reactions new DNA strands separated by electrophoresis (below)

- **First nucleotide (catalyzed by DNA polymerase):**
 - Binds to primer strand

- **Second nucleotide binds to primer strand:**
 - At random, dideoxynucleotide (C* in this case) binds to primer strand, terminating reaction

- **ELECTROPHORESIS:**
 - Electric current applied.
 - DNA strands migrate to (+) pole (inversely to molecular weight)

- **DNA strands scanned during migration.**
 - Peaks of wavelengths correspond to fluorescent dyes attached to specific dideoxynucleotides
kept in the egg but excluded in sperm cells. (In conifers, interestingly, chloroplast DNA is transmitted paternally, not maternally.)

The use of sequence data from the DNA of chloroplasts has proven to be highly useful in elucidating both lower and higher level relationships. The basic structure of chloroplast DNA is shown in Figure 14.4. Like all organelle and prokaryotic DNA, it is circular. Curiously, most angiosperms have a region of chloroplast DNA known as the inverted repeat, which is the mirror image of the corresponding region (Figure 14.4). Some of the more commonly sequenced chloroplast DNA genes are listed in Table 14.1, although new ones are being utilized frequently.

Nuclear DNA sequencing has been used to a lesser degree in plant systematics. Some nuclear genes such as alcohol dehydrogenase (Adh), which has traditionally been used in allozyme studies, are becoming more frequently used. One of the more useful types of nuclear DNA sequences has been the internal transcribed spacer (ITS) region, which contains multiple DNA copies (as opposed to single copies found in most protein-coding genes). The ITS region lies between the 18S and 26S nuclear ribosomal DNA (nrDNA) (Figure 14.5). ITS sequence data has been most valuable for inferring phylogenetic relationships at a lower level, e.g., between closely related species. However, it has also been used in elucidating higher level relationships.
ANALYSIS OF DNA SEQUENCE DATA

DNA sequence data is converted to characters and characters states to be used in phylogenetic analyses. First, the sequences of a given length of DNA are aligned, in which homologous nucleotide positions (e.g., corresponding to the same codon position of a given gene) are arranged in corresponding columns (Figure 14.6). For some genes that are relatively conserved, alignment is straightforward, as all taxa have the same number of nucleotides per gene. For other genes or DNA segments, some taxa may have one or more additions, deletions, inversions, or translocations relative to other taxa. The occurrence of these mutations, and/or the occurrence of considerable homoplasy among taxa, can make alignment of DNA sequences difficult. In addition, multiple copies of a gene can make homology assessment difficult. Various computer algorithms can be used to automatically align sequences of the taxa being studied, but these have assumptions that must be carefully assessed.

Generally, in using DNA sequence data in a phylogenetic analysis, a character is equivalent to the nucleotide position, and a character state of that character is the specific nucleotide at that position (there being four possible character states, corresponding to the four nucleotides; see Figure 14.6). A large number (often the great majority) of nucleotide positions are generally invariable among taxa, and some of the variable ones are often uninformative by being autapomorphic for a given taxon; thus, relatively few sites are informative and therefore useful in phylogenetic reconstruction (Figure 14.6).

However, a major addition, deletion, inversion, or translocation can in itself be identified as an evolutionary novelty (apomorphy), used in grouping lineages together. For example, members of the Faboideae (of the Fabaceae) lack, by deletion, one of the inverted repeats found in the chloroplasts of most angiosperms (see Figure 14.4). Chromosomal mutations such as these may be coded separately from single base

TABLE 14.1 Some chloroplast genes that have been used in plant molecular systematics, after Soltis et al. 1998.

<table>
<thead>
<tr>
<th>CHLOROPLAST GENES</th>
<th>LOCATION</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>atpB</td>
<td>Large single-copy region of chloroplast</td>
<td>Beta subunit of ATP synthetase, which functions in the synthesis of ATP via proton translocation</td>
</tr>
<tr>
<td>rbcL</td>
<td>Large single-copy region of chloroplast</td>
<td>Large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (RUBISCO), which functions in the initial fixation of carbon dioxide in the dark reactions</td>
</tr>
<tr>
<td>matK</td>
<td>Large single-copy region of chloroplast</td>
<td>Maturase, which functions in splicing type II introns from RNA transcripts</td>
</tr>
<tr>
<td>ndhF</td>
<td>Small single-copy region of chloroplast</td>
<td>Subunit of chloroplast NADH dehydrogenase, which functions in converting NADH to NAD + H⁺, driving various reactions of respiration</td>
</tr>
</tbody>
</table>

FIGURE 14.5 Internal transcribed spacers (ITSs) of nuclear ribosomal DNA, illustrating the ITS region andanking subunits, and showing the orientations and locations of primer sites. After Baldwin et al. (1995).
DNA Alignment

Taxon 1	GCCTAGCCAAAGCTCTTCCAAGGCTGACTCTCAGGTTCAAGCT	1 2 3 4 5 6
Taxon 2	GCCTAGCCAAAGCTCTTCCAAGGCTGACTCTCAGGTTCAAGCT	2 0 3 2 0 4
Taxon 3	GCCTAGCCAAAGCTCTTCCAAGGCTGACTCTCAGGTTCAAGCT	2 0 3 1 0 5
Taxon 4	GCCTAGCCAAAGCTCTTCCAAGGCTGACTCTCAGGTTCAAGCT	2 3 3 2 3 4
Taxon 5	GCCTAGCCAAAGCTCTTCCAAGGCTGACTCTCAGGTTCAAGCT	2 0 3 1 0 5
Taxon 6	CCCTAGCCAAAGCTCTTCCAAGGCTGACTCTCAGGTTCAAGCT	1 0 3 1 0 4
Taxon 7	CCCTAGCCAAAGCTCTTCCAAGGCTGACTCTCAGGTTCAAGCT	1 0 3 1 0 4
Taxon 8	GCCTAGCCAAAGCTCTTCCAAGGCTGACTCTCAGGTTCAAGCT	2 3 3 1 0 4

Character Coding

| 00000000000000000000001111111111111111111112 |
| 8888888889999999999999999999999999999999999999 |
| 1234567890123456789012345678901234567890 |

FIGURE 14.6 Example of alignment of DNA sequences of 41 nucleotide sites (positions 81-121) from eight taxa. Variable nucleotide sites are in **bold**. Note deletion of six bases in taxon 2 and taxon 5. Possible character coding of variable sites is seen at right. Coding of nucleotides is as follows: A = state 0; C = state 1; G = state 2; T = state 3. In this example, the deletion is coded as a single binary character (character 6), coded differently from nucleotides, as state 4 = deletion absent and state 5 = deletion present.

Differences (e.g., as in the example of Figure 14.6) and may be given relatively greater weight in inferring relationships.

Several types of weighting schemes may be done with molecular data. For protein encoding genes, the codon position may be differentially weighted. For example, because of redundancy of the genetic code, the third codon position is generally more labile (a change more likely to have occurred randomly) than the second, and the second may be more labile than the first. Thus, the first and second codon positions may be given relatively higher weight, respectively (such as a weight of 10 for the first codon position, 5 for the second position, and 1 for the third position). The logic here is that a change in codon position 1 or 2 is less likely to have occurred at random within a taxon and more likely represents evolutionary novelties that are shared among taxa. Weighting by codon position may be based on empirical data. For a given data set, the number of changes occurring for codon positions 1, 2, and 3 may be used (inversely) to establish the relative weights.

Another weighting parameter that may be used with DNA sequence data concerns transitions versus transversions. Transitions are evolutionary changes from one purine to another purine (A → G or G → A) or from one pyrimidine to another pyrimidine (C → T or T → C); see Figure 14.1. Transversions are evolutionary changes from a purine to a pyrimidine (A → C, A → T, G → C, or G → T) or from a pyrimidine to a purine (C → A, C → G, T → A, or T → G). Weighting using transitions versus transversions may be based on empirical data. For a given data set, the relative frequency of transitions versus transversions may be used (inversely) to establish the relative weights. For example, for a given group under study, if transitions occur 5× more frequently than transversions, the latter may be given a weight of 5 and the former a weight of 1, as illustrated in the step matrix of Figure 14.7.

DNA sequence data can also be used to evaluate the secondary structure of a molecule. Thus, nucleotide differences that result in major changes in the conformation of the product (whether ribosomal RNA or protein) may have a much greater physiological effect than those that do not and might receive a higher weight. Computer algorithms can evaluate this to some degree.

Parsimony, maximum likelihood, and Bayesian methods are commonly used to infer phylogenetic relationships using DNA sequence data (Chapter 2). The most robust hypotheses of relationship have arisen from studies using sequence data from multiple (e.g., anywhere from 3 to 18), ideally unlinked, genes.

RESTRICTION SITE ANALYSIS (RFLPs)

A restriction site is a sequence of approximately 6-8 base pairs of DNA that binds to a given restriction enzyme.

<table>
<thead>
<tr>
<th>A</th>
<th>G</th>
<th>C</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>G</td>
<td>1</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>T</td>
<td>5</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

FIGURE 14.7 Step matrix of nucleotide changes, showing weighting scheme in which transversions are given a weight 5 times greater than that of transitions.
These restriction enzymes, of which there are many, have been isolated from bacteria. Their natural function is to inactivate invading viruses by cleaving the viral DNA. Restriction enzymes known as type II recognize restriction sites and cleave the DNA at particular locations within or near the restriction site. An example is the restriction enzyme EcoRI (named after *E. coli*, from which it was first isolated), which recognizes the DNA sequence seen in Figure 14.8 and cleaves the DNA at the sites indicated by the arrows in this figure.

Restriction fragment length polymorphism, or RFLP, refers to differences between taxa in restriction sites, and therefore the lengths of fragments of DNA following cleavage with restriction enzymes. For example, Figure 14.9 shows, for two hypothetical species, amplified DNA lengths of 10,000 base pairs that are subjected to (digested with) the restriction enzyme EcoRI. Note, after a reaction with the EcoRI enzyme, that the DNA of species A is cleaved into three fragments, corresponding to two EcoRI restriction sites, whereas that of species B is cleaved into four fragments, corresponding to three EcoRI restriction sites. The relative locations of these restriction sites on the DNA can be mapped; one possibility is seen at the bottom of Figure 14.9. (Note that there are other possibilities for this map; precise mapping requires additional work.) Additional restriction enzymes can be used. Figure 14.10 illustrates how each of the DNA fragments from the EcoRI digests can be digested with the BAMHI restriction enzyme, yielding different fragments for the two species. These data can be added to the original in preparing a map (one possible map is shown in lower part of Figure 14.10).

Restriction site fragment data can be coded as characters and character states in a phylogenetic analysis. For example, given that the restriction site maps of Figure 14.10 are correct, the presence or absence of these sites can be coded as characters, as seen in Figure 14.11. Restriction site analysis contains far less data than complete DNA sequencing, accounting only for the presence or absence of sites 6 8 base pairs long. It has the advantage, however, of surveying considerably larger segments of DNA. However, with improved and less expensive sequencing techniques, it is less valuable and less often used than in the past.

ALLOZYMES

Allozymes are different molecular forms of an enzyme that correspond to different alleles of a common gene (*locus*). (This is not to be confused with *isozymes*, which are forms of an enzyme that are derived from separate genes or loci.) Allozymes are traditionally detected using electrophoresis, in which the enzymes are extracted and placed on a medium (e.g., starch) through which an electric current runs (similar to gel electrophoresis in DNA sequencing). A given enzyme will migrate toward one pole or the other depending on its charge. Similarly, different allozymes of an enzyme will migrate differentially because they differ slightly in amino acid composition and therefore have somewhat different electrical charges. Allozymes subjected to electrophoresis are identified with a stain specific to that enzyme and the bands marked by their relative position on the electrophoresis medium.

Allozymes have traditionally been used to assess genetic variation within a population or species, but they can also be used as data in phylogenetic analyses of closely related species, e.g., species within a monophyletic genus. Figure 14.12A illustrates an example of electrophoretic allozyme banding data for five species and an outgroup.

There are several ways to code polymorphic allozyme data. One way is to code each allele as a character and the presence or absence of that allele as a character state. A second way to code allozyme data is to treat the locus (corresponding to the gene coding for the enzyme) as the character and all unique combinations of alleles as character states (as in Figure 14.12B). The number of state changes between these unique allelic combinations can be a default of one. However, another method of coding is to treat the loss of each allele as one state change and the gain of an allele as a separate state change. Thus, the number of state changes between different allelic combinations can vary, as seen in Figure 14.12C. Step matrices (see Chapter 2) are used to code these in a cladistic analysis.

Yet another way to code allozyme data is to take into account the frequency of alleles present in a given taxon. For example, by this method, species *A*, which has allele X present with a frequency of 95% and allele Y with a frequency of 5%, would receive a different coding from species *B*, which has the same alleles, but in frequencies of 55% and 45%, respectively.

FIGURE 14.8 A DNA restriction site, cleaved (at arrows) by the restriction site enzyme *Eco*RI.
Species A
DNA - 10000 bp long

+ *EcoRI*

5000 bp
4000 bp
1000 bp

Species B
DNA - 10000 bp long

+ *EcoRI*

4000 bp
3000 bp
2000 bp
1000 bp

Species A

EcoRI *EcoRI*

5000 6000

Species B

EcoRI *EcoRI* *EcoRI*

3000 5000 6000

FIGURE 14.9 Example of restriction site analysis of species A and B, using restriction site enzyme *EcoRI*. Note differences in fragment lengths. Possible restriction site maps of species A and B are shown in the lower portion of the figure.
Figure 14.10 Example of restriction site analysis of species A and B, using restriction site enzyme *EcoRI*, followed by restriction site enzyme *BAM HI*. Possible restriction site maps of species A and B are shown in the lower portion of the figure.
MICROSATELLITE DNA

Microsatellites are regions of DNA that contain short (usually 2-5) repeats of nucleotides, an example being TGTGTG, in which two base pairs repeat. The regions are termed **tandem repeats**: if they vary within a population or species, they are called **variable-number tandem repeats** (VNTR). (Other designations and acronyms are used, depending on the particular field of study.) These tandem repeats can be located all across the genome; at a given location (locus), the repeat will tend to be of a certain length. However, individuals within or between populations may vary in the number of tandem repeats at a given locus (or even show allelic variation) because of irregularities in crossing-over and replication. Thus, variable-number tandem repeats can be used as a genetic marker.

Microsatellites are identified by constructing primers that flank the tandem repeats and then using PCR technology. (The primers are initially identified for a species by the time-consuming process of synthesizing genetic probes of a tandem repeat, screening DNA for binding to these probes, and sequencing these regions to design primers that flank the tandem repeats.) Once the primers are identified, PCR can be used to quickly generate multiple copies of the tandem repeat DNA, the length of which (for a given individual at a given locus or allele) can be determined by gel electrophoresis. (See example in Figure 14.13.)

Microsatellite analysis can generate data quickly and efficiently (once the primers are identified for a given group) for a large number of individuals. It is most often used for population studies, e.g., to assess genetic variation or homozygosity. Its use in systematics is largely in examining relationships within a species (such as to assess infraspecific classifications) or between very closely related species.

RANDOM AMPLIFIED POLYMORPHIC DNA (RAPDs)

Another method of identifying genetic markers is by using a randomly synthesized primer to amplify DNA in a PCR reaction. In this method, the primer will anneal to complementary regions located in various locations of isolated DNA. If another complementary site is present on the opposing DNA strand at a distance that is not too great (i.e., within the limits of PCR), then the reaction will amplify this region of DNA (Figure 14.14). Because many sections of DNA complementary to the primer may occur, the PCR reaction will result in DNA strands of many different lengths, which can be size-separated by electrophoresis. Because even closely related individuals may show some sequence variation that many determine potential primer sites, these different individuals will show different amplification products. Thus, **RAPD** refers to using randomly generated primers for the amplification of DNA to identify **polymorphic DNA** regions of different individuals or taxa. (See example in Figure 14.14.)

RAPDs, like microsatellites, may often be used for within-species genetic studies, but may also be successfully employed in phylogenetic studies to address relationships within a species or between closely related species. However, RAPD analysis has the major disadvantages in that results are difficult to replicate (being very sensitive to PCR conditions) and in that the homology of similar bands in different taxa may be unclear.

AMPLIFIED FRAGMENT LENGTH POLYMORPHISM (AFLPs)

This method is similar to that of identifying RFLPs in that a restriction enzyme is used (Figure 14.15A) to cut DNA into numerous, smaller pieces, each of which (because of the action of the restriction enzymes) terminates in a characteristic nucleotide sequence (Figure 14.15B). However, the numerous, cut DNA fragments are then modified by binding to each end (using DNA ligase) a synthesized, double-stranded piece of DNA, known as a **primer adapter** (Figure 14.15C). The primer adapters are designed to insert at the cut ends (corresponding to the complementary sequences of the restriction enzymes). Primers are then constructed that bind to the primer adapters and amplify the DNA fragments using...
Figure 14.12 Allozyme data.

A. Hypothetical allozyme banding data for taxa A–E and Outgroup and enzymes GOT, IDH, and PGI.

B. Coding of data using the locus as the character and unique allelic combinations as character states. **C.** One possible coding of data (after Mabee and Humphries, 1993). Diagrams illustrating number of state changes between character states (state number in parentheses); each loss or gain of an allele counts for one step change.
a polymerase chain reaction (Figure 14.15D). Electrophoresis separates the amplified DNA fragments that exhibit length polymorphism (hence, AFLP), enabling the recognition of numerous genetic markers.

AFLP data are more experimentally replicable than are RAPD data and can be used to identify genetic differences among individuals using large pieces of DNA. AFLP has one disadvantage in that so many fragments may be generated that it is hard to distinguish them on an electrophoretic gel. However, a slight modification of the primers used may limit the number of fragments that are amplified, enabling them to be more easily identified. AFLP is largely used for population genetics studies, but has been used in studies of closely related species and even, in some cases, for higher-level, cladistic analyses.

Figure 14.13 Microsatellite data. Primers were constructed to span regions of tandem repeats. Note that tandem repeat region of species A is longer than that of species B and is thus a genetic difference between the two.

Figure 14.14 RAPDs data. In this example the same DNA regions for species A and B anneal to different randomly generated primers, resulting in amplified DNA of different lengths, a genetic difference between the two taxa.
REVIEW QUESTIONS

1. Name the specific types of data used in studies of molecular systematics.
2. How are samples used to acquire molecular data typically processed?
3. Why is collection of a voucher specimen in molecular studies essential?
4. What does DNA sequence data refer to?
5. Explain the polymerase chain reaction and its importance in molecular systematics.
6. What is a primer?
7. Explain the basic process of automated DNA sequencing. What is the significance of dideoxynucleotides?
8. What are the three major types of DNA used in DNA sequence (and other molecular) studies?
9. In chloroplast DNA, what are the large single-copy region, small single-copy region, and inverted repeats?
10. Name some useful chloroplast genes used in plant molecular systematics.
11. What is the internal transcribed spacer region (ITS) and what is its efficacy in plant molecular systematics?
12. What is DNA alignment, and what are potential problems with this?
13. In general, what are the characters and character states for DNA sequence data?
14. Name the ways that DNA sequence data may be weighted in a cladistic analysis.
15. What is a restriction site?
16. What does restriction fragment length polymorphism (RFLP) refer to?
17. How is RFLP data acquired and how is it used in a cladistic analysis?
18. What is an allozyme?
19. How are allozyme data acquired?
20. Explain the different ways to code allozyme data in a cladistic analysis.
21. What are microsatellites and how are these data obtained?
22. What are random amplified polymorphic DNAs (RAPDs) and how are these data obtained?
23. Describe the technique for generating amplified fragment length polymorphisms (AFLPs), citing how this differs from that of generating RFLPs.

EXERCISES

1. If possible, get a demonstration of the various techniques of molecular systematics, e.g., DNA extraction and sequencing. Consider a special topics project in which you define a problem and use these techniques to acquire the data to answer the problem.
2. Access GenBank (http://www.ncbi.nih.gov/Genbank) and acquire molecular data on a particular group of choice. Consider analyzing these data using phylogenetic inference software (see Chapter 2).
3. Peruse journal articles in plant systematics, e.g., American Journal of Botany, Annals of the Missouri Botanical Garden, Systematic Botany, or Taxon, and note those that describe the use of molecular data in relation to systematic studies. Identify the techniques used, data acquired, and problems addressed.

REFERENCES FOR FURTHER STUDY

IV

RESOURCES IN PLANT SYSTEMATICS
This Page Intentionally Left Blank
Identification is the process of associating an unknown entity with a known entity (or recognizing that the unknown entity does not have a known counterpart). In other words, identification is a judgement that some perceived object is similar enough to a known entity that it falls within the criteria of belonging to the same class as the known entity. Identification is a basic activity of humans and other animals (and perhaps of all life at some level of organization). The ability to recognize, e.g., edible from toxic or friend from foe has undoubtedly evolved via strong selective pressure.

Because two entities are never exactly the same, a critical consideration in identification is determining the characteristics or boundaries of the known. For example, plant identification entails studying a plant or plant specimen and making a decision as to whether the plant belongs to a particular taxon, e.g., to a species. This identification rests on the prior description, both of the unknown plant and of the taxa that are possibilities. In considering the possible taxa, it is critical to evaluate the diagnostic characterization (= diagnosis) of each, which is a listing of all the features of a taxon that distinguish it from all other taxa. If the characteristics of the unknown entity fall within the range of the diagnosis of a known one, then an identification is made.

METHODS OF PLANT IDENTIFICATION

As mentioned earlier, identification first necessitates describing the plant in question. This can involve anything from a quick glance of a flower to a complete morphological characterization of vegetative and reproductive features. The second criterion of plant identification is having a list of the possibilities. Thus, it is important that whatever references are used, they incorporate all of the possibilities. For native or naturalized plants, regional floras are typically used in the process of identification. One should check the geographic range of the flora used to be sure that it encompasses that of the unknown plant.

Cultivated plants can be particularly difficult to identify. This is true in part because the number of plants taken into cultivation is quite large and continues to expand every year. Because a cultivated plant can be native to any region of the world, one can rarely be certain of having a reference that will include the correct taxon. Cultivated plant species may also be difficult to identify because they may include a great number of cultivars, hybrids, or other breeds that are continually being introduced and may be quite different in appearance from an original native species.

There are several methods of identifying plants. These are described below.

TAXONOMIC KEYS

Perhaps the most useful method of identification is a taxonomic key. A key is an identification device that consists of sequentially choosing among a list of possibilities until the possibilities are narrowed down to one. Most keys are practical, narrowing down the identity of a taxon in the most efficient and effective means. The key may or may not split a larger group into smaller, natural (monophyletic) subgroups.

As reviewed in Chapter 1, the most common type of key, particularly in floras and monographic treatments, is a
dichotomous key. This consists of a sequence of two contrasting statements, each statement known as a lead; the two leads together comprise a couplet. The leads of a couplet may be indented and/or numbered. Identification proceeds by choosing between the contrasting leads of a couplet. That lead which best fits the organism to be identified is selected; then all couplets hierarchically beneath that lead (either by indentation or numbering) are sequentially checked until an identification is obtained (see Figure 15.1). A well-written dichotomous key may have several types of evidence presented, with every character of the first lead matched, respectively, in the second lead (Figure 15.1).

Most keys are artificial or practical, meaning that the sequential groupings of the key do not intentionally reflect natural groups; their goal is to most easily and efficiently identify a given taxon, with no concern about classification into other groups. Rarely, a key may be natural or phylogenetic, in which diagnostic (or even apomorphic) features are used to delimit natural groups, which are usually formal taxa. An example of a natural key might be one to the tribes of the Asteraceae. More technical, but less obvious, characters are used in natural keys, so they are generally less useful in practical identification, but may denote the features used to separate taxonomic groups.

Some precautions should be taken in using a dichotomous key. Most important is to read all parts of both leads before making a decision as to which fits the plant best. Never read just the first lead; although it might seem to fit, the second lead may fit even better. If, after reading both leads of a couplet, you are not certain which is correct, both should be considered. The two (or more) possibilities attained can then be checked against descriptions, illustrations, or specimen comparisons.

Haemodoraceae BLOODWORT FAMILY

1. Fertile stamens 3 or 1 (Subfamily Haemodoroideae)

2. Ovary superior

3. Fertile stamen 1

4. Corolla actinomorphic
 5. In orecence a simple raceme; functional carpel 1; ovule 1; style subterminal \textit{Pyrorhiza}
 5. In orecence an elongate thyrse with lateral monochasial cymes; functional carpels 3; ovules 20-30 per carpel; style terminal \textit{Xiphidium}

4. Corolla zygomorphic
 6. Stamens unequal, the 2 latero-posterior anthers reduced; ovules 3-4 per carpel \textit{Schiekia}
 6. Stamens equal; ovule 1 per carpel \textit{Wachendorfia}

2. Ovary inferior

7. Ovule 1 per carpel

7. Ovules 2 or more per carpel

8. Ovules 2 per carpel; perianth glabrous \textit{Haemodorum}
 8. Ovules 5-7 per carpel; perianth abaxially tomentose \textit{Lachnanthes}

1. Fertile stamens 6 (Subfamily Conostylidoideae)

9. Flowers actinomorphic; perianth not splitting along mid-anterior line

10. Perianth glabrous to glabrate \textit{Phlebocarya}

10. Perianth lanate to tomentose

11. Perianth lanate; trichomes simple to sparsely branched, white-whitish; anthers with broad, apical connective appendage \textit{Tribonanthes}

11. Perianth tomentose, trichomes dendritic, yellow, whitish, reddish, pink, orange, or purplish; anthers without broad, apical connective appendage

12. Flowers pendulous; perianth reddish to pink-orange \textit{Blancoa}

12. Flowers generally ascending; perianth usually yellow or whitish, rarely orange to purplish \textit{Conostylis}

9. Flowers zygomorphic; perianth tube splitting along mid-anterior line

13. Ovule 1 per carpel; perianth trichomes black \textit{Macropidia}

13. Ovules >1 per carpel; perianth trichomes red, yellow, orange or green \textit{Anigozanthos}

\textbf{FIGURE 15.1} Example of an indented and numbered dichotomous key: to the genera of the family Haemodoraceae. Note that character states of the rst lead of a couplet are matched by corresponding character states in the second lead. From the author.
Another type of identification device is the polyclave key. A polyclave key consists of a list of numerous character states, whereby the user selects all of states that match the specimen (e.g., Figure 15.2). Based on which of the many character states are a match, the correct taxon (or closest match) can be determined or narrowed down to a smaller subset of the possibilities. All polyclave keys in use today are implemented by a computer algorithm.

The great advantage of polyclave keys over dichotomous ones is that they permit the use of a limited subset of information to at least narrow down the possibilities. For example, if a dichotomous key lists only floral characters, its usefulness may be limited if your plant specimen lacks flowers. A polyclave key, however, will have a listing of not only floral characters, but also features of the roots, stems, leaves, fruits, and seeds. Thus, the polyclave key will often enable the user to identify the plant, even if one or more types of data are missing from the specimen. A second advantage of polyclave keys is that if the specimen cannot be absolutely identified, its identity may at least be narrowed down to a few alternatives, which can then be checked by other means. The only major disadvantage of polyclave keys is their availability; they have generally been written only for a limited number of taxonomic groups.

Although keys are probably the most practical and utilized method of identification, they should be regarded as guides, not foolproof methods. Any identification attained should be checked by other means, such as specimen comparison or expert determination (discussed later).

WRITTEN DESCRIPTION

A second means of identification is to compare features of the unknown plant with written descriptions of the possible known taxa. This is a good method of determining with certainty whether the range of variation of the unknown plant corresponds to that listed in the description of a known plant. However, because reading all of the written descriptions of a flora is impractical, this method relies on narrowing down the possibilities first. In addition, gleaning the diagnostic characteristics from a long list of features may be difficult. Thus, written descriptions are best used to verify an identity after one or a few possibilities are presented.

SPECIMEN COMPARISON

A third method of identification is to compare the plant in question to a live or preserved plant collection, usually an identified herbarium specimen. This is an excellent method of identification, as many features of a plant (e.g., coloration and surface features) are often not adequately denoted in written descriptions or visible from photographs or illustrations. As with the foregoing methods, comparison to an herbarium specimen is practically limited to verifying an identity after a subset of possibilities is narrowed down. Synoptic collections, which house generally one specimen of each taxon for a given region (e.g., a county), are very useful in this regard. If a taxon can be narrowed to a smaller group, such as a family or genus, a quick search through a synoptic collection for that region may often allow for site identification of the unknown. One precaution about this method,
however, is that it is dependent on the fact that the herbarium specimens are themselves correctly identified. Thus, a possible match should always be verified with a written description.

IMAGE COMPARISON

A fourth method by which an unknown plant may be identified is by visually comparing it to photographs or illustrations of known taxa. These are usually obtained from books, although Webpage images have now become a very useful resource. A practical problem with this method is that photographs and illustrations are usually available only for a small subset of possible taxa. In addition, it may be cumbersome to locate the matching photograph or illustration, necessitating an examination of all those available. However, visual comparison to an image can still be an excellent way to identify a plant, particularly if the possibilities can be narrowed down beforehand. The major precaution about this method is that two or more taxa may look very similar to one another as based on a photograph or illustration; the differences between them may reside on obscure morphological features that are not easily visible. Thus, any match of the unknown to a visual image should be confirmed with a technical description of the plant.

EXPERT DETERMINATION

A fifth and final means of identification is simply to ask someone else, preferably an expert in the group in question. This method may be time-consuming, as it usually requires sending a specimen away for identification (as well as knowing who the experts of a given group are). However, expert identification is perhaps the best way to identify a specimen, as the expert will usually know the taxa of that group over a wide geographic range. If the expert is familiar with all recent literature on the group, his or her determination is often more accurate and current than any flora.

Expert determination is often essential for certain groups in which species or infraspecific identification is very difficult.

PRACTICAL IDENTIFICATION

The practical steps taken in identification of plant taxa often depend on the experience of the person making the determination. Obviously, the more you know, the easier it is to identify a plant. For example, most floras begin with a key to the plant families, which may be cumbersome because they must take into account the variation within the total flora. Thus, knowing the general characteristics of several families ahead of time helps, as you may proceed directly to the key of genera within that family. Similarly, if you have an idea as to the general group within a family to which the taxon belongs (e.g., a suspected genus), you may wish to check the keys, illustrations, descriptions, or specimens within that group first. However, when in doubt, it is best to start from the beginning to be certain of eliminating the close but incorrect choices.

The importance of correctly identifying a specimen cannot be overstated. Once a determination is made, it should be viewed as only tentative. Never assume you have reached the correct answer in using any one method; it is important to check your determination by all available means. Be your own devil’s advocate; check and recheck yourself. Verify every identification against a written description and comparison to an herbarium specimen. Some groups may be particularly difficult to identify, being composed of a great number of taxa that differ from one another by obscure features. Proceed very carefully, and don’t hesitate to send off specimens for expert determination if needed.

Finally, one should always be conscious of the possibility that the identification process points to a new taxon. If a thorough evaluation of available references indicates that the unknown plant in question does not match any known taxa listed in a flora, then the plant may be a new record (either native or naturalized) for the geographic range of that flora. In some cases, the unidentifiable taxon may be new to science, warranting the valid publication of a new taxon.

REVIEW QUESTIONS

1. What is identification?
2. Describe how identification is used in your everyday life.
3. What two procedures are necessary before an identification can be made?
4. Define diagnostic characterization (= diagnosis).
5. What are the difficulties with identifying cultivated plant taxa?
6. Name the five major ways to identify plant taxa, citing the advantages and disadvantages of each.
7. What is a dichotomous key?
8. What is a couplet? a lead?
9. What precautions should be made in using a dichotomous key?
10. What is the difference between a *natural* and an *artificial* key?
11. What is a polyclave key?
12. What are the advantages and disadvantages of a polyclave key?
13. Name ways, other than a taxonomic key, to identify a plant specimen.
14. What is a synoptic collection and what is its advantage in plant identification?
15. State the practical steps made in identifying a plant specimen.

EXERCISES

1. Select an unknown cultivated plant and attempt to identify it using all of the five methods discussed in the chapter. What difficulties did you encounter with any of these?
2. Select an unknown native plant and attempt to identify it using local floras or manuals or by using an herbarium collection, such as a synoptic collection.
3. Do a Web search for a polyclave key (see Reference below), either one on-line or one that may be downloaded. Test this on a given unknown. If possible, create a key for a set of 5–10 plants.

REFERENCES FOR FURTHER STUDY

WEB PAGES:
Nomenclature is the assignment of names utilizing a formal system. The criteria for formally naming land plants, algae, and fungi are based on the rules and recommendations of the International Code of Botanical Nomenclature or ICBN. (Note that a separate code is utilized for cultivated plants, the International Code of Nomenclature for Cultivated Plants.) Botanical names serve as symbols of a group of natural entities for the purpose of communication and data reference.

Of interest is the fact that the ICBN deals with the names of extant or extinct (fossil) organisms traditionally treated as plants, i.e., encompassed by the field of botany (see Chapter 1 for a definition of botany). These include not only the land plants, but also the blue-green algae (Cyanobacteria); fungi, including chytrids, oomycetes, and slime moulds; photosynthetic protists and taxonomically related non-photosynthetic groups. As discussed in Chapter 1, it is now known that many of these groups are not closely related phylogenetically. Yet, the ICBN still deals with these taxa.

Separate nomenclatural codes exist for traditional zoology (International Code of Zoological Nomenclature) and for prokaryotes (International Code of Nomenclature of Bacteria). One difficulty with this is that photosynthetic bacteria are named both under the ICBN and under the Bacteria Code. Similarly, some of the so-called protists (itself a paraphyletic assemblage) are named both under the ICBN and the Zoological Code. Thus, some organisms have two names, from two different nomenclatural codes. A future universal code, covering all forms of life, has been discussed recently and may be of advantage.

The International Code of Botanical Nomenclature governs the rules both for the specific names assigned to taxa and for the name endings that denote taxon rank (see below). The ICBN is utilized in two basic activities: (1) naming new taxa, which were previously unnamed and often not described; and (2) determining the correct name for previously named taxa, which may have been divided, united, transferred, or changed in rank (see later discussion).

Legitimate names are those that are in accordance with the rules of the International Code of Botanical Nomenclature. Any name that violates one or more rules of the ICBN is known as an illegitimate name. A valid name is one that is validly published (see later discussion). The rules of the ICBN can be somewhat complex, often necessitating careful scrutiny (and a lawyerlike mentality).

Points of controversy and periodic changes to the International Code of Botanical Nomenclature are voted upon
during meetings of the International Botanical Congress, which assembles about every 6 years in some city around the world. As of this writing, the last International Botanical Congress was held in St. Louis, Missouri, in 1999. The following summary is based on the ICBN resulting from that Congress (Greuter et al. 2000).

PRINCIPLES OF NOMENCLATURE

The Principles of the International Code of Botanical Nomenclature are stated verbatim below from the 2000 St. Louis Code. Each of these will be covered in detail.

I. Botanical nomenclature is independent of zoological and bacteriological nomenclature. The Code applies equally to names of taxonomic groups treated as plants whether or not these groups were originally so treated.

II. The application of names of taxonomic groups is determined by means of nomenclatural types.

III. The nomenclature of a taxonomic group is based upon priority of publication.

IV. Each taxonomic group with a particular circumscription, position, and rank can bear only one correct name, the earliest that is in accordance with the Rules, except in specified cases.

V. Scientific names of taxonomic groups are treated as Latin regardless of their derivation.

VI. The Rules of nomenclature are retroactive unless expressly limited.

The details of the International Code of Botanical Nomenclature are organized into a number of Rules (which are mandatory and written out as Articles), Notes (which are binding and clarifying), Recommendations (which are not binding but suggested), and explanatory Examples and Footnotes.

Currently, the entire International Code of Botanical Nomenclature is available on a Web site (Greuter et al. 2000).

SCIENTIFIC NAMES

The fundamental principle of nomenclature is the fourth principle of the ICBN, stating that every taxon, whether species, genus, family, etc., can bear only one correct name (see below for precise definition of correct name). This is only common sense. Confusion would reign if taxonomic entities could bear more than one name or if one name could refer to more than one entity. The names assigned by the rules of the ICBN are known as scientific names. Scientific names are, by convention, in the Latin language (see later discussion).

As reviewed in Chapter 1, the scientific names of species are binomials, i.e., composed of two names. The binomial convention was first consistently used by Carolus Linnaeus (also known as Carl Linné or Carl von Linné), a Swedish botanist, who is often referred to as the father of taxonomy. Prior to the use of binomials, the designation of species was inconsistent and may have utilized several words.

As an example of a binomial, the species commonly known as sweetgum has the scientific name Liquidambar styraciflua. The first name of the binomial, Liquidambar in this case, is the genus name and is always capitalized. The genus name may be abbreviated by its first letter, but only after it is spelled out in its entirety (and would not be confused with another genus name); thus, the above may be abbreviated as L. styraciflua. The second name of the binomial, styraciflua in this example, is the specific epithet. The specific epithet may be capitalized if it is a commemorative (named after a person or place), but this is optional; the trend today is to never capitalize the specific epithet. Binomial species names are always either italicized or underlined. Recall from Chapter 1 that a species name is always the entire binomial. It is incorrect to say that the species name for sweetgum is styraciflua, as this is the specific epithet; the species name is Liquidambar styraciflua.

In contrast to scientific names, many taxa also bear common names (also called vernacular names), which are generally used by people within a limited geographic region. Common names are not formally published and are governed by no rules. Scientific names are much preferable to common names for several reasons. First, only scientific names are universal, used the same world-wide; common names may vary from region to region, even within a country or within regions of a country. For example, species of the genus Ipomoea are known commonly as morning glory in the United States, but as woodybine in England. Differences in language will, of course, further increase the number of different common names. Second, common names are not consistent. One taxon may bear more than one common name, these often varying in different regions. For example, Adenostoma fasciculatum of the Rosaceae is known by at least two common names, chamise and greasewood. Alternatively, a single common name may refer to more than one taxon. Hemlock may refer to two quite different plants, either a species of Tsuga, a coniferous tree of the Pinaceae, or Conium maculatum, an herb of the Apiaceae (the extract of which Socrates drank in execution). Third, common names tell nothing about rank and often nothing about classification, whereas scientific names automatically indicate rank and yield at least some information about their classification. For example, sea-blite tells nothing about rank; it could be
variety, species, genus, or family. However, one immediately knows that *Suaeda californica* is at the rank of species and is a close relative to other species of *Suaeda*. Fourth, many, if not most, organisms have no common name in any language; thus, scientific names alone must be used to refer to them. This is especially true for plants that are nonshowy, occur in remote areas, or belong to groups whose members are difficult to distinguish from one another.

There is a tendency in some works to arbitrarily convert all scientific species names into common names by translating from the Latin, even when these common names are not used by the native people. For example, *Carex aurea* might be designated golden care x or golden sedge, even if these names are not in common useage. It is the author's opinion that this is less than ideal policy and that it is preferable simply to utilize scientific names and refer to common names only if they are, in fact, commonly used.

RANKS
Recall from Chapter 1 that taxa are classified hierarchically by rank, in which a higher rank is inclusive of all lower ranks (Figure 16.1). [Note that there are principal ranks, secondary ranks, and additional ranks (if needed) that may be used by adding the prefix sub; see Figure 16.1.] Each scientific name of a particular rank must end in a certain suffix according to the rules and recommendations of the ICBN (Figure 16.1). For example, Asteridae is a taxon at the rank of subclass, Asterales is at the rank of order, and Asteraceae is at the rank of family, etc. Note that taxa above the rank of genus are not underlined or italicized.

One exception to these rank endings of taxa is the acceptance of eight alternative family names, none of which end in -aceae. These are Compositae (= Asteraceae), Cruciferae (= Brassicaceae), Gramineae (= Poaceae), Guttiferae (= Clusiaceae/Hypericaceae), Labiatae (= Lamiaceae), Leguminosae (= Fabaceae), Palmae (= Arecales), and Umbelliferae (= Apiaceae). In addition, within the Fabaceae (= Leguminosae), the subfamily name Papilionoideae is an acceptable alternative to the Faboideae. The trend today is to consistently apply the type principle (see later discussion) by using the standardized family names that end in -aceae and to use subfamily names that are based on these (e.g., to use F aboideae over P apilionoideae). However, plant taxonomists should know these alternative names, as they are often used in older, as well as some current, floras and other taxonomic works.

<table>
<thead>
<tr>
<th>TAXONOMIC RANKS OF LAND PLANTS</th>
<th>ENDING</th>
<th>EXAMPLE TAXON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kingdom</td>
<td>(various)</td>
<td>Plantae</td>
</tr>
<tr>
<td>Phylum [Division]</td>
<td>-phyta</td>
<td>Magnoliophyta</td>
</tr>
<tr>
<td>Subphylum [Subdivision]</td>
<td>-phytina</td>
<td>Magnoliophytina</td>
</tr>
<tr>
<td>Class</td>
<td>-opsida</td>
<td>Asteropsida</td>
</tr>
<tr>
<td>Subclass</td>
<td>-idae</td>
<td>Asteridae</td>
</tr>
<tr>
<td>Order</td>
<td>-ales</td>
<td>Asterales</td>
</tr>
<tr>
<td>Suborder</td>
<td>-ineae</td>
<td>Asterineae</td>
</tr>
<tr>
<td>Family</td>
<td>-aceae</td>
<td>Asteraceae</td>
</tr>
<tr>
<td>Subfamily</td>
<td>-dioide</td>
<td>Asterolaeide</td>
</tr>
<tr>
<td>Tribe</td>
<td>-cae</td>
<td>Heliantheae</td>
</tr>
<tr>
<td>Subtribe</td>
<td>-inae</td>
<td>Helianthinae</td>
</tr>
<tr>
<td>Genus</td>
<td>(various)</td>
<td>Helianthus</td>
</tr>
<tr>
<td>Subgenus</td>
<td>(various)</td>
<td>Helianthus</td>
</tr>
<tr>
<td>Section</td>
<td>(various)</td>
<td>Helianthus</td>
</tr>
<tr>
<td>Series</td>
<td>(various)</td>
<td>Helianthus</td>
</tr>
<tr>
<td>Species [abbr. sp. (sing.), ssp. (pl.)]</td>
<td>(various)</td>
<td>Helianthus annuus</td>
</tr>
<tr>
<td>Subspecies [abbr. subspp. or ssp. (sing.), subssp. or ssp. (pl.)]</td>
<td>(various)</td>
<td>Helianthus annuus ssp. annuus</td>
</tr>
<tr>
<td>Variety [abbr. var. (sing.), vars. (pl.)]</td>
<td>(various)</td>
<td>Helianthus annuus var. annuus</td>
</tr>
<tr>
<td>Form [abbr. f.]</td>
<td>(various)</td>
<td>Helianthus annuus f. annuus</td>
</tr>
</tbody>
</table>

FIGURE 16.1 Taxonomic ranks recognized by the International Code of Botanical Nomenclature. Principal ranks are in bold. Secondary ranks are underlined. Sub ranks may be used as needed, some of the possibilities indicated. Phylum, subphylum, class, and subclass may utilize different endings for Fungi or Algae. Ranks at and below the level of order have endings specified in the ICBN rules; those above the rank of order have endings recommended by the ICBN. Division may be used interchangeably with Phylum, but this is not recommended in order to promote consistency of use with Animals and Prokaryotes.
Position is the placement of a taxon as a member of another taxon of the next higher rank. For example, the position of the genus Aster is as a member of the family Asteraceae. Taxa may be the same in rank but differ in position. Rosa and Aster are both at the rank of genus but differ in position, the former in the Rosaceae, the latter in the Asteraceae.

As mentioned earlier, the prefix sub- can be used formally in a rank name in more categories are needed, such as subgenus or subspecies. In a less formal sense, the prefix sub- or infra- can be used to denote taxa below one of the major ranks. For example, subfamilial or infrafamilial taxa are those below family, including subfamily, tribe, subtribe, genus, subgenus, section, species, subspecies, variety, etc.

A subspecies or variety name is a trinomial (three names), e.g., Toxicodendron radicans ssp. diversilobum or Brickellia arguta var. odontolepis. In these examples, the subspecific epithet is diversilobum; the varietal epithet is odontolepis. Note that, technically, the rank of subspecies is above that of variety (Figure 16.1). In practice, subspecies and variety are sometimes used interchangeably. However, it is possible, but very rare, to have a subspecies that is divided into varieties itself (these constituting quadrinomials!).

AUTHORSHIP

All scientific names at and below the rank of family have an author, the name of the person who first validly published the name (see later discussion). For example, the full name (including authorship) of the family Rosaceae is Rosaceae Jussieu because de Jussieu first formally named the family. In other examples, the full name of the tribe Conostylideae is Conostylideae Lindley; that of the genus Mohavea is Mohavea A. Gray; that of the species Mohavea confertiflora is Mohavea confertiflora (Bentham) Heller; and that of the subspecies Monardella linoides ssp. viminea is Monardella linoides A. Gray ssp. viminea (Greene) Abrams. Author names are often abbreviated, such as Haemodoraceae R. Br. (for Robert Brown) or Liquidambar styraciflua L. (L. being the standardized abbreviation for Linnaeus). (See Name Changes for an explanation of author names appearing in parentheses.)

Although authorship is part of a scientific name and should be cited in all scientific publications, in practice the author is not typically memorized or recited as part of a scientific name. The authors of higher taxa are sometimes omitted in print even in scientific publications, except in detailed monographic treatments in which the nomenclatural history of the taxa under study is described. In many floras and journal publications, only species and infraspecific taxa (subspecies or varieties) are listed with full authorship, and these generally only once, when the name is first cited.

LEARNING SCIENTIFIC NAMES

As argued earlier, it is important to learn the scientific names of plants, correctly spelled. The serious plant taxonomist will learn many hundreds of scientific names in his/her lifetime, still just a tiny fraction of the more than 250,000 described plant species. Beginners may at first have difficulty learning scientific names. Some suggestions for mastering them are as follows.

First, learn to divide into syllables and accent scientific names (see BOTANICAL NAMES). It is often easier to recite and spell a scientific name if it is consciously broken down into syllables, each of which is separately pronounced.

Second, use mnemonic devices. Select one distinctive feature about the plant. Then find a common word that sounds somewhat similar to the scientific name. Link the distinctive plant feature with the similar sounding word in an active, vivid mental image, the weirder and more active the better. Thus, when you see the plant, you associate it with the mental image, which sounds like (and reminds you of) the scientific name. For example, visualizing liquid amber wing from the distinctive, ball-shaped fruits of sweetgum may help you remember the genus name, Liquidambar.

Third, learn the etymology (meaning) of scientific names. Scientific names often are descriptive about the morphology of the plant. Once you know, for example, that the Latin word alba means white or that leptophylla means narrow-leaved, you can better associate the name with the organism. Other scientific names may be named after a person or place of significance; learning the history of these commemorative names may be helpful in memorizing them.

Finally, there is no substitute for continual practice and review. Use a combination of both oral and (for correct spelling) written recitation, with the plant, plant specimen, photograph, or mental image in view.

NOMENCLATURAL TYPES

The second principle of the ICBN states that scientific names must be associated with some physical entity, known as a nomenclatural type or simply type. A nomenclatural type is almost always a specimen, e.g., a standard herbarium sheet specimen, but it may also be an illustration. The type serves the purpose of acting as a reference for the name, upon which the name is based. If there is ever any doubt as to whether a name is correct or not, the type may be studied.

There are different types of types. A holotype is the one specimen or illustration upon which a name is based, originally used or designated at the time of publication. It serves as the definitive reference source for any questions of identity or nomenclature. It is recommended that a holotype be deposited in an internationally recognized herbarium
(see Chapter 18) and cited as one of the criteria for the valid publication of a name (see later discussion). Holotypes constitute the most valuable of specimens and are kept under safe keeping in one (usually a major) herbarium. An isotype is a duplicate specimen of the holotype, collected at the same time by the same person from the same population. The ICN recommends that isotypes be designated in the valid publication of a new name. Isotypes are valuable in that they are reliable duplicates of the same taxon and may be distributed to numerous other herbaria to make it easier for taxonomists of various regions to obtain a specimen of the new taxon. A lectotype is a specimen that is selected from the original material to serve as the type when no holotype was designated at the time of publication, if the holotype is missing, or if the original type consisted of more than one specimen or taxon. A neotype is a specimen derived from a nonoriginal collection that is selected to serve as the type as long as all of the material on which the name was originally based is missing. [Other types of types include (1) syntype, which is any specimen that was cited in the original work when a holotype was not designated; alternatively, a syntype can be one of two or more specimens that were all designated as types; (2) paratype, a specimen cited but that is not a holotype, isotype, or syntype; and (3) epitype, a specimen (or illustration) that is selected to serve as the type if the holotype, lectotype, or neotype is ambiguous with respect to the identification and diagnosis of the taxon.] Normally, we think of types as referring to a species or infraspecific taxon. However, type specimens may serve as references for higher taxonomic ranks as well. For example, the type specimen for a genus name is the same as the one for the species within the genus that was published first (see Priority of Publication). The type specimen for a family name is the same as the one for the genus within the family that was published first.

PRIORITY OF PUBLICATION
The third principle of the ICN is priority of publication, which generally states that of two or more competing possibilities for a name, the one published first is the correct one, with some exceptions. Priority of publication only applies to taxa at the rank of family and below and does not apply outside a particular rank (with a transfer in rank; see later discussion). For example, of two competing names (both legitimate and validly published) Mimulus (published in 1753) and Diplacus (published in 1838) the genus Mimulus has priority and is the correct name when the two genera are combined into one. The principle of priority for vascular plants starts 1 May 1753 with the publication of Species Plantarum by Linnaeus; names published prior to that are not considered for priority. (Different groups covered by the ICN have various starting dates.)

CONSERVATION OF NAMES
One adverse effect of the principle of priority is that scientific names that are well known and frequently used may be replaced by some other name if the latter was discovered to have been published earlier. This lends a degree of instability to nomenclature. However, in such a case, a petition may be presented (in the botanical journal Taxon) and voted upon at the International Botanical Congress to conserve one name over another that actually has priority. Such a procedure is outlined as three Amendments to the ICN: Nomina familiarum conservanda, Nomina generica conservanda et rejicienda, and Nomina species conservanda. The rationale for the conservation of names is to provide greater stability in nomenclature by permitting names that are well known and widely used to persist, even upon the discovery of an earlier, but more obscure, name.

NAME CHANGES
Occasionally, the name of a taxon will change. Name changes can occur for only two reasons: (1) because of the recognition that one name is contrary to the rules (i.e., is illegitimate), and, thus, another name must take its place; or (2) because additional taxonomic study or research (for example, a cladistic analysis) has resulted in a change of the definition and delimitation of a taxon; this process is known as a taxonomic revision.

There are four basic types of nomenclatural activities that can result in a name change. First, a single taxon may be divided into two or more taxa, often called se gregate taxa because they are segregated from one another relative to the original classification. This is done generally via the recognition of features that clearly distinguish two or more groups from one another. For example, the genus Langloisia has been split into two genera, Langloisia and Loeseliastrum, based on a number of morphological, anatomical, and palynological (pollen) features that distinguish them. Ideally, the segregate groups should be monophyletic, as based upon a rigorous cladistic analysis (see Chapter 2). Other examples of taxa being divided are:

1. The genus Carduus of the family Asteraceae is often split into two genera: Carduus, having barbellate pappus bristles, and Cirsium, having plumose pappus bristles
2. The genus Rhus of the Anacardiaceae has been split into several segregate genera, such as Malosma, Rhus, and Toxicodendron, the last including poison-oak and poison-ivy
3. The classical family Liliaceae has been split into numerous families, such as the Alliaceae, Hyacinthaceae, Liliaceae s.s., and Melanthiaceae
4. The large genus *Haplopappus* of the Asteraceae has been split into several genera, including *Anisocoma*, *Ericameria*, *Hazardia*, *Haplopappus*, and *Isocoma*

Note that when a larger taxon is divided into two or more smaller taxa of the same rank, the terms *sensu lato* (abbreviated *s.l.*) and *sensu stricto* (abbreviated *s.str. or s.s.*) may be used to distinguish the more inclusive and less inclusive treatments, respectively. For example, *Haplopappus s.l.* contains many more species than *Haplopappus s.s.*, the latter of which is what remains after *Haplopappus s.l.* is split into many segregate genera.

A second, major name change occurs when two or more separate taxa are united into one. One reason for uniting taxa is the recognition that features previously used to distinguish them are, upon more detailed study, unsupportive of their being different; i.e., there is no clear character state discontinuity. Another reason to unite taxa may be based on cladistic studies, in which of two or more separate taxa, one (or more) is demonstrated to be paraphyletic; thus, one way to eliminate a paraphyletic taxon is to unite it with other taxa such that the new inclusive group is now monophyletic (see Chapter 1). In cases of taxa being united, the final name used is that which was *published earliest*, according to the principle of priority. Examples of taxa being united are:

1. The species *Bebbia juncea* and *Bebbia aspera*, which were considered indistinct and were united into one species, *B. juncea*
2. The genera *Diplacus* and *Mimulus*, which were united into one genus, *Mimulus*
3. The families Apocynaceae and Asclepiadaceae, which have been united into one family, the Apocynaceae (which could be designated Apocynaceae *s.l.* to distinguish it from the earlier circumscribed less inclusive family)

Third, a taxon may be *transferred in position*, i.e., from one taxon to another of the same rank. Examples of this are:

1. The species *Rhus laurina* was transferred in position as a member of the genus *Malosma*, the new species name being *Malosma laurina*
2. The species *Sedum variegata* was transferred to the genus *Dudleya*, the new species name being *Dudleya variegata*

Note that a transfer in position may be an automatic result of uniting or dividing taxa of higher rank. For example, if the genera *Diplacus* and *Mimulus* are united into the genus *Mimulus*, then the species of *Diplacus* must be transferred in position.

Fourth, a taxon may be **changed in rank**. Examples include:

1. The species *Eruca sativa* was changed to the rank of subspecies (of the species *E. vesicaria*), the new combination being *Eruca vesicaria ssp. sativa*
2. The variety *Viguiera deltoidea var. parishii* was changed to the rank of species, the new name being *Viguiera parishii* (with *V. deltoidea* persisting as a separate species equivalent in circumscription to the earlier *V. deltoidea var. deltoidea*)

Note in the two rank change examples just given that the original names for the epithets are retained. The retention of a name that is changed in rank is recommended (but not required) by the ICBN, but only if an earlier name for the same taxon had not already been published at that rank (and also, only if the *same* name had not already been used for another taxon; see homonym). The principle of priority does not apply outside the rank of a taxon, however; this means that if a name is changed in rank, the date of publication of the original name (before being changed in rank) cannot be considered in evaluating priority of publication with respect to the change.

In some cases a taxonomic study results in the remodeling of a taxon, i.e., a change in diagnostic characteristics, those that distinguish the taxon from other taxa. In these cases, a name change is not warranted and the rules of the ICBN need not apply.

A *basionym* is the name-bringing or epithet-bringing synonym, i.e., the original (but now rejected) name, part of which has been used in a new combination. As seen earlier, if a species or infraspecific name is transferred in position or rank, the specific or infraspecific epithet of the (now-rejected) basionym may be retained (unless violating another rule of the code, such as priority of publication, e.g., if the taxon had already been named, or if the name had already been used for another taxon at that rank). The name of the author(s) who originally named the basionym is also retained and placed in parentheses ahead of the author who made the change. Thus, botanical names may have two sets of authors: the author(s) set in parentheses who originally named the basionym, and the author(s) who made the name change. From some of the examples cited previously:

1. When *Sedum variegata* was transferred to the genus *Dudleya* by Moran, the new species name became *Dudleya variegata* (Wats.) Moran. The original epithet, *variegata*, is retained, and the author associated with that epithet, Watson in this case, is also retained, but is
placed in parentheses preceding the new author. The basionym in this case is Sedum variegata Wats., the original name.

2. When Dilatris caroliniana Lam. was transferred to the genus Lachnanthes by Dandy, the new species name became Lachnanthes caroliniana (Lam.) Dandy. The basionym in this case is Dilatris caroliniana Lam.

3. When Fumaria bulbosa L. var. solida L. was elevated to the rank of species by Miller, the new name became Fumaria solida (L.) Miller. The basionym in this case is Fumaria bulbosa L. var. solida L. Subsequent to this change, Fumaria solida (L.) Miller was transferred in position by Clairv to the genus Corydalis, the new name becoming C. solida (L.) Clairv [not C. solida (Mill.) Clairv]. Note that it is the author of the varietal name of the basionym, Fumaria bulbosa L. var. solida L., that is retained in parentheses.

An autonym is an automatically created name for infrafamilial, infrageneric, and infraspecific taxa. Autonyms are used whenever a family is divided into subfamilies, tribes, or subtribes; a genus is divided into subgenera or sections; or a species is divided into subspecies or varieties. Of the two or more subtaxa formed, the autonym is assigned based on priority, i.e., to the group containing the taxon that was published first. Autonyms have no authors; only the higher taxa become names because their type is the same as that for the originally described species.

For infrafamilial taxa, the autonym has the same root name as the family but a different ending that corresponds to the infrafamilial rank. For example, the family Euphorbiaceae is usually divided into subfamilies, one of which, the Euphorbioideae, is the autonym; this subfamily, of course, contains the genus Euphorbia, the type for the family. For infrageneric taxa, the autonym is identical to the genus name and should be preceded by the name of the rank to avoid confusion. For example, Ceanothus (a genus) consists of two subgenera, subgenus Ceanothus and subgenus Cerastes; subgenus Ceanothus is the one that includes the type for the genus itself. For infraspecific taxa, autonyms are identical to the specific epithet. For example, Eriogonum fasciculatum is divided into several varieties, one of which, Eriogonum fasciculatum var. fasciculatum, includes the autonym (and is based on the original type specimen for the species).

VALID PUBLICATION

According to the ICBN, in order for a scientific name to be formally recognized, it must be validly published. There are four general criteria for valid publication of a name. First, the name must be effectively published, which means that it must be published in a journal commonly available to botanists (not, say, in the local newspaper or National Enquirer magazine). Second, the name must be published in the correct form, i.e., properly Latinized (see later discussion), with the rank indicated (e.g., as sp. no v. or gen. no v.; see **Abbreviations**). Such a legitimate name in correct form is known as an admissible name. Third, the name must be published with a Latin description or diagnosis or with a reference to such. The Latin description may be brief, e.g., listing how the new taxon is different from a similar, related taxon. (In addition, a more detailed description in some vernacular language, or a reference to a previous description, is usually included but not required.) Fourth, for taxa of the rank of genus and below, a nomenclatural type must be indicated; the location of this type is also indicated (using the acronyms of Index Herbariorum; see Holmgren et al. 1990; Chapter 18). An example of a valid publication, illustrating these criteria, is seen in Figure 16.2.

The full citation of a scientific name includes not only the authorship, but also the place and date of publication. For example, the full citation for the species cited in Figure 16.2 is Perityle vigilans Spellenb. & A. Powell, Syst. Bot. 15: 252. 1990. Full citations are listed in the citations of the International Plant Names Index (see References for Further Study).

SYNONYMS

A synonym is a rejected name, by a particular author or authors. Synonyms are rejected for either of two reasons: (1) because they are illegitimate, i.e., contrary to the rules of the ICBN; or (2) because of taxonomic judgment, i.e., a particular author rejects the classification represented by the synonym. Synonyms may be based on the same or on a different type specimen from the correct name.

A correct name is a legitimate (and therefore validly published) name that is accepted by a particular author or authors. Recall that the fundamental principle of the ICBN states that each taxon can have only one correct name. Thus, if there are two or more competing names for the same taxon, e.g., Malosma laurina (Nutt.) Abrams and Rhus laurina Nutt., only one of them can be correct. However, which name is correct may depend on the author(s) of a given reference book or journal. For example, according to one author, Rhus laurina Nutt. is the correct name and Malosma laurina (Nutt.) Abrams...
A New Species of *Perityle* (Asteraceae) from Southwestern Chihuahua, Mexico

Richard Spellenberg

Department of Biology, New Mexico State University, Las Cruces, New Mexico 88003

A. Michael Powell

Department of Biology, Sul Ross State University, Alpine Texas 79832

Abstract. *Perityle vigilans* is described from the Sierra Madre Occidental of southwestern Chihuahua. It differs from other *Perityle* by the combination of its white ligules, sparsely setose-hispid achenes, nely grayish villosulous tomentum, and absence of pappus bristles. The new species is believed to be most closely related to *P. rosei* and *P. trichodonta*, which occur about 800 km to the south. A key is presented that distinguishes the 12 known taxa of *Perityle* occurring in the northern Sierra Madre Occidental, an area of high diversity in the genus.

In a series of three papers Powell (1969, 1973, 1974) revised the genus *Perityle*, recognizing 53 species. Except for one amphitropical disjunct, *P. emoryi* Torrey, the genus is restricted to southwestern North America. The treatment by Niles (1970) is in concurrence with regard to the circumscription of species. In his series of papers Powell proposed that speciation in *Perityle* occurs primarily by geographic isolation, that the populations of species, many of which inhabit nearly barren rock cliffs, were derived from more widespread ancestral species whose ranges were divided by geologic uplift, igneous intrusion, and subsequent erosion. Powell explained that this isolation on island-like habitats of exposed rock has resulted in a high degree of endemism, and he noted (1974) that the diversity in the genus is highest in the Sierra Madre Occidental of northwestern Mexico. He postulated that this may be the center of origin for the genus. Since that revision, seven narrowly endemic species have been added to the genus as remote areas have been explored: *P. ajoensis* Todsen (1974), *P. batopilensis* Powell (1983), *P. carmenensis* Powell (1976), *P. fosteri* Powell (1983), *P. huecoensis* Powell (1983), *P. specuicola* Welsh and Neese (1983), and *P. vandevenderi* B. Turner (1989). A few varieties also have been described. This article adds an eighth species, this from the isolated mid-elevations of the west slope of the Sierra Madre Occidental.

Perityle vigilans Spellenb. & A. Powell, sp. nov. (g. 1).--Type: Mexico, Chihuahua, Municipio Maguarichi, on igneous rocks at Maguarichi and to 3 mi. NE along road, just below oak zone and in lower edge of zone, elev. 1700 m, 27°52′30″ N, 107°59′30″ W, 25 Apr 1985, Spellenberg, Soreng, Corral, Todsen 8104 (holotype: NMC; isotypes: ENCB, NY, MEXU, SRSC, TEX, UC, Escuela Superior Agricultura Hermanos Escobar [Cd. Juarez]).

Planta perennes suffrutescentes subpulvinatae, caulibus 2.5-8.5 cm longis. Indumentum densum, griseum, minute villosulum. Folia opposita, periolata, laminae ovatae rhombeae-ovatae, 2.5-5.5 mm longae, 1.7-4 mm latae, dentibus 0-3 brevibus obtusis in uterque marginibus. Capitula terminales solitaria radiata; corollae radii 6-8, ligulis 2.5-3.0 mm longis, 1.5-2.5 mm latis, in tubis extus et laminis subtus glandulis aureis sparsis obsitis; corollae disci ca. 35-40, ca. 2.0 mm longae. Achaenia anguste obdeltata nigra 2.2-2.5 mm longa modice pilosa-hispida. Pappos obsoletus constans ex corona dentibus triangularibus minoribus quam 0.1 mm longis.

Plants suffruticose, more or less cushion-like, the stem tips ascending. Stems 2.5-8.5 cm long, densely and nely grayish-villosulous, the ne kinked hairs over-topping yellowish spherical glands. Leaves opposite, pubescent as the stem, the upper leaves slightly more densely so than the lower; petiolae slender, expanding into the cuneate leaf base, 2-3 mm long; blades ovate to rhombic-ovate, broadly cuneate at the base, 2.5-5.5 mm long, 1.7-4.0 mm wide, with 0-3 low blunt teeth on each margin, when only 1 tooth the blade then subhastate. Capitulescence of a
is the synonym. According to other authors, *Malosma laurina* (Nutt.) Abrams is the correct name and *Rhus laurina* Nutt. is the synonym.

Synonyms are typically indicated in brackets following the correct name, such as *Malosma laurina* (Nutt.) Abrams [Rhus laurina Nutt.] or *Machaeranthera jucnea* (Greene) Hartman [Haplopappus jucnea Greene]. Alternatively, if a synonym (according to one author) is cited or referenced, the correct name is often indicated preceded by an = sign. For example, in *Cyanthera* Nees = *Justicia*, the correct name is *Justicia* and the synonym is *Cyanthera*.

A **homonym** is one of two (or more) identical names (not including authorship) that are based on different type specimens. The later homonym, based on publication date, is illegitimate (unless it is conserved; see earlier discussion). For example, *Tapeinanthus* Herb. (1837), of the Amaryllidaceae, and *Tapeinanthus* Boiss. ex Benth. (1848), of the Lamiaceae, are homonyms. The later homonym in the Lamiaceae is illegitimate [and was renamed *Thuspeinanta* T. Durand (1888)].

A **tautonym** is a binomial in which the genus name and specific epithet are identical in spelling. Tautonyms are not permitted in botanical nomenclature. For example, the name *Helianthus helianthoides* is a tautonym and illegitimate, whereas *Helianthus helianthus* is not a tautonym and would be permitted. (Note that zoological nomenclature does permit tautonyms, as in *Gorilla gorilla*.)

ABBREVIATIONS

Certain abbreviations are used in scientific names. For example, the word **ex** means validly published by. F or example, *Microseris elegans* Greene ex A. Gray means that Asa Gray validly published the name *Microseris elegans* that was originally proposed (but not validly published by) Greene. The **e x** plus the author(s) preceding it may be omitted, as in *Microseris elegans* A. Gray.

The word **in** means in the publication of, referring to a name published within a larger work authored by the person(s) following the **in**. F or example *Arabis sparsiflora* Nutt. in T. & G. means that Nuttall validly published the name *Arabis sparsiflora* in another work authored by Torrey & Gray. The **in** plus the author(s) following it may be omitted for brevity, as in *Arabis sparsiflora* Nutt. (The use of **in** is not recommended by the ICBN.)

An × indicates a hybrid. For example, *Salvia × palmeri* (A. Gray) E. Greene is a named (validly published) taxon representing a hybrid between two species: *S. apiana* Jepson and *S. clevelandii* (A. Gray) E. Greene. Alternatively, this hybrid could be represented as *S. apiana* Jepson × *S. clevelandii* (A. Gray) E. Greene. Hybrids may also be indicated by placing the prefix notho- prior to the rank name, as in *Polypodium vulgare* nothosubsp. *mantoniae* (Rothm.) Schidlay (indicating that the named subspecies is of hybrid origin).

The abbreviation sp. nov. following a binomial (e.g., *Eryngium pendletonensis*, sp. nov.) refers to the Latin *species nova* and means that the species is new to science. Similarly, gen. nov. (genus novum) cites a new genus name. The abbreviation comb. nov. following a binomial refers to the Latin *combinatio nova* and means that the taxon has recently been transferred to a new position or rank. An example is *Porella acutifolia* (Lehm. & Lindenb.) Trevis. var. *ligulifolia* (Steph.) M. L. So, comb. nov.

Two abbreviations **af** and **cf.** are used to describe plant specimens whose identity is uncertain. The distinction between the two abbreviations is unclear, as different taxonomists have used them with slightly different meanings. The abbreviation **af.** preceding a taxon name literally means related to (Latin *affinis*, related, connected), as in *Calyptridium aff. monandrum* or af f. *Calyptridium monandrum*. This abbreviation implies some type of close relationship, presumably an evolutionary relationship, but also that the specimen differs from the cited taxon in some way, e.g., beyond the described range of variation for one or more characters; the cited specimen might, in fact, be indicative of a new taxon. The abbreviation **cf.** (Latin *confer*, compare) preceding a taxon name, as in *Calyptridium cf. monandrum* or cf. *Calyptridium monandrum*, indicates that the identity of a specimen is more questionable or uncertain (perhaps because references or comparative specimens are not available), and should be compared with specimens of the taxon indicated (i.e., the name following cf.) for more detailed study.

As mentioned earlier, s.l. (sensu lato) means in the broad sense, referring to a broad, inclusive taxon circumscription, and s.str. or s.s. (sensu stricto) means in the strict sense, referring to a narrow, exclusive taxon circumscription.

Other, minor abbreviations or specialized words include:

1. **auct. non** (auctor non) refers to a misapplication of a name, such that the type specimen of the name does not fall within the circumscription of the taxon being referred to by that name
2. **emend.** (emendatio) means a correction or amendment
3. **et** is Latin for and
4. **nom. cons.** (nomen conservandum) means a conserved name
5. **nom. nov.** (nomen novum) means a new name
6. **nom. nud.** (nomen nudum) means published without a description or diagnosis, making the name invalid
7. **non** is Latin for not
8. **orth. cons.** (orthographia conservanda) means a conserved spelling
9 stat. nov. (status novus) means a change in rank, e.g., elevating a varietal name to specific status
10 typ. cons. (typus conservandus) means a conserved type specimen
11 typ. des. (typus designatus) means the designation of a type specimen
12 vide (video) means to cite a reference
13 ! (symbol for vidi, I have seen it) means a confirmation of a name

INDEPENDENCE OF BOTANICAL NOMENCLATURE
The International Code of Botanical Nomenclature is independent of the International Code of Zoological Nomenclature. Thus, there may be some names of plants, algae, or fungi that are identical to those of some animals (and Protista). For example, the genus *Moras* refers both to a flowering plant, the mulberry, and to a bird, the gannett; *Ficus* is the genus name of the figs and of a group of gastropods. A separate code is also used for the Prokaryotes (including the bacteria) and viruses.

RETROACTIVITY OF THE ICBN
The Rules of the International Code of Botanical Nomenclature are retroactive, except in specified cases.

BOTANICAL NAMES
Botanical Latin is best described as a modern Romance language of special technical application (Stern 1992). The fourth principle of the ICBN is that botanical names are treated as Latin, a language chosen because of its classical history (in the past being the language of scholars) and because it is no longer in active use. No matter what the language of the person who published a name, the name itself must consist of direct Latin words or be Latinized, i.e., converted from the vernacular to the Latin. Thus, the Latin alphabet (which is almost identical to the English alphabet) and grammatical rules must be used.

GENDER
All Latin words have a gender: masculine, feminine, or neuter. Gender determination is usually only of concern for names at the rank of genus or below. The standardized gender endings are:

<table>
<thead>
<tr>
<th>Masculine</th>
<th>Feminine</th>
<th>Neuter</th>
</tr>
</thead>
<tbody>
<tr>
<td>-us</td>
<td>-a</td>
<td>-um</td>
</tr>
<tr>
<td>-er</td>
<td>-ra</td>
<td>-rum</td>
</tr>
<tr>
<td>-is</td>
<td>-is</td>
<td>-e</td>
</tr>
<tr>
<td>-r</td>
<td>-ris</td>
<td>-re</td>
</tr>
</tbody>
</table>

The first row of endings (-us, -a, and -um) are those most commonly used. For example, the genus *Amaranthus* is masculine, *Crassula* is feminine, and *Polygonum* is neuter. Specific or infraspecific epithets are usually adjectives, the endings of which must agree in gender with that of the genus name, as in *Amaranthus albus*, *Crassula comnata*, and *Eriogonum fasciculatum* ssp. *polifolium*. However, in rare cases the specific or infraspecific epithet is a noun (in apposition), in which case it retains its original gender. For example, in *Cyripedium calceolus*, *calceolus* is a noun and retains the masculine gender despite the neuter gender of the genus name.

One exception to the standardized gender endings is that many tree genera are typically treated as feminine, regardless of the ending. For example, the genera *Quercus*, *Pinus*, and *Liquidambar* are feminine in gender, even though they have masculine endings. Thus, specific or infraspecific adjective epithets of these genera names must be feminine (to agree in gender), as in *Quercus alba*, *Pinus ponderosa*, and *Liquidambar styraciflua*.

Note that a name change (divided, united, transferred in position, or changed in rank) can necessitate a change in the gender ending of a specific epithet. For example, for species *Haplopappus squarrosus*, the ending (-us) is masculine. When this species is transferred to the genus *Hazardia*, the new name becomes *Hazardia squarrosa*. Although the root of the specific epithet does not change, its ending may, in order to agree in gender with the new genus name.

NUMBER
Names of genera, infrageneric names (such as subgenera or sections), and species or infraspecific combinations are all treated as the singular case in Latin. However, all taxon names above the rank of genus are treated as Latin plural nouns. Thus, it is correct to say, e.g., *The Orchidaceae* are a large family of monocotyledons and *The Rosales* consist of many species.

COMMEMORATIVES
Commemorative names are those named after a person or place. Specific or infraspecific commemorative names are usually treated as the genitive case (denoting possession) and must have genitive endings. For male commemoratives, the ending is (1) -ii, if the name ends in a consonant, as in *Isoetes orcuttii* (unless the terminal consonant is -r or -y, in which case a single -i is used, as in *Erigeron breweri*); (2) -i, if the name ends in a vowel other than a, as in *Arctostaphylos princesi*; and (3) -i, if the name ends in the vowel other than a, as in *Baccharis vanessae* or *Carex barbarae*.

In some cases a commemorative name is treated as an adjective, in which case the endings -ianus, -iana, or -ianum may be used. These endings agree in gender with the
genus name, as in *Lotus nuttallianus* (named after Thomas Nuttall), *Prunus caroliniana* (named after the Carolinas), or *Antirrhinum coulterianum* (named after John M. Coulter). Another suffix ending used for commemoratives is -*ensis*, etc., as in *virginiensis* (of Virginia) or *capensis* (of the Cape).

PRONUNCIATION OF NAMES

Although scientific names are universal, their pronunciation may vary from region to region, especially between different countries. For example, European pronunciations are often different from those of most American botanists. There are no firm rules as to how scientific names should be pronounced. Very often, pronunciations are influenced by one’s native language. One should be flexible and adaptive with regard to pronunciations, as the overriding goal is communication.

The rules discussed below are recommended. These generally use traditional English for pronunciation of diphthongs, vowels, and consonants and reformed academic pronunciation (based on classical Latin) for converting to syllables and for accenting. (See Stern, 1992; however, see also Weber, 1986.)

DIPHTHONGS

Diphthongs are two vowels that are combined together and treated as the equivalent of a single vowel. The Latin diphthongs and their traditional English pronunciations are:

<table>
<thead>
<tr>
<th>Diphthong</th>
<th>English Pronunciation</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>ae</td>
<td>long e</td>
<td>Tropaeolum</td>
</tr>
<tr>
<td>oe</td>
<td>long e</td>
<td>Kallstroemia</td>
</tr>
<tr>
<td>au</td>
<td>a w</td>
<td>Daucus</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diphthong</th>
<th>English Pronunciation</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>ei</td>
<td>long i</td>
<td>Eichhornia</td>
</tr>
<tr>
<td>eu</td>
<td>long u</td>
<td>Teucrium</td>
</tr>
<tr>
<td>ui</td>
<td>as in quick</td>
<td>Equisetum</td>
</tr>
</tbody>
</table>

Note that *ie* is not a Latin diphthong, but two separate vowels, each of which would be pronounced separately, as in the genus *Parietaria* (*Pa-ri-e-ta-ri-a*). Also note that *oi* is not a Latin diphthong. Technically, each vowel should be pronounced separately, as in *Langloisia* (*La-nglo-i-si-a*). However, by convention *oi* is often pronounced like the English language diphthong, as in *oil*. Thus, the genus *Langloisia* is often heard as *La-ngloi-si-a*.

Occasionally, adjacent vowels will resemble a diphthong, but are actually separate vowels. In ligatured typesetting, the two letters of a diphthong are connected together, such as *tr* to distinguish the diphthong from two adjacent vowels. However, in cases where the diphthong is not specially indicated (most print these days), a diaeresis (\(\ddot{u}\)) is permitted to indicate that the vowel combination is not a diphthong. For example, in the genera *Aloë*, *Kalanchoë*, and *Monanthochloë*, there is no diphthong; the diaeresis shows that the *o* and *e* are separate vowels and are pronounced separately. (Sometimes these are ignored in practice; for example *Aloë* is usually pronounced as if the \(\ddot{u}\) were absent, as in *Ah-loh*).

SYLLABLES

Latin words have as many syllables as there are vowels and diphthongs. *Every* syllable of a Latin word is pronounced. Thus, it is often valuable to convert scientific names to syllables in order to pronounce them properly and better memorize them. Some of the rules for this are enumerated in Figure 16.3.

<table>
<thead>
<tr>
<th>Rule</th>
<th>Example</th>
<th>Syllables</th>
</tr>
</thead>
<tbody>
<tr>
<td>A single consonant between two vowels or diphthongs goes with the second one</td>
<td>Tridens</td>
<td>Tri-dens</td>
</tr>
<tr>
<td>Exception:</td>
<td>exaltataus</td>
<td>ex-al-ta-tus</td>
</tr>
<tr>
<td>an "x" between two vowels or diphthongs goes with the preceding one</td>
<td>guttatus</td>
<td>gut-ta-tus</td>
</tr>
<tr>
<td>Two adjacent consonants between vowels or diphthongs are split evenly</td>
<td>scabra</td>
<td>sca-bra</td>
</tr>
<tr>
<td>Exceptions: the combinations bl, cl, dl, gl, kl, pl, tl and br, cr, dr, gr, kr, pr, and tr go together with the following vowel</td>
<td>leptocladus</td>
<td>lep-to-cla-dus</td>
</tr>
<tr>
<td></td>
<td>Ephedra</td>
<td>E-phe-dra</td>
</tr>
<tr>
<td></td>
<td>agrifolia</td>
<td>a-grif-oli-a</td>
</tr>
<tr>
<td></td>
<td>brachypoda</td>
<td>bra-chy-po-da</td>
</tr>
<tr>
<td></td>
<td>eremophila</td>
<td>e-re-mo-phi-la</td>
</tr>
<tr>
<td></td>
<td>Notholaena</td>
<td>No-tho-lae-na</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Of three or more consonants between two vowels or diphthongs, all but the first goes with the second vowel or diphthong</td>
<td>absconditus</td>
<td>ab-scon-di-tus</td>
</tr>
</tbody>
</table>

FIGURE 16.3 Rules for converting Latinized scientific names into syllables.
CHAPTER 16 PLANT NOMENCLATURE

Special rules for the pronunciation of consonants and vowels are cited in Figure 16.4.

ACCENTING

A standard format for denoting accent is ‘ for a (grave) accent denoting a long vowel, · for an (acute) accent denoting a short vowel. Determining the accent of a scientific name may be difficult without actually looking up the word in a flora or other reference. However, if these are not available, the following general rules may be used to determine which syllable is accented and whether the vowel of that syllable is long or short.
Determining whether a vowel is long or short generally requires consulting a Latin dictionary.

The last syllable of a word is never accented unless the word has only one syllable; e.g., max of Glycine máx.

If a word has two syllables, the accent always goes with the next to the last (called the penult); e.g., Acer.

If a word has three or more syllables, the accent always goes either with the next to the last (penult) or the third from the last (called the antepenult). The accent to the last (penult) is accented if (1) it ends in a consonant (in which case the vowel is short) as in perennis pe-rØn-nis; (2) it ends in a diphthong (which is treated as long), as in amoenus a-moŁ-nus; or (3) it ends in a long vowel, e.g., alsine al-s-ne. If none of these conditions is met, then the accent goes with the third from the last syllable (antepenult); e.g., dracontium dra-c n-ti-um.

COMMEMORATIVES
Although commemoratives may be divided into syllables and accented according to the rules of Latin, they also may be pronounced as the person or place would be pronounced in the native language. For example, the specific epithet of Hesperoyucca whipplei may be pronounced w p-pull-i (as the person’s name is pronounced plus the letter i) as opposed to the Latinized pronunciation w p-pee-i. The general pronunciation rule is to simply pronounce the commemorative as it would be pronounced in the language of that person, then add the ending. However, in practice the commemorative pronunciation is usually converted to the language of the speaker, as pronunciation in the original language of that person may be unknown or unwieldy. (Remember, the overriding goal is communication!)

REVIEW QUESTIONS

NOMENCLATURE
1. What is nomenclature?
2. What is the name (and abbreviation) of the work that provides the rules and recommendations for plant nomenclature?
3. What groups of organisms are covered by this reference? What organisms are not?
4. What are the two basic activities governed by nomenclature (and the ICBN)?
5. What are legitimate and illegitimate names?
6. How are changes to the ICBN made?
7. Name the six principles of botanical nomenclature. Which of these is considered the fundamental principle?
8. What is the difference between the rules and the recommendations of the ICBN?
9. What is a scientific name? Give an example of such.
10. Which scientific names (i.e., at which rank) are always binomials? Give an example of a binomial.
11. Who first consistently used the binomial and is called the father of taxonomy?
12. What is the correct form of a binomial?
13. For Quercus dumosa Nuttall, what is (a) Quercus; (b) dumosa; (c) Quercus dumosa; (d) Nuttall?
14. What are common names?
15. Name the reasons that common names are disadvantageous.
16. What is the difference between rank and position?
17. Name the standardized endings for scientific names at the ranks of phylum, class, subclass, superorder, order, family, subfamily, tribe.
18. What is the rank of the following: (a) Conostyloideae; (b) Flacourtiaceae; (c) Haemodoreae; (d) Hamamelidae; (e) Linnaea borealis var. longiflora.; (f) Liliopsida; (g) Magnoliophyta; (h) Rosales; (i) Tribonanthes; (j) Tribonanthes variegata; (k) Phlebocarya ciliata ssp. pilosissima?
19. What is an alternate, acceptable name for the Apiaceae; Arecaceae; Asteraceae; Brassicaceae; Fabaceae; Faboideae; Clusiaceae/Hypericaceae; Lamiaceae; Poaceae?
20. What is the difference between subgenus and subgeneric?
21. What is a trinomial? What are the two infraspecific ranks and which is higher?
22. What is the author of a scientific name? Which scientific names do not have official authorship?
23. Name four suggestions for memorizing scientific names.
24. What is meant by a nomenclatural type?
25. What is the difference between a holotype, isotype, lectotype, and neotype?
26. Taxa of which ranks have nomenclatural types?
27. What is meant by priority of publication?
28. When and with what publication does priority of publication officially begin?
29. What is an adverse consequence of priority of publication?
30. What is conservation of names and how is this accomplished?
31. What are the two basic reasons for changing a scientific name?
32. Give the four major ways that names are changed and give an example of each.
33. What is remodeling? Does it require a name change?
34. What is a basionym?
35. What does it mean if an author’s name is in parentheses, e.g., *Machaeranthera juncea* (Greene) Hartman?
36. You decide that the taxon *Xiphidium coeruleum* Aublet should be transferred in position to the genus *Schiekia*. What is the required new name (including authorship)? What if the name *Schiekia coeruleum* had already been validly published?
37. You decide that the taxon *Quercus albiniana* (C. Jones) G. Smith ssp. *tomentosa* H. Carlisle should be elevated to the rank of species. What is the new name called (including authorship)?
38. What is an autonym? Give an example of an autonym at the rank of subfamily, subgenus, or subspecies.
39. What are the main criteria of a validly published name?
40. What is a synonym?
41. What are the two major reasons that a name may be rejected?
42. How can a name be legitimate yet not be correct?
43. What can you infer from: *Malacothrix incana* (Nutt.) T. & G. [Malacomeris i. Nutt.]?
44. What can you infer from: *Porophyllum gracile* Benth. [P. caesium Greene; P. vaseyi Greene]?
45. What can you infer from: *Gilia diegensis* (Munz) A. & V. Grant [G. inconspicua (Sm.) Sweet var. diegensis Munz]?
46. What is a homonym?
47. What is a tautonym? Are tautonyms illegitimate in (a) botanical nomenclature; (b) zoological nomenclature?
48. What is meant by in authorship designations? How may such a designation be simplified?
49. What is meant by ex authorship designations? How may such a designation be simplified?
50. What is the meaning of an × in a scientific name, as in *Quercus ×morehus*?
51. How does the fact that a plant and a bird have the same scientific name not violate the principles of the ICBN?

BOTANICAL NAMES

52. In what language are scientific names treated?
53. Name the three Latin genders and give the standardized genus endings.
54. What is one prominent exception to these gender endings?
55. Names at which taxonomic ranks are always Latin plurals?
56. What is a commemorative name?
57. What endings may commemorative names have?
58. Are there universal rules for the pronunciation of scientific names?
59. What are the Latin diphthongs and how are they pronounced?
60. How is the combination oi properly pronounced in Latin?
61. What is the rule determining the number of syllables in a scientific name?
62. Name some of the specific rules for converting scientific names to syllables (refer to Figure 16.3).
63. Name some of the specific rules for pronouncing scientific names (refer to Figure 16.4).
64. Name the basic rules for accenting scientific names.
65. Convert to syllables and pronounce the following names: *Cleistes, Eucalyptus, microcarpa, Oenothera, Pyrus*.
66. A commemorative (named after a person or place) may be pronounced in what two basic ways?

EXERCISES

1. Using a manual or flora of local, native plants, record 12 scientific names plus the listed synonymy for these names. Trace the nomenclatural history of these taxa names as best you can from the data given, especially noting author names in parentheses.
2. Look up these 12 scientific names using the International Plant Names Index (http://www.ipni.org). Record the date and journal/book of publication of these names. Also record all synonymy. Does this added information elucidate the nomenclatural history of the taxa?

3. Divide into syllables, accent, and pronounce these 12 scientific names, using any available references.

REFERENCES FOR FURTHER STUDY

WEB PAGES:
International Plant Names Index. A list of current plant names from three sources: the Index Kewensis (IK), the Gray Card Index (GCI) and the Australian Plant Names Index (APNI). http://www.ipni.org/index.html
This Page Intentionally Left Blank
INTRODUCTION

Plant collections are essential components of systematic research. Collections generally consist of samples of plants that are preserved by drying or by means of liquid preservation. They may also include live plants or propagules taken from the wild and grown in an artificial environment.

Collections of plants serve several purposes. One is to provide resource material in systematic research. Although systematists should attempt to study plants in the wild, in practice almost all research in plant systematics is done using preserved or living plant collections.

Another function of plant collections is to serve as reference material for named taxa. Such a reference plant collection is known as a voucher specimen. (Voucher specimens are almost always dried herbarium specimens; see later discussion.) Voucher specimens are required by the International Code of Botanical Nomenclature to serve as types in the valid publication of new taxa names (Chapter 16). Thus, every botanical name at and below the rank of family is associated with the type specimen (generally the holotype; see Chapter 16), which is almost always a voucher specimen selected from the original plant collection.

In addition, voucher specimens may serve as a reference in verifying the identity of a plant taxon. If there is ever any doubt as to a taxon’s identity, the voucher can be studied to check a prior identification. Reference voucher specimens are essential to obtain and cite in any systematic study. This is true whether the actual data are acquired from study of morphology, chemistry, anatomy, ultrastructure, reproduction, or molecular biology. Reference vouchers are also essential in field surveys involving the species composition of a given region. Thus, studies of floristic diversity, ecological mechanisms, or environmental assessment (e.g., environmental impact reports) must include plant collections and voucher specimens as a component of the study. Otherwise, the scientific validity of the conclusions may be in doubt.

Finally, the information recorded in the field as part of a plant collection is very important and can be utilized for a number of purposes. Many larger herbaria and some smaller ones have now initiated projects to input data from the labels of herbarium collections into a computerized database system. The database system allows information on plant morphology, ecology, phenology, and geography to be summarized and categorized in order to gain insight on a number of biological questions (see Documentation of Plant Collections). Thus, as these database systems are implemented, plant collections and their associated data are becoming increasingly valuable for fully documenting biodiversity in studies of systematics, ecology, and conservation biology.

METHODS OF COLLECTING PLANTS

Documentation of plant taxa necessitates not only thoroughly recording data in the field about the plant and its habitat but
also procuring a physical specimen. This specimen is obtained by (1) collecting the plant; (2) pressing and drying the plant; and (3) preparing a mounted herbarium specimen by gluing the plants and a label (listing the field data) to a sheet of standard herbarium paper. The specimen is deposited and maintained in an herbarium in order to be accessible for future study, e.g., to verify its identity or prepare a taxonomic revision.

FIELD COLLECTING
Locating specific plants may be by chance or can involve prior checking of specific collection records (e.g., herbarium sheet label information) or pertinent maps to locate the likely location of a plant in a specialized habitat. The collector should obtain prior permission or the proper permit for collecting on a tract of land.

Once a plant of interest is located in the field, the conscientious botanist must evaluate whether or not the species should be collected. The first guideline is to become aware of and be able to recognize any possible sensitive species, i.e., those that are rare, threatened, or endangered. These are typically protected by law and may not be collected legally without special permits. Second, regardless of the legal status of a plant species, any collecting should not endanger the local population. A good rule of thumb is the so-called 1 to 20 rule: for every one plant sample you collect, there should be at least 20 more present in the surrounding population. (For herbs, the 1 to 20 rule applies to individual plants; for shrubs and trees, it applies to shoots removed.)

In collecting an herb, at least one whole plant must be completely dug up to show roots and/or rootstocks. (The exception might be a plant that is extremely rare or endangered.) This is often necessary to determine whether the plant is an annual, biennial, or perennial and to determine the type of root (e.g., fibrous or tap) or underground stem (e.g., corm, bulb, or rhizome). With shrubs, trees, or vines, only one or more branches need be clipped off, using hand clippers to minimize damage to the plant. An attempt should be made to collect plants at flowering and/or fruiting stage and to collect enough individual specimens (population size permitting) to represent the range of individual variation.

It is strongly urged that plants be pressed immediately upon collecting in the field. Portable field plant presses can be obtained from herbarium supply companies. A simple, inexpensive field plant press can be made by placing several single, folded sheets of used newspaper (preferably ca. 11.5” x 16.5” when closed), between two adjacent 12” x 18” cardboards, all secured with two small elastic cords or straps. Plants are pressed by placing the specimen inside one of the single sheets of folded newspapers, all of which are temporarily stacked atop one another and sandwiched between the two cardboards. Each newspaper should be labeled with the collection number, referencing that recorded in the field notebook. Plants initially pressed in the field are then later transferred to a standard plant press prior to drying. (See later discussion for details of preparing pressed plant specimens.)

If collected plants are not immediately pressed, they should be stored to prevent wilting. Identifying string tags may be attached to the plant with the collector’s name and collection number. Plants then may be stored in a plastic bag. Alternatively, plants may be wrapped in newspaper (open at the top end), wetted, and stored in a large plastic bag; evaporation from the newspaper keeps the plants cool and moist. Ideally, unpressed plants should be kept in an ice chest or refrigerator.

PREPARATION OF PLANT SPECIMENS
The standard method of preserving plants for future study and reference is by the preparation of a specimen that is deposited in an herbarium. An herbarium specimen (see Chapter 18) consists of a pressed and dried plant sample that is permanently glued and strapped to a sheet of paper (of standard weight and type, measuring 11.5” x 16.5” in most U.S. herbaria) along with a documentation label (see later discussion). Herbarium specimens or sheets will last for hundreds of years if properly maintained. They are still the most efficient and economical means of preserving a sample of plant diversity.

To prepare an herbarium specimen, material from the field plant press or bag is transferred to a standard plant press to be pressed flat and air dried. A plant press consists of several 12” x 18” pieces of standard cardboard that are placed between two outer 12” x 18” frames or 1/4” plywood pieces all secured by two straps (Figure 17.1). Optionally, two 12” x 18” felts may be placed between adjacent cardboards to help absorb moisture, but good results can be obtained without felt. Plants are pressed by placing the specimen inside a single page of folded paper (again, used newspaper, preferably close to the size of herbarium paper, ca. 11.5” x 16.5”), which is then placed between two adjacent cardboards (or felts and cardboards) in the plant press.

The plants to be pressed should be positioned on the newspaper in a way that best represents the plant in the wild and maximizes information content, according to the following guidelines. Open the single sheet of newspaper and carefully place plant organs in a position that allows full view of morphology. Press herbs to show roots and underground stems, which should first be rinsed to remove dirt. Place whole, small herbs on the newspaper with several plants on a single sheet, enough to fill up the space (Figure 17.2B). Taller herbs
may be bent into a V, N, or M shape (Figure 17.2A) in order to fit the entire plant on one sheet. If necessary, cut a tall herb into two or more pieces, preparing a separate newspaper for each. Slice large rhizomes, corms, or bulbs longitudinally and place one cut side face down and the other face up to show internal structure. For larger or highly branched specimens (Figure 17.2C E), clip back the shoots or leaves (leaving the shoot or leaf base) in order to minimize overlapping of parts. Orient at least one leaf up and one leaf down, so that both leaf surfaces will be in full view upon drying. To dry succulent plants properly, cut their leaves or stems longitudinally and, if large, scoop out the fleshy tissue, placing the cut side face down. Cacti and other succulents may be soaked in 95% alcohol for 1–2 days before drying. Arrange flowers or flower parts carefully; section larger flowers to allow viewing of internal organs. Place extra flowers or inflorescences to one side in order to provide extra material for morphological study. Fruits may be sectioned to illustrate internal wall layers or placentation and to facilitate drying. Use wax paper on both sides of fleshy, aquatic, or delicate plant samples in order to prevent adhering to the newspaper. Place folded sections of newspaper on top of leaves or flowers in order to press them flat when the adjacent stems are thick. For all pressed plants, keep the space at the lower right corner (ca. 3″ × 5″ area) free, as this is where the herbarium label will be glued on the herbarium specimen. After final positioning of the plant sample, carefully fold the newspaper over the plant and place between two cardboards in the press.

After all plants have been placed in the plant press, the straps are tightened and the press is positioned on its long edge (with buckles on the opposite side) inside a plant drier. The plant drier consists of a ventilated box or cabinet having at its base either heating elements or lightbulbs plus a fan to provide air circulation. Because modern techniques permit removal and amplification of DNA from herbarium material, it is important that plant specimens be dried at not too high a temperature, to prevent DNA degradation. Heated and circulated air rises through the cardboards and newspapers, drying most plants in 2 or 3 days. After this time, the plant specimens should be removed and checked individually; if any specimen feels cool to the touch, water is still evaporating from its tissues, necessitating a longer drying time.

DOCUMENTATION OF PLANT COLLECTIONS

It is critical that certain data be recorded at the time of collecting a plant. Such data will be typed onto an herbarium label and may be entered into computerized database systems. The following is an explanation of the data categories to be recorded at the time of collecting. Figure 17.3 illustrates an example data page for this documentation.

Field Site Data

[List a locality number to cross-reference to other collections.]

Date of collection: List day month (spell out to avoid confusion) year

Time (optional): Sometimes important for noting the time of flowering.

Country/state/province/county/city: List as needed.

Specific locality information: List complete locality data for possible relocation of habitat in the future, including measured or estimated distance on roads or trails.

Latitude and longitude: Important to list for biogeographic data systems. Use GPS device or put dot on topographic map to reference plant collection numbers.

Source/accuracy of lat./long.: List how lat./long. is determined, e.g., by USGS 7.5 quad or GPS device. List (in seconds) accuracy of determination.
FIGURE 17.2 Examples of plants collected and pressed. A. Herb, stem bent twice to fit on newspaper. B. Herb, in which whole plant is collected, including rootstock. C. Small shrub, whole plant collected, including roots. D. Tree, in which a branch (in fruit, in this example) is collected. E. Vine, in flower; rootstock not collected.
PLANT DATA

<table>
<thead>
<tr>
<th>Coll. No.:</th>
<th>702</th>
<th>Photo. doc.: Roll #2, slides 13-14</th>
</tr>
</thead>
</table>

Collector (primary): Cynthia D. Jones
Associated collector(s): John J. Smith
Taxon: *Porophyllum gracile* Bentham.

- **Ann./Bien.** (Per) Habit, Height, Branching: Subshrub, 30-40 cm tall, with several branches from base, densely branched above
- **Fl./Fr.** colors, other notes: Involucre purple, Corolla white to greenish-yellow, Pappus bristles white to purplish, Leaves strongly pungent.
- **NOTE:** *Ps. visited by Checkerspot butterflies. Material preserved in Carnoy's fixative for chromosomal studies

Physical Habitat, Substrate: Mountain slope. Rocky, sandy loam soil.
Slope, Aspect, Exposure: Slope ca. 30 degrees, south-facing, exposed.
Community/Vegetation type: Open *Eriogonum fasciculatum* - mixed (*Artemisia californica, Malosma laurina*) scrub.

- **I.d. by:** Cynthia D. Jones
- **Date:** 4/1994
- **I.d. source:** Jepson Manual, 1993
- **Accession Number:** SDSU 12837

Locality #: 2-A

<table>
<thead>
<tr>
<th>Date of collection:</th>
<th>24 April 1994</th>
<th>Time (optional):</th>
<th>10 AM</th>
</tr>
</thead>
</table>

Country/State/Province/County/City: CA | San Diego Co.
Specific Locality information: Near hiking trail, just east of Oak Canyon. ca. 1.5 miles north of trailhead at Hwy 83 and Ventura Rd.,
Pickwood State Reserve
Latitude: 32° 50' 28" N
Longitude: 117° 02' 59" W
Source/Accuracy of Lat./Long.: USGS 7.5' topo. quad (La Mesa); +/-1"
Township & Range:
Elevation (ft or m): 1,100 feet
Landmark information: Ca. 4.7 miles northwest of Wilson Peak

Figure 17.3 Plant collecting documentation sheet.
Township and range: May be listed instead of lat./long., but less preferable.

Elevation (ft or m): List in units appropriate for source of determination.

Landmark information: Describe nearest major landmark (preferably one listed on standard topographic map) and list distance and direction from landmark.

Plant Data

Collection number: A unique number associated with the primary collector. Standard format is for a given person to begin with 1 for the first plant collected, 2 for the second, etc. Another format is to transform the date into a collection number, e.g., 10VI94A, in which the month is in Roman numerals, A represents the first plant collected that day, B the second plant, etc. Note: Duplicate specimens of a taxon collected at the same site and time receive the same collection number. If one plant specimen is divided into two (or more) parts, the labels for the pressed sheets are listed as 1 of 2, 2 of 2, etc.

Photograph documentation: For keeping track of photos or other images.

Collector (primary): The one person associated with a plant collection.

Associated collector(s): Other people present or aiding in collecting. These names are not directly associated with the collection number.

Taxon: Scientific name of species (a binomial of genus + specific epithet), including authorship. If applicable, also list the subspecies (ssp.) or variety (var.) name, including authorship. In final form, the scientific name is always italicized.

ann./bien./per., habit, height, branching: Circle or list duration (annual, biennial, or perennial), habit (herb, shrub, subshrub, vine, or tree), height from ground level (in metric, not essential if entire plant is collected), and any distinguishing features of the branching pattern that are not apparent from the specimen itself.

Fl./Fr., colors, other notes: Circle or list phenology, whether plants are in flower and/or fruit. Precisely describe the colors of unusual vegetative parts and of all flower parts (e.g., of calyx, corolla, anthers). If precision needed for colors, use a chart (e.g., Royal Horticultural Society Color Charts; see Tucker, et al. 1991. Taxon 40: 201 214.) Describe features that are obscure or might be lost from specimen upon drying.

Other field notes may include references to additional research studies or additional field observations, such as observed visitors/pollinators.

Population size/distribution: A few notes about the size and distribution of the population are useful, such as very rare, population very large (>1000 individuals per hectare), or plants locally common.

Physical habitat/substrate: Physical habitat refers to abiotic features, such as dry creek bed, granite outcrop, or flood plain. For substrate, list color and basic soil type (e.g., clay, clay-loam, loam, sandy-loam, sand, gravel, boulder, or rock). More detailed information can include soil series and/or rock type.

Slope/aspect/exposure: List angle of slope, from none (flat) to 90° (cliff face). Aspect is general compass direction toward which slope is facing. Exposure is either exposed, partly shaded, or shaded.

Community/vegetation type: Both immediate and surrounding plant communities/vegetation types may be listed for a single plant collection. Community/vegetation type may be general (e.g., chaparral or woodland) or precise. A precise designation of community type (modified from Radford, A. E., et al. 1981. Natural Heritage: Classification, Inventory, and Information. University of North Carolina Press, Chapel Hill) is as follows:

1. Determine the boundaries of the community, based on overall similarity of species composition. This may not be clear cut, as one community may intergrade with another or show much variation.

2. Identify layers present in the community: canopy (tall tree and lianas, if present) / subcanopy (smaller tree layer under canopy) / shrub or subshrub / herb. A vine, epiphyte, moss, or lichen layer also may be defined if a major component of the community.

3. For each layer of vegetation, assess the total cover, measured as the degree to which the total area of the community is covered by members of a given layer. Designations of cover are (1) closed (50 100% cover); (2) open (25 50% cover); or (3) sparse (<25% cover).

4. For each of the common species of a given layer (e.g., the shrub layer), assess relative cover, measured as the degree to which each species of the layer contributes to the total cover of that layer alone. (Other ecological measures, such as importance value, may be used instead, but relative cover is perhaps easiest to eyeball in the field.) Assess relative cover as (a) dominant = > 50% relative cover; (b) codominant = 25 50% relative cover.

5. Summarize the community type by listing layers separated by a / in sequence from tall to short layers, e.g., tree / shrub / herb / moss. Note: Dominant or co-dominant vines and epiphytes are listed at the end separated by, respectively, a double slash (//) or triple slash (///).
List as follows: (a) Total cover; (b) Dominant species, if one species is dominant (50 100% cover); or (c) codominant species, if two or more species are codominant (25 50% cover), each species present separated by a hyphen.

Note: You may use mixed trees, mixed shrubs, or mixed herbs as a layer designation where collectively the group of mixed species is dominant or codominant, but each individual species is <25% relative cover. This designation may be followed by a listing of the more common species (those with at least 10% relative cover) in parentheses.

6. Follow the community type with a designation of vegetation type. This is based on habit, habitat, and cover of species present. Examples include forest (closed trees), woodland (open trees), savanna (sparse trees with intervening grassland), chaparral (closed, evergreen, sclerophyllous shrubs), scrub (open to sparse shrubs), grassland or meadow, strand (sparse, low shrubs/herbs), marsh (aquatic shrubs and/or herbs in slow-moving water), swamp (closed to sparse aquatic trees), pond, vernal pool.

Example: Open Malosma laurina, Artemisia californica / closed Erodium botrys scrub community

Meaning: The total cover of the shrub layer is open (25% 50% total site area). Malosma laurina and Artemisia californica are a codominant in the shrub layer (25 50% relative cover). Erodium botrys is a dominant in the herb layer, which is closed (>50% relative cover). The vegetation type is a scrub (open shrubs).

I.D. by / date / source: List the person who identified the taxon, even if it is the same as the primary collector. Also list the date, usually just the month and year, and the source or reference of determining the taxon identity. The source will generally be a flora of the region, but could include monographic treatments or expert determination.

Accession number: After the plant collection is processed into an herbarium sheet and deposited in an herbarium, list the herbarium acronym and accession number for a complete record of the collection. Accession numbers are usually cited in publications to document a collection (see later discussion).

LIQUID-PRESERVED COLLECTIONS

It is often valuable to preserve samples of a plant collection in a liquid preservative. Liquid preservation maintains the shape, size, and internal structure of plant tissues. This is particularly valuable to do for delicate floral parts, whose form is easily distorted or even destroyed from standard herbarium specimen drying techniques. Liquid preservation is also essential for anatomical, developmental, or ultrastructural studies, in which the internal structure of cells and tissues must be maintained.

The most commonly used, general liquid preservative (known as a fixative) is FAA, one recipe being 10 parts 70% ethanol : 1 part commercial (37%) formalin : 1 part glacial acetic acid (all by volume). (Note: FAA is toxic; avoid getting on skin or breathing the fumes!) Plant samples are simply placed into a glass or plastic vial or jar filled with FAA. Although FAA penetrates most plant tissues rapidly, some plant samples should be cut open to allow the fixative to fully infiltrate into the tissues. At least some closed flower buds or ovaries, leaves, and stems should generally be sectioned with a razor blade prior to fixation.

For cytological studies, e.g., chromosome counts, flower buds or root tips may be fixed in Carnoy’s fixative (3 parts 100% ethanol : 1 part glacial acetic acid). For detailed ultrastructural studies, e.g., using electron microscopy, other fixatives may be needed, such as glutaraldehyde or osmium tetroxide. These compounds are dangerously toxic and should only be handled in a laboratory hood. Because they penetrate less rapidly than FAA, the material must be cut into much smaller pieces, generally 1 mm or less.

Plant material may be fixed in 70 100% ethanol and used for general morphological studies and sometimes DNA analysis. This is not commonly done for the latter, as material dried in silica gel is better preserved (see later discussion).

Any liquid preserved material should have a corresponding herbarium voucher specimen to serve as a reference for identification. The vial or jar should be labeled both on the outside and on a strip of paper (using a pencil) placed into the fixative. Label information should include the species name and collector and collection number; other data are optional and can be obtained from the field collection notebook or voucher.

LIVING COLLECTIONS

A very valuable type of plant collection is a live specimen removed from the wild. This may be either a whole plant, a vegetative propagule, or a seed. Living plant collections are typically grown in a greenhouse or botanic garden, where they can be accessible to a researcher. Growing them and keeping them alive requires some horticultural experience and may involve trial and error under different regimes of potting or soil mixture, moisture, and photoperiod. As with liquid-preserved collections, they should be properly labeled with permanent metal or plastic tags, with collection information corresponding to a voucher specimen deposited in an herbarium.

A living plant collection has the great advantage of permitting long-term observations, e.g., through an entire reproductive stage, or experimental manipulations, such as breeding studies. It also permits removing fresh samples of material for study over an extended period of time (rather than from a single field expedition). However, one precaution about
studying live plant collections is that their morphology may be altered in cultivation from that in the wild. In addition, pollinators normally present in the wild will not normally be present in an artificial environment, perhaps preventing normal seed set.

COLLECTIONS FOR MOLECULAR STUDIES

A standard method for collecting material for studies of DNA is to cut pieces of leaves or other plant tissue and immerse these in a container (vial or plastic bag) of silica gel. A paper label, indicating the taxon and the name and number of the collector (corresponding to an herbarium voucher collection), is placed in the container. The silica gel rapidly dehydrates the material, preserving the DNA for future extraction, purification, and amplification. Extracted plant material is usually frozen at −80°C to prevent degradation of the DNA. Plant material to be used for DNA analysis may also be fixed in 70% 100% ethanol, but this may not preserve the DNA as well.

For allozyme analysis, fresh material must be used, as enzymes degrade very rapidly. Extra plant material is placed in a plastic bag (again with a slip of paper or label indicating the voucher information) and kept in a cooler until it is transported to the lab.

REVIEW QUESTIONS

1. What are the different types of plant collections?
2. List the several uses of plant collections.
3. What is a voucher specimen?
4. What is the purpose of a voucher specimen?
5. Review the preparations needed for collecting plants in the field.
6. What are the general rules for assessing whether a plant should be collected?
7. List the guidelines for properly collecting plants in the field.
8. How should plant collections be stored prior to processing?
9. What is a standard herbarium specimen?
10. What are the components of a plant press?
11. Review the guidelines for properly pressing plants, including special requirements for processing (a) herbs; (b) tall herbs; (c) shrubs or trees; (d) highly branched specimens; (e) rootstocks (such as rhizomes, bulbs, or corms); (f) succulent plants; (g) flowers and fruits.
12. How are herbarium specimens dried?
13. List all the data that should be recorded in the field at the time of collecting.
14. Review in detail how specific plant community types can be assessed.
15. Why is it important to list the person who determined the identity of the plant and the determination source?
16. Review the guidelines for preparing liquid-preserved collections.
17. What is the most common type of liquid preservative?
18. What liquid preservatives must be used in ultrastructural studies?
19. Review the guidelines for obtaining living plant collections.
20. What are the advantages and disadvantages of living plant collections?
21. How is material for molecular studies normally collected?

EXERCISES

1. Collect six plants, including at least two herbs, one shrub, and one tree. Record all pertinent information in the field, using Figure 17.3 as a guide.
2. For at least one of the above, collect liquid-preserved material for both anatomical and cytological studies.
3. For at least one of the above, collect material for DNA sequence studies.

REFERENCES FOR FURTHER STUDY

Herbaria are repositories of preserved plant collections, these usually in the form of pressed and dried plant specimens mounted on a sheet of paper. The purpose of herbaria is both to physically contain the plant collections and to act as centers for research. The plant collections themselves function as vouchers for identification and as sources of material for systematic work. Herbaria also may house numerous geographic and taxonomic references, particularly floras or manuals that may aid in plant identification. In addition to housing plant collections, many herbaria today have initiated computerized data information systems to record and access the collection information of the plant specimens, as well as to access information from other collections worldwide (see Data Information Systems).

Information about herbaria is contained in Index Herbariorum (Holmgren et al. 1990; see also listing of on-line computer access in References for Further Study), which lists the names, addresses, curators, and number and types of specimens. Each herbarium listed in Index Herbariorum is assigned an acronym. It is this acronym that is cited in publications in order to specify where voucher specimens are deposited. Herbaria are typically associated with universities or colleges, botanic gardens, museums, or other research institutions.

The 15 largest herbaria, their acronyms, and the number of specimens they contain are listed in Figure 18.1.

HERBARIUM SPECIMENS

An herbarium specimen consists of a pressed and dried plant sample that is permanently glued and/or strapped to a sheet of paper along with a documentation label. The herbarium paper is high quality, heavyweight, and acid-free to inhibit yellowing. In most American herbaria, standard herbarium paper measures 11.5" wide × 16.5" tall; in other countries the dimensions may be slightly different. An herbarium label (see below) is glued to the lower right corner of the herbarium specimen. An example of an herbarium specimen is seen in Figure 18.2. Herbarium specimens (also called herbarium sheets) will last for hundreds of years if properly maintained. They are still the most efficient and economical means of preserving a record of plant diversity.

HERBARIUM LABELS

An herbarium label is affixed to each specimen, usually at the lower right hand corner. Herbarium labels are typically
computer generated using a laser or ink jet printer. Label sizes vary, but are generally about 4 5" (10 12 cm) wide and 2 3" (5 7 cm) tall, using high-quality, thick-weight (20- or 24-lb), acid-free bond paper. Virtually all of the information recorded at the time of collecting should be placed on the herbarium label. An example of a typical label format, containing all information from the collecting event, is seen in Figure 18.3. A convenient formatting is to list (following the taxon name) all characteristics about the plant itself in the first paragraph, including duration/habit/height/branching pattern and phenology, colors, and other features. The second paragraph contains information about the habitat and locality of the plant, including physical habitat/substrate, slope/aspect/exposure, community/vegetation type, specific locality information, landmark information, latitude and longitude, source/accuracy of lat./long., and elevation. A third paragraph may include other field notes and photograph/image documentation. At the bottom of the label, the collector, collection number, and date of collection is listed. (The abbreviation s.n., Latin for sine numero, without a number, sometimes follows a collector’s name to indicate that the collector did not designate a personal collecting number.) The last item on the herbarium label may list by whom and when the identity was determined (even if by the same person who collected the material) and what the source of that identification was. Information on taxon determination is important to include on the label, as it cannot be assumed that the person who collected a plant identified it. In addition, the source or means of identification (whether a flora, monograph, or expert determination) may constitute valuable information in verification of identities.

If the plant specimen is so large that it must be divided between two or more herbarium sheets, a separate label must be prepared for each of these parts. All labels referring to the same plant have the same collection number (but different accession numbers; see later discussion). The two herbarium sheets may differentiated by the designation, e.g., 1 of 2, 2 of 2.

MOUNTING HERBARIUM SPECIMENS

Plant specimens are affixed to herbarium paper with glue and/or straps. The glue used may be standard white glue or a solution of methyl cellulose, available from chemical supply and some herbarium supply companies. White glue is best diluted slightly, ca. 9 parts glue to 1 part tap water, stirred well. Methyl cellulose is prepared by adding about 70 grams of methyl cellulose powder to a liter of warm tap water and stirring briskly until well mixed; more water or powder may be added to achieve a thick, viscous solution. The advantage of methyl cellulose is that, with minimal moistening, it will soften or dissolve, allowing for relatively easy removal of dried plant material from the herbarium specimen (see later discussion). Glues containing organic solvents are not recommended, as they are toxic and require special ventilation.

The following is one useful method to glue a dried plant specimen and label to a sheet of herbarium paper. Have the following supplies on hand: herbarium paper, cardboard (12" × 18"), a flat sheet (ca. 12" × 18"), paintbrush (2 4" wide),
11.5" wide

Plant parts dissected to reveal morphology

16.5" tall

Envelope (for plant fragments)

Accession number (bar code optional)

Herbarium label (ca. 5" wide)

Photographs (optional)

Annotation label

FIGURE 18.2 Example of a typical herbarium sheet. (Photo courtesy of Jon Rebman.)
glue, two pairs of forceps, spatula, and weights (standard bathroom tiles, measuring 4", 6", and 8" square work well). First, place a sheet of herbarium paper on top of a cardboard. Position the herbarium label (without gluing yet) on the lower right corner of the herbarium paper, leaving ca. 1/8" space between the label and the margins of the paper. Place the pressed plant specimen (also without gluing yet) on the paper in order to test the final positioning. Make sure the specimen does not overlap the label or go beyond the edges of the herbarium paper; if overlap occurs, the plant must be cut. Also, try to leave some room above and to the left of the label for placing an accession number or barcode and possible annotation labels (see later discussion). Extra pieces of the plant specimen (e.g., individual flowers, fruits, or inflorescence) may be placed on the sheet as well. Smaller pieces are best placed in a separate small envelope that may be glued to the final specimen, such that it may be opened to remove the material for study. (Envelopes may be constructed by cutting heavyweight, 100% bond typing/printing paper (e.g., 8.5” × 11") into two pieces; each 8.5” × 5.5” piece is then folded to make a 4.25” × 5.5” rectangle, which is then folded to overlap ca. 1/4” along the three cut margins.)

Next, using a paintbrush, coat a large (at least 12” × 18”) sheet (e.g., of glass, Plexiglas, or a cookie sheet) thoroughly with a layer of glue. Transfer the plant specimen from the paper to the glue-covered sheet, gently press down, carefully remove (using forceps for delicate material to prevent damage), and place back onto the herbarium paper, positioning the plant as originally placed. You may use a scalpel or squirt jar to transfer glue directly to plant surfaces that require greater adhesion. Continue this until all plant components are glued to the sheet. Finally, in a smaller region of the sheet, paint a very thin layer of glue (preferably white glue, diluted as specified above) on the sheet, place and press down the herbarium label onto this region, and transfer back to the herbarium specimen with forceps, being careful to correctly position it about 1/4” from the edges. Flatten and smooth the herbarium label by placing a used paper towel or sheet of paper (to absorb excess glue) over the label and pressing down firmly. Finally, place weights (e.g. different-sized ceramic tiles or lead weights) over both herbarium label and various locations of the plant material. Leave the specimen overnight to dry thoroughly. Specimens, with underlying cardboard, may be stacked if needed to conserve space.

After the glue has dried, remove the weights and check the specimen. Reapply glue to individual spots as needed. Place narrow (ca. 1/8” wide) strips of strapping tape (available from herbarium supply companies) over stout stems to better secure them to the sheet. Some herbaria use little to no glue, relying on heavy use of strips of strapping tape to secure the specimen. Although this may not secure some plant specimens as well, it has that advantage of making removal of plant material from a mounted specimen (e.g., for detailed study) much easier.
HERBARIUM OPERATIONS

CURATORS
The person in charge of the day-to-day running of an herbarium is known as a curator. The duties of the curator (and assistant curators or collections managers, if any) are to (1) manage the existing collection, including the mechanics of proper storage and regular treatment to control insect pests; (2) mount, label, and accession new additions to the herbarium collection; (3) distribute requested loans from scientific institutions and receive loans from other herbaria; and (4) act as a resource person for the identification of regional plants or plants of special collections. In addition, curators today are often involved in transferring herbarium collection data to a computerized data information system for interactive access to that information.

ACCESSIONING
Accessioning refers to the designation of a number to all specimens placed into the permanent herbarium collection. This accession number is assigned to each specimen of the collection. The accession number is written or imprinted onto the herbarium sheet, often along with the international acronym of the herbarium (e.g., **UC 218485**, where **UC** is the herbarium acronym, in this case referring to University of California at Berkeley). With the advent of computerized data information systems, accession numbers are now sometimes imprinted with a bar code label that may be scanned (see later discussion).

The purpose of the accession number is to provide a permanent reference for each specimen of the plant collection. Accession numbers (plus the collector and collection number) are often cited in journal publications and may be valuable in tracking down the exact specimen for purposes of identity verification.

STORAGE AND CLASSIFICATION OF SPECIMENS
Standard procedure is to store herbarium specimens by genus in a genus folder. There are different constructions of genus folders, but all consist of stout, heavyweight paper folded along at least one crease. The genus folder is labeled, typically on the lower right corner of the outer cover. The specimens within a genus folder are usually arranged alphabetically by species. If a particular genus has numerous collections, two to many genus folders may be used to house them.

Genus folders are often color-coded to represent different geographic regions for the plant collections. For example, different colors may represent various counties, states, regional areas (e.g., Southwestern states), countries, blocks of countries, or continents. Thus, specimens of the same species may occur in two or more genus folders if these were collected from different geographic regions. Color-coded genus folders are typically stacked one on top of the other according to a standard order.

Plant specimens are usually stored in herbarium cabinets (Figure 18.4). Herbarium cabinets are usually made of metal and have sealed doors to inhibit insect migration or to prevent possible diffusion of pesticides. A standard, full-sized herbarium cabinet is typically 7 feet tall and 2.5 feet wide, with approximately 26 shelved compartments arranged in two columns, having a capacity of approximately 500 herbarium specimens (depending on the bulkiness of the plants). In many of the larger herbaria, standard herbarium cabinets have been replaced by compactors, which allow for a greater number of specimens to be stored. Compactor systems consist of rows of attached cabinets (or shelves), each row mounted on floor tracks. Entire rows of cabinets can be moved as a unit to abut against an adjacent row. Thus, compactors generally allow for only one (temporary) aisle space, maximizing the storage space available.

Genus folders are usually classified alphabetically within a given plant family. In many herbaria, families are arranged according to someone’s formal classification system, a common one still in use being the Dalle Torre and Harms, which is based on the antiquated Englerian system. In other herbaria, families are simply classified alphabetically, with the exception that the major plant groups (e.g., Lycophytes, Equisetophytes, Leptosporangiate Ferns, Conifers, Gnetales, Monocots, or Eudicots) are usually stored separately.

USING HERBARIA
In general, use of an herbarium requires prior approval and/or an appointment made through the herbarium curator. When using the herbarium, please be considerate of dissecting microscopes, tools, and references in the collection. Clean up after yourself; brush the table clean of debris (into a trash can) as needed.

REMOVING AND HANDLING SPECIMENS
You will, of course, need to remove herbarium specimens from the collection for observation, for example, to check the identity of your own plant or to study a given taxonomic group. Herbarium specimens may be rather fragile and should be handled very carefully, as follows.

Note taxa lists or maps to locate the family and genus of interest. Remove the entire genus folder from the cabinet. You may wish to slightly pull out the genus folders above or below the desired folder to mark the location. (However, always recheck the labels when filing!) **Close the herbarium cabinet door immediately in order to inhibit insect infestation.**
Carefully transfer the genus folder to a table (with plenty of space) for observation and open it.

Always hold an individual specimen with both hands to prevent it from inadvertently bending. Never place anything (e.g., books) on top of a specimen. *Never turn a sheet upside down*, as this may result in the plant material breaking or falling off the sheet. Remove each specimen, one at a time from the top, and stack (in reverse order) to the side. Avoid sliding stacked specimens against one another, as this can result in damage to the plants. To find a specific collection, you may very gently shuffle through the labels at the lower right-hand corner of the specimens. Then, move aside the group of sheets on top of the desired specimen to expose it. When finished, replace the removed specimens in the genus folder, generally classified in alphabetical order by species or infraspecific name.

SYNOPTIC COLLECTIONS

Synoptic collections are those that contain generally one specimen (of all available specimens) of each taxon for a given region. Synoptic collections are very useful for quickly perusing the possible taxa in a region, such as a state, county, park, reserve, or some other political boundary. The disadvantage of synoptic collections is that they are generally limited to one specimen per taxon. Thus, it is imperative to always check an identity with the main collection, to note the entire range of variation of the taxon.

ANNOTATION LABELS

An *annotation label* is a label that verifies or changes the identity of a specimen or that documents the removal of plant material from the specimen (Figure 18.5). Annotation labels are permanently glued to the plant specimen, typically just above the standard herbarium label (see Figure 18.2). Annotation labels are typically placed on herbarium specimens by experts in a particular group, often as part of a research project. The labels vary in format, but generally measure about 4” wide and 1” high, using paper like that of herbarium labels.

Annotation labels that verify identity (Figure 18.5A,B) generally include (1) the name of the herbarium; (2) the species, subspecies, or variety name, including full authorship; an exclamation point ! (symbol for the Latin *vidi*, I have seen it) indicates a confirmation and is sometimes written instead of the full taxon name, if the annotated name is the same as that on the herbarium label; (3) the name of the person who made the correct name determination (often listed after Det.); (4) the date of the determination; and (5) the determination source. As with herbarium labels, the determination source is often omitted from annotation labels, but is
nonetheless valuable to include. The determination source refers to which, if any, references were used in the determination (usually a specific flora) and how the correct identity was ascertained.

One type of annotation is an update of the nomenclature of a species, without verifying the identity by morphological examination. Such annotations are not ideal, but may be necessary in large collections in order to cite the specimens in terms of the nomenclature of a recent flora or monograph. In such a case, the original identity is assumed to have been correct and now a synonym of the new name. Another type of annotation would list the reference and indicate that the person making the determination did examine the specimen critically, examining its morphology. An example of this type of annotation label is seen in Figure 18.5A. A third type of determination source might cite an original monographic treatment, published or unpublished. An example of this type of annotation label is seen in Figure 18.5B.

REMOVING PLANT MATERIAL
Annotation labels may also document the removal of dried plant material from an herbarium specimen. Removal of material may be needed to verify the identity of the specimen or to study some detail of the plant, e.g., anatomy or palynology. Even DNA may be successfully extracted from dried plant fragments.

You must always get permission from the herbarium curator before removing any material. Once permission is obtained, first see if the material you need is contained in an envelope attached to the sheet. If not, you will need to remove a piece from the plant specimen that is affixed to the sheet. Be very careful and conscientious doing this, trying to minimize the damage done to the specimen. Generally, material may simply be clipped, cut, or pulled off with forceps. In some cases the material that you need will be directly glued to the sheet. This may be difficult to remove, requiring the use of a razor blade to gently cut under the specimen (but above the paper). Plant material that is glued with methyl cellulose is easily removed by adding a few drops of water to soften the adhesive. Dried material can be reconstituted in boiling water and/or a detergent solution (such as Aerosol OT). It may then be observed and dissected in water or fixed in a liquid preservative for long-term storage.

Annotation labels should be used to document the removal of plant material. The person, institute, date, and reason for removing material should be indicated. Additional information indicates the type or purpose of the study, e.g., for anatomical, morphological, palynological (pollen), embryological, ultrastructural, or molecular analysis (Figure 18.5C).
REFILING HERBARIUM SPECIMENS
At some herbaria the staff do all specimen refiling; others allow (and expect) the user to refile anything removed. Generally, if a genus folder was removed for a short period of time and not placed in proximity to plant debris, it may be refiled immediately into the collection. However, if possible insect contamination is suspected, the genus folder and its contents should be treated for insect control (see later discussion).

If you are refiling a folder yourself, you should be extremely careful to file it in the correct location, both by taxonomic category and geographic region (color-coding).

HERBARIUM LOANS
Those doing research on a plant group do not generally need to visit herbaria to examine the specimens. Typically, herbarium specimens may be sent out (via standard mail) on loan. Loans are typically granted only to members of universities, museums, or other research institutions. A request for a loan requires a letter to the curator, justifying the research needs for examining the specimens. The period of a loan is often 6 months, but this varies at different herbaria and may be extended upon request and approval.

INSECT CONTROL
An essential component of maintenance of herbarium collections is insect control. If herbarium specimens are kept dry and free of insects, they may be preserved in good condition for hundreds, if not thousands, of years. However, if insects infect a specimen, it may quickly be reduced to rubble.

There are two general ways to control insects: by chemicals and by freezing. Chemical control generally involves placing a volatile chemical insecticide within each sealed cabinet. Moth balls or moth chips have been used in the past, but these have been shown to be extremely dangerous to people. Other types of insecticides include insecticide strips, which can be placed directly into a cabinet and which may last for 3–6 months.

Another method of insect control is freezing. Genus folders are periodically placed in a freezer for 3 to 7 days at at least −20°C before being refiled back into the herbarium cabinet. The advantage of freezing is that it eliminates toxic fumes, which could cause health problems to those working in the herbarium. The disadvantage of freezing is that it is more labor-intensive and potentially may result in greater damage to the specimens because of the regular removal and refiling required.

DATA INFORMATION SYSTEMS
A data information system (or database system) refers to the organization, inputting, and accessing of information. The accumulation of separate pieces of data (known as the database) may be manipulated such that general or specific questions in plant taxonomy may be addressed. It is important that students today be trained in the basics of accessing and manipulating information available from these systems.

All data information systems utilize computer hardware and software to record information. The data are organized as discrete units, generally known as fields (Figure 18.6). For example, for information in an herbarium collection, typical fields might be species name; authorship; flower color; phenology; soil type; topography; community type; specific locality; latitude; longitude; collector; collection number; determiner; accession number; annotation information; etc. Basically all of the discrete items recorded at the time of
collection or as part of accessioning or identifying the plant may be entered into the database. In addition, a digitized image of the plant specimen may be recorded for future access.

The great advantage of computerized data management systems lies in the ability to retrieve or summarize information about the plant collection. For example, one may call up a listing of all plant specimens collected at a specific locality or within a certain geographic range, defined by latitude and longitude coordinates. Or, one may request a list of all species collected on serpentine soil, or of all species that flower in September, etc. Sophisticated systems may be able to generate a dot distribution map of all the collections of a given taxon.

One critical problem with data information systems resides not with the system itself but with the collections. Many, if not most, herbarium specimens lack much of the critical information needed. For example, information about plant characteristics, phenology, ecology, or latititude/longitude is often not recorded on labels. In fact, on many older herbarium specimens, locality information may be very scanty, corresponding to a very broad or ill-defined region. Thus, depending on the quality of the collection, the amount of useful information obtained from herbarium specimens may be quite limited.

Data management systems may also help in the day-to-day organization of herbarium operations. For example, accession numbers (which may be scanned with bar codes) may automatically keep track of both outgoing loans and incoming loan returns.

In addition to in-house data information systems, it is now commonplace to electronically connect directly to the databases of other herbaria. Many of the major herbaria have an on-line connection that allows others to access this information over the internet, including searchable Web pages.

Finally, data management of natural collections has become invaluable in biodiversity studies. The data information system allows for the tabulation of presence, range, and distribution of taxa, especially important for studying rare or endangered species or sensitive habitats.

FLORAS AND MONOGRAPHS

Herbaria are particularly essential in two important activities in plant systematics: floristics and monographic treatments. **Floristics** is the documentation of all plant species in a given geographic region. Floristics may also entail documentation of plant communities and abiotic factors as well. Floristic studies may be published in taxonomic journals or may result in the publication of a *flora* or plant *manual* of a given region, such as *Flora of North America*. Floristic studies are vital in the documentation of plant biodiversity.

A **monograph** is a detailed taxonomic study of all species and infraspecific taxa of a given taxonomic group, generally a genus or family. Unlike floristic studies, the goal of which is to document taxa for a given area, monographic treatments focus on a particular taxonomic group, over its entire geographic range. For example, see the Systematic Botany Monographic series (American Society of Plant Taxonomy, http://www.sysbot.org).

REVIEW QUESTIONS

1. What is an herbarium?
2. What is the function or purpose of herbaria?
3. What is the name and most recent version of the reference book that lists the names, acronyms, and details of herbaria worldwide?
4. What is an herbarium specimen?
5. What are the characteristics of an herbarium specimen, including the standard size (in the United States)?
6. Describe a standard format and list the information that is contained in an herbarium label.
7. If a plant specimen is divided among two or more herbarium sheets, how is the herbarium label written?
8. Describe the procedure for mounting plants on herbarium paper.
9. What are two type of glues used for the above? How do they differ?
10. What is an herbarium curator and what are his/her duties?
11. What is an accession number and what is its function?
12. What is a genus folder?
13. Why are many genus folders color-coded?
14. How are herbarium specimens typically stored?
15. Review the procedures for handling herbarium specimens.
16. What is an annotation label?
17. What are the different types or designations on annotation labels?
18. Review the procedures for removing material from an herbarium specimen.
19. How may removed material be reconstituted for observations?
20. What is an herbarium loan and what is its purpose?
21. How may insects be controlled in herbaria?
22. What is a data information (database) system?
23. What types of data manipulation may be done with data information systems?
24. How might data information systems be valuable in conservation biology?
25. What is the difference between a flora (or floristic study) and a monograph, and what are examples of each?

EXERCISES

1. Obtain a list of plant species from your instructor, including a lycopod, fern, conifer, monocot, and eudicot. Become familiar with the system of classification of your herbarium (or a herbarium that you visit). Locate and remove the genus folder for this species. Carefully transfer the genus folder to an open-space table, remove one specimen, and study it. (Be sure to handle the herbarium sheets correctly.) Note how the specimen is attached to the herbarium paper. Also note the label, accession number (possibly on a bar code), and annotation labels (if present). Write down the collector, collection number, general region/locality where the specimen was collected, herbarium acronym (see Index Herbariorum), and accession number (e.g., Smith 762; NY 1120387). Do this for each of the species on the list.

2. When finished with each specimen, replace it in correct order (usually alphabetical by species) within the genus folder. If permitted, refile the genus folder in its correct location in the herbarium cabinet, both by taxonomy and (if used) color coding by region. [Caution: Be sure to check yourself carefully! If misfiled, specimens could be lost for some time.]

3. Access an herbarium database (e.g., U.C. Berkeley’s Jepson Herbarium or the New York Botanical Garden herbarium) by doing a search on the Web. Look up several species. If available, get information for type specimens and/or images of herbarium specimens.

4. Do a search on a particular herbarium database for a given species or genus. Download all information to a spreadsheet. Optional: Determine the latitude and longitude for these specimens, either directly from what was recorded on the label or by tracking down localities using available hard-copy or computerized topographic maps. From your list of species with latitude/longitude information, generate a map, showing the place of collection of each specimen as a dot. Do you notice any correlation with region (e.g., elevation) or habitat?

5. Check Index Herbariorum on-line (see below) for several large herbaria (e.g., K, MO, NY, UC, US) and determine (a) the curator’s name, address, e-mail; (b) the number of specimens currently accessioned; (c) the general types of collections in the herbarium; (d) any type specimens in the herbarium.

6. Obtain and study an example of a flora and one of a monograph. Copy an example entry from each, indicating how they differ.

REFERENCES FOR FURTHER STUDY

WRITING A PLANT DESCRIPTION
The following list of characters can serve as the basis for a detailed plant description. The basic form of the description is to list the plant organ (noted in bold in the character list below), followed by a listing of all character states that apply for that plant organ, with each character state separated by commas. Note that, for any particular species, not all characters will apply; these are simply omitted. Also note that some characters are listed with multiple character names, e.g., Sepal/Calyx lobes/Outer tepals. This is designed as a guide, with the intention that only one of these three will be used, depending on whether the outer whorl of the perianth consists of distinct sepals (Sepal used), of fused sepals (Calyx lobes used), or of tepals (Outer tepals used).

There are different styles in writing a detailed plant description. Some use a telegraphic style, e.g., Leaves simple, sessile, whorled, ovate, entire, glabrous. This style is common in floras, where space for text may be at a premium. Other descriptions use complete sentences, e.g., Leaves are simple, sessile, whorled, ovate, entire, and glabrous. The use of the at the beginning of a sentence is optional, as in The leaves are simple, sessile, whorled, ovate, entire, and glabrous.

Some general suggestions are as follows:

1. Be sure to only list the plant organs (and list only once), followed by the character states that apply to that plant organ. The major plant organs are sometimes placed in bold text to highlight them. Do not list the specific character names, unless a clarification is needed. Examples:

 Do write: Flowers are bisexual, actinomorphic, pedicellate, 1.5 2.2 cm long (including pedicel) . . .
 [Flowers refers to the plant or gan; all other terms are character states.]

 Do not write: Flower sex is bisexual, symmetry is actinomorphic, attachment is pedicellate, length is 1.5 2.2 cm [Sex, symmetry, attachment, and length are characters and should not be listed.]

 However, do write: Leaf blades are elliptic, serrate, rounded at base, obtuse at apex. [Rounded and obtuse could refer to either of the characters base or apex, so these characters should be listed for clarification.]

2. Description of the major organs may be written in the singular or plural form, but the latter should be used only if more than one such organ occurs in an individual. If only one organ occurs per individual, the singular should be used.

 Do write: Leaves are trifoliolate, alternate, . . . or The leaf is trifoliolate, alternate, . . . if there are multiple leaves.
 Do write: The inflorescence is a solitary raceme, . . . if there is a single raceme per individual.

3. Always use metric for plant or plant organ heights, lengths, and widths. Always abbreviate these: mm for millimeters, cm for centimeters, dm for decimeters, m for meters. Use mm and cm for smaller structures, dm or m for larger. Use the appropriate unit of measure to avoid values less than 1, if possible. (E.g., write 2.5 mm instead of 0.2 0.5 cm.) Always place a 0 before a decimal point, as in 0.5 mm. Be clear about what you're describing. Examples:

 Do write: Flowers are 0.5 1.3 mm long (excluding pedicel), 2.3 mm wide when fully opened.
 Do not write: Flowers are .5 1.3 mm.

4. For characters that are variable, either list the range of variation (e.g., Leaves oblong to narrowly elliptic, crenate to dentate . . .) or list the most common morphology and in brackets list the exceptions (e.g., Leaves trifoliolate [rarely pinnate with 5 leaflets] or Leaves 4 7 [2.5 10] cm long . . .).
COMPLETE MORPHOLOGICAL CHARACTER LIST

[Available as download from Website; Note: Not all characters apply to a given taxon; add characters for specialized structures.]

<table>
<thead>
<tr>
<th>Species/Infraspecies Name (with authorship) [Common Name]:</th>
<th>Native locality:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Family:</td>
<td>Petiole Shape:</td>
</tr>
<tr>
<td>Plant Habitat:</td>
<td>Petiole Color:</td>
</tr>
<tr>
<td>Plant Duration:</td>
<td>Petiole Length:</td>
</tr>
<tr>
<td>Plant Sex if not hermaphroditic:</td>
<td>Petiole Orientation:</td>
</tr>
<tr>
<td>Plant Habit:</td>
<td>Stipule Shape:</td>
</tr>
<tr>
<td>Plant Height:</td>
<td>Stipule Surface adaxial:</td>
</tr>
<tr>
<td>Root Type:</td>
<td>Stipule Surface abaxial:</td>
</tr>
<tr>
<td>Root Origin (e.g., primary, adventitious):</td>
<td>Stipule Length:</td>
</tr>
<tr>
<td>Underground Stem Type if specialized:</td>
<td></td>
</tr>
<tr>
<td>Underground Stem Branching Pattern:</td>
<td></td>
</tr>
<tr>
<td>Underground Stem Size:</td>
<td></td>
</tr>
<tr>
<td>Aerial Stem Habit:</td>
<td></td>
</tr>
<tr>
<td>Aerial Stem Branching Pattern:</td>
<td></td>
</tr>
<tr>
<td>Bark Type:</td>
<td></td>
</tr>
<tr>
<td>Bark Lenticels presence/shape:</td>
<td></td>
</tr>
<tr>
<td>Twig Surface/Shape:</td>
<td></td>
</tr>
<tr>
<td>Twig Lenticel presence/shape:</td>
<td></td>
</tr>
<tr>
<td>Twig Shape/Cross-Sectional Outline:</td>
<td></td>
</tr>
<tr>
<td>Pith Type:</td>
<td></td>
</tr>
<tr>
<td>Pith Cross-Sectional Outline:</td>
<td></td>
</tr>
<tr>
<td>Leaf Scar Size/Shape:</td>
<td></td>
</tr>
<tr>
<td>Vascular Bundle Scar Number/Pattern:</td>
<td></td>
</tr>
<tr>
<td>Stipule Scar presence:</td>
<td></td>
</tr>
<tr>
<td>Stipule Scar Position/Shape if present:</td>
<td></td>
</tr>
<tr>
<td>Terminal Bud Scale Scars presence/absence:</td>
<td></td>
</tr>
<tr>
<td>Bud Type:</td>
<td></td>
</tr>
<tr>
<td>Bud Orientation:</td>
<td></td>
</tr>
<tr>
<td>Bud Shape/Size:</td>
<td></td>
</tr>
<tr>
<td>Bud Position:</td>
<td></td>
</tr>
<tr>
<td>Bud Scale Arrangement:</td>
<td></td>
</tr>
<tr>
<td>Bud Scale Surface/Texture:</td>
<td></td>
</tr>
<tr>
<td>Thorns if present:</td>
<td></td>
</tr>
<tr>
<td>Spines if present:</td>
<td></td>
</tr>
<tr>
<td>Prickles if present:</td>
<td></td>
</tr>
<tr>
<td>Spur Shoot if present:</td>
<td></td>
</tr>
<tr>
<td>Leaves/Leaf Number if unusual:</td>
<td></td>
</tr>
<tr>
<td>Leaf Type:</td>
<td></td>
</tr>
<tr>
<td>Leaf Length/Width:</td>
<td></td>
</tr>
<tr>
<td>Leaf Attachment:</td>
<td></td>
</tr>
<tr>
<td>Leaf stipule presence:</td>
<td></td>
</tr>
<tr>
<td>Leaf Duration:</td>
<td></td>
</tr>
<tr>
<td>Leaf Position if not cauline:</td>
<td></td>
</tr>
<tr>
<td>Leaf Arrangement:</td>
<td></td>
</tr>
<tr>
<td>Leaf Orientation if discrete:</td>
<td></td>
</tr>
<tr>
<td>Leaf Posture if discrete:</td>
<td></td>
</tr>
</tbody>
</table>

IF LEAVES SIMPLE:

Leaf Blade Color if unusual:	
Leaf Blade Shape:	
Leaf Blade Length:	
Leaf Blade Width:	
Leaf Blade Margin:	
Leaf Blade Apex:	
Leaf Blade Apical Process:	
Leaf Blade Division:	
Leaf Blade Venation:	
Leaf Blade Surface adaxial:	
Leaf Blade Surface abaxial:	
Leaf Blade Texture:	

IF LEAVES COMPOUND:

Leaf Outline Shape:	
Rachillae Number if decompound:	
Leaflets Number if not very large:	
Leaflet Arrangement:	
Leaflet Blade Shape:	
Leaflet Blade Attachment:	
Leaflet Blade Color if unusual:	
Leaflet Blade Length:	
Leaflet Blade Width:	
Leaflet Blade Base:	
Leaflet Blade Margin:	
Leaflet Blade Apex:	
Leaflet Blade Apical Process:	
Leaflet Blade Division:	
Leaflet Blade Venation:	
Leaflet Blade Surface adaxial:	
Leaflet Blade Surface abaxial:	
Leaflet Blade Texture:	
Appendix 1: Plant Description

<table>
<thead>
<tr>
<th>Petiolule Color:</th>
<th>Perianth Type (if homochlamydeous):</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Petiolule Length:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Stipel presence:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Stipel Shape:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Stipel Surface adaxial:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Stipel Surface abaxial:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Stipel Length:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Inflorescence Position:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Inflorescence Bract presence:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Inflorescence Type:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Inflorescence Length:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Inflorescence Width:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Inflorescence Branch Orientation:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Inflorescence Sex:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Inflorescence Axis Surface:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Flower Sex:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Flower Bract presence:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Flower Length minus pedicel:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Flower Width minus pedicel:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Flower Arrangement:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Flower Orientation:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Flower Posture:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Flower Symmetry overall:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Flower Attachment:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Pedicel if present Length:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Pedicel if present Shape if unusual:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Bracts/Bractlets No (note inflorescence vs. flower):</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Bracts Position:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Bracts Length:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Bracts Color if unusual:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Bracts Attachment:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Bracts Shape:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Bracts Base:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Bracts Margin:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Bracts Apex:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Bracts Apical Process:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Bracts Division:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Bracts Venation if unusual:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Bracts Texture if unusual:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Bracts Surface adaxial:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Bracts Surface abaxial:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Receptacle Size if unusual:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Receptacle Shape if evident:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypanthium presence:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypanthium Shape:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypanthium Length:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypanthium Width:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Perianth Cycl:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Perianth Arrangement if not whorled:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Appendix 1: Plant Description (Continued)

<table>
<thead>
<tr>
<th>Calyx/Outer Tepals Aestivation:</th>
<th>Corolla Type (if dichlamydeous):</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Calyx/Outer Tepals Fusion:</td>
<td>Corolla/Inner Tepals Aestivation:</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Calyx/Outer Tepals Symmetry:</td>
<td>Corolla/Inner Tepals Fusion:</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Calyx/Outer Tepals Length:</td>
<td>Corolla/Inner Tepals Cycly if not uniseriate:</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Calyx/Outer Tepals Color if not green:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Calyx/Outer Tepals Surface adaxial:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Calyx/Outer Tepals Surface abaxial:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Calyx/Outer Tepals Venation if unusual:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Calyx/Outer Tepals Texture if unusual:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Sepal/Calyx Lobes/Outer Tepals Merosity:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Sepal/Calyx Lobes/O.T. Length:</td>
<td>Petal/Corolla Lobes/Inner Tepals Merosity:</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Sepal/Calyx Lobes/O.T. Shape:</td>
<td>Petal/Corolla Lobe/I.T. Shape:</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Sepal/Calyx Lobes/O.T. Base:</td>
<td>Petal/Corolla Lobe/I.T. Base:</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Sepal/Calyx Lobes/O.T. Margin:</td>
<td>Petal/Corolla Lobe/I.T. Margin:</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Sepal/Calyx Lobes/O.T. Apex:</td>
<td>Petal/Corolla Lobe/I.T. Apex:</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Sepal/Calyx Lobes/O.T. Apical Process:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Corolla/Inner Tepals Aestivation:</td>
<td>Stamens (Androecium) Cycl:</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Corolla/Inner Tepals Fusion:</td>
<td>Stamens (Androecium) Merosity:</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Corolla/Inner Tepals Symmetry:</td>
<td>Stamen Type:</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Corolla/Inner Tepals Length:</td>
<td>Stamen Arrangement:</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Corolla/Inner Tepals Symmetry:</td>
<td>Stamen Position:</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Corolla/Inner Tepals Surface:</td>
<td>Stamen Insertion if applicable:</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Corolla/Inner Tepals Venation if unusual:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Corolla/Inner Tepals Texture if unusual:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Petal/Corolla Lobes/Inner Tepals Merosity:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Petal/Corolla Lobe/I.T. Shape:</td>
<td>Anthers Attachment:</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Petal/Corolla Lobe/I.T. Base:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Petal/Corolla Lobe/I.T. Margin:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Petal/Corolla Lobe/I.T. Apex:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Petal/Corolla Lobe/I.T. Length:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Petal/Corolla Lobe/I.T. Orientation:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Petal/Corolla Lobe/I.T. Posture:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Appendix 1: Plant Description (Continued)

<table>
<thead>
<tr>
<th>Stamens (Androecium) Cycl:</th>
<th>Filament Shape/Color:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Stamens (Androecium) Merosity:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Stamen Type:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Stamen Arrangement:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Stamen Position:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Stamen Insertion if applicable:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Stamen Fusion:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Staminodes if present No:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Staminodes if present Pos:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Staminodes if present Size:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Staminodes if present Shape:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Filament Shape/Color:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Filament Length:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Anther Type: ____________________________
Anther Dehiscence Type: ____________________________
Anther Dehiscence Direction: ____________________________
Anther Color: ____________________________
Anther Length: ____________________________
Anther Shape: ____________________________
Anther Thecae Arrangement: ____________________________
Connective Morphology if unusual: ____________________________
Pollen color: ____________________________
Gynoecium Fusion: ____________________________
Perianth Androecial Position: ____________________________
Ovary Position: ____________________________
Ovary Attachment if not sessile: ____________________________
Ovary Color: ____________________________
Ovary Length: ____________________________
Ovary Shape: ____________________________
Ovary Surface: ____________________________
Styles Number per pistil: ____________________________
Style Position: ____________________________
Style Shape/Color: ____________________________
Style Disposition/Length: ____________________________
Stigmas Number: ____________________________
Stigmas Position: ____________________________
Stigmas Shape: ____________________________
Stigmas Surface: ____________________________
Nectaries presence/absence: ____________________________
Nectary Type/Position: ____________________________
Carpels Number: ____________________________
Median Carpel Position relative to stem axis: ____________________________
Locules Number: ____________________________
Placentation: ____________________________
Placenta Shape/Position if unusual: ____________________________
Ovules Number per carpel: ____________________________
Ovule Type: ____________________________
Ovule Position: ____________________________
Fruit Type: ____________________________
Fruit Color: ____________________________
Fruit Shape: ____________________________
Fruit Length/Width: ____________________________
Fruit Surface: ____________________________

Seed Color: ____________________________
Seed Shape: ____________________________
Seed Length: ____________________________
Seed Surface: ____________________________
Funiculus Length: ____________________________
Funiculus Shape: ____________________________
Aril presence: ____________________________
Aril Size: ____________________________
Aril Shape: ____________________________
Aril Position: ____________________________
Seeds Nutritive Tissue: ____________________________
Embryo Type Size/Shape/Position: ____________________________
Cotyledon Position: ____________________________
Radicle Position: ____________________________
Seedling Type: ____________________________

FLORAL FORMULA:

P *A* *G*

or

Note: List number of parts after each symbol:

P = # perianth parts or tepals (outer + inner whorls)
or

K = # sepals or calyx lobes

C = # petals or corolla lobes

A = # stamens of androecium (outer + inner whorls)

G = # carpels of gynoecium (add ovary position)

() = fusion of parts [] = rare numbers of parts

Optional:

Kz = zygomorphic calyx;

Cz = zygomorphic corolla; etc.

E. g.,

= calyx synsepalous with 5 lobes

corolla zygomorphic, sympetalous with 5 lobes

stamens 5, rarely 4, distinct, in one whorl

gynoecium syncarpous, carpels 2, ovary inferior

E.g.,

P 3+3 A 3+3 G 3, superior

= perianth apetalous with 3 outer and 3 inner tepals

stamens 6, distinct, in two whorls: 3 outer + 3 inner

gynoecium apocarpous, carpels (pistils) 3, ovaries superior
Appendix 1

Plant Description Example

Tecomaria capensis (Thunb.) Spach, Cape-Honeysuckle (native to S. Africa). Bignoniaceae.

Plant a shrub, up to ca. 5 m tall. **Root** a woody taproot with numerous lateral roots. **Stems** (aerial) highly and sympodially branched by abortion of terminal inflorescence meristems, branches basally inclined. **Bark** brown, smooth to minutely furrowed, lenticels orbicular to vertically elliptic with raised borders, ca. 1-2 mm wide. **Twigs** terete, minutely puberulent. **Pith** solid, circular in outline. **Fruit scars** (of infructescence) raised, circular, typically at junction of two, lateral branches. **Leaf scars** slightly raised below, orbicular with truncate apex. **Vascular bundle scar** U-shaped. **Buds** in leaf axils small (ca. 2 mm long), with outer two scales in a plane tangential to stem axis, scales valvate, lance-ovate and strongly cup-shaped, densely pubescent; terminal buds naked, elongate, to 5 mm long. **Leaves** 10-12 cm long, imparipinnate, petiolate, exstipulate, evergreen, cauline, opposite-decussate, divergent to inclined, and planar to recurved. **Petiole** green, terete to canaliculate, 1-3 cm long. **Leaf outline** elliptic. **Leaflets** 9 [11], opposite. Lateral leaflets elliptic to widely elliptic, subsessile, 15-17 mm long, 10-14 mm wide, base attenuate to obtuse, sometimes oblique, margin usually proximally entire and serrate to crenate distally, apex acuminate (caudate), tip minutely mucronulate, Apical leaflet widely elliptic, usually petiolulate (petiolule green, narrowly winged, 3-13 mm long) 24-30 mm long, 15-20 mm wide, cuneate, entire at base and distally serrate to crenate, acute to acuminate, mucronulate. All leaflets pinnate-netted, midvein and secondary veins sunken above and raised below, mostly glabrous but with arachnose trichomes near abaxial vein junctions, mesophyllous. **Inflorescence** a terminal thyrs with several bracteate units of simple dichasia or of solitary flowers, the latter often with two abortive, lateral flower buds or with two sub-basal bracts (indicative of a vestigial dichasium). **Flowers** perfect, ca 50 mm long, ca 25 mm wide, opposite, appressed, recurved, zygomorphic, pedicellate. **Pedicel** ca 7 mm long, terete. **Bract** 1 subtending each unit of inflorescence, 1-5 mm long, lanceolate, mucronulate. **Bractlets** 2, sub-basal, subtending lateral flowers if simple dichasium present. **Perianth** biseriate, dichlamydeous. **Calyx** synsepalous, actinomorphic, ca 5 mm long. **Calyx lobes** acute, mucronulate, ca 1 mm long. **Corolla** sympetalous, orange, zygomorphic, salverform-bilabiate with enlarged throat, ca 45 mm long, recurved, inner surface pubescent. **Corolla lobes** 5 (2 posterior, 2 lateral, and 1 anterior), oblong to elliptic, apices rounded to emarginate, 7-12 mm long, 5-7 mm wide, inclined to divergent and recurved relative to floral axis. **Stamens** 4 fertile, uniseriate, filamentous, epipetalous, didynamous, alternipetalous, exserted, apostemonous. **Staminodium** 1, medio-posterior, reduced, up to ca 10 mm long. Filaments (of fertile stamens) terete, yellow-orange, 35-40 mm long. **Anthers** versatile, basifixed, longitudinally and introrsely dehiscent (downwardly dehiscent at maturity), ca. 3 mm long, thecae divergent. **Pollen** orange. **Gynoecium** syncarpous. **Perianth/Androecial position** hypogynous. **Ovary** superior, green, 4-5 mm long, narrowly obloid, glabrous. **Carpels** 2. **Locules** 2. **Placentation** parietal-axile. **Ovules** many. **Styles** 1, terminal, apically recurved, purple-brown. **Stigmas** 2, ovate, divergent to appressed. **Nectary** dark maroon, doughnut-shaped, surrounding ovary base. **Fruit** a brown loculicidal capsule (with persistent replum), narrowly oblong, up to ca. 1 cm wide and 6 cm long. **Seeds** flat, with surrounding, yellowish, translucent wing, ca. 15 mm long and 8 mm wide (including wing), seed body roughly orbicular, ca. 6 mm in diameter.

FLORAL FORMULA: K (5) C (5) A 2+2+1_staminode_ G (2), superior.
Botanical illustration is the preparation and presentation of line drawings or paintings of plants and plant parts. Although photography is perhaps the primary medium of image documentation (and should be encouraged in field and laboratory classes), illustration is an important component of plant systematic studies and is generally required in publications to document features that are described. Illustrations are also important didactic tools in that they promote careful and complete observation of features; going through the process of drawing often helps an investigator to see more and in greater detail.

Illustrations in plant systematic research are almost always line drawings. Line drawings typically begin with a pencil drawing, which alone may be sufficient for personal observations and data collection. For publication-quality illustrations, pencil drawings must be retraced in black ink and are typically stippled for a shaded, three-dimensional appearance (see Figure A2.1). Alternatively, line drawings with shading may be computer generated using graphics software (below).

Basic supplies needed for pencil line drawings include a 2H or 3H pencil, high-quality eraser, and drawing paper (ranging from generic white to artist’s drawing paper). A clipboard or artist’s drawing board is handy to secure the paper. Drawings may be made free-hand. More precise drawings can be made using a camera-lucida/drawing tube device. Such an optical device allows one to see a double image of the object to be drawn plus the hand and pencil, allowing quick and easy tracing of object features. Pencil drawings should consist of outlines of whole organs/parts and of individual components. Lines should be crisp and precise. Minimize shading; shade only when objects are darker and then only lightly with pencil.

Drawings should be labeled clearly, including (a) name of taxon and documentation of material (e.g., reference to a voucher specimen), and (b) names of structures, indicating all pertinent terms, with lines or arrows leading from the structure to the term label. A metric magnification scale bar should accompany each drawing. A scale bar (e.g., 5 mm) is much preferred over a simple magnification listing (e.g., 25×) because the scale bar remains to scale with any subsequent enlargement or reduction of the drawing. The size of drawings should be planned for a final size reduction (after inking and stippling) of approximately 50-75%, which yields a better final product.

WHAT TO DRAW
A complete illustration of plant morphology may include drawings of the following (Figure A2.1): (a) the whole plant at low magnification, showing the plant habit, branching pattern and overall form; (b) one or more leaves, showing leaf attachment to the stem; (c) a flower in front, oblique, and/or side view; (d) a flower in median longitudinal (sagittal) section; (e) androecium, especially stamen/anther close-up; (f) gynoecium; (g) ovary longitudinal and/or cross-section; and (h) close-ups of other floral parts of significance.

In addition to drawing real views of plant parts, diagrams may be drawn to illustrate the relative position of parts. Floral diagrams (Figures A2.1H, A2.2) show the relative position, aestivation, and fusion of perianth parts, stamens, and pistil(s)/carpels. For showing the relative position of floral parts, a diagram of the floral axis is typically indicated at the top of the drawing, corresponding to the posterior side of the flower. The floral diagram begins at the center of the flower. On a sheet of paper, draw the pistil(s) as appearing in cross-sectional view, carefully denoting ovary wall, septa, ovules, and placentation. Next, stamens are drawn surrounding the gynoecium. Stamens are drawn as anther cross-sections (internal contents such as microsporangia usually not denoted),
Figure A2.1 Example of illustrations, showing stippling and scale bars. *Borego of cinalis*. **A.** Whole in oressence and leaves. **B.** Flower, face view. **C.** Flower, side view. **D.** Androecium, spread at, adaxial view. **E.** Gynoecium. **F.** Ovary cross-section, base of ovary. **G.** Fruit. **H.** Floral diagram. (Contributed by Dinna Estrella, student in Plant Systematics class.)
appendix 2 botanical illustrations

sepals (calyx synsepalous, lobes valvate)

petals (corolla sympetalous, lobes imbricate)

fertile stamens uniseriate, antisepalous

ovary cross-section (2 carpels, axile-parietal placentation)

staminode

subtending bract

inflorescence axis

outer tepals (imbricate)

fusion of parts

inner tepals (imbricate)

ovary cross-section (3 carpels, median carpel posterior, axile placentation)

fertile stamens (biseriate, diplostemonous)

subtending bract (displaced to one side)

FIGURE A2.2 Examples of oral diagrams.
with the direction of dehiscence indicated. Petals (or corolla lobes) and sepals (or calyx lobes) are drawn surrounding the gynoecium and androecium. These perianth parts are drawn as in cross-section, with careful attention to relative position and aestivation. Bracts are drawn similar to perianth parts, at their position of attachment. Any connation or adnation of parts is drawn either as organs contacting one another or as lines drawn between fused structures. If the flower is more or less erect, a circle is drawn that indicates the relative position of the axis to which the flower is attached. If the flower is horizontal in orientation, parts may be drawn as if the opening of the flower is facing the observer. If flowers are unisexual, male and female flowers should be drawn separately, of course.

REFERENCES FOR FURTHER STUDY

APPENDIX 3

SCIENTIFIC JOURNALS IN PLANT SYSTEMATICS

<table>
<thead>
<tr>
<th>CARD CATALOG</th>
<th>JOURNAL</th>
<th>WEB SITE (at time of publication)</th>
</tr>
</thead>
<tbody>
<tr>
<td>QK 149 A4</td>
<td>Aliso</td>
<td>http://www.rsabg.org/aliso.html</td>
</tr>
<tr>
<td>QK 1 B345</td>
<td>American Journal of Botany</td>
<td>http://www.amjbot.org</td>
</tr>
<tr>
<td>QK 1 M6</td>
<td>Annals of the Missouri Botanic Garden</td>
<td>http://www.mbgpress.org/</td>
</tr>
<tr>
<td>QK 1 B6</td>
<td>Botanical Review</td>
<td>http://sciweb.nybg.org/science2/BotanicalReview.asp</td>
</tr>
<tr>
<td>QK 1 B875</td>
<td>Brittonia</td>
<td>http://www.nybg.org/bsci/brit/</td>
</tr>
<tr>
<td>QK 1 C3</td>
<td>Canadian Journal of Botany</td>
<td>http://pubs.nrc-cnrc.gc.ca/cgi-bin/rp/rp2_desc_e?cjb</td>
</tr>
<tr>
<td>QK 1 F4</td>
<td>Fieldiana (Botany)</td>
<td>http://www.fortsasbooks.com/publish.htm</td>
</tr>
<tr>
<td>QK 149 F73</td>
<td>Fremontia</td>
<td>http://www.cnps.org/publications</td>
</tr>
<tr>
<td>QK 658 G72</td>
<td>Grana</td>
<td>http://www.tandf.co.uk/journals/titles/00173134.asp</td>
</tr>
<tr>
<td>QK 1 B3</td>
<td>International Journal of Plant Sciences</td>
<td>http://www.journals.uchicago.edu/IJPS/home.html</td>
</tr>
<tr>
<td>Q 11 E4</td>
<td>Journal of the Elisha Mitchell Scientific</td>
<td>http://www2.ncsu.edu/ncas/jemsstab.html</td>
</tr>
<tr>
<td></td>
<td>Society</td>
<td></td>
</tr>
<tr>
<td>QK 1 M3</td>
<td>Madroño</td>
<td>http://www.calbotsoc.org/madroño.html</td>
</tr>
<tr>
<td>QH 506 M664</td>
<td>Molecular Biology & Evolution</td>
<td>http://mbe.oupjournals.org</td>
</tr>
<tr>
<td>QH 367.5 M56</td>
<td>Molecular Phylogenetics & Evolution</td>
<td>http://www.elsevier.com</td>
</tr>
<tr>
<td>QK 1 N75</td>
<td>Nordic Journal of Botany</td>
<td>http://www.nathimus.ku.dk/bot/b_nordic.htm</td>
</tr>
<tr>
<td>QK96 .N68</td>
<td>Novon</td>
<td>http://www.mbgpress.org/</td>
</tr>
<tr>
<td>QK 1 P3A26</td>
<td>Pollen et Spores</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sciences of the United States of America</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(PNAS)</td>
<td></td>
</tr>
<tr>
<td>QK 1 S57</td>
<td>Smithsonian Contributions to Botany</td>
<td>http://www.sipress.si.edu/the_press/press_main.html</td>
</tr>
<tr>
<td>QL352 .S92</td>
<td>Systematic Biology</td>
<td>http://systbiol.org</td>
</tr>
<tr>
<td>QK 95 597</td>
<td>Systematic Botany</td>
<td>http://www.sysbot.org</td>
</tr>
<tr>
<td>QK 93 T3</td>
<td>Taxon</td>
<td>http://www.botanik.univie.ac.at/iapt/s_taxon.php</td>
</tr>
</tbody>
</table>

545
EXERCISES

1. Examine several of the botanical journals listed above. For each of the ones selected by your instructor: (a) record the general types of papers for which it specializes by reading the journal’s mission and by perusing the index or Web site (above); (b) cite one specific article (of interest to you) that deals with plant systematics (not other fields such as physiology or ecology). For the latter, copy the citation format used in that particular journal.

2. Of the plant systematics articles that you recorded above, select the one of greatest interest to you and make a photocopy of it. Read the abstract of this article thoroughly. Then look over all the figures and tables. Next, skim through the introduction, materials and methods, and discussion/conclusion. Be prepared to give a 5-minute oral presentation (with projected tables, figures, or illustrations) on this article.

3. Write the author(s) in charge of reprints for the above and request a reprint to be mailed to you. (Note: It’s best to choose a recent article for this, as reprints may not be available for older ones.) Some reprints are now available electronically, usually as .pdf files. Hand this in to your instructor when it arrives.

4. Search the International Plant Names Index (http://www.ipni.org/index.html). Find and record the full citation (including author, journal, date, etc.) of any one of the species that were studied in the article you chose for discussion.

5. Optional: Do a literature search on a particular item in plant systematics. It may be of taxon or topic. (Note: Consult your library as to how to access literature databases; also try http://www.scholar.google.com for general scientific literature.)
GLOSSARY OF TERMS

The following is a glossary of terms used in all chapters of the book. For the terms from Chapter 9 (Plant Morphology), the character to which a character state belongs is noted in parentheses following the definition. Symbols used are: Abbr = abbreviation; Adj = adjective; Cf = compare; Pl = plural; Syn = synonym.

! Abbreviation for the confirmation of a name in an annotation label.
abaxial Surface most distant or away from the axis, the lower or outer surface of organ. Syn: dorsal. (position)
ABC model A model of floral development, in which gene products of the so-called A, B, and C classes combine to produce the four major floral organs: sepals, petals, stamens, and carpels.
acaulis Lacking an above-ground stem other than the inflorescence axis. (stem habit)
accession number A number assigned to each specimen placed into a permanent herbarium collection.
accessioning The assignment of a number to all new specimens placed into a permanent herbarium collection.
accessory bud Bud(s) lateral to or above axillary buds. (bud type)
accessory part A portion of the mature fruit that is not directly derived from the ovary or ovaries, may include bract(s), stem axes, receptacle, hypanthesis, or perianth. (fruit part)
accreted Parts persistent and continuing to grow beyond what is normal or typical, e.g. calyx of Physalis, Solanaceae. (duration)
acetolysis A standard acid treatment used to dissolve all but the exine of pollen grains in order to better observe pollen wall structure with the light microscope.
achene A one-seeded, dry, indehiscent fruit with seed attached to pericarp at one point only, e.g. unit fruits of sunflowers and other Asteraceae. (fruit type)
acheneclastic An aggregate fruit of achenes, e.g. Fragaria (strawberry), in which the achenes are on the surface of accrescent tissue, an enlarged, fleshy receptacle. (fruit type)
achlamydeous Lacking a perianth. (perianth merosity)
achlorophyllous Lacking chlorophyll/chloroplasts.
aciccular Needlelike, often round in cross-section, with margins straight and parallel, length/width ratio >12 : 1. (shape)
acrocaul Laid down at the apex of the stem. (position)
acrocaul capsule A capsule dehiscing by means of apical slits. (fruit type)
acrocoamous With two or more primary veins or strongly developed secondary veins running in convergent arches toward the leaf apex but not recurved at the base. (leaf venation)
actinodromous With three or more primary veins diverging from one point, inclusive of ternate or palmate venation. (leaf venation)
actinomorphic Radially symmetrical, with 3 or more planes of symmetry. (symmetry)
acuminate Apical margins abruptly incurved (concave), the apical intersection angle <45°. (apex)
acute Apical margins approximately straight, the intersection angle 45° 90°. (apex)
adaptation A structure or feature that performs a particular function and which results in increased survival or reproduction.
adaxial Surface toward or nearest the axis, the upper or inner surface of organ. Syn: ventral. (position)
adherent With unlike parts joined, but only superficially and easily separable. (fusion)
adnate With unlike parts integrally fused, not easily separable. (fusion)
advanced Derived.
adventitious roots A root arising from an organ other than a root, usually from a stem. (root type)
adventive embryony Development of an embryo from a cell of the surrounding tissue, such as megasporangial or integument tissue.
aerial roots Adventitious roots that absorb moisture and minerals from the air or runoff, common in some epiphytic plants, e.g. of Araceae and Orchidaceae. (root type)
aestival Appearing in summer. (periodicity)
aestivation Referring to position, arrangement, and overlapping of floral perianth parts. (perianth aestivation)
affinis Implying, within a taxon name, some type of close relationship, presumably an evolutionary relationship, but also that the specimen differs from the cited taxon in some way, e.g. beyond the described range of variation for one or more characters. Abbr: aff.
agnospermous The production of seeds without fertilization.
aggregate fruit A fruit derived from two or more pistils (ovaries) of one flower. (fruit type)
albuminous Endospermous. (seed endosperm type)
albuminous cell A parenchyma cell associated with a sieve cell, derived from a different parent cell than is the sieve cell.
aleurone grain Granular protein deposits in plant cells, functioning as storage compounds; a type of ergastic substance. Syn: proteinoplast.
alignment The process of matching homologous nucleotide positions of two or more sequences of DNA in order to code the data for phylogenetic or other types of analysis.
allautogamy Having both outcrossing and selfing flowers. Adj: allautogamous.
allogamy Outbreeding. Adj: allogamous.
allopolyplody Polyplody occurring between different species.
allozyme One of two or more different molecular forms of an enzyme, corresponding to different alleles of a common gene.
alternate One leaf or other structure per node. (arrangement)
alternation of generations Haplo-diplontic life cycle.
alternipetalous Stamens with point of attachment between the petals or corolla lobes. (stamen position)
alternisepalous Stamens with point of attachment between the sepals or calyx lobes. (stamen position)
allovascular An exine wall structure having numerous, spherical air pockets within the exine.
amb The outline shape of a pollen grain in polar view.
ament Catkin. (inflorescence type)
amoeboid An anther tapetum type in which the tapetal cell walls break down, with release of the cytoplasm of the tapetal cells into the locule. Syn: plasmoidal; periplasmodial.
amphiphloic siphonostele A siphonostele in which a ring of xylem is surrounded by an outer and inner layer of phloem.
amphistomal Referring to the micropyle of a bitegmic ovule formed or delimited by both integuments.
amphitropous A general ovule type in which curvature of the ovule during development displaces the micropyle adjacent to the funiculus base, with the nucellus bent along both upper and lower sides.
amplexicaul Sessile and clasping most of stem circumference. (leaf attachment)
amplification The replication of numerous copies of DNA.
amplification fragment length polymorphism The use of amplified DNA fragments that exhibit length polymorphism, enabling the recognition of numerous genetic markers. Abbr: AFLP.
amyloplast Starch grain.
am-namphitropous An ovule type in which a vascular strand curves, traversing from the base of funiculus to the chalazal region of the nucellus, with the nucellus bent sharply in the middle along both the lower and upper sides, often with differentiated cells (basal body) at the angle of the bend.
amana-campylotropous An ovule type in which a vascular strand curves, traversing from the base of funiculus to the chalazal region of the nucellus, with the nucellus bent only along the lower side, with no basal body.
amatropous A type of ovule in which curvature during development results in displacement of micropyre to a position adjacent to the funiculus base; most common and apomorphic for the angiosperms.
ancestral Referring to a preexisting condition or character state. Syn: plesiomorphic; primitive.
androecious/androecy Having male flowers on some individuals and perfect flowers on other individuals. (plant sex) androecium The male organ(s) of a flower; collectively all stamens of a flower. (flower part)
androgyrophore A stalklike structure that bears the gynoecium and androecium; e.g. Passiflora. (flower part)
andromonoecious Having both staminate and perfect flowers on the same individual. (plant sex)
amenophily Pollination by wind. Adj: amenophilous.
anisomorous Having a different number of members in different whorls. (merosity, perianth merosity)
ammonet label A label affixed to an herbarium specimen that verifies or changes the identity of a specimen or that documents the removal of plant material from the specimen.
annual Plant living 1 year or less. (duration)
ammoni ring The accumulation of secondary xylem (or phloem) over a single growing season, being evident because of the structural difference between the last cells of the summer wood and the first cells of the subsequent spring wood.
amnus A single row of specialized cells, having differentially thickened cell walls, on the outer rim of a leptosporangium, functioning in its dehiscence.
antepetalous Antipetalous. (stamen position)
anterior Referring to the lower lobe or part, especially in a horizontally oriented structure. (position)
anteseopalous Antiseopalous. (stamen position)
anther The pollen-bearing part of a filamentous stamen. (stamen part)
anther sac Microsporangium. (anther part)
antheridial wall The outer, sterile layer of cells of the antheridium. Syn: jacket layer; sterile jacket layer.
antheridiophore A specialized, stalked, generally peltate structure that grows from the gametophyte of some liverworts and bears antheridia.
antheridium The male gametangium of the gametophyte of land plants, producing sperm cells and surrounded by a outer layer of sterile cells, the antheridial wall or jacket layer.
antherode The sterile anther of some staminodes. (stamen type)
anthesis Time of flowering; the opening of flower with parts available for pollination. (maturity, flower maturation)
antocharp A fruit in which one or more flower parts functions as accessory tissues, e.g. Pontederia (Pontederiaceae), in which an accrescent perianth surrounds and fuses to the achene. (fruit type)
antipetalous Stamens with point of attachment in line with (opposite) the petals or corolla lobes, e.g. Primulaceae, Rhamnaceae. Syn: antepetalous. (stamen position)
antipodal cells In a typical angiosperm female gametophyte, the three haploid cells that are positioned opposite the microple, i.e. in the chalazal region.
anteseopalous Stamens with point of attachment in line with (opposite) the sepals or calyx lobes. Syn: anteseopalous. (stamen position)
antrorse Bent or directed upward, usually referring to small appendages. (orientation)
aperture A specially delimited region of the pollen grain wall.
apetalous Having no petals or corolla. (perianth merosity)
apical (a) At or near the top, tip, or end of a structure. (position) (b) Style arising at the apex of the ovary. (style position) (c) With the placenta at the top of the ovary. Syn: *pendulous*. (placentation)

apical bud *Terminal bud*. (bud type)

apical meristem A region of actively dividing cells in the land plants, located at the apex of the thallus, shoot, or root.

apical-axile With two or more placentae at the top of a sepal ovary, e.g. Apiaceae. (placentation)

apiculate With a flexible, apical process, usually slightly curled, length : width ratio >3:1. (apical process)

apocarpous With carpels distinct, the pistil or ovary simple. (gynoecial fusion)

apolar Pollen polarity in which polar and equatorial regions cannot be distinguished after pollen grain separation from the microspore tetrad.

apomorphic Derived.

apomorphy A derived condition or character state, representing an evolutionary novelty. Adj: *apomorphic*.

apomorphy-based A type of phylogenetic classification in which an apomorphy is the basis for grouping, such that all members of a monophyletic group that share a given, unique evolutionary event are grouped together.

apopetalous With distinct petals. Syn: *polypetalous*. (perianth fusion)

aposetalous With distinct sepals. Syn: *polysepalous*. (perianth fusion)

apostemonous With distinct stamens. (stamen fusion)

apostemal With distinct tepals. (perianth fusion)

apostemalous With distinct sepals. (perianth fusion)

apostemons With distinct stamens. (stamen fusion)

appressed Pressed closely to an axis oriented upward, with a divergence angle of 0° 15 ° from upper axis. (orientation)

aquatic Growing in water. (plant habitat)

arachnoid/arachnose With trichomes forming a cobwebby mass. (vestiture)

arborescent Treelike in appearance and size. (stem habit)

archegonial chamber A cavity between the megasporangium and the female gametophyte of gymnosperm seeds, into which sperm cells are released by the male gametophyte.

archegonial wall The outer, sterile layer of cells of the archegonium. Syn: jacket layer, sterile jacket layer.

archegoniophore A specialized, stalked, generally peltate structure that grows from the gametophyte of some liverworts and bears archegonia.

archegonium The female gametangium of the gametophyte, containing a basal egg cell and surrounded by an outer layer of sterile cells, the archegonial wall, which differentiates into a basal venter and proximal neck.

archesporial cell A single, large cell of an immature ovule that either directly becomes the megasporocyte or that divides once to form a parietal cell and a megasporeocyte.

areole A modified, reduced, nonelongating shoot apical meristem bearing spines, e.g. Cactaceae. (stem/shoot type)

aril A fleshy outgrowth of the funiculus, raphe, or integuments (but separate from the integuments), generally functioning in animal seed dispersal, e.g. Sapindaceae. Adj: *arillate*. (seed part)

arista With a stiff apical process, usually prolonged and straight, length : width ratio >3:1. (apical process)

arrangement Placement with respect to similar parts. (disposition)

arylphenalenones A class of chemical compounds common in the Haemodoraceae and also found

ascending Directed upward, with a divergence angle of 15° 45 ° from upper axis. (orientation)

asclidiate Referring to a carpel that is not leaflike, but develops from a ring of tissue that grows upward, sometimes assuming a somewhat peltate form.

asepalous Having no sepals or calyx. (perianth merosity)

asterad type A type of embryo development in which the terminal cell divides longitudinally, with both basal and terminal cell derivatives contributing to the mature embryo.

asymmetric Lacking a plane of symmetry. (symmetry)

atactostele A stele consisting of numerous, collateral vascular bundles positioned throughout the stem tissue.

atecate A stele consisting of numerous, collateral vascular bundles positioned throughout the stem tissue.

ategmic An ovule lacking an integument.

attenuate Basal margins abruptly incurved (concave), the basal intersection angle <45°. (base)

attractant An aspect of floral morphology that functions to entice an animal pollinator to the flower, either by vision or by odor.

autecorium non The misapplication of a name, such that the type specimen of the name does not fall within the circumscription of the taxon being referred to by that name. Abbr: *auct. non*.

auriculate With two rounded, basal lobes, margins above lobes concave. (base)

autapomorphic An apomorphy that occurs for a single lineage or taxon.

author The name of the person who first validly published a scientific name.

autochory Self-dispersal. Adj: *autochorous*.

autonym An automatically created name for infrageneric, infra-specific taxa.

autopolyploidy Polyplody occurring within a species.

autumnal Appearing in fall. (periodicity)

awn (a) bristlelike, apical appendage, e.g. on the glumes or lemmas of grass spikelets. (b) A unit of a pappus type in the Asteraceae that is narrow, elongate, straight, and stiff. (inflorescence part)

axial parenchyma Longitudinally oriented parenchyma cells that occur in some secondary xylem (wood) tissues.

axil The region at the upper (adaxial) junction of leaf and stem. (position)

axile With the placentae positioned along the column in a sepalate, compound ovary. (placentation)

axillary (a) On the side of a structure or at the nodes of an axis. (position). (b) With the inflorescence positioned in the axil of the nearest vegetative leaf. Syn: *lateral*. (inflorescence position)

axillary bud Bud in axils of leaves or leaf scars. Syn: *lateral bud*. (bud type)

baccate Fleshy or juicy, often with reference to a fruit. Syn: *succulent, carnose*. (texture)

baculate A pollen sculpturing with rod-shaped elements, each element termed a baculum.

baculum A rod-shaped element, as in the wall sculpturing of some pollen grains. Pl: *baculi*. Adj: *baculate*.

barbed/barbellate With minute, lateral, sharp appendages (barbs) arising along the surface or margin of a bristle, the barbs typically antorse or retrorse in orientation. (bristle type)

bark Tissues external to the vascular cambium in stem (and roots) of woody plants, consisting of secondary phloem (inner bark) and
derivatives of the cork cambium (outer bark or periderm). (stem/ shoot parts)

basal (a) At or near the bottom or base of a structure. Syn: radical. (position) (b) With the placenta at the base of the ovary, e.g. Asteraceae, Poaceae. (placenta) (c) With three or more primary veins diverging from one point at the base of the blade, a subcategory of actinodromous and palinactinodromous. (leaf venation)

basic A type of anther wall development in which both secondary parietal cell layers divide to yield two middle layers.

basicalical capsule A capsule dehiscing by means of basal slits, as in Aristolochea spp. (fruit type)

basifixed Anther attached at its base to the apex of the filament. (anther attachment)

basionym The original, but now rejected, name, part of which has been used in a new combination.

Bayesian analysis/inference A method of phylogenetic inference based upon the posterior probability of a phylogenetic tree.

beak An extended, usually accrescent, basal stylar region, typically functioning in fruit dispersal, e.g. Taraxacum, dandelion. (style structural type)

beard A tuft, line, or zone of trichomes on a perianth or perianth part. Adj: bearded. (perianth part, vestiture)

berry A fleshy fruit with a succulent pericarp, e.g. Vitis, grape. (fruit type)

bicollateral bundle A vascular bundle with phloem to both the inside and outside of the xylem.

bicolor unit An inflorescence unit, possibly an apomorphy of the Malvaceae s.l., consisting of a modified, three-bracted cyme, the bracts modified into an epicalyx in members of the group.

biennial A plant living 2 years, typically forming a basal rosette of leaves during the first year and flowering with an elongate inflorescence stalk in the second year. (duration)

bifid Two-lobed to two-divided, especially at the apex. (division)

bigeminate A compound leaf with two rachillae, each bearing two leaflets. (leaf type)

bilabiate Two-lipped, with two, generally upper and lower segments, e.g. many Lamiaceae. (perianth type)

bilateral Zygomorphic, irregular. (symmetry)

bimerous (a) With two series of leaves, e.g. Asteraceae, Xanthium. (leaf type)

bimodal Referring to a whorl with two members. (merosity, perianth merosity)

binary character A character with only two character states.

binomial Format for the scientific name of species, composed of two names, the genus name and the specific epithet, italicized or underlined.

binucleate Having two nuclei, referring to some angiosperm pollen grains at the time of release.

bipinnate/bipinnately compound A compound leaf with two orders of axes, the second axes (rachillae) bearing leaflets. (leaf type)

bipinnatifid Bipinnately lobed to divided. (division)

biradial Having two planes of symmetry. (symmetry)

biseriate (a) With two whorls of parts. (cycly) (b) Perianth parts in two distinct whorls. (perianth cycly) (c) Having two whorls or cycles of stamens (stamen cycly) Syn (a c): dicyclic. (d) Rays in wood that are made up of two vertical rows of cells.

biseual Flowers having both carpel(s) and stamen(s). Syn: perfect. (flower sex)

bisporangiate Anther with two microsporangia and typically one theca. Cf: monothecal. (anther type)

bisporic Megasporogenesis in which cytokinesis occurs after the first meiotic division, but not the second, resulting in two cells, each of which contain two haploid nuclei, with one of the binucleate cells contributing to the female gametophyte.

bitemic An ovule with two integuments, apomorphic for the angiosperms.

biteminate/biteminately compound A compound leaf with three axes, each of which is ternately compound. (leaf type)

blade The flat, expanded portion of leaf. Syn: lamina. (leaf part)

bootstrap/bootstrapping A method of evaluating cladogram robustness that reanalyzes the data of the original character × taxon matrix by selecting (resampling) characters at random, such that a given character can be selected more than once.

bostryx Helicoid cyme. (inflorescence type)

botany The traditional study of photosynthetic organisms (including the green plants, red algae, brown plants, dinoflagellates, and euglenoids, but excepting the photosynthetic bacteria), the true fungi, and groups that used to be treated as fungi, such as the Oomycota and slime molds; inclusive of the plant sciences.

bract A modified, generally reduced leaf, generally found associated with reproductive organs, e.g. subtending the ovuliferous scale of conifers or the flowers or inflorescence axes of flowering plants. Adj: bracteate. (leaf structural type)

bractlet/bracteole A smaller or secondary bract, often borne on the side of a pedicel. Syn: prophyllum. (leaf structural type, flower part)

Bremer support Decay index.

bristle An external hairlike plant structure, but stouter than a trichome.

brochidodromous Pinnate venation in which secondary veins do not terminate at the margin, forming prominent upward loops near the margin, joining other, more distal, secondary veins. (leaf venation)

bud An immature shoot system, often surrounded by protective scale leaves, developing into a lateral branch, a flower, or an inflorescence; may be gametophytic or sporoophytic. (plant part, stem/shoot parts, twig part)

bud primordium An immature bud of the shoot, typically located in the leaf axil. (stem/shoot parts)

bulb A short, erect, underground stem surrounded by fleshy leaves, e.g. Allium spp., onions. (stem/shoot type)

bulbous A proliferative bulb arising from existing bulbs at or below ground level. (stem/shoot type)

bulbiciform A proliferative bulb arising from shoots above ground, typically within an inflorescence. (stem/shoot type)

bullate rugose. (configuration)

bundle cap An outer patch of sclerenchyma fibers associated with a vascular bundle.

bur A multiple fruit of achenes or grains surrounded by a prickly involucre, e.g. Cenchrus (Poaceae), Xanthium (Asteraceae). (fruit type)

burl A swollen, woody underground stem from which arises persistent, woody, aerial branches, e.g. fire regenerative stems in some Arctostaphylos spp., Manzanita. Syn: lignotuber. (stem/shoot type)

buttress roots Enlarged, horizontally spreading and often vertically thickened roots at the base of trees that aid in mechanical support. (root type)

C4 photosynthesis An alternate photosynthetic pathway of some land plants in which carbon dioxide is initially fixed in the mesophyll cells by the enzyme PEP carboxylase, producing a
four-carbon molecule, which is transported to bundle sheath cells, where the carbon dioxide is released and fixed by ribulose-bisphosphate carboxylase in the typical dark reactions.

caducous Dropping off very early compared with what is typical, usually applied to floral parts. (duration)

callose A polysaccharide, composed of beta-1,3-glucose units, which lines the pores of sieve areas and sieve plates of sieve elements and is commonly deposited within pollen tubes.

calyptra An apical region of archegonial tissue that is torn from and lifted up by the elongating sporophyte during the latter s development and that may function to protect the young sporophyte apex.

calyptrate Having calyx and corolla fused into a cap that falls off as a unit, e.g. *Eucalyptus*. (perianth type)

calyx The outermost series or whorl of modified leaves in the perianth, the units of which are sepal(s). (flower part)

calyx lobes The segments of a calyx that is synsepalous (with connate sepals).

campanulate Bell-shaped, i.e. with a basally rounded, flaring tube about as broad as long and flaring lobes, e.g. *Campanula*; may also be used for bell-shaped apetalous corolla or apetalous perianth. (perianth type)

camptodromous Pinnate venation in which secondary veins do not terminate at the margin. (leaf venation)

campylodromous With several primary veins running in prominent, recurved arches at the base, curving upward to converge at the leaf apex. (leaf venation)

campylotropous A general ovule type in which curvature of the ovule during development displaces the micropyple adjacent to the funiculus base, with the nucellus bent only along the lower side.

canaliculate Longitudinally grooved, usually in relation to petioles or midribs. (configuration)

canescent Covered with dense, fine grayish-white trichomes; whitish-pubescent. (vestiture)

capillary bristle A unit of a pappus type in the Asteraceae that is generally straight, very thin, and threadlike, often barbellate.

capitate Head-shaped; spherical with a short basal stalk. (shape)

capitulum Head. (inflorescence type)

capsule (a) The spore-producing component of the sporophytes of liverworts, hornworts, and mosses. (plant part). (b) A dry, dehiscent fruit derived from a compound ovary. (fruit type)

carinate Keeled, having a sharp, median fold projected on the abaxial side; sharply connuplicate. (perianth type)

carnose *Baccate; succulent*. (texture)

carpel The unit of the gynoecium of angiosperms; ancestrally, a single, relatively large cell in the central region that contains the two polar nuclei.

caryophyllid type A type of embryo development in which the terminal cell divides transversely, with only terminal cell derivatives contributing to the mature embryo.

caryopsis Grain. (fruit type)

Casparian strip A band or ring of mostly suberin that infiltrates the cell wall of endodermal cells, functioning to force water and mineral solutes to pass through the plasma membrane of these cells.

cataphyll A rudimentary scale leaf found in usually hypogeous (cryptocotylar) seedlings. (leaf structural type)

catkin A unisexual, typically male spike or elongate axis that falls as a unit after flowering or fruiting, e.g. *Quercus*. Syn: *ament*. (inflorescence type)

caudate Abruptly acuminate into a long, narrowly triangular (tail-like) apical region. (apex)

caudex A short, thick, vertical or branched perennial stem, underground or at/near ground level. (stem/shoot type)

caudiciform stem A low (at or above ground level), swollen, perennial storage stem from which arise annual or otherwise nonpersistent photosynthetic shoots, e.g. some *Dioscorea* spp., *Calibanus*. (stem/shoot type)

caulescent Having an above ground, vegetative stem. (stem habit)

cauliflorus Inflorescence growing directly from a woody trunk. (inflorescence position)

cauline Positioned along the length of the stem. (position)

cell The structural unit of all life.

cell differentiation The series of changes that a cell undergoes from the point of inception to maturity, involving the transformation of a meristemric cell into one that assumes a particular structure and function.

cell expansion Growth of a cell in size, often involving axial elongation.

cell theory The postulate that all life is composed of one or more cells, that cells arise only from preexisting cells, and that cells are the units of metabolic processes.

cell wall A layer of the plant cell that is secreted outside the plasma membrane.

cellular endosperm An endosperm in which the endosperm cell divides mitotically, regularly followed by cytokinesis, each endosperm nucleus contained within a cell wall.

cellulose A polymer of glucose sugar units (= polysaccharide) in which the glucose molecules are chemically bonded in the beta-1,4 position (=β-1,4-glucopyranoside); a major component of the cell wall of green plants.

cellulose A polysaccharide of glucose units (β-1,4-glucopyranoside), a primary component of plant cell walls.

central At or near the middle or middle plane of a structure. (position)

central cell In a typical angiosperm female gametophyte, the single, relatively large cell in the central region that contains the two polar nuclei.

centric leaf A leaf that is cylindrical in shape, e.g. *Fenestraria* of the Aizoaceae. (leaf structural type)

centrifugal Developing from the center region toward the outside or periphery; can be applied to parts of perianth, calyx, corolla, androecium, or gynoecium. (flower maturation)

centripetal Developing from the outside or periphery toward the center region; can be applied to parts of perianth, calyx, corolla, androecium, or gynoecium. (flower maturation)

cernuous With tip drooping downward, abaxially. (transverse posture)

cespitose/caespitose Referring to a generally short, bunched, much-branched plant forming a cushion. (stem habit)

chaff One of the bracts subtending flowers in some Asteraceae, e.g. tribe Heliantheae. Syn: *palea*. (leaf structural type)

chalazal Describing the region of an ovule that is opposite the micropyle.
chalazal Referring to the proximal region of the ovule, opposite the micropyle.
character a feature or attribute of a taxon
character correlation The condition in which one character is interdependent upon and influenced by another character.
character evolution The sequence of evolutionary changes occurring for a given character.
character optimization The representation of characters in a cladogram in a most parsimonious way, such that the minimal number of character state changes occur.
character state one of two or more forms of a character
character step matrix A numerical tabulation of the number of changes occurring between all pairwise combinations of character states for a given character.
character × taxon matrix A numerical tabulation of the characters and corresponding character states for each taxon in a phylogenetic analysis.
chartaceous Opaque and of the texture of writing paper. (texture)
chasmogamy Referring to typical flowers in which the perianth opens and exposes the sexual organs, with subsequent cross-pollination common. Adj: chasmogamous.
cheiropoterophily Pollination by bats. Adj: cheiropoterophilous.
chenopodiad type A type of embryo development in which the terminal cell divides transversely, with both basal and terminal cell derivatives contributing to the mature embryo.
Chlorobionta A monophyletic group of eukaryotes, consisting of the green algae and the land plants, united in having chloroplasts with chlorophyll a and b, starch, and thylakoids stacked as grana [green plants].
chlorophyll a The primary pigment in the light reactions of photosynthesis, found in the chloroplasts of all photosynthetic eukaryotes and some bacteria.
chlorophyll b An accessory pigment in the light reactions of photosynthesis, an apomorphy of the green plant chloroplast.
chlorophyllous Having chloroplasts at maturity; green.
chlorophyllous cell 1. Any general, chloroplast-containing cell. 2. One of the chloroplast-containing cells in the specialized leaves of Sphagnum moss the border and surround a hyaline cell.
chloroplast A double membrane-bound organelle with internal thylakoid membranes (lamellae and grana in the green plants), functioning in the reactions of photosynthesis.
chloroplast An organelle of some eukaryotes that functions in photosynthesis.
chromoplast Carotenoid-containing bodies that function to provide yellow, orange, or red pigmentation for a plant organ, as in petals or fruits; a type of ergastic substance.
ciliate With conspicuous marginal trichomes. (margin, vestiture)
ciliolate With minute trichomes protruding from margins; minutely ciliate. (margin, vestiture)
cincinnus Scorpioid cyme. (inflorescence type)
circinate With the leaf (blade plus rachis and rachillae, if present) coiled from apex to base, as in young fern and cycad leaves. (posture: ptyxis/aestivation)
circinate vernation Descriptive of a leaf (including the blade and rachis/rachillae, if present) that is coiled from apex to base when immature, as in young fern and cycad leaves (posture: ptyxis/aestivation).
circumferential At or near the circumference; surrounding a rounded structure. (position)
circumscissile capsule A capsule having a transverse line of dehiscence, e.g. Plantago. Syn: pyxist/pyxide. (fruit type)
cirrhose With a flexible, greatly curled apical process. (apical process)
clad A sequence of ancestral-descendent populations through time; a set of organisms interconnected through time and space by the transfer of genetic material from parents to offspring, represented as a line on a cladogram. Syn: lineage.
cladistics A methodology for inferring the pattern of evolutionary history of a group of organisms, utilizing grouping of taxa by apomorphies [phylogenetic systematics].
cladistics Phylogenetic systematics.
cladode/cladodophyll A flattened photosynthetic stem, functioning as and resembling a leaf. Adj: phylloclad. (stem/shoot type)
cladodromous Pinnate venation in which secondary veins do not terminate at the margin and branch near the margin. (leaf venation)
cladogram A branching diagram that conceptually represents the best estimate of phylogeny. Syn: phylogenetic tree.
cladogram robustness A measure of the confidence for which a cladogram actually denotes phylogenetic relationships, e.g. by bootstrapping.
clambering Sprawling across objects, without specialized climbing structures. Syn: scandent. (stem habit)
classification The arrangement of taxa (or other entities) into some type of order or grouping.
claiva A club-shaped element, as in the sculpturing of some pollen grains. Pl: clavae.
clavate (a) Club-shaped; terete with a gradually tapering thickened and rounded end. (shape) (b) A pollen sculpturing with club-shaped elements, each element termed a clava.
claw An attenuate base of a sepal or petal. (perianth part)
cleft Sinuses extending (pinnately or palmately) one quarter to one half the distance to the midrib, midvein, or vein junction. (division)
cleistogamy Referring to flowers in which the perianth remains closed, such that pollen produced from within the flower pollinates only the stigma(s) of that flower. Adj: cleistogamous.
climbing Growing upward by means of tendrils, petioles, or adventitious roots. (stem habit)
coherent With like parts joined, but only superficially and easily separable. (fusion)
coleoptile A protective sheath surrounding the epicotyl, e.g. in some members of the Poaceae. (seed/embryo part)
coleorhiza A protective sheath surrounding the radicle, e.g. in some members of the Poaceae. (seed/embryo part)
collateral A vascular bundle with an internal strand of xylem and an external strand of phloem.
collateral bud Bud(s) lateral to the axillary bud. (bud type)
collateral bundle A vascular bundle with xylem to the inside and phloem to the outside.
collenchyma A cell type that is live at maturity, has unevenly thickened, pectic-rich, primary cell walls, and functions in structural support, often found at the periphery of stems or leaves.
colletor A structure on the inner surface of connate stipules that secretes mucilage, aiding in protection of young, developing shoots, e.g. Rubiaceae. (leaf parts)
color pattern The distribution of colors on an object. (color)
corporate A pollen grain aperture type that is shaped like a colpus but has a circular region in the center.
colpus A pollen grain aperture that is elongate with a length:width ratio of greater than 2:1. Pl: colpi. Adj: colpate.
columella (a) A central column of sterile (non-spore-producing) tissue within the sporophyte capsule of hornworts. (b) One of the middle, radially elongate elements of a tectate-columellate pollen exine wall. Pl: columellae.
column (a) The central axis to which septae and/or placentae are attached in axile or free-central placentation. (gynoecium part) (b) gyandrium, gynostegium, gynostemium. (flower part)
combinatio nova Indication that a taxon has recently been transferred to a new position or rank. Abbr: comb. nov.
commemorative A name that is after a person or place.
common name A vernacular name, used by people within a limited geographic region, not formally published and governed by no rules.
comose With an apical tuft of trichomes. (vestiture)
companion cell A parenchyma cell associated with a sieve tube member, derived from the same parent cell as is the sieve tube member and functioning to load and unload sugars into the cavity of the sieve tube member.
complete Having all four major whorls or floral parts: sepals, petals, stamens, carpels. (flower cycle)
complex tissue A tissue that contains more than one cell type.
compound cone The cone of a conifer, consisting of an axis bearing bracts, each of which subdents a modified branch systems, the ovuliferous scale.
compound corymb A branched corymb, consisting of two or more orders of inflorescence axes bearing flat-topped or convex, pedicellate flowers. (inflorescence type)
compound cyrne A branched determinate inflorescence, similar to a compound dichasium but lacking a consistent dichasial branching pattern, often by reduction of internodal axes. (inflorescence type)
compound dichasium An ovary/pistil composed of a two or more carpels. (inflorescence type)
compound leaf A leaf divided into two or more discrete leaflets. (leaf type)
compound ovary/pistil An ovary/pistil composed of a two or more carpels, the gynoecium syncarpous. (ovary/pistil type)
compound perforation plate A perforation plate composed of several openings.
compound receptacle A mass of tissue at the apex of a peduncle that bears more than one flower. Syn: torus. (inflorescence part)
compound sieve plate A sieve plate that is made up of two or more aggregations of pores.
compound umbel An umbel with the peduncle bearing rays attached at one point and unit simple umbels attached at the tip of the rays, e.g. many Apiaceae. (inflorescence type)
conduplicate Longitudinally folded at the central axis, with adjacent adaxial sides facing one another. (longitudinal posture)
cone A modified, determinate, reproductive shoot system of many nonflowering vascular plants, consisting of a stem axis bearing either sporophylls (in simple cones) or ovuliferous scales subtended by bracts (in compound cones of conifers). Syn: strobilus. (plant part)
confer Indication that the identity of a specimen is questionable or uncertain and should be compared with specimens of the taxon indicated for more detailed study. Abbr: cf.
configuration Referring to gross surface patterns other than venation or epidermal excrescences. (surface)
connate With like parts integrally fused, not easily separable. (fusion)
connate-perfoliate Two opposite leaves fused basally, such that the blade base of each leaf completely surrounds the stem. (leaf attachment)
connective The tissue or filament extension between the thecae of an anther. (anther part)
connivent Convergent apically without fusion. (orientation)
consensus tree A cladogram derived by combining features in common between two or more cladograms.
conservation of names A principle of the International Code of Botanical Nomenclature stating that scientific names that are well known and frequently used may be retained over other, earlier, but less well-known, names.
consistency index (CI) A measure of the relative amount of homoplasy in a cladogram, equal to the ratio of the minimum possible number of character state changes to the actual number of changes that occur.
contiguous With parts touching but not fused. (fusion)
contorted Convolute. (perianth aestivation)
convergence Homoplasy occurring by the independent evolution of a similar feature in two or more lineages. Syn: parallelism.
convolute Perianth parts of a single whorl overlapping at one margin, being overlapped at the other, e.g. corolla of Malvaceae. Syn: contorted. (perianth aestivation)
cordate With two rounded, basal lobes intersecting at sharp angle, the margins above lobes smoothly rounded. (base)
cordate/cordiform Shaped like an upside-down Valentine heart; approximately ovate with a cordate base. (shape)
coriaceous Thick and leathery, but somewhat flexible. (texture)
cork The outermost layer of the periderm, generated by the cork cambium.
cork cambium A sheath or hollow cylinder of cells that develops near the periphery of the stem or root, undergoing tangential divisions to form phelloderm to the inside and cork to the outside.
corm An enlarged, solid underground storage stem or stem base, with outer, protective scales. (stem/shoot type)
cormel A proliferative corm arising from existing corms. (stem/shoot type)
corolla The innermost series or whorl of modified leaves in the perianth, the units of which are petals. (flower part)
corolla lobe A segment of a sympetalous corolla (with connate petals).
corona A crownlike outgrowth between stamens and corolla; may originate from petals or stamens. (perianth part, perianth type)
corone With a tubular or flaring perianth or staminal outgrowth, e.g. Narsissus, Asclepias. (perianth type)
correct name A legitimate, validly published name that is accepted by a particular author or authors.
cortex The outer, mostly parenchymatous tissue inner to the epidermis and external to the vasculature. (root part, stem/shoot parts)
corymb An indeterminate inflorescence consisting of a single axis with lateral axes and/or pedicels bearing flat-topped or convex flowers. (inflorescence type)
costa (a) Midrib. (b) The nonvascularized conductive tissue found in the gametophytic leaves of some mosses. (leaf part)
costapalmate Essentially palmately lobed to compound but with an elongate, rachislike extension of the petiole, as in some palms. (leaf type)
cotyledon A first (seed) leaf of the embryo, often functioning in storage of food reserves. (seed part)
cotylespermous With the food reserve in the cotyledon, part of the embryo. (seed endosperm type)
couplet The pair of contrasting leads in a dichotomous key.
craspedodromous Pinnate venation in which secondary veins terminate at the leaf margin. (leaf venation)
crasinucellate An ovule in which the nucellus develops two or more layers of cells, the inner ones from divisions of a parietal cell.
crasulacean acid metabolism An alternate photosynthetic pathway in some xeric, generally succulent plants and functioning to conserve water, in which initial fixation of carbon dioxide occurs at night (when stomata are open) by the enzyme PEP carboxylase to form malic acid, which is stored within vacuoles of the mesophyll cells; during the day the stomata close and CO₂ is released from the vacuoles into the cytoplasm, where it is fixed in the chloroplasts. Abbr: CAM.
crenate With rounded to obtuse, shallowly ascending teeth, cut ≤1/16 the distance to the midrib, midvein, or junction of primary veins. (margin)
crenulate Diminutive of crenate, teeth cut ≤1/16 the distance to the midrib, midvein, or junction of primary veins. (margin)
crownshaft The collection of overlapping, sheathing leaf bases at the apex of a palm trunk.
crozier A leaf that is coiled during its development, characteristic of the leptosporangiate ferns (Polypodiales) and Marattiaceae. Syn: fiddlehead.
cruciate With four, distinct petals in a cross form, e.g. many Brassicaceae. (perianth type)
crucifer type A type of embryo development in which the terminal cell divides longitudinally, with only terminal cell derivatives contributing to the mature embryo. Syn: onagrad type.
cryptopcular Hypogeous. (seed germination type)
cryptocoylar Inserted (stamen insertion)
cryptocotylar Hypogeous. (seed germination type)
crystal A deposit of silica or calcium oxalate in plant cells that may function as waste products, as calcium ion sinks, or as an irritant to deter herbivory; a type of ergastic substance.
cuculate Hooded; with an abaxially concave posterior lip. (perianth type)
culm The flowering and fruiting stem(s) of grasses and sedges. (stem/shoot type)
cuneate With basal margins approximately straight, intersection angle 45° - 90°. (base)
cup-shaped Concave-convex along entire surface; may be abaxially or adaxially concave. (longitudinal posture)
cupule A structure that encloses a cluster of unitegmic ovules/ seeds, with a small opening near the proximal end, through which pollen grains entered; characteristic of some Pteridosperms, e.g. Caytonia.
curator The person in charge of the day-to-day running of an herbarium.
cuspidate Abruptly acuminate into a triangular, stiff or sharp apex. (apex)
cuticle A protective layer, containing cutin, that is secreted to the outside of epidermal cells and functions to inhibit water loss; found in all land plants.
cutin A polymer of fatty acids, functioning as a sealant in the cuticle layer of land plants, inhibiting water loss.
cyathium An inflorescence bearing small, unisexual flowers and subtended by an involucre (frequently with petaloid glands), the entire inflorescence resembling a single flower, e.g. Euphorbia. (inflorescence type)
cycly Number of cycles or whorls of parts. (number)
cyme General term for a determinate inflorescence. (inflorescence type)
cymule A small, simple dichasium. (inflorescence type)
cypsela An achene derived from an inferior ovary, e.g. Asteraceae. Syn: achene (in general sense).
cystolith A mass of calcium carbonate attached to a stalk from the cell wall, occurring within specialized cells termed lithocysts.
cytoplasm Everything inside the plasma membrane but not including the nucleus.
dark reactions A series of biochemical reactions of photosynthesis in plants, occurring in the stroma of the chloroplast, during which atmospheric carbon dioxide reacts to produce a molecule of glucose, requiring the input of the high-energy compounds ATP and NADPH₂.
data information system/database system Referring to the (computerized) organization, inputting, and accessing of information.
decay index A method of evaluating cladogram robustness by calculating how many extra steps are needed (beyond the number in the most parsimonious cladograms) before the original clade is no longer supported; the greater this value, the greater the confidence in a given clade. Syn: Bremer support.
deciduous Parts persistent for one growing season, then falling off, e.g. leaves of deciduous plants. (duration)
decompose A general term for a leaf having leaflets in two or more orders: bi-, tri-, and so on pinnately, palmately, or ternately, compound; also used for a highly divided leaf. (leaf type, division)
decumbent Basally prostrate but ascending apically. (stem habit)
decurrent Appearing to extend down the stem from the point of attachment, as if fused to the stem, e.g. many Cupressaceae. (leaf attachment)
decussate Opposite leaves or other structures at right angles to the preceding pair. (arrangement)
decussate tetrad A tetrad in which the four grains are in two pairs arranged at right angles to one another.
deflexed Bent abruptly downward. (orientation)
deltate Three-sided, length : width ratio 1:1. (shape)
dendritic Trichomes treelike, with multiple lateral branches. (trichome type)
dendrochronology The scientific study of wood anatomy to infer details about past events.
dentate With sharp, coarse teeth that point outward at right angles to margin outline, cut ≤1/6 distance to midrib, midvein, or junction of primary veins. (margin)
denticulate Diminutive of dentate, teeth cut ≤1/6 or less the distance to the midrib, midvein, or junction of primary veins. (margin)
depressed Pressed closely to axis downward, with divergence angle of 0° - 15° from lower axis. (orientation)
derived Referring to a new condition or character state. Syn: apomorphic, advanced.
dermal tissue The outer region of plant organs, composed of the epidermis.
descending Directed downward, with divergence angle of 15° - 45° from lower axis. (orientation)
descent The sequence of ancestral-descendant populations through time.
description The assignment of features or attributes to a taxon or other entity.
determinate (a) A shoot that terminates growth after a certain period, the apical meristem aborting or converting into a flower, inflorescence, or other specialized structure (stem branching pattern, stem type). (b) An inflorescence in which the terminal flower matures first, maturing from apex to base. (inflorescence development)
dextrorse Twining helically like a typical, right-handed screw, e.g. some Convulvulaceae. (twisting/bending posture)
diadelphous With two groups of stamens, each conuate by filaments, e.g. many Faboideae (Fabaceae). (stamen fusion)
dichiasium A determinate inflorescence that develops along two axes, forming one or more pairs of opposite, lateral axes. (inflorescence type)
dichlamydeous Perianth composed of a distinct outer calyx and inner corolla, regardless of total number of whorls. (perianth cycly)
dichogamy A type of outcrossing mechanism that is the result of differences in timing of maturation of male and female floral parts. Adj: dichogamous.
dicotyledonous A type of anther wall development in which only the outer secondary parietal cell layer divides to yield the endothecium and a single middle layer.
dichotomous With veins successively branching distally into two veins of equal size and orientation, e.g. Ginkgo biloba. (leaf venation)
dichotomous key A key utilizing series of two contrasting statements, each statement a lead, the pair of leads a couplet.
dicotyledonous A shoot that terminates growth after a certain period, the apical meristem aborting or converting into a flower, inflorescence, or other specialized structure (stem branching pattern, stem type). (b) An inflorescence in which the terminal flower matures first, maturing from apex to base. (inflorescence development)
disk A dissected amphiphloic siphonostele.
discal Biseriate. (cycly, perianth cycly, stamen cycly)
didymous With stamens in two equal pairs. (stamen arrangement)
didynamous With stamens in two unequal pairs, e.g. many Bignoniaceae, Lamiaceae, Scrophulariaceae. (stamen arrangement)
diffuse-porous Wood in which vessels develop more or less uniformly throughout the growth season.
dioecious/dioecy Having unisexual flowers, staminate and pistillate on separate individual plants. (plant sex)
diphthong A two-vowel combination in Latin that is treated as the equivalent of a single vowel.
diplohaplontic life cycle Haplodiplontic life cycle.
diplostemonous Stamens in two whorls, the outer opposite the sepals, the inner opposite petals. (stamen position)
discoid (a) Discus-shaped. (shape). (b) Stigma(s) disk-shaped. (stigma/stigmatic region type)
disk A dissected amphiphloic siphonostele. (a) Discus-shaped. (shape). (b) Stigma(s) disk-shaped. (stigma/stigmatic region type)
disk flower Having an actinomorphic, tubular corolla with flaring lobes, e.g. some Asteraceae. (perianth type)
dispersal The movement of an organism or propagule from one region to another, such as the transport of a seed or fruit (by wind, water, or bird) from a continent to an island.
disposition Relative placement of objects or parts of objects, inclusive of position, arrangement, and orientation.
dissected Divided into very small, often indistinct segments. (division)
distal Away from the point of origin or attachment. (position)
distal pole The intersection of the pollen grain polar axis with the grain surface that is away from the center of the microspore tetrad.
distichous Alternate, with points of attachment in two vertical rows/ranks, e.g. the grasses, Poaceae. (arrangement)
distinct With like parts unfused and separate. (fusion)
distyly Hercogamy in which two floral morphologies occur: pin flowers, with a long style and short stamens, and thrum flowers, with a short style and long stamens. Adj: distylous.
disulculate A pollen grain with two elongate apertures on opposite sides of the grain, parallel to the equatorial plane.
dithecal Anther with two thecae and typically four microsporangia. Cf: tetrasporangiate. (anther type)
diurnal During the day, typically with respect to when flowers open. (periodicity)
divaricate Divergent; horizontal; patent. (orientation)
divergence/diversification The formation of two (or more), separate lineages from one common ancestor.
divided Sinuses extending (pinnately or palmately) 3/4 to almost to midrib, midvein, or vein junction. (division)
dorsal Abaxial. (position)
dorsal vein The central vein of a carpel, corresponding to the midvein of a leaf. Syn: median vein.
dorsifixed Anther attached dorsally and medially to apex of the filament. (anther attachment)
dorsiventral Having a flattened shape, with an upper (adaxial) and lower (abaxial) surface, characteristic, e.g. of leaves.
doubly serrate With large, serrate teeth that have along the margin smaller, serrate teeth. (margin)
downward Anther dehiscing toward the ground in a horizontally oriented flower. (anther dehiscence direction)
drepanium A monochasium in which the axes develop on only one side of each sequential axis, typically appearing coiled at least early in development; sometimes equated with helicoid cymes. (inflorescence type)
drupe A fleshy fruit with a hard, stony endocarp, e.g. Prunus: peach, plum, cherry. (fruit type)
drupececum An aggregate fruit of drupes, e.g. Rubus: raspberry, blackberry. (fruit type)
druise A spherical crystal with protruding spikes, composed of calcium oxalate; a type of ergastic substance.
duration The length of life of a plant or plant part. (temporal phenomena)
dyad A fusion product of two pollen grains.
ebracteate Lacking bracts. (flower attachment)
echina A spinelike sculpturing element >1 m long, as in some pollen grain walls. Pl: echinae. Adj: echinate.
eellate Without trichomes on the margins, regardless of presence or absence of teeth. (margin)
eteophloic siphonostele A siphonostele in which a ring of xylem is surrounded by an outer layer of phloem only.
etzochochory Dispersal by animals in which propagules are carried on the outside of an animal. Adj: ectozoochorous.
egg A nonmotile, evolutionarily enlarged gamete, the end product of oogamy.
ektexine An outer layer of the pollen grain exine wall.
elater (a) One of the hygroscopic appendages arising from the spores of Equisetum, functioning in spore dispersal. (b) A non-sporogenous, elongate, hygroscopic cell with spiral wall thickenings that develops within the sporangia of some liverworts and that functions in spore dispersal.

elliptic Margin curved, widest at the midpoint, the length : width ratio 2:1 to 3:2. (shape)

emarginate Having an apical incision, cut \(\frac{1}{6} \) to \(\frac{1}{4} \) the distance to midrib, midvein, or junction of primary veins. (apex)

embryo An immature, diploid sporophyte developing from the zygote of land plants. (seed part; plant part)

embryo proper That portion of the proembryo that will eventually grow into the new sporophyte.

embryo sac Term for the female gametophyte of angiosperms.

embryogeny The development of the embryo within the seed.

Embryophyta/Embryophytes A monophyletic group of eukaryotes united by an outer cuticle, specialized gametangia antheridia and archegonia and an intercalated diploid phase in the life cycle, including the embryo [land plants].

emend Abbreviation of a correction or amendment of a name.

emergent With roots or stems anchored to substrate under water, the aerial shoots above water. (plant habitat)

emersed Occurring under water. (plant habitat)

enantiostyly A type of hercogamy in which the style of different flowers curves either the left or the right. Adj: enantiostylous.

enation A small appendage arising from the stem, resembling a rudimentary leaf but lacking vascular tissue.

endarch An orientation of xylem maturation in which the protoxylem is oriented toward the center of the stele relative to the metaxylem, as occurs in eusteles and actosteles.

endodermis A hollow cylinder of cells in roots and some stems that surrounds the vasculature and functions to selectively control passage of solutes from the outside, via Casparian strips. Adj: endodermal. (root part, stem part)

endogenous Arising from the internal tissues, as in the growth of secondary roots from within a primary root.

endoplasmic reticulum A cellular organelle consisting of interconnected phospholipid membranes that may function in material transport and as the site of protein synthesis.

endosperm The triploid tissue that develops from mitotic divisions of the endosperm cell (the product of double fertilization), ultimately enclosing or abutting the embryo and functioning as the nutritive tissue of angiosperm seeds.

endospermous With endosperm as the food reserve in mature seeds. Syn: albuminous. (seed endosperm type)

endospory The development of a gametophyte within the original spore wall. Adj: endosporic.

endostomal Referring to the micropyle of a bitegmic ovule delimited by only the inner integument, the outer one being foreshortened.

endosymbiosis The intracellular cohabitation of one cell within another cell; the process that gave rise to mitochondria and chloroplasts by engulfment of a prokaryote by a eukaryotic cell.

endothecium The outermost cell layer of an anther, typically of enlarged cells with secondary wall thickenings functioning in anther dehiscence.

desertification The degradation of drylands caused by both natural and human-made processes.
et Latin for and, used in scientific name combinations.

eu camptodromous Pinnate venation in which secondary veins do not terminate at the margin, curving upward near the margin but not directly joining adjacent secondaries. (leaf venation)

euphyll The sporophytic leaf of the euphyll group, growing by means of either marginal or apical meristems, having multiple, branched veins, and having an associated leaf gap. Adj: euphyllous. Syn: megaphyll. (leaf structural type)

eusporangium/eusporangiate sporangium A relatively large sporangium that is derived from several epidermal cells and having a sporangial wall composed of more than one cell layer.

eustele A primary stem vasculature that consists of a single ring of discrete collateral or bicollateral vascular bundles.

evergreen Persistent two or more growing seasons, e.g. leaves of most conifers. (duration)

evolution Descent with modification; the transfer of genetic material from parent(s) to offspring over time, with a corresponding change in that genetic material.

exalbominous Lacking endosperm as the food reserve in mature seeds. Syn: nonendospermous. (seed endosperm type)

exarch An orientation of xylem maturation in which the protoxylem is oriented toward the organ periphery relative to metaxylem, as occurs in some protozostele.

exfoliating Bark cracking and splitting off in large sheets. (bark type)

exindusiate Referring to a sorus that lacks an indusium.

exine The hard, outermost, desiccation-resistant layer of a pollen grain wall, providing structural support and inhibiting desiccation.

exocarp The outermost wall layer of the pericarp, if the latter is divided into layers. (fruit part)

exosporic A sporangia containing component of the leaf of an ophioglossoid fern.

exposporous The formation of a gametophyte external to the original spore wall. Adj: exosporic.

exostomal Referring to the micropyte of a bitegmic ovule delimited by only the outer integument, the inner one being foreshortened.

explosively dehiscent Referring to a dry, dehiscent fruit that opens with force, in the process ejecting the seeds some distance away. (fruit type)

exserted With stamens protruding beyond the perianth. Syn: phaneranthalous. (stamen insertion)

exstipellate Without stipels. (leaf part)

exstipulate Without stipules. (leaf part)

extrastaminal disk A discoid or doughnut-shaped structure arising from the receptacle at the outside and surrounding the stamens; may be nectar-bearing (nectariferous disk). (flower part)

extrorse Dehiscing outward, away from the flower center (anther dehiscence direction)

falcate/falciform Lanceolate to linear and curved to one side; scimitar-shaped. (shape)

false indusium An extension of the blade margin that overlaps the sorus of a leposporangiate fern.

farinaeous Finely mealy, covered with small granules. Adj: granular, scurfy. (epidermal excrescence)

fascicle (a) A shoot with very short internodes on which flowers or leaves are borne. Syn: short shoot; spur; spur shoot. (stem/ shoot type). (b) A raceme-like or panicle-like inflorescence with pedicellate flowers in which internodes between flowers are very short, with pedicel bases appearing congested. (inflorescence type) Adj: fasciculate.

fat A type of triglyceride compound that may function as high-energy storage compounds or secretion products in plants; a type of ergastic substance.

female (a) Individual with female reproductive organs only. (plant sex) (b) Pistillate. (flower sex)

female gametophyte A gametophyte that bears only archegonia, housing the egg cell. Syn: megagametophyte, embryo sac.

female sporophyll A sporophyll that bears one or more megasporangia or seeds. Syn: megasporophyll.

fenestrate Having windowlike holes in the surface, e.g. Monstera deliciosa, Araceae (configuration)

fertile segment The sporangia containing component of the leaf of an ophioglossoid fern.

fiber A sclerenchyma cell that is long and very narrow, with sharply tapering end walls, functioning in mechanical support and often occurring in bundles.

fibrous roots Roots that are adventitious and typically fine and numerous. (root type)

fiddlehead Crozier.

filament A stamen stalk, generally terete in shape. (stamen part)

filamentous (a) With a more or less terete stamen stalk, as opposed to a laminar body. (stamen type) (b) Filament present, as opposed to absent and anther sessile. (stamen attachment)

filiferous Bearing coarse, fiberlike structures. (margin)

filiform Long, thin, and typically flexuous, threadlike, filamentous. (shape)

fissured Bark split or cracked into vertical or horizontal, usually coarse grooves. (bark type)

fistulose/fistular Cylindrical and hollow within. (shape)

flabellate With three or more primary veins diverging from one point and several, equal, fine veins branching toward the leaf apex, a subcategory of actinodromous. (leaf venation)

flexuous Central axis and tip alternately curved up and down. (transverse posture)

floating Occurring at the water surface. (plant habitat)

floccose With dense trichomes in several patches or tufts. (vestiture)

floral diagram A diagrammatic, cross-sectional view of a flower bud, showing the relative relationship of perianth, androecial, and gynoecial components, and illustrating things such as stamen position, placentation, and perianth, calyx, or corolla aestivation.

floral formula A symbolic representation of floral morphology, including cycly (number or whorls or series), merosity (number of parts per whorl), fusion of parts, and ovary position.

floral tube Hypsanthium. (flower part)

floret A unit of a grass (Poaceae) spikelet, consisting of a short, lateral axis bearing two bracts (lemma and palea) that subtend a terminal, reduced flower. (inflorescence type)

floristics The documentation of all plant species in a given geographic region.

flower The reproductive organ of flowering plants; a modified, determinate shoot bearing sporophylls (stamens and/or carpels) with or without outer modified leaves, the perianth. (plant part, inflorescence part)

flower bract A modified, generally reduced leaf subtending a flower. (flower part)

flower bud A bud that develops into a flower. (bud type)
follicetum An aggregate fruit of follicles, e.g. Magnolia. (fruit type)
follicle A dry, dehiscent fruit derived from one carpel that splits along one suture, e.g. Asclepias, milkweed. (fruit type)
foot-layer The inner layer of a tectate-columellate pollen exine wall.
form genus A genus that corresponds to a particular organ of a fossil plant.
fossulate A pollen sculpturing with longitudinal grooves.
foveolate A pollen sculpturing with a pitted surface caused by pores in the surface.
free With unlike parts unfused, separate. (fusion)
free-central With the placenta along the column in a compound ovary lacking septa, e.g. Caryophyllaceae. (placenta)
Fritillaria type A type of tetradsporic female gametophyte in which three of the four megaspores fuse to form a triploid nucleus, followed by two sequential mitotic divisions of the haploid and triploid nuclei, resulting in an 8-nucleate female gametophyte in which the three antipodals and one of the polar nuclei are triploid, the other polar nucleus and the cells of the egg apparatus remaining haploid.
frond Specialized term for a fern leaf.
fruit The mature ovary of flowering plants, consisting of the pericarp (mature ovary wall), seeds, and (if present) accessory parts. (plant part)
frutescent Having the habit of a shrub, with numerous, woody, aerial trunks. (stem habit)
fumatory A substance that is smoked by humans, usually for its pleasing or euphoric effects, e.g. tobacco, Nicotiana tabacum.
funiculus A stalk that attaches the ovule to the placenta. (gynoecium part)
fusiform Spindle-shaped; narrowly ellipsoid with two attenuate ends. (shape)
galeate Hooded; with an abaxially concave posterior lip. (perianth type)
gamete A specialized, haploid cell that fuses with another gamete (in sexual reproduction) to form a diploid zygote.
gametophyte The haploid phase in the life cycle of all land plants.
gamopetalous Sympetalous. (perianth fusion)
gamosepalous Synsepalous. (perianth fusion)
geitonogamy Inbreeding occurring between different flowers derived from one individual. Adj: geitonogamous.
geminate A compound leaf with two leaflets arising from a petiole and no rachillae. (leaf type)
geminate-pinnate A compound leaf with two rachillae, each bearing a pinnate arrangement of leaflets. (leaf type)
gemma (a) An asexual propagule produced within the gemmae cups of some thalloid liverworts. (b) One of the globose or ellipsoid elements of a gemmae pollen grain. Pl: gemmae.
gemma cup A cup-shaped organ on the upper surface of the gametophytes of some thalloid liverworts, containing gemmae propagules.
gemmate A pollen sculpturing with globose or ellipsoid elements, each element termed a gemma.
gender The designation of masculine, feminine, or neuter in Latin names.
generative cell One of the two initial, haploid cells in the male gametophyte of angiosperms that mitotically divides to form two sperm cells.
genetic drift Random genetic modification of a population or species, not the result of natural selection.
genet A genetically different individual of a population. Cf: ramet.
geniculate Having a zig-zag posture, e.g. the inflorescence rachis of some grasses. (twisting/bending posture)
genus name The first component of a binomial, always capitalized.
genus novum Meaning that a taxon name, at the rank of genus, is new to science. Abbr: gen. nov.
geophyte A perennial herb, typically with a bulb, corm, rhizome, or tuber underground stem. (plant habit)
girdling A type of anther endothecium in which the secondary wall thickenings form rings with cross bridges between them.
glabrate Nearly glabrous or becoming glabrous with age. (vestiture)
glabrous Without trichomes. (vestiture)
glandular (a) Covered with minute, blackish to translucent glands (epidermal excrescence). (b) Trichomes secretory or excretory, usually having an apical glandular cell. (trichome type)
glandular (tapetum type) Secretory.
glaucous Covered with a smooth, usually whitish, waxy coating, which can be rubbed off with touch. (epidermal excretion)
globose (a) Spherical in shape. (b) Stigma(s) spherical in shape. (stigma/stigmatic region type)
glochidiate With apical, clustered barblike structures. (bristle type)
glochidium A very small leaf spine with numerous, reticulate barbs along its length, produced in the areoles of opuntiod cacti. Pl: glochidia; glochids. (leaf structural type)
glomerule An inflorescence of sessile or subsessile flowers in which internodes between flowers are very short, with flowers appearing congested. (inflorescence type)
glicosinate A secondary chemical compound found in many Brassicales that functions to deter herbivory and parasitism and also serves as a flavoring agent in the commercially important members of the Brassicaceae.
glume One of usually two bracts occurring at the base of a grass spikelet. (leaf structural type)
glutinous Viscid. (epidermal excretion)
golgi body A cellular organelle comprised of parallel stacks of flattened membranes, functioning in transport and modification of compounds.
grain A one-seeded, dry, indehiscent fruit with the seed coat adnate to pericarp wall, e.g. Poaceae, grasses. Syn: caryopsis. (fruit type)
granular Farinaeous.
granum A pankake-like aggregation of thylakoid membranes within the chloroplast of green plants. Pl: grana.
grass spikelet The inflorescence unit of the Poaceae, grass family, consisting of an axis (rachilla) bearing distichous parts: two basal bracts (glumes, sometimes modified or absent) and one or more florets, each floret consisting of a minute lateral axis with two additional bracts (lemma and palea) plus the flower.
green plants A monophyletic group of eukaryotes, consisting of the green algae and the land plants, united having chloroplasts with chlorophyll a and b, starch, and thylakoids stacked as grana [Chlorobionta].
ground meristem The nonvascular, usually parenchymatous tissue between and among the vascular bundles of an atactostele. (stem/shoot part)
ground tissue Tissue that is inside the epidermis and not part of the vascular tissue, composed of parenchyma, sclerenchyma, and collenchyma cells.
guard cell One of the two cells that together make up a stomate.
gynandrium A fusion product of androecium and gynoecium, e.g. Aristolochiaceae, Orchidaceae. Syn: column, gynostegium, gynostemium. (flower part)
gynobasic With style arising at the base and center of a lobed ovary, e.g. Boraginaceae, Lamiaiceae. (style position)
gynodicous/gynodicy Having female flowers on some individuals and perfect flowers on other individuals. (plant sex)
gynoeicum The female organ(s) of a flower, collectively all carpels of a flower. (flower part)
gynomonoecious/gynomonoecy Having both pistillate and perfect flowers on the same individual. (plant sex)
gynophore A stalk of the pistil, usually absent. Syn: stipe. (gynoeicum part)
gynostegium column, gynandrium, gynostemium. (flower part)
gynostemium column, gynandrium, gynostegium. (flower part)
half-inferior With sepals, petals, stamens, and/or hypanthium attached at the middle of the ovary. (ovary position)
hapaxanthic A determinate shoot that completely transforms into a hapaxanthic. (stem/shoot type, stem branching pattern, inflorescence development)
haploidiplontic life cycle A life cycle having both haploid and diploid phases, occurring in all land plants. Syn: alternation of generations; diplobiontic life cycle.
haplontic life cycle A type of sexual life cycle in which the mature, adult phase is haploid, which produces gametes (egg and sperm) that fuse to form a diploid zygote, the latter undergoing meiosis to produce haploid spores, which develop into new haploid adults. Syn: haplobiontic life cycle.
hardwood Wood derived from a nonmonocotyledonous angiosperm, generally (but not always) harder than a softwood because of a greater concentration of fiber cells.
harmomegathy Volume changes of the pollen grain with changes in water content, e.g. humidity, functioning to inhibit desiccation.
hastate With two basal lobes, more or less pointed and oriented outwardly approximately 90° relative to central axis. (base)
hastula An appendage or projection at the junction of petiole and blade, as in some palms. (leaf part)
haustoria Parasitic roots that penetrate the tissues of a host plant. (root type)
head A determinate or indeterminate, crowded group of sessile or subsessile flowers on a compound receptacle, often subtended by an involucre, e.g. Asteraceae. Syn: capitulum. (inflorescence type)
hecloid cyme A monochasium in which the branches develop on only one side of each sequential axis, appearing coiled at least early in development; may intergrade with scorpionid cyme. Syn: bostryx. (inflorescence type)
holobial An endosperm in which the first mitotic division is followed by cytokinesis, defining two cells, with the nucleus of one of the cells dividing without cytokinesis, that of the other cell dividing with cytokinesis.
hemiparasite A chlorophyllous, parasitic plant.
hemispheric Half-sphere-shaped. (shape)
hemitropous/hemianatropous An ovule somewhat intermediate in curvature between anatropous and orthotropous types.
herb A plant with annual above-ground shoots, including a flower or inflorescence, the plant itself being annual, biennial, or perennial. (plant habit)
herbaceous Having a soft or slightly succulent texture. (texture)
herbarium specimen A pressed and dried plant sample that is permanently glued and/or strapped to a sheet of paper, along with a documentation label.
hercogamy/herkogamy The spatial separation of anthers and stigmas, generally enhancing outbreeding. Adj: hercogamous/herkogamous.
hermaphrodite A plant with bisexual flowers. (plant sex)
hesperidium A sepal berry with a thick-skinned, leathery pericarp wall and fleshy modified trichomes (juice sacs) arising from the inner walls, e.g. Citrus (orange, lemon, grapefruit, etc.). (fruit type)
heteroblasty The condition in which the juvenile leaves are distinctly different in size or shape from the adult leaves, e.g. many Araceae. Adj: heteroblastic. (leaf type)
heterochrony An evolutionary change in the rate or timing of development.
heteropolar Pollen polarity in which the two polar hemispheres are different because of displacement of one or more apertures.
heterospory The formation of two types of haploid spores, microspores and megaspores, within two types of sporangia. Adj: heterosporic.
heterostylous Hercogamy in which the relative lengths or heights of stigmas versus anthers vary among different flowers. Adj: heterostyled.
heterotropous An ovule that varies in orientation.
hilum Funicular scar on the seed coat. (seed part)
hirsute With long, rather stiff trichomes. (vestiture)
hilum Funicular scar on the seed coat. (seed part)
horn With apical hooklike structure. Syn: uncinate. (bristle type)
horizontal More or less horizontally spreading with divergence angle of ≤15° up or down from horizontal axis. Syn: divaricate; divergent; patent. (orientation)
horn A hornlike appendage, often associated with a hood, arising from the gynostegium of some Asclepiadoids of the Apocynaceae.
hooked With apical hooklike structure. Syn: uncinate. (bristle type)
horizontal More or less horizontally spreading with divergence angle of ≤15° up or down from horizontal axis. Syn: divaricate; divergent; patent. (orientation)
horn A hornlike appendage, often associated with a hood, arising from the gynostegium of some Asclepiadoids of the Apocynaceae.
hyaline cell One of the nonchlorophyllous cells in the specialized leaves of Sphagnum moss, having characteristic pores and helical thickenings and functioning in water absorption and retention.
hybridization Sexual reproduction between different species (interspecific hybridization) or between different populations or infraspecific taxa within a species.
hydathode A group of specialized cells that secrete excess, transported water (usually due to root pressure) from leaf margins.
hydrochorous Dispersal of propagules by water. Adj: hydrochorous.
hydroid A specialized cell that functions in water conduction in some mosses.

hydrophyly Pollination by water. Adj: hydrophilous.

hygroscopic Absorbing moisture from the air, often resulting in movement.

hymenopterophily Melittophily.

hypanthium A cuplike or tubular structure around or atop the ovary, bearing along its margin the sepals, petals, and stamens. Syn: floral tube. (flower part)

hypanthodium An inflorescence bearing numerous flowers on the inside of a convex or involute compound receptacle, e.g., *Ficus*. (inflorescence type)

hyphodromous Pinnate venation with only the primary midrib vein present or evident, the secondary veins absent, very reduced, or hidden within the leaf mesophyll. (leaf venation)

hypocotyl A region of the embryo between the root and epicotyl: may function in seedling development and as an anatomical transition between root and shoot. (seed part)

hypogeous With cotyledon(s) remaining in the ground during germination. Syn: cryptocotylar. (seed germination type)

hypogynous With sepals, petals, and stamens attached at the base of a superior ovary. (perianth/androecial position)

hypotropous-ventral A hypotropous ovule in which the raphe is dorsal (abaxial), pointing away from the central floral or ovary axis.

hypotropous-dorsal A hypotropous ovule in which the raphe is dorsal (abaxial), pointing away from the central floral or ovary axis.

hysteranthy Timing in which leaf and flower development do not coincide. Adj: hysteranthous.

identification The process of associating an unknown taxon or other entity with a known one.

illegitimate name A name that violates one or more rules of the International Code of Botanical Nomenclature.

imbricate (a) Leaves or other structures overlapping (arrangement). (b) With overlapping perianth parts. (perianth aestivation)

imbricate-alternate Outer whorl of perianth parts (sepals or outer tepals) alternating with, along different radii, the inner whorl of perianth parts (petals or inner tepals), a typical perianth aestivation. (perianth aestivation)

imparipinnate/imparipinnately compound A pinnately compound leaf with a terminal leaflet, typically odd-pinnate. (leaf type)

imperfect (a) Unisexual. (flower sex) (b) With lateral primary veins covering less than two thirds of the leaf blade area, a subcategory of actinodromous and of acrodromous. (leaf venation)

in Abbreviation for in the publication of, referring to a name published within a larger work authored by the person(s) following the in.

inaperturate A pollen grain that lacks any recognizable aperture.

inbreeding The union of gametes derived from a single individual. Syn: selfing.

incanous Covered with dense, fine, grayish-white trichomes; whitish-pubescent. (vestiture)

incised With margins sharply and deeply cut, usually jaggedly. (margin, division)

inclined Directed upward, with a divergence angle of 15° - 45° from horizontal axis. (orientation)

incompatibility reaction The inhibition of pollen germination or pollen tube growth between genetically similar individuals, mediated by incompatibility genes and functioning to promote outcrossing.

incomplete Lacking one or more of the four major whorls or floral parts: sepals, petals, stamens, carpels. (flower cycly)

incurved Tip gradually curved inward or upward (adaxially). (transverse posture)

indehiscent legume A secondarily modified legume does not split open, e.g., *Arachis hypogaea*, peanut. (fruit type)

indented phylogenetic classification A classification in which monophyletic groups are ordered in a sequential, hierarchical method.

indeterminate (a) A shoot that has the potential for unlimited growth, the apical meristem continuing to grow. (stem/shoot type, stem branching pattern). (b) An inflorescence in which the basal flower matures first; maturation from base to apex. (inflorescence development)

induplicate Plicate, with adjacent adaxial sides facing one another, being V-shaped in cross-section. (longitudinal posture)

indurate Hardened and inflexible. (texture)

indusiium A flap of tissue that covers a sorus, found in some leptosporangiate ferns. Adj: indusiate.

inferior With sepals, petals, stamens, and/or hypanthium attached at the apex of the ovary. (ovary position)

inflorescence An aggregate of one or more flowers, the boundaries of which generally occur with the presence of vegetative leaves below; may be composed of unit inflorescences. (plant part)

inflorescence bract A modified, generally reduced leaf subtending an inflorescence axis. (inflorescence part)

inflorescence bud A bud that develops into an inflorescence. (bud type)

infrafloral selfing Autogamy.

infrafoliar Descriptive of a palm inflorescence that is positioned below the leaves of the crownshaft. (inflorescence position)

infrapetiolar bud An axillary bud surrounded by a petiole base, e.g., *Platynisus*, sycamore. (bud type)

infructescence The complete inflorescence at the stage of fruiting. (fruit part)

infundibular Funnel-shaped; with a narrow base and greatly expanded apex, e.g., *Ipomoea*. (perianth type)

ingroup The study group as a whole in a phylogenetic analysis.

inner bark Secondary phloem.

inserted With stamens included within the perianth. Syn: cryptanthous. (stamen insertion)

integument A sheath or flap of tissue that surrounds the megasporangium (nucleus) of an ovule and develops into the seed coat of the seed.

intercalary meristem An indeterminate (having potentially continuous growth), basal or sub-basal region of actively dividing cells.

interfoliar Descriptive of a palm inflorescence that is positioned below the leaves of the crownshaft. (inflorescence position)

International Code of Botanical Nomenclature The standardized system of rules for naming plants, algae, fungi, and other organisms traditionally treated as fungi, governing specific names assigned to taxa and the endings that denote taxon rank, and utilized for naming new taxa and determining the correct name for previously named taxa. Abbr: ICBN.

internode (a) The region between two adjacent nodes of a shoot. (stem/shoot parts, twig part) (b) A cladogram lineage that spaces between two nodes (points of divergence). Syn: stem.
intronastic The innermost layer of a pollen grain wall, composed primarily of cellulose and pectines.

intrastaminal disk A discoid or doughnut-shaped structure arising from the receptacle at the inside of the stamens and/or base of the ovary; may be nectar-bearing. (nectariferous disk) (flower part)

intravaginal (axillary) squamules Trichomes found in the axils of sheathing leaves, possibly functioning in secreting a protective mucilage, e.g. many Alismatales. (trichome type)

introgression Hybridization between two species followed by backcrossing to one or both parents.

introrse Dehiscing inward, toward the flower center. (anther dehiscence direction)

involute (a) Margins or outer portion of rolled inward or upward over adaxial surface (longitudinal posture, margin). (b) Valvate with each perianth part induplicate, folded longitudinally inward along central axis. (perianth asestion)

iridoid A secondary chemical compound characteristic of many Asterids.

irregular Zygomorphic, bilateral. (symmetry)

isomerous Having the same number of parts in different whorls. (merosity, perianth merosity)

isomorphic Appearing identical, e.g. the gametes of some green plants.

isopolar Pollen polarity in which the two polar hemispheres are the same but can be distinguished from the equatorial region.

isotype A duplicate specimen of the holotype, collected at the same time by the same person from the same population.

iteroparity Referring to plants that reproduce more than one time in the life of the plant, typically in regular cycles. Adj: iteroparous.

jacket layer Antheridal wall; archegonial wall.

jackknife/jacknifing A method of evaluating cladogram robustness that reanalyzes the data of the original character × taxon matrix by selecting (resampling) characters at random, such that a given character can be selected only once, the resultant resampled data matrix being smaller than the original.

jaculator Funiculi of the seeds that are modified into rigid, often hook-shaped structures that function to disperse the seeds by a catapulting mechanism, characteristic of the Acanthaceae. Syn: retinaculum.

key/taxonomic key An identification device, consisting of contrasting statements used to narrow down the identity of a taxon.

Kranz anatomy A leaf anatomy in which chloroplasts of the bundle sheath cells are typically much larger than those of the mesophyll cells, correlated with C4 photosynthesis.

labellum A modified, typically expanded, median petal, tepal, or perianth lobe, such as in the Orchidaceae. (perianth part)

lacerate With sinuses irregularly cut, lobes appearing torn. (division)

laciniate Cut into narrow, ribbonlike segments. (division)

laevigate Lustrous, polished. (epidermal excrescence)

lamellar A discoid or doughnut-shaped structure arising from the receptacle at the inside of the stamens and/or base of the ovary; may be nectar-bearing. (nectariferous disk) (flower part)

lamina Blade. (leaf part)

laminar (a) With a dorsiventrally flattened, leaflike structure bearing the thecae. (stamen type) (b) With ovules arising from the surface of the septae. (placentation)

lanate Villous. (vestiture)

lanceolate Margins curved, widest near base, length:width ratio between 6:1 and 3:1. (shape)

lance-ovate Margins curved, widest near base, length:width ratio between 3:1 and 2:1. (shape)

land plants A monophyletic group of eukaryotes united by an outer cuticle, specialized gametangia antheridia and archegonia and an intercalated diploid phase in the life cycle, including the embryo [embryophytes/Embryophyta].

lateral (a) Axillary (position, inflorescence position). (b) Style arising at the side of an ovary. (style position)

lateral bud Axillary bud (bud type)

lateral meristem A cylindrical sheath of cells, functioning in secondary growth, that increases width or girth of stems or roots in woody plants; includes the vascular cambium and cork cambium.

lateral root A root that arises from another root, derived endogenously from the pericycle. (root type)

lateral vein Ventral vein.

latifolier Cells located in the periphery of some tissues that secrete and store latex, functioning to deter herbivory and to seal and protect plant tissue upon wounding.

latrorse Dehiscing laterally relative to the flower center. (anther dehiscence direction)

layer One of the ecological criteria of plant communities based on height and plant habit, including the canopy, subcanopy, shrub or subshrub layer, and herb layer.

lead One of the two contrasting statements in a dichotomous key.

leaf A generally dorsiventrally flattened organ, usually functioning in photosynthesis and transpiration, either gametophytic (in mosses and some liverworts) or sporophytic (in vascular plants), often variously modified. (plant part)

leaf gap A region of nonvascular parenchyma tissue interrupting the vasculature of the stem at a node, associated with ephylls.

leaf primordium An immature leaf of the shoot. (stem/shoot parts)

leaf scar A mark indicating the former place of attachment of a leaf. (twig part)

leaf spine A sharp-pointed leaf, e.g. cactus spines or glochidia. Cf: prickle; thorn. (leaf structural type)

leaflet A distinct and separate segment of a leaf. (leaf part)

leaflet spine A sharp-pointed leaflet, e.g. some palms, such as Phoenix. (leaf structural type)

lectotype A specimen that is selected from the original material to serve as the type when no holotype was designated at the time consisted of more than one specimen or taxon.

legitimate name A name that is in accordance with the rules of the International Code of Botanical Nomenclature.

legume A dry, dehiscent fruit derived from one carpel that splits along two sutures, e.g. Fabaceae. (fruit type)

lemma The outer and lower bract at the base of the grass floret. (leaf structural type)

lenticel A pore in the bark, generally functioning in gas exchange. (twig part)

lenticular Lens-shaped; disk-shaped with two convex sides. (shape)
lepidote Covered with scales or scalelike structures. (vestiture)
leptoid A specialized cell that functions in sugar conduction in some mosses.
leptosporangium The sporangia of the leptosporangiate ferns (Polypodiales), characterized by developing from a single cell and having a single layer of cells making up the sporangium wall. Pt: leptosporangia.
liana/liane A woody, perennial vine, in tropical forests often a component of the canopy layer. (plant habit)
light reactions A series of biochemical reactions of photosynthesis in plants, occurring in the thylakoid membranes of the chloroplast and requiring light as an energy source, during which water is broken down into hydrogen ions, electrons, and molecular oxygen, and producing high-energy ATP and NADPH₂, which are utilized in the dark reactions.
lignin A complex polymer of phenolic compounds that impregnates the secondary cell wall of some cells (including tracheary elements and sclerenchyma), functioning to impart strength and rigidity to the wall.
lignotuber Burrl. (stem/shoot type)
ligulate Strap- or tongue-shaped; flattened and somewhat oblong in shape, e.g. ray flowers of some Asteraceae. (perianth type, shape)
ligule (a) A small appendage on the upper (adaxial) side of the leaf, near the leaf base, found in the Selaginellaceae and Isoetaceae of the lycophytes. (b) An outgrowth or projection from the top of a leaf sheath at its junction with the blade, as in the Poaceae. (leaf part)
limb The expanded portion of the corolla or calyx above the tube, throat, or claw. (perianth part)
lineage Clade.
linear (a) With margins straight, parallel, length : width ratio between 12:1 and 6:1. (shape) (b) Stigmas or stigmatic tissue long and narrow in shape. (stigma/stigmatic region type)
linear tetrad A tetrad in which the four pollen grains are arranged in a straight line, e.g. Typha.
lip Either of two variously shaped parts into which a calyx or corolla is divided, usually into upper (posterior) and/or lower (anterior) lips, each lip often composed of one or more lobes, e.g. Lamiaeaceae, Orchidaceae. Cf: labellum. (perianth part)
litohyst A specialized cell that contains a cystolith. Cf: cystolith.
lobe (a) A segment of a synsepalous calyx or sympetalous corolla. (perianth part) (b) A segment of a divided leaf. (leaf part)
lobbled (a) Sinuses extending (pinnately or palmately) one eighth to one fourth the distance to midrib, midvein, or vein junction. (b) A general term meaning having lobes. (division)
locular An ovary cavity, bounded by ovary walls and septa. (gynoecium part) (b) A compartment of the anther, usually the result of two microsporangia fusing within a theca. (anther part)
locularicidal capsule A capsule in which longitudinal lines of dehiscence are radially aligned with the locules. (fruit type)
loidicule One of the (2, 3) modified perianth parts of a grass (Poaceae) flower, which collectively upon swelling function to open the floret by separating the lemma from palea. (perianth part)
loment A secondarily modified legume that splits transversely into 1-seeded segments. (fruit type)
long-branch attraction A condition in which taxa with relatively long branches (having numerous character state changes) tend to come out as close relatives of one another in a phylogenetic analysis because of random effects.
longitudinal dehiscence Dehiscing along a suture parallel to the long axis of the thecae. (anther dehiscence type)
longitudinal posture Placement of margins with respect to a horizontal plane. (disposition)
lower epidermis The abaxial epidermis of a leaf.
lumen The space between muri in a reticulate pollen grain. Pt: lumina.
lycophyll The sporophytic leaf of the lycophytes, characterized by an intercalary meristem, having a single vein, and lacking a gap in the vasculature of the stem. Adj: lycophyllous. Syn: microphyll. (leaf structural type)
lyrate Pinnaatifid, but with a large terminal lobe and smaller basal and lateral lobes. (shape)
maculate Spotted; with small spots on a more or less uniform background. (color pattern)
majority consensus tree A consensus tree in which only those clades that are retained 50% or more of the time are retained (i.e. not collapsed to a polytomy).
males (a) Individual with male reproductive organs only. (plant sex) (b) Staminate. (flower sex)
males gametophyte A gametophyte that bears only antheridia. Syn: microgametophyte.
males sporophyll A sporophyll that bears one or more microsporangia. Syn: microsporophyll.
malpighian Trichomes with two arms arising from a common base, e.g. Malpighiaceae. (trichome type)
manual Flora.
marginal (a) With the placenta along the margin of a unicarpellate (simple) ovary, e.g. Fabaceae. (placentation) (b) With three or more primary veins diverging from one point and reaching the blade margin, a subcategory of actinodromous. (leaf venation)
massula A group of fused pollen grains in large, often irregular numbers, but less than an entire theca. Pt: massulae.
masticatory A substance that is chewed by humans, usually for its pleasing or euphoric effects, e.g. peyote, Lophophora williamsii.
maturity (a) Acquisition of the mature structural and functional features of a cell following cell expansion. Syn: specialization. (b) Relative time of development of parts. (temporal phenomena)
matutinal In the morning, typically with respect to when flowers open. (periodicity)
maximum likelihood A method of phylogenetic inference that considers the probability, based on some selected model of evolution, that each tree explains the data.
mealy Covered with small, fine granules. (epidermal exscrescence)
median vein Dorsal vein.
megagametogenesis The process of development of the female gametophyte from the haploid product(s) of meiosis.
megagametophyte Female gametophyte.
megalphyll Euphyll.
megasporangium A female sporangium, within which megasporocytes undergo meiosis to produce haploid megaspores. Pt: megasporangia. Syn (in seed plants only): nucellus. (plant part)
megasporangium A female sporangium, within which megasporocytes undergo meiosis to produce haploid megaspores. Syn: megasporangia. Syn (in seed plants only): nucellus. (plant part)
megasporangium mother cell Megasporocyte.
megasporocyte A cell within the megasporangium that undergoes meiosis, forming four megaspores. Syn: megaspore mother cell.
megasporogenesis The process of development of megaspores from the megasporocyte.
megasporephyll ~ Female sporophyll.
membranous ~ Thin and somewhat translucent; membranelike. (texture)
mericarp ~ A portion of a fruit that separates from the ovary as a distinct unit that completely encloses the seed(s). (fruit part)
meristem ~ A region of actively dividing cells.
merosity ~ Number of parts per whorl or cycle. (number)
mesarch ~ An orientation of xylem maturation in which the protoxylem is surrounded by metaxylem within the vascular tissue, as can occur in siphonostele.
mesocarp ~ A middle middle layer of the pericarp, if the latter is divided into layers. (fruit part)
mesophyll ~ The region of a sporophytic leaf between the outer epidermal layers and exclusive of the vasculature, containing the chlorophyllous cells.
mesophytic ~ Having an intermediate texture, between coriaceous and membranous (texture)
metaxylen ~ The xylem of a group of tracheary elements that matures later, consisting of larger-diameter cells.
microfibril ~ Microscopic fiberlike units of intertwined cellulose molecules, forming a meshwork within the cell wall.
microgametogenesis ~ The process of development of pollen grains from microspores.
microgametophyte ~ Male gametophyte.
microhair ~ A very small trichome, as in the three-celled, glandular microhairs of the Commelinaceae.
microphyll ~ Essentially equivalent to a lycophyll.
microsporangium ~ A male sporangium, within which microsporangia undergo meiosis to produce haploid microspores. Pl: microsporangia. (plant part)
microspore ~ A male spore, produced via meiosis in the microsporangium and giving rise to a male gametophyte.
microsporangogenesis ~ The process of development of microspores from microsporocytes.
microsporophyll ~ A sporophyll bearing one or more microsporangia; a male sporophyll.
middle lamella ~ A pectic-rich layer formed between the plasma membrane of adjacent cells in land plants, functioning to bind adjacent cells together.
middle layers ~ Anther wall layers that may occur between the endothecium and tapetum.
midrib ~ The central, main vein of the blade of a simple leaf or of a compound leaf in some palms. Syn: costa. (leaf part)
midvein ~ The central, main vein of the blade of a leaflet. (leaf part)
mitochondrion ~ A double membrane-bound, cellular organelle with invaginations called cristae that function in the electron transport reactions of respiration. Pl: mitochondria.
mixed bud ~ A bud that produces both flowers and leaves. (bud type)
mixed craspedodromous ~ Pinnate venation in which some secondary veins terminate at the margin, but with many terminating away from the margin. (leaf venation)
monad ~ A single, unfused pollen grain.
monaldelphous ~ With one group of stamens connate by their filaments, e.g. Malvaceae. (stamen fusion)
monistichous ~ Alternate, with points of attachment in one vertical row/rank, e.g. Costaceae. (arrangement)
monocarpic ~ A perennial or annual plant, flowering and fruiting once, then dying. (duration)
monochasium ~ A determinate inflorescence that develops along one axis only. (inflorescence type)
monocotyledonous ~ A type of anther wall development in which the only the inner secondary parietal cell layer divides to yield the tapetum and a single middle layer.
monocyclic ~ Uniseriate. (cycly, perianth cycly)
monoecious ~ Having unisexual flowers, both staminate and pistillate on the same individual plant. (plant sex)
monograph ~ A detailed taxonomic study of all species and infraspecific taxa of a given taxonomic group.
monomorphic character ~ A character that is invariant in character state values within an OTU.
monophyletic/monophyly ~ Referring to a group that consists of a common ancestor plus all (and only all) descendants of that ancestor.

monopodial ~ A branching pattern in which a given axis is derived from a single apical meristem. (stem branching pattern)
monosporic ~ Megasporogenesis in which meiosis of the megaspore nucleus results in the formation of four haploid megaspore nuclei, followed by cytokinesis, resulting in four megaspore cells, only one of which contributes to the female gametophyte.
monosulcate ~ A pollen grain with a single, sulcate aperture.
monotheal ~ Anther with one theca and typically two microsporangia. Cf: bisporangiate. (another type)
monoulcerate ~ A pollen grain with a single, ulcereate aperture.
morphocline ~ Transformation series.
movement hercogamy ~ A type of hercogamy involving movement of floral parts, e.g. the rapid closure of the stigmas upon their being touched by a potential animal pollinator.
mucilage ducts/canals ~ Specialized cells that secrete mucilage.
mucronate ~ With a stiff, straight apical process, length : width ratio 1:1 to 3:1. (apical process)
mucronulate ~ With a stiff, straight apical process, length : width ratio ≤ 1:1. (apical process)
multicellular ~ Trichomes having two or more cells. (trichome type)
multiple fruit ~ A fruit derived from two or more flowers. (fruit type)
multiseriate ~ (a) Perianth composed of three or more distinct whorls. (perianth cycly) (b) Trichomes having more than one vertical row of cells. (trichome type) (c) Rays in wood that are made up of many vertical rows of cells.
multistate character ~ A character with three or more character states.
muricate ~ Having coarse, radially elongate, rounded protuberances. (epidermal excrescence)
murus ~ The structural element of a reticulate pollen grain. Pl: muri.
mycorrhiza A symbiotic association between a fungus and roots, functioning to increase absorptive surface area and mineral uptake. Pl: mycorrhizae. (root part)

mycorrhizae A symbiotic association between the root of a vascular plant and a fungus.

mycotrophic Obtaining nutrition from mycorrhizal fungi in the soil, as in some Ericaceae.

naked bud A bud lacking surrounding protective scales, e.g. Viburnum, Caprifoliaceae. (bud type)

narrowly acute Apical margins approximately straight, the intersection angle <45°. (apex)

narrowly cuneate Basal margins approximately straight, the intersection angle <45°. (base)

narrowly elliptic Margins curved, widest near midpoint, length : width ratio between 6:1 and 3:1. (shape)

narrowly oblong Margins straight, parallel, length : width ratio between 6:1 and 3:1. (shape)

narrowly triangular Three-sided, length : width ratio between 6:1 and 3:1. (shape)

natural selection The directed and nonrandom genetic modification of a population or species, in which genetic changes that result in an increase in survivorship and/or reproduction are contributed to the next generation more.

neck The distal, narrow extension of the sterile jacket cells of the archegonium, through which a sperm cell must travel to fertilize the egg.

neck canal cells Cells located within the neck of the archegonium that break down and are secreted from the pore of the neck at maturity.

nectariferous disk A nectary consisting of a disklike or doughnut-shaped mass of tissue surrounding the ovary base or top; may be inner to (intrastaminal), beneath (staminal), or outer to (extrastaminal) the androecium. (flower part, nectary type)

nectary A group of specialized cells that secrete sugar- (or protein-) rich fluids to the outside, as a reward for pollination or protection. (flower part)

neotony A type of paedomorphosis caused by a decrease in the rate of development of a feature.

neotype A specimen derived from a nonoriginal collection that is selected to serve as the type as long as all of the material on which the name was originally based is missing.

nervé Vein. (leaf part)

netted With ultimate veinlets forming a reticulum or netlike pattern. Syn: reticulate. (leaf venation)

network Unrooted tree.

nexine The inner layers of the exine, including both endexine and the foot-layer of the ectexine.

nitid Appearing lustrous, polished. Syn: shining. (epidermal excrescence)

nocturnal Occurring during the night, typically with respect to when flowers open. (periodicity)

node (a) The point of attachment of a leaf to a stem. (stem/shoot parts) (b) The region of stem at which leaf, leaves, or branches arise. (twig part) (c) The point of divergence of one clade into two; the point in time and space of the most common ancestor of the two divergent clades.

node-based A type of phylogenetic classification in which a node (common ancestor) of the cladogram (and all descendants of that common ancestor) serves as the basis for grouping.

nomen conservandum Meaning a conserved name. Abbr: nom. cons.

nomen novum Meaning a new name. Abbr: nom. nov.

nomen nudum Meaning a name published without a description or diagnosis, making the name invalid. Abbr: nom. nud.

nomenclatural type A specimen that acts as a reference for a scientific name, upon which the name is based. Syn: type; type specimen.

nomenclature The formal naming of taxa according to some standardized system; for plants, algae, fungi, and or gamisms traditionally treated as fungi, governed by the International Code of Botanical Nomenclature.

non Latin for not.

nondesussate Opposite leaves or other structures (e.g. leaflets) not at right angles to the preceding pair; may be superficially the result of stem twisting. (arrangement)

nondisjunction An irregularity during meiosis in which homologous chromosomes do not segregate, which may result in the production of gametes that are unbalanced, i.e. have two sets of chromosomes.

nonendospermous Exalbuminous. (seed endosperm type)

nomenclature Referring to wood having only tracheids.

nucellar beak A proliferation of cell divisions of the nucellus at the micropylar region of the ovule.

nucellus Term for the megasporangium of a seed. Adj: nucellar.

nuclear endosperm An endosperm in which the early mitotic divisions are not followed by cytokinesis.

nucleus A double membrane-bound, cellular organelle that contains DNA.

number Whether a Latin name is singular or plural.

nut A one-seeded, dry indehiscent fruit with a hard pericarp, usually derived from a 1-loculed ovary. (fruit type)

nutlet A small nut, e.g. mericarps of the Lamiaceae. (fruit type)

nutritive tissue Tissue that surrounds or abuts the embryo of a seed and that consists of female gametophyte (in nonangiosperms) or endosperm (in angiosperms).

obdiplostemonous Stamens in two whorls, the outer opposite petals, inner opposite the sepals, e.g. Simaroubaceae. (stamen position)

oblanceolate Margins curved, widest near the apex, length : width ratio 6:1 to 3:1. (shape)

oblance-ovate Margins curved, widest near the apex, length : width ratio 3:1 to 2:1. (shape)

oblate A pollen grain in which the P/E ratio is less than about 0.8.

oblique With an asymmetrical apex or base. (apex, base)

oblong Margins straight, parallel, length : width ratio 2:1 to 3:2. (shape)

obovate Margins curved, widest near apex, length : width ratio 2:1 to 3:2. (shape)

oburator A protuberance of tissue, typically arising from the funiculus or placenta at the base of the ovule, e.g. Euphorbiaceae.

obtuse Apical or basal margins approximately straight, intersection angle >90°. (apex, base)

ocrea A specialized, scariosus, sheet-like structure arising above the node in some members of the family Polygonaceae, interpreted as modified stipules. (leaf part)

oil A type of triglyceride compound that may function as high-energy storage compounds or secretion products; a type of ergastic substance.
oil bodies Oil-containing structures found within certain cells of most liverworts.

oil ducts/canals Specialized cells that secrete oil.

onagrad type Crucifer type.

ontogenetic sequence The discrete stages of the developmental sequence of a given feature.

ontogenetic trajectory A plot of developmental change as a function of time.

ontogeny The developmental sequence of a given feature.

oogamy A type of sexual reproduction in which one gamete, the egg, becomes larger and nonflagellate and the other gamete, the sperm cell, remains relatively small and flagellate; found in all land plants and independently evolved in many other eukaryotes.

operculate Having calyx and corolla fused into a cap that falls off as a unit, e.g. Eucalyptus. (perianth type)

operculum An apical lid, as in the capsule of most mosses that falls off during spore release.

opposite With two leaves or other structures per node, on opposite sides of stem or central axis. (arrangement)

orbicular Circular in outline; margins curved, length : width ratio approximately 1:1. Adj: circular (shape)

ordered Referring to a transformation series in which the character states occur in a predetermined sequence.

organelles Structural, membrane-bound units of the cell that provide some vital metabolic function.

orientation Referring to the angle relative to a central, usually vertical, axis. (disposition)

ornithophily Pollination by birds. Adj: ornithophilous.

ortho-amphitropous An ovule type in which the vasculature is straight, leading from the funiculus base to the middle of the nucellus, with the nucellus bent sharply in the middle along both the lower and upper sides, often with a basal body present.

ortho-campylotropous An ovule type in which the vasculature is straight, leading from the funiculus base to the middle of the nucellus, with the nucellus bent only along the lower side, with no basal body.

orthographia conservanda Meaning a conserved spelling in a scientific name. Abbr: orth. cons.

orthotropous A type of ovule in which no curvature takes place during development, the micropyle being positioned opposite the funiculus base.

outcrossing The transfer of gametes from one individual to another, genetically different individual. Syn: outcrossing; allogamy; xenogamy.

P/E ratio The ratio of the polar diameter to the equatorial diameter.

pachycalyx An erect, woody, trunklike stem that is swollen basally, the swollen region functioning in storage of food reserves or water. (stem/shoot type)

padlike nectary Developing as a discrete pad of tissue extending partway around the base of the flower. (nectary type)

paedemorphosis A type of heterochrony in which the mature or adult stage of the derived ontogenetic sequence resembles a juvenile ontogenetic stage of the ancestral condition.

palea The inner and upper bract at the base of the grass floret, or the bracts subtending flowers in some Asteraceae, e.g. tribe Heliantheae. Pl: paleae. (leaf structural type)

palinactinodromous With three or more primary veins diverging from one point, the primary veins having additional branching above their main point of divergence. (leaf venation)

palisade mesophyll The usually upper (adaxial), columnar cells of the mesophyll of some leaves.

palmate/palmately compound A compound leaf with four or more leaflets arising from a common point, usually at the end of the petiole. (leaf type)

palmately netted Netted, with four or more primary veins arising from a common basal point. (leaf venation)

palmately veined With four or more primary veins arising from a common basal point. (leaf venation)

palmate-netted Palmately veined, with four or more primary veins arising from a common basal point, the ultimate veins forming a fine reticulum. (leaf venation)

palmate-parallel With several primary veins arising from one point, the adjacent secondary veins that are parallel to these having transverse, interconnecting veins, e.g. f an palms. (leaf venation)

palmate-ternate Ternate, with the three leaflets joined at a common point. (leaf type)

palmatifid Palmately lobed to divided. (division)

palmatisect Palmately divided, almost into discrete leaflets but confluent at the lobe bases. (division)

palynology The study of spores and pollen grains.

panulate A flower with one large posterior petal (banner petal) apically connate lower petals (keel); floral structure of the Heliantheae. Pl: paleae. (leaf structural type)

pantoporate Develops as a discrete pad of tissue extending partway around the base of the flower. (nectary type)

papillate With minute, rounded protuberances. Syn: tuberculate; verrucate. (epidermal excrescence)

papillose Having minute, rounded protuberances. Syn: tuberculate; verrucate. (epidermal excrescence)

pappus The calyx of the Asteraceae, modified as awns, scales, or capillary bristles.

parallel With primary or secondary veins essentially parallel to one another, generally converging at the apex, the ultimate veinlets transverse. (leaf venation)

paraphyletic Referring to a group that includes a common ancestor plus some, but not all, descendants of that common ancestor.
paratype A specimen cited in a publication but that is neither a holotype, isotype, or syntype.

parenchyma Cells that, at maturity, are alive and potentially capable of cell division, are isodiametric to elongate in shape, and have a primary cell wall only (rarely with secondary wall), forming a solid mass of tissue and functioning in metabolic activities and in wound healing and regeneration.

parietal With the placenta on the inner wall or on intruding partitions of a unilocular, compound ovary, e.g. Violaceae. (placentaion)

parietal cell The outer cell formed if the archesporial cell of an ovule divides to form an inner megasporocyte.

parietal-axile With the placenta at the junction of the septum and pericarp of a 2- or more loculate ovary, e.g. Brassicaceae. (placentaion)

parietal-septate With placenta on the inner ovary walls but within septate locules, as in some Aizoaceae. (placentaion)

paripinnate/paripinnately compound A pinnately compound leaf without a terminal leaflet, typically even-pinnate. (leaf type)

parsimony analysis Principle of parsimony.

parted With sinuses extending (pinnately or palmately) one half to three quarters of the distance to the midrib, midvein, or vein junction. (division)

parthenogenesis Development of an embryo from a cell of an abnormal, diploid female gametophyte, such as a diploid egg.

partial inflorescence Unit inflorescence. (inflorescence part)

patent Horizontal; divergate; divergent. (orientation)

peat Fossilized and partially decomposed Sphagnum (peat moss).

pectinate Comblike; pinnately divided with close, narrow lobes. (division)

pedicel A flower stalk. Adj: pedicellate. (flower part; inflorescence part)

peduncle The stalk of an entire inflorescence. Adj: pedunculate. (inflorescence part)

pellucid Having translucent spots or patches. (color pattern)

pellate (a) Having a stalk attached away from the margin of a flattened structure, e.g. a petiole attached on the underside of blade. (base) (b) Trichomes with stalk attached on the underside of a disk-shaped apical portion. (trichome type)

pendant/pendulous Hanging downward loosely or freely (orientation)

pendulous Apical. (placentaion)

penni-parallel With secondary veins arising along the length of a single primary vein region, the former essentially parallel to one another and interconnected by tranverse veins. Syn: pinnate-parallel. (leaf venation)

pentamous Having a whorl with five members. (merosity, perianth merosity)

pepo A nonseptate, fleshy fruit with parietal placentaent and a leathery exocarp derived from an inferior ovary, e.g. Cucurbitaceae. (fruit type)

peramorphosis A type of heterochrony in which ontogeny passes through and goes beyond the stages or trajectory of the ancestral condition.

perennial A plant living more than 2 years. (duration)

perfect (a) Bisexual. (flower sex) (b) With lateral primary veins covering at least two thirds of the leaf blade area, a subcategory of actinodromous and of acrodromous. (leaf venation)

perfoliate A leaf blade that is sessile with the base completely surrounding the stem. (leaf attachment)

perforation plate The contact area of two adjacent vessel members, may be compound, if composed of several pores or simple if composed of a single opening.

perforation plate The region of one or more perforations at the end wall of a vessel member, where one cell makes contact with another; may be simple or compound.

perianth The outermost, nonreproductive group of modified leaves of a flower, composed of the combined calyx and corolla or of tepals. Syn: perigonium. (flower part)

pericarp The fruit wall, derived from the mature ovary wall, sometimes divisible into layers: endocarp, mesocarp, and exocarp. Syn: rind. (fruit part)

pericycle A cylindrical sheath of parenchyma cells just inside the endoderms, functioning as the site of resumed meristematic growth, forming a secondary root or (in woody plants) contributing to the vascular cambium.

perigonal nectary Nectaries on the perianth, usually at the base of sepals, petals, or tepals. (nectary type)

perigonium perianth. (flower part)

perigynous Hypanthium present, attached at base of ovary, with sepals, petals, and stamens attached to hypanthium rim, the ovary superior. (perianth/androecial position)

perine layer A thick, outer layer in the spores of mosses.

periodicity Referring to periodically repeating phenomena. (temporal phenomena)

periplasmodial Amoeboid.

perispermous Having a seed storage tissue in which the chalazal nucellar cells enlarge and store energy-rich compounds.

peristome teeth Hygroscopic, teethlike structures that occur in a whorl along the margin of the opening of a moss capsule and that function in spore release.

personate Two-lipped, with the upper arched and the lower protruding into corolla throat, e.g. Antirrhinum. (perianth type)

petal An individual member or segment of the corolla, typically (nongreen) colored and functioning as an attractant for pollination. (flower part, perianth part)

petalostemonous Epipetalous. (stamen fusion)

petiolar spine A sharp-pointed leaf petiole, e.g. Fouquieria spp. Cf: thorn; prickle. (leaf structural type)

petiolule A leaflet stalk. Adj: petiolulate. (leaf part)

phalaenophily Pollination by moths. Adj: phalaenophilous.

phanerocotylar Exserted. (stamen insertion)

phanerocotylar Epipetalous. (stamen insertion)

phelloderm The inner layers of cells produced by the cork cambium.

phenetic A classification system in which taxa are grouped by some measure of overall similarity.

phenogram A branching diagram representing a phenetic classification.

phloem A tissue composed of specialized sieve elements plus some parenchyma and often some sclerenchyma, functioning in conduction of sugars.

photosynthesis The series of biochemical reactions in which light energy is used to produce high-energy compounds, in land plants involving reactions of carbon dioxide and water to produce polysaccharides.
phyllary One of the involucral bracts subtending a head, as in the Asteraceae. Syn: involucral bract. (leaf structural type)

phyllode Cladode; cladothyll. (stem/shoot type)

phyllode A leaf consisting of a flattened blade-like petiole. (leaf structural type)

phylogenetic Referring to a classification that is based on evolutionary history, or pattern of descent.

phylogenetic systematics A methodology for inferring the pattern of evolutionary history of a group of organisms by grouping taxa based on apomorphies. Syn: cladistics.

phylogenetic tree Cladogram.

phylogeny The evolutionary history or pattern of descent of a group of organisms.

cilcete With a long terete stalk terminating in a globose or ellipsoid apical thickening. (shape)

cylindric-glandular Having a glandular cell atop an elongate basal stalk. (trichome type)

pilose With soft, straight to slightly shaggy trichomes at right angles to the surface. (vestiture)

pin Flowers with a long style and short stamens, found in distylyous flowers.

pinnate The first discrete leaflets or blade divisions of a fern leaf. Pt: pinnae. (leaf part)

pinnate/pinnately compound A compound leaf with leaflets arranged oppositely or alternately along a central axis, the rachis. (leaf type)

pinnately veined With secondary veins arising along length of a single primary vein, the latter a midrib or leaflet midvein. (leaf venation)

pinnate-netted Pinnately veined, with secondary veins arising along length of a single primary vein, the latter a midrib or midvein, the ultimate veins forming a fine reticulum. (leaf venation)

pinnate-parallel Penni-parallel. (leaf venation)

pinnate-ternate Ternately compound, with the terminal leaflet arising from the tip of a rachis, evolutionarily derived from a pinnately compound leaf, e.g. some Fabaceae. (leaf type)

pinnatifid Pinnately lobed to divided (division)

pinnatisect Pinnately divided, almost into discrete leaflets but confluent at the midrib. (division)

pinna The first discrete leaflets or blade divisions of a fern leaf. Pt: pinnae. (leaf part)

piperad type A type of embryo development in which the zygote divides longitudinally (i.e. parallel to the axis of the female gametophyte and nucellus), thus not forming a basal and terminal cell.

pistil That part of the gynoecium composed of an ovary, one or more styles (which may be absent), and one or more stigmas. (flower part, gynoecium part)

pistillate Flowers unsexual, with carpel(s) only, lacking fertile stamen(s). Syn: female. (flower sex)

pit A hole in a secondary cell wall that functions in cell-to-cell communication during development and that may function in water conduction in some tracheary elements.

pit pairs Adjacent holes in the lignified secondary cell walls of two adjacent cells.

pitcher leaf A leaf shaped like a container that bears an internal fluid and that functions in the capture and digestion of small animals, e.g. leaves of Darlingtonia, Nepenthes, Sarracenia, pitcher plants. (leaf structural type)

pith The central, mostly parenchymatous tissue, internal to vasculature of siphonosteles and eustele and within the vascular cylinder of some roots. (root parts, stem/shoot parts)

pit-pair Pits of adjacent cells occurring opposite one another, functioning in allowing communication between cells during their development and differentiation.

placenta The ovule-bearing tissue of the ovary. (gynoecium part)

placental vein Ventral vein.

placentation Referring to the position of the ovules within the ovary. (gynoecium, carpel, and pistil)

plane (a) Flat, without vertical curves or bends. (transverse posture), (b) With a smooth configuration. Syn: smooth. (configuration)

plant A group of organisms, defined either by characteristics (possessing photosynthesis, cell walls, spores, and a more or less sedentary behavior), or by phylogenetic relationships, equivalent in this text to the land plants, Embryophyta.

plant anatomy The study of tissue and cell structure of plant organs.

plant habit General form of plant, including aspects of stem duration, branching pattern, development, and texture. (plant organs)

plant physiology The study of metabolic processes in plants.

plant press A device used to press and then dry plant specimens, such that they can be effectively used in an herbarium specimen.

plant sciences The study of plants, which are here equivalent to the land plants.

plasma membrane A phospholipid bilayer with embedded proteins that envelopes all cells, functioning as the cell boundary, in cell cell recognition, and in transport of compounds.

plasmodesma Minute pores in the primary cell wall through which membranes traverse between cells, allowing for interchange of compounds between cells; an apomorphy for the Charophytes of the green plants.

plasmodial Amoeboid.

plated Bark split or cracked, with flat plates between fissures. (bark type)

pleonanthic An indeterminate shoot that bears lateral flowers but that continues vegetative growth. (stem/shoot type, stem branching pattern, inflorescence type)

plesiomorphic Ancestral.

pleurotropous An ovule position in which the micropyle points to the side.

pleurotropous-dorsal A pleurotropous ovule in which the raphe is above.

pleurotropous-ventral A pleurotropous ovule in which the raphe is below.

plicate With a series of longitudinal folds; pleated. (longitudinal posture)

plumose (a) Covered with fine, elongate, ciliate appendages; featherlike, e.g. pappus of some Asteraceae. (bristle type) (b) Stigmas with feathery, trichomelike extensions, often found in wind-pollinated taxa such as Cyperaceae, Poaceae. (stigma/stigmatic region type)

plurilocular Referring to an ovary with two or more locules. (locule number)

pneumatophores Roots that grow upwardly from soil to air, functioning in obtaining additional oxygen for the plant. (root type)

polar axis An extended pollen grain diameter that passes through the center of the original pollen tetrad.
polar nuclei In a typical angiosperm female gametophyte, the two haploid nuclei of the central cell that ultimately fuse with a sperm cell (via double fertilization) to form a triploid endosperm cell.
polar view Observing a pollen grain from the direction of either pole.
polarity The designation of relative ancestry to the character states of a transformation series/morphcline.
pollen grain An immature, endosporic male gametophyte of seed plants. (anther part)
pollen sac A microsporangium, usually one-half of a theca in an angiosperm anther. (anther part)
pollen tube An exosporic process that grows from a pollen grain, functioning as a haustorial organ or to deliver sperm cells to the egg.
pollenkit A yellowish or orange, carotenoid-like material adhering to the exine, functioning to stick pollen grains in masses.
pollinarium In an orchid flower, the pollinia plus a sticky stalk (derived from either the anther or stigma), the unit of transport during pollination.
pollination The transfer of pollen grains from microsporangia either directly to the ovule (in gymnosperms) or to the stigma (in angiosperms).
pollination chamber A cavity formed by the breakdown of cells at the distal end of the megasporangium (nucellus) in gymnosperm seeds.
pollination droplet A droplet of liquid secreted by the young ovule through the micropyle, functioning to transport pollen grains by resorption.
pollinium Anther in which all pollen grains of both thecae (Orchidaceae) or of adjacent thecae (Asclepiadaceae) are fused together as a single mass. Pl: pollinia. (anther type)
polyad A group of pollen grains that are fused in precise units of more than four, e.g. Mimosoideae.
polyclade key A key in which all of the known character states that match a specimen are selected in order to narrow down the identity to a smaller subset of the possibilities.
polygamous A plant with both bisexual and unisexual flowers. (plant sex)
Polygonum type A type of monosporic female gametophyte in which the megaspore nucleus undergoes three, sequential mitotic divisions, producing eight nuclei and seven cells, the most common and ancestral type in the angiosperms.
polymerase chain reaction A procedure for the rapid amplification of DNA using primers, free nucleotides, and DNA polymerase in solution and heating the solution to effect denaturation and replication of the DNA. Abbrev: PCR.
polyphyletic character A character that has variable character state values within an OTU.
polypletalous Apospetalous. (perianth fusion)
polyphyletic group A group that consists of two or more, separate monophyletic or paraphyletic groups, each with a separate common ancestor; a group in which the common ancestor of all members is not itself a member of the group.
polyplody A mutation in which offspring have a multiple of some ancestral set of chromosomes.
polysepalous Aposepalous. (perianth fusion)
polystichous Spiral. (arrangement)
polytomy Three or more lineages arising from a single common ancestor in a cladogram, representing conflicting data or the lack of resolution.

pome A fleshy fruit with a cartilaginous endocarp derived from an inferior ovary, with the bulk of the fleshy tissue derived from the outer, adnate hypanthial tissue, e.g. Malus, apple. (fruit type)
population A group of individuals of the same species that is usually geographically delimited and that typically have a significant amount of gene exchange.
pore (a) A specialized, permanent opening in the upper epidermis of the thallus of some liverworts, functioning in gas exchange. (b) A single hole in the primary cell wall of sieve elements that is lined with callose and through which solutes flow in sugar conduction. (c) Vernacular term for a wood vessel, used in the wood industry.
poricidal Dehiscing by a pore at one end of the thecae, e.g. Ericaceae. (anther dehiscence type)
poricidal capsule A capsule in which the dehiscence occurs by means of pores, e.g. Papaver, poppy. (fruit type)
porese Referring to vessel cells with more or less circular, porelike perforations.
porous Referring to wood that contains vessel cells.
porus A pollen grain aperture that is circular to slightly elliptic with a length:width ratio of less than 2:1. Pl: pori. Adj: porate.
position (a) Placement relative to other, unlike parts. (disposition) (b) The placement of a taxon as a member of another taxon of the next higher rank.
posterior Referring to the upper lobe or part, especially in a horizontally oriented structure. (position)
posture Placement relative to a flat plane. (disposition)
preamorse Having a jagged, chewed appearance, e.g. some palms. (margin)
prickle A nonspine, nonthorn, sharp-pointed outgrowth from the surface of any organ. Adj: prickly. (plant, twig part)
primary cell wall The first, mostly cellulosic cell wall layer that is secreted external to the plasma membrane during cell growth.
primary endosymbiosis Endosymbiosis involving the engulfment of an ancestral bacterium by a eukaryotic cell.
primary growth Growth in height or length of a stem or root, brought about by the elongation and differentiation of cells derived from the apical meristem.
primary inflorescence Unit inflorescence. (inflorescence part)
primary parietal cells The inner layer of cells in an early stage of anther wall development.
primary pit field A group of numerous plasmodesmata in the primary cell wall, spatially associated with secondary cell wall pit pairs.
primary root The root of the sporophyte that develops from the radical of the embryo. (root type)
primary tissue A tissue formed by primary growth, e.g. as in primary xylem or primary phloem.
primary vein The major vein or veins of a leaf with respect to size. (leaf venation)
primer A complementary copy of a short, conserved, flanking region of a region of DNA of interest, used to amplify and sequence the DNA.
primitive Ancestral.
principle of parsimony The principle stating that the cladogram exhibiting the fewest number of evolutionary steps is accepted as the best estimate of phylogeny; a corollary of the general principle of Ockham’s Razor. Syn: parsimony analysis.
priority of publication A principle of the International Code of Botanical Nomenclature stating that of two or more competing...
prismatic A short, prism-shaped crystal; a type of ergastic
substance.

procumbent Prostrate. (stem habit)

proembryo A very young embryo.

prolate A pollen grain in which the P/E ratio is greater than
about 1.2.

prop root Above-ground, adventitious roots that function in
supporting the stem (root type).

prophyll/prophyllum Bracteole/bractlet. (leaf structural type,
flower part)

prostrate Trailing or lying flat, not rooting at the nodes.

protandry With stamens or anthers developing before carpels
or stigma. Adj: protandrous. (maturation, flower maturation)

proteinoplast Aleurone grain.

protogyny With carpels or stigma maturing before stamens or
anthers. Adj: protogynous. (maturation, flower maturation)

protonema An initial, filamentous form of a gametophyte (e.g. in
mosses), prior to its differentiation into parenchymatous tissue.

protoplasm Everything inside the plasma membrane of a cell.

protosteole A stеле with a central, solid cylinder of vascular tissue.

protoxylem Referring to the first tracheal elements that develop
within a patch of xylem, being typically smaller and with thinner
cell walls than the later formed metaxylem.

proximal Near the point of origin or attachment. (position)

proximal pole The intersection of the pollen grain polar axis with
the grain surface that is near the center of the microspore tetrads.

pseudanthium A unit that appears as and may function like a
single flower, but that typically consists of two or more flowers
fused or grouped together. (inflorescence type)

pseudobulb A short, erect, aerial storage stem of certain epiphytic
orchids. (stem/shoot type)

pseudocarssinucellate An ovule type in which an second inner
layer of nucellar cells by periclinal divisions in the single outer
layer, a parietal cell not forming.

pseudodrupe A nut surrounded by a fleshy, indehiscent involu-
core, resembling a true drupe, e.g. Juglans, walnut. (fruit type)

pseudoeiaters Groups of elongate, cohering, nonsporogenous,
generally hygroscopic cells that develop within the sporangia of
hornworts and function in spore dispersal.

pseudopetiole Term sometimes used for the petiole-like structure
arising between a leaf sheath and blade, found in several mono-
cots, such as bananas, bamboo. (leaf part).

pseudodermal bud A bud appearing to be apical but that is actu-
al near the apex, assuming a terminal position with the death or
nondevelopment of the true terminal bud. (bud type)

pseudoumbel An inflorescence appearing like a simple umbel,
but actually composed of condensed, monochasial cymes, as in
the Alliaceae and Amaryllidaceae. (inflorescence)

psilate A pollen grain having a smooth sculpturing.

psychophily Pollination by butterflies. Adj: psychophilous.

puberulent Minute pubescent. (vestiture)

pubescent (a) With straight, short, soft, somewhat scattered,
slender trichomes. (b) A general term, meaning having trichomes.
(vestiture)

pulvinus The swollen base of a petiole or petiolule, e.g. in some
Fabaceae. (leaf part)

punctate Covered with minute, pitlike depressions. (configuration)

pungent Spinoso. (apical process)

pyrene A fleshy fruit in which each of two or more seeds is enclosed
by a usually bony-textured endocarp, or the seed covered by a
hard endocarp unit itself, regardless of the number. (fruit type)

pyxide/pyxis Circumscissile capsule. (fruit type)

quincuncial Perianth parts of a single pentamorous whorl having
two members overlapping, two being overlapped, and one over-
lapping only at one margin. (perianth aestivation)

race An indeterminate inflorescence consisting of a single axis
bearing pedicellate flowers. (inflorescence type)

rachilla A lateral or secondary axis of a bipinnate leaf. (leaf part)
(b) The central axis of a grass or sedge spikelet. (inflorescence
part) Pl: rachillae.

rachis (a) The main axis of a pinnately compound leaf. (leaf part)
(b) A major, central axis within an inflorescence (inflorescence part)

radial (a) Actinomorphic. (b) Referring to a longitudinal section
of wood, parallel to a stem radius.

radical Basal. (position)

radicle The first root of a seed embryo. (root type, seed part)

ramet A clonal unit of a genet that is, at least potentially, inde-
pendent from other ramets. Cf: genet.

random amplified polymorphic DNA The use of using randomly
generated primers for the amplification of DNA to identify
polymorphic DNA regions of different individuals or taxa.
Abbr: RAPD.

rank One of the hierarchical taxonomic categories, in which a
higher rank is inclusive of all lower ranks.

rhaphe Ridge on seed coat formed from adnate funiculus. (seed part)

raphide A needlelike crystal of calcium oxalate, typically occurring
in bundles; a type of ergastic substance.

ray (a) A secondary axis in a compound umbel. (inflorescence part)
(b) A corolla with a short tube and a single, elongate, straplike apical extension, e.g. some Asteraceae. Syn: ligulate.

(perianth type) (c) Radially oriented cells that occur in bandlike strands in the secondary xylem (wood), functioning in lateral
translocation of water, minerals, and sugars.

reccency of common ancestry A measure of phylogenetic rela-
tionship, stating that two taxa are more closely related to one
another if they share a common ancestor that is more recent in
time than the common ancestor they share with any other taxon.

receptacle The tissue or region of a flower to which the other
floral parts are attached. (flower part)

reclinate Reclined. (orientation)

reclined Directed downward, with divergence angle of 15° - 45°
from horizontal axis. Syn: reclinate. (orientation)

reclining Prostrate. (stem habit)

recurved With tip gradually curved outward or downward,
abaxially. (transverse posture)

reduced A type of anther wall development in which the second-
ary parietal cells do not divide further and develop directly into the
endothecium and tapetum, respectively.

reduplicate Plicate, with adjacent abaxial sides facing one another,
Λ-shaped in cross-section. (longitudinal posture)

reflected Bent or turned downward. (orientation)

regular Actinomorphic.

relative cover A measure of the degree to which each species of
a community layer contributes to the total cover of that layer
alone.
remodel/remodeling To change the diagnostic characteristics of a taxon.

reniform (a) Kidney-shaped; wider than long with a rounded apex and reniform base. (shape) (b) With two rounded, basal lobes, smoothly concave at intersection of lobes. (base)

repend Margins wavy in a vertical plane. (longitudinal posture)

repost Creeping or lying flat and rooting at the nodes. (stem habit)

replum A septum, generally with attached seeds, that persists after fruit dehiscence, e.g. silicles and siliques of Brassicaceae. (fruit part)

rescaled consistency index (RC) A measure of the relative amount of homoplasy in a cladogram, equal to the product of the consistency index and retention index.

resin ducts/canals Specialized cells that secrete resin.

restriction fragment length polymorphism Differences between taxa in restriction sites, and therefore the lengths of fragments of DNA after cleavage with restriction enzymes. Abbr: RFLP.

restriction site A sequence of approximately six to eight base pairs of DNA that binds to a given restriction enzyme.

resupinate Inverted or twisted 180°, as leaves of Alstroemeriaceae or ovaries of most Orchidaceae flowers. (twisting/bending posture)

reticulate (a) Netted. (leaf venation) (b) A pollen sculpturing with a netlike sculpturing., each element termed a murus and the space between termed a lumen.

reticulation Hybridization of two previously divergent lineages, forming a new lineage.

reticulodromous (a) Pinnate venation in which secondary veins do not terminate at the margin and branch repeatedly, forming a very dense, netlike structure. (leaf venation) (b) With three or more primary veins diverging from one point but not reaching the blade margin, a subcategory of actinodromous. (leaf venation)

retinaculum Jaculator. Pl: retinacula.

retrorse Bent or directed downward, usually referring to small appendages. (orientation)

retenue Having an apical incision, cut up to 1/3 the distance to the midrib, midvein, or junction of primary veins. (apex)

reversal Homoplasy by the loss of a derived feature and the reversion (fixation) of a character state changes, and s is the actual number of state changes that occur.

reticulate A pollen sculpturing with a netlike sculpturing., each element termed a murus and the space between termed a lumen.

reticulation Hybridization of two previously divergent lineages, forming a new lineage.

rhombic Parallelogram-shaped, widest near the middle, the length : width ratio 2:1 to 3:2. (shape)

rhomboidal tetrad A tetrad in which the four grains are in one plane, with two of the grains separated from one another by the close contact of the other two.

ribosome A cellular organelle that functions in protein synthesis.

ribulose-bisphosphate carboxylase The enzyme that catalyzes the initial binding (fixation) of carbon dioxide in the dark reactions of photosynthesis. Abbr: RuBP-carboxylase.

rind Pericarp.

ring-porous Wood in which the vessels form only in the spring wood, with summer wood either lacking or having relatively small vessels and usually containing mostly fibers.

root A cylindrical organ of virtually all vascular plants, consisting of an apical meristem that gives rise to a protective root cap, a central endodermis-bounded vascular system, absorptive epidermal root hairs, and endogenously developed lateral roots; usually functioning in anchorage and absorption of water and minerals; initially derived from the radicle of the embryo and typically growing downward. (plant part)

root apical meristem Region of continuously dividing cells from which all cells of the root are derived. (root part)

root cap The outer cell layer at the root tip, functioning in protection and lubrication. (root part)

root hair One of several hairlike extensions from an epidermal cell of a root, functioning to greatly increase the surface area available for water and mineral absorption. (root part)

root tube A swollen taproot containing concentrations of high-energy compounds such as starch. (root type)

rootcap An outer layer of cells at the tip of a root, functioning to protect the root apical meristem and to provide lubrication for the growing root.

rootstock A general term for an underground stem or shoot, these generally giving rise to aerial shoots either by direct conversion of the terminal apical meristem or via lateral buds. (stem/shoot type)

rose An arrangement in which parts, usually leaves, radiate from a central point at ground level, e.g. the leaves of Taraxacum officinale, dandelion. Adj: rosulate. (arrangement)

rotate With a short tube and wide limbs oriented at right angles to the tube. (perianth type)

rounded With apical or basal margins convex, forming a single, smooth arc. (apex, base)

rugose Covered with coarse reticulate lines, usually with raised, blisterlike areas between. Syn: bullose. (configuration)

rugulate A pollen sculpturing having irregular to sinuous, tangentially oriented elements, often appearing brainlike.

runninate Unevenly textured, coarsely wrinkled, looking as if chewed, e.g. the endosperm of the Ammonaceae. (surface, texture)

runner Stolon. (stem/shoot type)

saccate Having a pouched evagination. (perianth type)

sagittate With two basal lobes, more or less pointed and oriented downward, away from apex. (base)

salverform Trumpet-shaped; with a long, slender tube and flaring limbs at right angles to tube. (perianth type)

samara A winged, dry fruit, e.g. Acer, maple; Ulmus, elm. (fruit type)
sapromyiophily Pollination by flies. Adj: sapromyiophilous.
sarcotesta A seed coat that is fleshy at maturity. (seed part)
sarmenotose Stoloniferous. (stem habit)
saxicicolous Occurring on rock. (plant habitat)
sabrerulous Minutely scabrous. (epidermal excrescence, vestiture)
sabrate Spinulose.
sabrous Having a rough surface or trichomes, resembling sandpaper. (epidermal excrescence, vestiture)
scale (a) A small, nongreen leaf of a bud or underground rootstock. (leaf structural type) (b) A bract of a sedge spikelet. (inflorescence part)
scaling Assigning a weight in a phylogenetic analysis to correlated characters that is the inverse of the total number of the correlated characters. Adj: scaled.
sca
dent Clambering.
scape A naked (leafless) peduncle, generally arising from a basal rosette of vegetative leaves. Adj: scapose. (stem/shoot type, inflorescence part)
scarious Thin and appearing dry, usually whitish or brownish. (texture)
schizocarp Derived from a two or more loculed compound ovary in which the locules separate at maturity. (fruit type)
schizocarp of follicles A schizocarp in which the carpels of a pistil split at fruit maturity, each carpel developing into a unit follicle, e.g. Asclepiadaceae. (fruit type)
schizocarp of mericarps A schizocarp in which (generally two) carpels of a single, unlobed ovary split during fruit maturation, the carpels developing into unit mericarps and attached to one another via a stalklike carpophore, e.g. Apiaceae. (fruit type)
schizocarp of nutlets A schizocarp in which a single ovary becomes lobed during development, each lobe developing at maturity into a nutlet, e.g. Boraginaceae, Lamiaceae. (fruit type)
scientific name A formal, universally accepted name, the rules and regulations of which (for plants, algae, fungi, and animals traditionally treated as such) are provided by the International Code of Botanical Nomenclature.
sclereid A sclerenchyma cell that is isodiametric to irregular in shape and often branched, functioning in structural support or possibly aiding in providing protection from herbivory.
sclerenchyma A tissue composed of nonconductive cells that are dead at maturity, that have a thick, lignified, generally pitted secondary cell wall, and that function in structural support and/or to deter herbivory; composed of fibers and sclereids.
scorpoid cyme A monochasium in which the branches develop on alternating sides of each sequential axis, typically appearing geniculate (zig-zag); may intergrade with helicoid cyme. Syn: cincinnus. (inflorescence type)
scurfy Farinaeous. (epidermal excrescence)
secondary cell wall An additional wall layer, composed of cellulose and lignin, secreted between the plasma membrane and the primary cell wall following cell elongation, found in some cell types (including tracheary elements and fibers).
secondary endosymbiosis Endosymbiosis involving the engulfment of an ancestral eukaryotic cell by another eukaryotic cell, a possible mechanism of chloroplast exchange between eukaryotes.
secondary growth Growth in girth or width by means of cells produced from lateral meristems.
secondary parietal cells Two layers of cells arising by tangential divisions of the primary parietal cells of the anther wall.
secondary phloem Sugar-conducting tissue produced by the vascular cambium to the outside of a woody stem or root. Syn: inner bark.
secondary root A root derived endogenously from the pericycle of an existing root. (root type)
secondary tissue A tissue formed by secondary growth, via lateral meristem.
secondary vein A lateral vein that branches from and is smaller than a primary vein. (leaf venation)
secondary xylem Water- and mineral-conducting tissue produced by the vascular cambium to the inside of a woody stem or root. Syn: wood.
secretory An anther tapetum type in which the tapetum remains intact with no breakdown of cell walls. Syn: glandular.
secretory structure A collection of cells that secrete compounds, either internally or externally.
secund Flowers, inflorescences, or other structures on one side of axis, often due to twisting of stalks. Syn: unilatera
d (arrangement)
sedge spikelet The inflorescence unit of the Cyperaceae, sedge family, consisting of a central axis (the rachilla), bearing spiral or distichous bracts (also called scales or glumes), each subtending a single flower.
seed An embryo surrounded by nutritive tissue and enveloped by a seed coat; the propagule of the seed plants.
seed coat The outer protective covering of seed, developing from one or two integuments. Syn: testa. (seed part)
self-dispersal Process by which a flowering plant buries its own fruits. e.g. Arachis hypogaea, peanut. Syn: autochory.
self-incompatibility Outcrossing occurring by the genetic inability for fertilization to occur between gametes derived from a single genotype.
seling Inbreeding.
semelparous Referring to plants that have one episode of reproduction, followed by degeneration and death of the entire plant. Adj: semelparous.
semicraspedodromous Pinnate venation in which the secondary veins branch near the margin, one terminating at the margin, the other looping upward to join the next secondary vein. (leaf venation)
sensu lato Meaning in the broad sense; designated for a taxon name that is used inclusively, for a broad, inclusive taxon circumscription to include other, previously recognized taxa. Abbr: s.l.
sensu stricto Meaning in the strict sense; designated for a taxon name used exclusively, to exclude other, previously recognized taxa. Abbr: s.s.; s.str.
sepal An individual member or segment of the calyx, typically green, leaflike, and functioning to protect the young flower. (flower part, perianth part)
septal nectary A nectary embedded within the ovary septae, secreting nectar via a pore at the ovary base or top. (nectary type)
septicial capsule A capsule in which longitudinal lines of dehiscence are radially aligned with the septa. (fruit type)
septifragal capsule A capsule in which the valves break off from the septa, as in Ipomoea, morning glory. Syn: valvular capsule. (fruit type)
septum A partition or cross-wall of the ovary. (gynoecium part, fruit part)
serrulate
An aggregation of callose-lined pores in simple corymb.
serrulate
(a) Diminutive of serrate, teeth cut to 1/6 the distance to midrib, midvein, or junction of primary veins. (margin)
(serrate)
Saw-toothed; teeth sharp and ascending, the lower side longer, cut 1/6 to 1/2 the distance to midrib, midvein, or junction of primary veins. (margin)
sessile
(a) Without a petiole or, for leaflets, without a petiolule. (leaf attachment)
(b) Lacking a pedicel. (flower attachment)
(c) With filament absent, the anther attached directly. (stamen attachment)
(d) Ovary lacking a basal stalk. (ovary attachment)
sessile-glandular
Glandular cell with a very short or no basal stalk. (trichome type)
sexine
The outer, protruding layers of the exine, including colu-
mellae, tectum, and supratectal sculpturing elements.
sheath
A flattened leaf base or petiole that partially or fully clasps the stem, e.g. Poaceae and many Apiaceae. (leaf part)
sheathing
Attached by a curved or tubular structure that partially or totally encloses the stem. (leaf attachment, base)
shining
Nitid. (epidermal excrescence)
shoot
A stem plus associated, derivative leaves, initially formed by an apical meristem that gives rise to the stem and external (exogenous) leaf primordia; may be gametophytic or sporophytic. (plant part)
short shoot
Fascicle; spur; spur shoot. (stem/shoot type)
shreddy
Bark coarsely fibrous, often fissured. (bark type)
shrub
A perennial, woody plant having several main stems arising at ground level. (plant habit)
sieve area
An aggregation of callose-lined pores in sieve elements.
sieve cell
A type of sieve element that has only sieve areas on both end and side walls, found in nonangiospermous vascular plants.
sieve element
A generally elongate cell that is semialive at maturity, has a nonlignified, primary cell wall with specialized, callose-lined pores aggregated into sieve areas and/or sieve plates, and that functions in conduction of sugars.
sieve plate
One or more sieve areas at the end wall junction of two sieve tube members, the pores of which are significantly larger than are those of sieve areas located on the side wall; characteristic of angiosperms.
sieve tube member
A type of sieve element that has both sieve areas and sieve plates, the latter at the end wall junction of two sieve tube members and having larger pores; an apomorphy of angiosperms.
sieve tube plastid
A membrane-bound plastid found in sieve tube members, the contents of which (whether starch or protein) can vary between taxa and be systematically informative.
silicic acid
A dry, dehiscent, 2-carpeled fruit that dehisces along two sutures, has a persistent partition (replum), and is as broad or broader than it is long, e.g. Brassicaceae. C.f. silique. (fruit type)
silicic acid
A dry, dehiscent, 2-carpeled fruit that dehisces along two sutures, has a persistent partition (replum), and is longer than it is broad, e.g. Brassicaceae. C.f. silicic acid. (fruit type)
simple leaf
A leaf not divided into leaflets, bearing a single blade (leaf type)
simple cone
A cone consisting of an axis bearing sporophylls.
simple corymb
An unbranched corymb, consisting of a central axis bearing pedicellate flowers, the collection of flowers being flat-topped or convex. (inflorescence type)
species nova Meaning that a taxon name, at the rank of species, is new to science. Abbr: sp. nov.

specific epithet The second name of a binomial; may be capitalized or not.

sperm A haploid, motile or nonmotile, male gamete that functions to fuse with an egg cell, producing a diploid zygote.

spheroidal Approximately spherical in shape, e.g. referring to pollen grains.

spike An indeterminate inflorescence consisting of a single axis bearing sessile flowers. (inflorescence type)

spikelet A small spike; the basic inflorescence unit in the Cyperaceae (sedges) and Poaceae (grasses). (inflorescence type)

spine A sharp-pointed leaf (e.g. cactus spines or glochidia) or leaf part, including petiole (e.g. Fouquieria spp.), midrib, secondary vein, leaflet (e.g. Phoenix spp.) or stipule (e.g. Euphorbia spp.) Cf: thorn; prickle. (leaf structural type)

spinose (a) Margins with teeth bearing sharp, stiff, spinelike processes. (margin) (b) With a sharp, stiff, spinelike apical process. Syn: pungent. (apical process)

spinoles A pollen sculpturing having spinelike elements <1 mm long, each element termed a spinulum. Syn: scabrate.

spiniaum One of the spinelike elements of a spinulose pollen grain. Pl: spinuli.

spiral (a) Alternate, with points of attachment in more than three rows/ranks. Syn: polystichous. (arrangement) (b) Perianth parts arranged in a spiral, one per node, not in distinct whorls. (perianth arrangement) (c) Stamens arranged in a spiral, one per node; not whorled. (stamen arrangement) (c) A type of endothecium in which the secondary wall thickenings are spiral or helical in shape.

spiraperturate A pollen grain having one or more apertures that are spirally shaped.

spongy mesophyll The usually lower (abaxial), irregular cells of the mesophyll that generally have large intercellular spaces, found in some leaves.

sporangial wall One or more outer layers of sterile, non-sporoproducing cells of the sporangium.

sporangophore A unit of the strobilus of the Equisetales, consisting of a peltate axis bearing pendant (ancestrally recurved), longitudinally dehiscent sporangia.

sporangium The spore-producing organ of the sporophyte. Pl: sporangia. (plant part)

spore A haploid cell that, in the land plants, originates from meiotic divisions of sporocytes within a sporangium, ultimately growing into a gametophyte.

sporocarp The generally spheroidal reproductive structure of aquatic ferns, functioning in allowing the sporangium inside to remain dormant and resist desiccation for a long time.

sporocyte A cell of the sporangium that undergoes meiosis, producing (generally four) haploid spores.

sporogenous tissue Internal cells of the sporangium that mature into sporocytes, the latter forming spores by meiotic divisions.

sporophyll A specialized leaf that bears one or more sporangia.

sporophyte The diploid (2n) phase in the haplodiplontic life cycle of all land plants.

sporophytic leaf The leaf of a vascular plant sporophyte.

sporopollenin A polymer of oxidative carotenoids or carotenoid esters that impregnates the exine of pollen grain walls.

spring wood The secondary xylem from the first part of the growing season, the cells of which tend to be larger in diameter with thinner walls.

spur A tubular, rounded or pointed projection from the calyx or corolla, functioning to contain nectar. (perianth part)

spur/spur shoot Fascicle. (stem/shoot type)

squarrose Sharply curved downward or outward (abaxially) near the apex, as the phyllaries of some Asteraceae. (transverse posture)

stamen The unit of the androecium; a microsporophyll (typically modified as a filament) bearing generally two pollen-bearing thecae, fused into an anther. (flower part)

stamen insertion (a) Referring to whether or not stamens protrude beyond the perianth. (b) Denoting the point of insertion, the point of adnation of an epipetalous stamen to the corolla. (androecium)

staminal disk A discoid or doughnut-shaped structure arising from the receptacle at the base of the stamens; may be nectar-bearing. Syn: nectariferous disk. (flower part)

staminate Flowers unisexual, with stamen(s) only, lacking fertile carpel(s). Syn: male. (flower sex)

staminode/staminodium A sterile stamen, producing no functional pollen; may be modified as a nectary or petaloid structure; may or may not contain an antherode, a sterile anther. (stamen type)

starch A polysaccharide of glucose units (alpha-1,4-glucopyranoside) in green plants, functioning as the high-energy storage compound.

starch grain Lamellate deposits of starch in green plant cells, functioning as the high-energy storage compound; a type of ergastic substance. Syn: amyloplast.

status novus Indication of a change in rank of a scientific name. Abbr: stat. nov.

stele The spatial distribution of the primary vasculature of a stem, organized into arrangements of xylem and phloem.

stellate Star-shaped trichomes having several arms arising from a common base (stalked or sessile), e.g. many Malvaceae. (trichome type)

stem A generally cylindrical organ that bears leaves, typically functioning in support and elevation of leaves and reproductive structures and in conduction of water, minerals, and sugars; in vascular plants initially derived from the epicotyl of the embryo and generally growing upward. (plant part)

stem (cladogram) Internode.

stem habit Stem feature based on structure, position, growth, and orientation of above-ground stems. (stems and shoots)

stem-based A type of phylogenetic classification in which the stem (internode) region just above a common ancestor plus all descendants of that stem are the basis for grouping.

sterile jacket layer Antheridal wall; archegonial wall.

sterile segment The photosynthetic blade or lamina component of the leaf of an ophioglossoid fern.

stigma The pollen-receptive portion of a pistil; may be a discrete structure or a region of a style or style branch. (gynoecium part)

stinging trichome A sharp-pointed trichome that secretes an irritating fluid upon penetrating the tissue of an animal.

stipe (a) A leaf stalk, often used for ferns. Syn: petiole. (leaf part) (b) Gynophore. Adj: stipitate. (gynoecium part) (c) The stalk of the sporophyte of mosses.

stipel One of a pair of leaflike structures, which may be modified as spines or glands, at either side of the base of a petiolule, e.g. some Fabaceae. Adj: stipellate. (leaf part)
stipular spine A sharp-pointed stipule, e.g. *Euphorbia* spp. Cf. thorn; prickle. (leaf structural type)

stipule One of a pair of leaflike structures, which may be modified as spines or glands, at either side of the base of a petiole. Adj: stipulate. (leaf part)

stipule scar A mark indicating the former place of attachment of a stipule. (twig part)

stolon An indeterminate, elongate, slightly underground or above-ground propagative stem, with long internodes, rooting at the tip forming new plants. Syn: runner. (stem/shoot type)

stoloniferous With elongate propagative shoots (stolons) rooting at the tip producing new plants. Syn: sarmentose. (stem habit)

stoma The opening between two guard cells of a stomate.

stomate Specialized epidermal cells, consisting of two guard cells, which, by changes in turgor pressure, can increase or decrease the size of the opening (stoma) between them. Pl: stomata; stomates.

storage root A swollen taproot containing concentrations of high-energy compounds such as starch. (root type)

straight Flat, without vertical curves or bends. (transverse posture)

strap-shaped Flat, not needlelike but with length : width ratio greater than 12:1. (shape)

stripe (a) With fine longitudinal lines. (configuration) (b) A pollen sculpturing having thin, cylindrical, tangentially oriented elements.

strict consensus tree A consensus tree that collapses any differences in branching pattern between two or more cladograms to a polytomy.

strigose Covered with dense, coarse, bent, and mostly flat trichomes, often with a bulbous base. (vestiture)

strigulose Minutely strigose. (vestiture)

strobilus Cone. (plant part)

style A stalklike portion of the pistil between the stigma and ovary; may be absent. (gynoecium part)

stylaid A single, elongate, angular crystal of calcium oxalate; a type of ergastic substance.

stylopodium A swollen region at apex of the ovary, below the styles/stigmas, e.g. Apiaceae.

subapical With style arising at one side near the apex of the ovary. (style position)

subbasifixed Anther attached just above its base to the filament. (anther attachment)

suber A waxy, water-resistant substance, found in stomata, Casparian strips of the endodermis, and the cell walls of cork cells.

suberogenous Nearly glabrous, with just a few, scattered trichomes. (vestiture)

subopposite With two leaves or other structures on opposite sides of stem or central axis but at different nodes, slightly displaced relative to one another. (arrangement)

subsessile Having a very short, rudimentary petiole (leaf attachment), petioloile (leaflet attachment), pedicel (flower attachment), or filament (stamen attachment).

subshrub A short shrub that is woody only at the base and that seasonally bears new, nonwoody, annual shoots above. (plant habit)

subsidiary cell An epidermal cell adjacent to a stomate and somewhat different from other epidermal cells in shape and size, functioning in regulating stomatal opening.

subspecific epithet The third component of a trinomial at the rank of subspecies.

subulate Aawl-shaped; approximately narrowly oblong to narrowly triangular. (shape)

succesive A type of microsporogenesis in which cytokinesis occurs after meiosis I.

succulent Fleshy or juicy. Syn: baccate, carnose. (texture)

sulcus An elongate aperture similar in shape to a colpus (length : width ratio >2:1) occurring at the (usually distal) pole. Adj: sulcate.

summer wood The secondary xylem from the latter part of the growing season, the cells of which tend to be smaller in diameter with thicker walls.

superior With sepals, petals, stamens, and/or hypanthium attached at the base of the ovary. (ovary position)

superposed bud Bud(s) occurring above the axillary bud. (bud type)

supervolute With one half of a simple leaf coiled tightly around the midrib, the other half coiled (in the opposite direction) around the first half, as in members of the Zingiberales. (posture: ptyxis/aestivation)

suprabasal With three or more primary veins diverging from one point above the base of the blade, a subcategory of actinodromous and palinactinodromous. (leaf venation)

suprafacial Descriptive of a palm inflorescence that is positioned above the leaves of the crownshaft.

suspenensor A nonpersistent column of cells of the embryo, functioning in transport of nutrients to the mature, persistent embryo during its development.

syncarp A multiple fruit in which the unit fruits are small achenes covering the surface of a fleshy, inverted compound receptacle, e.g. *Ficus*, fig. (fruit type)

symmetry Referring to the presence and number of mirror-image planes of symmetry.

sympetalous With connate petals. Syn: gamopetalous. (perianth fusion)

symplesiomorphy A shared, ancestral features among taxa, which may be used as a basis for grouping in a phenetic classification.

sympodial A branching pattern in which a given axis is made up of several units, each of which is derived from a separate apical meristem, the units themselves determinate or indeterminate. (stem branching pattern)

synangium A fusion product of two or more sporangia, e.g. in the psilophytes and some marattiod ferns.

synanthy Timing in which leaves and flowers develop at the same time. Adj: synanthous.

synapomorphy An apomorphy that unites two or more taxa or lineages.

syncarp An aggregate fruit, typically of berries, in which the unit fruits fuse together, e.g. *Annona*. (fruit type)

syncarpous With carpels (at least at the base) connate, the pistil or ovary being compound. (gynoeical fusion)

syncolpate A pollen grain in which the colpi are joined, e.g. at the poles.

synergid cells In a typical angiosperm female gametophyte, the two haploid cells that flank the egg and that may function in pollen tube entry.

syngenesious With anthers connate and filaments distinct, e.g. Asteraceae. (stamen fusion)

synonym A rejected name, by a particular author or authors, either because the name is illegitimate or because of taxonomic judgment.
synoptic collection A collection of plant specimens that contain one specimen (of all available specimens) of each taxon for a given region.
synsepalous With connate sepals. Syn: gamosepalous. (perianth fusion)
syntepalous With connate tepals. (perianth fusion)
syntype A specimen that was cited in the original work when a holotype was not designated, or one of two or more specimens that were all designated as types.
systematics A science that includes and encompasses traditional taxonomy and that has as its primary goal the reconstruction of phylogeny.
tandem repeat A sequence of DNA that repeats multiple times.
tangential Referring to a longitudinal section of wood, perpendicular to a stem radius.
tannin Phenol derivatives in plant cells that may function to deter herbivory and parasite growth; a type of ergastic substance.
tapering Trichomes ending in a sharp apex. (trichome type)
taproot A persistent, well-developed primary root. (root type)
tautonym A binomial in which the genus name and specific epithet are identical in spelling, illegitimate in the International Code of Botanical Nomenclature.
taxon A group of organisms, ideally monophyletic and traditionally treated at a particular rank.
taxonomic key Key.
taxonomic revision A change of the definition and delimitation of a taxon.
taxonomy A field of science (and major component of systematics) that encompasses description, identification, nomenclature, and classification.
tectate-columellate A common exine structure that consists of an inner foot-layer, a middle layer of radially elongate columellae, and an outer, rooflike layer called the tectum.
tectum The outer, rooflike layer of a tectate-columellate pollen exine wall.
tendril (a) A coiled and twining leaf part, usually a modified rachis or leaflet. (leaf structural type) (b) A long, slender, coiling branch, adapted for climbing. (stem/shoot type)
tentacular leaf A leaf bearing numerous, sticky, glandular hairs or bristles that function in capturing and digesting small animals, e.g. Drosera, sundew. (leaf structural type)
tenuinucellate An ovule in which the nucellus is composed of a single layer of cells, with no formation of a parietal cell.
tepal A component of the perianth in which the parts intergrade or in which the perianth is undifferentiated into distinctive sepals and petals. (flower part, perianth part)
terete Cylindrical. (shape)
terminal (a) At or near the top, tip, or end of a structure. (position) (b) Entire inflorescence positioned as a terminal shoot relative to the nearest vegetative leaves. (inflorescence position) (c) Style arising at the apex of the ovary. (style position)
terminal bud Bud at the apex or end of a stem. Syn: apical bud. (bud type)
terminal bud scale scar Ringlike marks indicating the former place of attachment of the terminal bud scales. (twig part)
ternate/ternately compound A compound leaf with three leaflets. Syn: trifoliolate. (leaf type)
ternately veined With three primary veins arising from a common basal point. (leaf venation)
ternate-netted/ternately netted Ternately veined, with three primary veins arising from a common basal point, the ultimate veins forming a fine reticulum. (leaf venation)
terrestrial Growing on land. (plant habitat)
tertiary vein A lateral vein that branches from and is smaller than a secondary vein. (leaf venation)
testa Seed coat. (seed part)
tetrad A fusion product of four pollen grains, developing from the four products of microsporogenesis.
tetradynamous With stamens in two groups of four long and two short, e.g. Brassicaceae. (stamen arrangement)
tetragonal tetrad A tetrad in which the four grains are in one plane and are equally spaced apart.
tetrahedral tetrad A tetrad in which the four grains form the points of a tetrahedron, e.g. members of the Ericaceae.
tetramerous A whorl with four members. (merosity, perianth merosity)
tetraploid A polyploid having four sets of chromosomes.
tetrasporangiate Anther with four microsporangia and typically two thecae. Cf: dithecal. (anther type)
tetrasporic Megasporogenesis in which cytokinesis does not occur after meiosis, resulting in a single cell with four haploid nuclei, all of which contribute to the female gametophyte.
texture Internal structural consistency, sometimes incorporating color.
thalloid Referring to or having a thallus.
thallus The flattened (dorsi-ventral) gametophyte of some liverworts and all hornworts. (plant part)
theca One half of typical anther containing two microsporangia. (anther part)
thon A sharp-pointed stem or shoot (cf. prickle, spine). (stem/shoot type)
throat An open, expanded region of a perianth, usually of a sympetalous corolla. (perianth part)
thrum Flowers with a short style and long stamens, found in distylos flowers.
thyakloid A membrane of chloroplasts and photosynthetic bacteria that contains compounds involved in the light reactions of photosynthesis.
thyrse A secondary inflorescence with an indeterminate central axis bearing opposite, lateral, pedicellate cymes, e.g. Echium (Boraginaceae), Penstemon (Plantaginaceae). (inflorescence type)
tiller A grass shoot produced from the base of the stem. (stem/shoot type)
tissue A group of cells having a common function or structure; may be simple or complex.
tomentose Covered with dense, interwoven trichomes. (vestiture)
tomentulose Minute tomentose. (vestiture)
torus Compound receptacle. (inflorescence part)
total cover A measure of the degree to which the total area of the community is covered by members of a given layer.
thraecy element A generally elongate cell that is dead at maturity, has a lignified, secondary cell wall, and is positioned end-to-end with other thraecy elements, forming a continuous...
tube that functions in water and mineral conduction; the major component of xylem tissue.

tracheid The ancestral type of tracheary element that is imperforate, in which water and mineral nutrients flow between adjacent cells through the primary cell walls at pit-pairs.

transfer in position To reclassify a taxon without a change in rank; to place within a different taxon of the same rank.

transformation series The hypothesized sequence of evolutionary change, from one character state to another, in terms of direction and probability. Syn: morphoclone.

transverse (a) Dehiscing at right angles to the long axis of the theca. (anther dehiscence type) (b) Referring to a cross-section of wood.

transverse posture Placement of tip with respect to the horizontal plane of object. (disposition)

trap leaf A leaf that mechanically moves after being triggered, capturing and digesting small animals, e.g. *Aldrovanda, Dionaea* venus fly trap. (leaf structural type)

tree A generally tall, perennial, woody plant having one main stem (the trunk) arising at ground level. (plant habit)

triangular Three-sided, length : width ratio 2:1 to 3:2. (shape)

trichome An external, hairlike plant structure.

trichotomosulcate A pollen grain aperture type that is three-armed.

tricyclic *Triseriate.* (cycly)

trifoliolate *Tenateteraternately compound.* (leaf type)

trigger mechanism A type of movement hercogamy in which an insect pollinator triggers the sudden movement of one or more stamens, dusting the insect with pollen at the point of contact.

trilete mark A three-lined imprint on the spore wall of some land plants, being the remnant (scar) of attachment of the adjacent three spores of a tetrad.

trimerous A whorl with three members. (merosity, perianth merosity)

trinomocoeous A plant with pistillate, staminate, and perfect flowers on the same individual. (plant sex)

trinomial A scientific name composed of three names, such as *Solanum tuberosum*.

trinucleate Having three nuclei, referring to some angiosperm taxa. Syn: triclinous.

trinomial A leaf that mechanically moves after being triggered, capturing and digesting small animals, e.g. *Aldrovanda, Dionaea* venus fly trap. (leaf structural type)

triternatally compound A compound leaf with three orders of axes, the third (rachillae) bearing leaflets. (leaf type)

triploidy A type of polyploid with three sets of chromosomes.

triseriate With three whorls of parts. Syn: *tricyclic.* (cycly)

tristichous Alternate, with points of attachment in three vertical rows/ranks, e.g. *Cyperaceae.* (arrangement)

tristyly Hercogamy in which there are three heights of styles and stamens. Adj: *tristylous.*

tristomatic A pollen grain with three elongate apertures on opposite sides of the grain, parallelogram-shaped. (perianth part)

trullate Parallelogram-shaped, widest near base and the length: width ratio 2:1 to 3:2. (shape)

truncate Apical or basal margin cut straight across, the angle approximately 180°. (apex, base).

tryma A nut surrounded by an involucre that dehisces at maturity, e.g. *Carya, pecan.* (fruit type)

tube A cylindrically shaped perianth or region of the perianth, usually of a sympetalous corolla. (perianth part)

tube cell One of the two initial, haploid cells in the male gametophyte of angiosperms that remains near the tip of the growing pollen tube and may function in its development.

tuber A thick, underground storage stem, usually not upright, typically bearing outer buds and lacking surrounding storage leaves or protective scales, e.g. *Solanum tuberosum.* (stem/shoot type)

tuberculate *Papillate.* (epidermal excrescence)

tubular Cylindrical. (perianth type)

turbinata Top- or turban-shaped. (shape)

twining Twisted around a central axis. (twisting/bending posture)

two-armed Trichomes with two arms arising from a common base, e.g. *Malpighiaceae.* (trichome type)

type/type specimen *Nomenclatural type.*

typus conservandus Meaning a conserved type specimen. Abbr: *typ. cons.*

typus designatus Referring to the designation of a type specimen. Abbr: *typ. des.*

ulcerous A circular to slightly elliptic aperture similar in shape to a porus (length : width ratio <2:1) occurring at the (usually distal) pole. Adj: *ulcerate.*

umbel A determinate or indeterminate, flat-topped or convex inflorescence with pedicels attached at one point. (inflorescence type)

uncinate *Hooked.* (bristle type)

undulate Margins wavy in a vertical plane. (longitudinal posture)

unguiculate Clawed, e.g. *many Brassicaceae, Caryophyllaceae.* (perianth type)

unicarpellous With gynoecium composed of one carpel, the pistil or ovary being simple. (gynoecial fusion)

** unicellular** Referring to a trichome (or other structure) consisting of a single cell. (trichome type)

unicalyx A leaf that is isobilateral and flattened side-to-side, having left and right sides, except at the base, where it is often sheathing, e.g. members of the Iridaceae. (leaf structural type)

unifoliolate A leaf bearing a single leaflet with petiole distinct from the petiole, interpreted as the derived reduction of an ancestral compound leaf, e.g. *Cercis, redbud.* (leaf type)

unilateral *Secund.* (arrangement)

unilabiate One-lipped; with one, generally lower, segment, e.g. many Goodeniaceae. (perianth type)

unilocular An ovary with a single locule. (ovary number)

uninervous Having a central midrib with no lateral veins, e.g. *lyco-pods, psilophytes, and equisitophytes, many conifers.* (leaf venation)

uniseriate (a) With a single whorl of parts. (cycly, stamen cycly, perianth cycly) Syn: *monocyclic.* (b) Trichomes having a single vertical row of cells. (trichome type) (c) Rays in wood that are composed of a single, vertical row of cells.

unisexual Flowers having only carpel(s) or only stamen(s). Syn: *imperfect.* (flower sex)

unistomal Referring to the micropyle of a unitegmic ovule.

unit inflorescence A subunit of the entire secondary inflorescence. Syn: *partial inflorescence; primary inflorescence.* (inflorescence part)

unitegmic An ovule with a single integument, found in all gymnosperms and derived in some angiosperms.
unordered Referring to a character transformation series in which each character state is allowed to evolve into every other character state with equal probability, generally in a single evolutionary step.

unrooted tree A branching diagram in which polarity is not indicated, representing the relative character state changes between taxa. Syn: network.

upper epidermis The adaxial epidermis of a leaf.

upward Dehiscing toward the sky in a horizontally oriented flower. (anther dehiscence direction)

urceolate Urn-shaped; expanded at the base and constricted at the apex, e.g. many Ericaceae. (perianth type)

urent With hispid and stinging trichomes. (vestiture)

utricle A small, bladdery or inflated, one-seeded, dry fruit; an achene in which the pericarp is significantly larger than the mature seed, e.g. Atriplex, salt bush. (fruit type)

vacuole A large, internal, membrane-bound sac of plant cells that functions in storage of compounds such as pigments, acids, or ergastic substances.

valid name A name that is validly published.

validly published Referring to the criteria needed for a scientific name to be formally recognized, including effective publication, publication in correct form, publication with a Latin description or diagnosis or with a reference to such, and indication of a nomenclatural type.

valvate (a) Sides enrolled, so that margins touch. (arrangement) (b) Having a whorl of perianth parts meeting at the margins and not overlapping. (perianth aestivation)

valve A portion of the pericarp of a dehiscent fruit that splits off but does not enclose the seed(s). (fruit part)

valvular Anther dehiscing through a pore covered by a flap of tissue, e.g. Lauraceae. (anther dehiscence type)

valvular capsule Septifragal capsule. (fruit type)

variegated With two or more colors occurring in various irregular patterns, generally used for leaves. (color pattern)

varietal epithet The third component of a trinomial at the rank of variety.

vascular bundle scar A mark within the leaf scar indicating the former position of a vascular bundle that extended from stem to leaf. (twig part)

vascular bundle sheath A ring of cells, composed of fiber or parenchyma cells, surrounding the xylem and phloem of a vascular bundle, functioning in C4 photosynthesis.

vascular cambium A cylindrical sheath of cells that undergoes primarily tangential divisions, producing secondary xylem (wood) to the inside and secondary phloem (inner bark) to the outside.

vascular cylinder A central region of vascular tissue (xylem and phloem) in a root (root part) or in some stems (stem part).

vascular cylinder A central region of xylem and phloem in the root.

vascular strand Vascular bundle. (stem/shoot parts)

vascular tissue A tissue made up of xylem and phloem, functioning mainly in conduction of water, minerals, and sugars.

vegetation type An assessment of the habit, habitat, and cover of plant species present, e.g. forest, woodland, savanna, chaparral, scrub, grassland, meadow, strand marsh, swamp, pond, and vernal pool.

vegetative bud A bud that develops into a vegetative shoot, bearing leaves. (bud type)

vein The vascular bundle of a leaf or leaf homologue such as a sepal, petal, stamen, or carpel, containing the conductive tissues. Syn: nerve. (plant part, leaf part)

velamen A specialized, multilayered epidermis of some roots, functioning in protection, prevention of water loss, or water and mineral absorption, e.g. Araceae, Orchidaceae.

venation The pattern of veins and vein branching of a leaf or leaf homologue. (leaf venation)

vener The swollen, basal portion of an archegonium, containing the egg.

ventral Adaxial. (position)

ventral canal cell A second cell within the swollen base of the archegonium, located just distal to the egg.

ventral vein One of the two veins of a carpel near the carpel margins. Syn: lateral vein, placental vein.

vernal Appearing in spring. (periodicity)

verruca One of the short, wartlike elements of a verrucate pollen grain. Pl: verrucae.

verrucate (a) Papillate. (epidermal excrescence) (b) A pollen sculpturing having short, wartlike elements, each element termed a verruca.

versatile With anther freely pivoting at the point of attachment with the filament. (anther attachment)

verticillaster A secondary inflorescence with an indeterminate central axis bearing opposite, lateral, sessile cymes, the flowers appearing congested, e.g. some Lamiaceae. (inflorescence type)

verticillate Having three or more leaves or other structures per node. (arrangement)

very widely obovate Margins curved, widest near the apex, length : width ratio ca. 1:1. (shape)

very widely ovate Margins curved, widest near the base, length : width ratio ca. 1:1. (shape)

vespertine In the evening, typically with respect to when flowers open. (periodicity)

vessel Term for several vessel members attached end-to-end, forming a continuous, conductive tube. Syn: pore.

vessel member A type of tracheary element that is perforate, in which continuous holes or perforations in the cell walls occur through which water and mineral nutrients flow between cells.

vestiture Trichome cover, a combination of trichome type, length, strength, shape, density, and color. (surface)

vicariance The splitting of one ancestral population into two (or more) populations, such as by continental drift or the formation of a geographic barrier.

vide Meaning to cite a reference.

villos Covered with very long, soft, crooked trichomes. Syn: lanate. (vestiture)

vine A plant with elongate, weak stems, supported by means of scrambling, twining, tendrils, or roots; may be annual or perennial, herbaceous or woody. (plant habit)

viscid Having a shiny, sticky surface. Syn: glutinous. (epidermal excrescence)

viscous thread One of the long strands of carbohydrate material that function in sticking pollen grains together.

voucher specimen An herbarium specimen in a plant collection serving as reference material for a named taxon or as part of a research project.
wax A type of triglyceride compound that may function as high-energy storage compounds or secretion products; a type of ergastic substance.

weight The specific assignment of taxonomic importance when weighting a character in a phylogenetic analysis.

weighting/character weighting The assignment of greater or lesser taxonomic importance to certain characters over other characters in determining phylogenetic relationships.

whorl A cyclic group of floral parts, e.g. of sepals, petals, stamens, or carpels. Syn: series. (flower part)

whorled (a) With three or more leaves or other structures per node. (leaf arrangement) (b) Perianth parts in distinct whorls or series, with parts arising from the same nodal region. (perianth arrangement) (c) With stamens in one or more whorls or series. (stamen arrangement)

widely elliptic Margins curved, widest near the midpoint, length : width ratio ca. 6:5. (shape)

widely obovate Margins curved, widest near the apex, length : width ratio ca. 6:5. (shape)

widely ovate Margins curved, widest near the base, length : width ratio ca. 6:5. (shape)

widely triangular Three-sided, length : width ratio ca. 6:5. (shape)

wood Secondary xylem.

woody Having a hard, woodlike texture. (texture)

wrinkled With irregular, fine lines or deformations. (configuration)

× Abbreviation, used within a scientific name, that indicates a hybrid.

xenogamy Outbreeding. Adj: xenogamous.

xylem A tissue composed of tracheary elements plus some parenchyma and sometimes sclerenchyma, functioning in conduction of water and mineral nutrients.

zig-zag Referring to the micropyle of a bitegmic ovule in which the micropylar pore of the outer integument is spatially displaced relative to the inner integument.

zonoaperturate Descriptive of pollen grains with apertures occurring in the equatorial region. Syn: stephanoaperturate.

zonocolpate A pollen grain with colpi occurring in the equatorial region.

zonoporate A pollen grain with pori occurring in the equatorial region.

zoochory Dispersal of propagules by animals.

zygomorphic Bilaterally symmetrical, with one plane of symmetry. Syn: bilateral, irregular. (symmetry)

zygote A diploid cell that results from the fusion of two haploid cells (egg and sperm) and that ultimately matures into a new sporophyte in the land plants.
Archeopterix, 107, 108
Archontophoenix, 186
Arctostaphylos, 294
Areca, 188
Arecaceae (Palmae), 185, 186-187, 188
Arecas, 185
Arenaria, 247
Argophyllacea, 292
Argyroserpium, 326
Arisama, 162
Aristolochiaceae/Aristolochia, 149, 151
Armeria, 238
Arrangement, 396-397
Artocarpus, 275
Asarum, 149, 151
Asclepiaceae, see Apocynaceae
Asclepias, 304
Asexual reproduction, 472
Asparagaceae, 159, 165
Asparagus, 163, 165-166
Asphodelaceae, 171-172
Asphodelus, 171-172
Asplenium, 89
Astelaceae, 159
Aster, 328
Asteraceae (Compositae), 326-330, 331
Asterales, 322
Asterella, 61
Asterids, 289, 291-293
Asteropaeaceae, 230
Atactostele, 155, 420, 421
Atherospermaeaceae, 140
Atrichum, 65
Atriplex, 243
Atropa, 319
Attractant, 466
Austrobaileyaceae, 140
Austrobaileyales, 143
Autapomorphy, 18, 25
Authority, 504
Autonym, 507
Avena, 216, 218
Averrhoa, 272, 274
Axil, 76
Azalea, see Rhododendron
Azolla, 88, 92
Bacteria, 3
Balanopaceae, 255
Balanophoraceae, 230
Balsaminaceae, 292
Banksia, 237
Barbeuiceae, 230
Barbayeaceae, 255
Base, 392
Basellaceae, 230
Bataceae, 255
Baumhia, 263
Bayesian analysis/inference, 36
Buxus, 61
Begoniaeaceae, 255
Berberidaceae/Berberis, 228, 230-231
Berberidopsidaceae, 230
Berberidopsidales, 230
Betalains, 238-239, 241
Betulaceae/Betula, 265, 267
Biebersteiniaeaceae, 255
Bignoniaceae, 308, 310-311
Bionomial, 12, 502
Biogeography, 41
Bispore, 441, 444
Bixaceae, 255, 280
Blandfordia, 166
Blandfordiaeaceae, 159, 165-166
Blighia, 289
Bloomeria, 178
Bomarea, 181
Bonnetiaceae, 255
Bootstrap, 37-38
Boraginaeaceae s.s., 298, 300-301
Borago, 300, 301
Borya, 159
Boschniakia, 316
Botanical names, see Names, botanical
Botany, 9
Botrychium, 83-84
Bougainvillea, 239
Bowenia, 108, 109
Brachychiton, 283, 286
Brachypodium, 218
Bract, 114
Brasenia, 143, 145
Brassata, 325
Brassicaceae (Cruiceraceae)/Brassica, 280-281
Brassicales, 278, 280
Breeding
mechanism, 474
systems, 468-472
Bremner support, see Decay index
Bristle type, 401-402
Brodiaea, 178
Bromeliaceae, 203, 204, 205
Brown plants, 4-5
Brgmannia, 321
Brunelleaceae, 255
Bruniaceae, 292
Bryophyllum, 251
Bud, 76, 355-356
Bulbine, 172
Burchardia, 181
Burmanniaceae, 159
Burseraceae, 255, 286
Butomaceae, 159
Buxaceae, 230
Buxales, 230
Byblidaceae, 292
Cabomba, 143
Cabombaceae, 143, 145
Cactaceae, 244, 245-246
Caesalpinia, 263
Calile, 281
Caladenia, 174
Caladium, 160
Calamites, 85, 97
Calamus, 187-188
Calathea, 202
Calceolariaceae, 292, 310
Calindria, 239
Callicarpa, 263
Callichiton, 258, 259
Callichitriaceae, see Plantognaeaceae
Callichitriceae, 315, 318
Callose, 415
Calochortus, 182
Calodendrum, 288
Calonyction, 320
Calopogon, 174
Calothamnus, 258
Calycanthaceae, 140
Calyceraceae, 292
Calyptra (=Oerculum)
flower, 256, 258
moss, 63
Calystegia, 320
Calyx, 121; see also Perianth
Camassia, 165, 168
Camissonia, 260
Campanulaceae, 292
Campsis, 311
Camptoleprous, 446
Campynemaaceae, 159
Canellales/Canellaceae, 140
Cannabaceae, 255, 275
Cannaceae/Canna, 198, 201, 203
Capparaceae, 255, 280, 282 see also
Brassicaceae
Caprifoliaceae, 331, 333
Capsule, 59, 348; see Sporangium
Cardamine, 281
Cardiopteridaceae, 292
Cardiospermum, 290
Cardius, 327, 328, 329, 330
Carex, 207, 210
Caricaceae, 255, 280
Carissa, 303
Carolinianaceae, 292
Carnegiea, 246
Carpet, 121, 127-129, 374-379
ascidiate, 128
number, 376-377
Carpinus, 265
Carpodotis, 242
Carum, 322
Caryocaraceae, 255
Caryophyllaceae, 244, 247, 249
Caryophyllales, 238, 239
Caspian strip, 73-74, 77, 417-418
Casua, 263
Catalema, 268, 269
Castilleja, 316
Casuarinaceae, 255, 265
Catharanthus, 303, 305
Catleya, 175
Caulophyllum, 231
Caytonia/Caytoniales, 134-135
Ceanothus, 277
Cedrus, 116
Celastraceae, 286
Celastraceae, 255
Cucumis, 261, 262
Cucurbitaceae/Cucurbita, 259, 261, 262
Cucurbitales, 259
Cuminum, 322
Cunoniaceae, 255
Cupressaceae/Cupressus, 114, 116
Cupule, 134
Curator, 529
Curcuma, 198
Curtissiaceae, 292
Cuscuta, 320
Cuticle/Cutin, 5, 55, 416
Cyads/Cyadophyta, 108-109
Cyantotis, 189
Cyatheae, 88, 89
Cycas, 108, 110
Cyclanthaceae, 159
Cylindropuntia, 246
Cymbidium, 175
Cymodoceaceae, 159-160
Cynara, 331
Cynodon, 218
Cynomoriaceae, 230
Cyperaceae, 206-207, 209-210, 211
Cyperus, 209, 211
Cyperipedium, 175
Cyrillaceae, 292
Cytinaceae, 230
Dampiera, 332
Danacea, 87
Daphniphyllaceae, 230
Darwinia, 258
Data information systems, 532-533
Datiscaceae, 255
Datura, 319, 321
Daucus, 322, 323
Daviesia, 264
Decay index, 38
Dedekera, 248
Degeneriaceae, 140
Delphinium, 234
Dendrobium, 175
Dendrocalamus, 216
Dendrochronology, 98, 426
Dendromecon, 232
Derived, 13, 18
Descent, 10
Description, 12, 535-539
Dianella, 166
Dianthus, 246
Diapensiaceae, 292
Dicentra, 232
Dichelostemma, 178
Dichondra, 320
Dichosandra, 189
Dichotomous key, see Key
Didiereaceae, 230
Didymelaceae, 230
Dieffenbachia, 160
Diervillaceae, 292, 331
Dietes, 173
Digitalis, 315, 318
Dilatiris, 191
Dilleniacae, 230
Dillineales, 230
Dimocarpus, 289
Dinoflagellates, 4-5
Diocious/dioecy, 108, 109, 114, 365, 468
Dionaea, 239
Dioncophyllaceae, 230
Dioscoreaceae, 179, 180
Dioscorea/Dioscorea, 178, 179, 180
Dioscoreales, 178
Diplodontaenae, 255
Diplopterygium, 79
Diphyllaea, 231
Diplohaplontic life cycle, see
Haplohaplontic life cycle
Dipsacaceae/Dipsacus, 331, 334-335
Dipsacales, 331
Dipterocarpaceae, 255, 280
Diarachmaeae, 255
Dispersal, 41
Disposition, 396-399
Distichia, 206
Distichis, 218
Distichis, 311
Divergence/diversification, 10, 17
Division, 394-396
DNA amplification, 478
analysis, 482-483
chloroplast, 481
evolution of, 3
nuclear, 481
sequence data, 477-478, 479-482
sequencing reaction, 479-480
Documentation, 519-523
Dodonaea, 290
Dombeya, 283, 286
Donatiaceae, see Stylidiaceae
Dorstenia, 275, 276
Doryanthaceae, 159, 165
Doryanthus, 166
Double fertilization, 114
Drosera, 239
Droseraceae, 230, 238, 239
Drosophyllaceae, 230
Dryopteris, 90
Dudleya, 251
Duration, 402
Durio, 283, 286
Dyckia, 204
Ebenaceae, 292-293
Ecdeitoaceae, 185
Echeveria, 252
Echinocereus, 245, 246
Echinodorus, 164
Echium, 300
Ecology, 41
Egg, 53
angiosperm, 130, 441, 445
Ehrhrtiaceae, 292, 301 see also Boraginaceae
Eichhornia, 190, 193, 194
Elaeagnaceae, 255
Elaeis, 188
Elaeocarpaeae, 255
Elaters, 59
Elatinaceae, 255
Eleiga, 214
Eleocharis, 210
Elettaria, 198
Eloea, 52
Elymus, 217
Emblingiaceae, 255
Embry, 54, 98
development, see Embryogeny type, 447
Embryogeny, 446-447
Embryology, 437-451
Embryophyta/embryophytes, see Land Plants
Emmenantha, 302
Empetraeae, see Ericaceae
Empodium, 214
Enantioistyly, 469-470
Enation, 78, 84
Encelia, 327, 328, 330
Eperuliflorus, 109, 111
Encyclia, 175
Endarch, 78, 107, 421
Endodermis, 73-74, 77, 417-418
Endosperm, 130-132
development, 447-448
starchy, 188
type, see Seed, endosperm type
Endospore/endosporic/endospory, 91, 97, 101
Endosymbiosis, 4-5, 53
Endothecium, 437
Ensete, 192, 195
Epacridaceae, see Ericaceae
Epacris, 296
Ephedraceae/Ephedra, 114, 117
Epidendrum, 175
Epidermal excrescence, 399-400
Epidermis, 55, 416-417
Epifagus, 316
Epilobium, 260
Epipremnum, 160
Equisetales/equisetophytes, 85, 86, 87
Equisetum, 85, 86, 87
Eremosynaceae, 292
Ergast substaces, 409-411
Erica, 294, 295, 296
Ericaceae, 293-294, 295, 296
Ericales, 293
Eriocaulaceae/Eriocaulon, 211-212
Eriodictyon, 302
Eriogonum, 248
Eriostemon, 288
Erodium, 254, 256
Erythrina, 264
Erythronium, 182
Erythrophalaeae, 230
Erythroxylaceae, 255, 269
Escalloniaceae, 292
Eschscholzia, 232
Euasterids II, 319
Euasterids I, 298
Erythronium, 182
Erythrina, 256
Eucalyptus, 258, 259
Eucarthus, 169-170
Eucomniaceae, 292
Eucrypta, 302
Eudicots, 228-230
Euglenoids, 4-5
Eukarya/eukaryotes/eucaryotes, 3
Euphorbiaceae/Euphorbia, 269-270
Euphyllyphytes/euphylly, 82, 427
Eupomatiaceae, 140
Eupteleaceae, 230
Eurosids I, 259
Eurosids II, 278
Euphorbiaceae, 84, 87
Eustele, 105-107, 420
Fastota, 305
Evolution
 biological, 10
 of chloroplasts, see Endosymbiosis
Excavum, 305, 306
Exarch, 78, 421
Exine, 460
Exospory, 99

Fabaceae (Leguminosae), 262,
 263-264, 265
Fabales, 262
Fagaceae, 265, 268-269
Fagales, 265
Fagus, 248, 249
False indium, 88
Family names, alternative, 503
Fascicle, see Short shoot
Fatsia, 322, 325
Faucaria, 242
Female gametophyte, 99, 130
Female sporophyll, see Megasporophyll
Fenestera, 242
Ferns, see Moniliphytes
Ferocactus, 246
Fertile segment, 83
Fertilization, 53-54, 465
Fiber, 70-71, 413, 414
Ficus, 275, 276
Fiddlehead, 88
Filament, 124
Flagellariaceae, 185
Flora, 533
Floral diagram, 141, 541-543
Floral formula, 140-141, 538
Flower, 121-124, 364-366
 attachment, 364, 365-366
 cycl, 366, 367
 development, 122, 124
 maturation, 366
 parts, 364-365
 sex, 364, 365
 symmetry, 366
Flowering plants
 apomorphies and evolution, 121-133
 clades/classification, 138-140
 origin, 133-135
Foeniculum, 322, 323, 324
Fouquieriaceae/Fouqueria, 295, 297, 298
Fragaria, 278

Frankenia, 239
Frankeniaceae, 230, 238, 239
Freesia, 171, 173
Fremontodendron, 284, 285, 286
Frilllaria, 180, 182
Fron, 88
Fruit, 129, 348, 382-387
 aggregate, 380, 387
 dispersal, 472
 multiple, 386-387
 simple, 384-386
Fumaricaceae, see Papaveraceae
Fuschia, 259, 260
Fusion, 389-390

Galanthus, 169
Galium, 307
Gametangia, 5; see also Antheridium,
 Archegonium
Gamete, 53, 54
Gametophyte, 54
Garryaceae, 292
Garryales, 292
Gasteria, 171-172
Gazania, 327
Geissolumataceae, 255
Geltonopsis, 181
Gelsemiaceae, 292
Gemmace/gemmos, 59
Gender, 510
General terminology (morphology),
 389-403
Generative cell, 126
Genetic drift, 10
Gentiana, 305
Gentianaceae, 305-306
Gentianales, 301
Geosiris, 171, 173
Geraniaceae/Geranium, 252, 254, 256
Geraniales, 252
Gesneriaceae, 292, 308
Gilia, 298, 299
Ginkgo/Ginkgophyta, 109, 112
Gisekiaceae, 230
Gladiolus, 171
Glycine, 262
Gnetaceae/Gnetum, 114, 117
Gnetales, 114, 117-118
Gomortegaceae, 140
Gomphocarpus, 304
Goodeniaceae, 331-332
Gossypium, 286
Goupiaceae, 255
Grauvineae, see Poaceae
Granum/grana, 51
Graptopterium, 251
Gratiolaceae, 292, 310
Gratiolaceae, 292, 310
Green plants, 4-6, 51-54
Grevillea, 237
Grewia, 283
Griseliniaeae, 292
Grossulariaceae, 230, 250
Growth, 411-412
 secondary, see Secondary growth

Gryrostemonataceae, 295
Grussophyta, 255
Guard cells, 59
Guiricenothia, 283
Gunneraceae, 230
Gunnarales, 230
Guttiferae, see Clusiaceae, 255
Gymnospermae, 107-118
Gynostachys, 162
Gynoeceum, 121
apocarpous, 129
fusion, 376
syncarpous, 129

Haemodoraceae, 190, 191, 192
Haemodorum, 191
Halophytaeae, 230
Haloragaceae, 230, 250
Hamamelidaceae, 230, 250
Hanguanaceous, 185
Haplodiplontic life cycle, 54
Haploplontic life cycle, 53
Harmomegathy, 458
Haworthia, 171-172
Hectorellaceae, 230
Hedera, 322, 325
Hedychium, 198, 200
Helianthus, 331
Heliconia, 202
Heliconiaceae, 185, 202
Heliotropaceae, 292, 301 see also
 Boraginaceae
Helwingiaceae, 292
Hemerocallidaceae, 159, 165-166
Hemerocallis, 166
Hemilandra, 312
Hepatica, 234
_Hepatica, see Liverworts
Heracleum, 324
Herbarium, 529
Herbatarium, 529
insect control, 532
_labels, 525-526
_loans, 532
_use, 529-530
Hercogamy, 469-470
Hersitiera, 283
Hernandiaceae, 140
Hesperocallis, 165, 168
Hesperonyucca, 168
Heteranthera, 192, 193, 194
Heterochrony, 43
Heterophyidaeae, 255
_Heterospor, 79, 91, 99
Heterostyly, 469-470
Heuclara, 253
Hevea, 269
Hexastylis, 151
Hibiscus, 284, 285, 286
Himalantandraceae, 140
Hipppeastrum, 169
Hippocotyle, 87
Homology, 21-22
Homoyplasy, 21
Nexine, 461
Nicotiana, 319, 321
Nitella, 53
Nitriariaceae, 255
Node
cladogram, 18
leaf, 75
Nomenclatural type, see Type
(nomenclatural)
Nomenclature, 12, 501-515
independence of, 510
principles, 502
Nothofagaceae, 255, 265
Nucellus, see also Megasporangium
type, 440
Nucleotides, 477-478
Number
in botanical names, 510
in morphology, 389
Nuphar, 143
Nyctaginaceae, 230, 238, 239
Nyctinasty, 357
Nymphaeaceae/Nymphaea, 143-144
Nymphaeales, 143
Nysa, 185, 188
Nyssaceae, see Cornaceae
Obolaria, 306
Ochnaceae, 255
Ochroma, 286
Ocimum, 310
Oenothera, 259, 260
Oil bodies, 59
Oil cells, 142
Oleaceae, 230
Oleaceae, 292, 308
Oliniaceae, 255
Onagraceae, 259, 260
Oncidium, 174
Oncothecaceae, 292
Ontogeny/ontogenetic, 41-43
Oogamy, 53
Oomycota, 4-5
Oerculum, see Calyptra
Ophioglossales/ophioglossoid ferns, 83
Ophioglossum, 83, 84
Opiliaceae, 230
Optimization, see Character optimization
Opuntia, 244, 245, 246
Orchidaceae, 171, 174-175, 176-177
Orchis, 175
Ordered, see Character, ordered
Orectanthe, 212
Organic acids, see UV-fluorescent acids
Orientation, 397-398
Orobanchaceae, 310, 315-316
Orobanchia, 316
Orthosiphon, 312
Orthotropous, 446
Oryza, 215, 216, 218
Osmunda, 89
Ostrya, 265
OTU (Operational Taxonomic Unit), 18-19
Outbreeding/outcrossing, 468
Outgroup
comparison, 31-34
definition, 19
Ovary
attachment, 376, 377
position, 377, 378
Ovule, 98
development, 439
parts, 439
position, 445-446, 447
type, 442-443, 445-446
Ovuliferous scale, 114
Oxalidaceae/Oxalis, 272, 274
Oxalidales, 272
Pachira, 286
Pachycreus, 246
Pachyphytum, 251
Pachypodium, 303
Pachytespa, 107, 108
Paedomorphosis, 43
Paeoniaceae, 230, 250
Paeplanthus, 212
Palafaxia, 329, 330
Palmae, see Arecales
Palynology, 453-463
Panax, 322
Pandaceae, 255
Pandanaceae/Pandanus, 180, 183-184
Pandanales, 180
Papaver, 232
Papaveraceae, 230, 232-233
Papriopetelium, 175
Paracyrphia, 292
Parallellism, 21
Paraphyletic group/paraphyly, 13, 26
Parenchyma, 53-54, 57
axial, 423
Parnassia, 255
Parsimony analysis, 27-29
Parthenogenesis, 472
Passifloraceae/Passiflora, 271-272
Paullinia, 289
Paulowniaceae, 292
Pausinystalia, 305
Peat moss, see Sphagnum
Peat, 66
Pedaliaceae, 292, 308
Pedicularis, 316
Pelargonium, 254, 256
Penaeaeae, 255
Pennisetumae, 292
Pentadiplandraceae, 255
Pentaphragmataeceae, 292
Pentaphylaceae, 292
Pentas, 305, 307
Penthoraceae, 230
PEP carboxylase, 429-432
Peperomia, 152-153
Peramorphosis, 43
Pereskia, 245, 246
Perforation plate, 72
Perianth, 366-371
aestivation, 370-371
arrangement, 367
cycl, 367-368
definition, 121
fusion, 369
merosity, 368-369
parts, 366-367
type, 121, 123, 369-370
Perianth/Androecial position, 377, 378
Pericarp, 129
Pericycle, 77
Periderm, see Cork
Peridiscaceae, 230
Perine layer, 63
Periodicity, 403
Peristome teeth, 63
Persea, 146-147
Petals, see Corolla
Pteromaniaceae, 159
Petrosaviaceae/Petrosaviaceae, 159
Petroselinum, 322
Phacelia, 302
Phalaris, 218
Phaseolus, 262
Phellinaeaeae, 292
Phenakospermum, 195
Phenetic, see Classification
Phenogram, 40
Philesiaceae, 159, 180-181
Philocedron, 160, 163
Philotheca, 288
Philydraceae, 185
Phlebocarya, 191
Phloem, 72, 415
secondary, 97, 422-425
Phlox, 298
Phoenix, 186, 187, 188
Pholostoma, 302
Phorodendron, 249, 250
Photinia, 278
Photosynthesis, 4, 5-6, 429-432
C4, 429, 431
CAM, 429, 432
Phryma, 315, 317
Phrymaceae, 310, 315, 317
Phyllanthaceae, 255
Phylloglossum, 79, 80
Phyllonemaceae, 292
Phyllospadiis, 161
Phylogenetic systematics
definition, 13, 17
perspective on, 43
Phylogenetic tree, see Cladogram
Phylogeny, 9, 13, 17
Physalis, 319, 321
Physenaceae, 230
Physiology, 409, 429-432
Phytolaccaceae, 230
Phytolaccaea, 230, 238, 239
Picramniaceae, 255
Picroendraceae, 255
Pillansia, 173
Pilularia, 88, 92
Verbenaceae, 292, 308
Veronica, 318
Verticordia, 258
Vessel/vessel member, 72
angiosperm, 133
Gnetales, 114, 117
Vestiture, 400-401
Vicariance, 41
Victoria, 143-144
Viguiera, 327, 330
Vinca, 301
Violaceae/Viola, 272-273
Viscin threads, 461-462
Vitaceae, 255
Vitales, 255
Vivianiaceae, 255
Vochysiaceae, 255
Volvox, 53
Voucher, 517
Wachendorfia, 190, 191
Washingtonia, 186
Weighting (character), 22-23
Welwitschiaceae/Welwitschia, 114, 118
Wigandia, 302
Winteraceae, 140
Wisteria, 264
Wolffia, 160, 163
Wood, 97, 422-426
cuts, 423, 426
ray, 423-426
spring, 423-425
summer, 423-425
Woody plants, 97-98
Xanthium, 330
Xanthorrhiza, 234
Xanthorrhoea, 166
Xanthorrhoeaceae, 159, 165-166
Xanthosia, 324
Xanthosoma, 160, 162
Xeronemataceae, 159
Xiphidium, 191
Xylem, 72, 413
secondary, see Wood
Xylococcus, 295, 296
Xyridaceae, 212-213
Xyris, 212-213
Yucca, 165, 168
Zamia, 111
Zantedeschia, 160, 162
Zea, 215, 216
Zebrina, 190
Zygadenus, 181
Zingiber, 197-198
Zingiberaeae, 197-198, 200
Zingiberales, 192, 194-203
Zizyphus, 275, 277
Zombia, 187
Zosteraceae, 159-161
Zygocactus, 246
Zygopetalum, 174
Zygophyllaceae, 255
Zygophyllales, 255
Zygote, 53, 131