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Summary

 

Plant defences against insect herbivores can be divided into ‘static’ or constitutive
defences, and ‘active’ or induced defences, although the insecticidal compounds or
proteins involved are often the same. Induced defences have aspects common to all
plants, whereas the accumulation of constitutive defences is species-specific. Insect
herbivores activate induced defences both locally and systemically by signalling
pathways involving systemin, jasmonate, oligogalacturonic acid and hydrogen per-
oxide. Plants also respond to insect attack by producing volatiles, which can be used
to deter herbivores, to communicate between parts of the plant, or between plants,
to induce defence responses. Plant volatiles are also an important component in indi-
rect defence. Herbivorous insects have adapted to tolerate plant defences, and such
adaptations can also be constitutive or induced. Insects whose plant host range is
limited are more likely to show constitutive adaptation to the insecticidal compounds
they will encounter, whereas insects which feed on a wide range of plant species
often use induced adaptations to overcome plant defences. Both plant defence and
insect adaptation involve a metabolic cost, and in a natural system most plant–insect
interactions involving herbivory reach a ‘stand-off’ where both host and herbivore
survive but develop suboptimally.
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I. Introduction

 

Plants and insects have coexisted for as long as 350 million
years, if the earliest forms of land plants and insects are
included, and have developed a series of relationships which
affect the organisms at all levels, from basic biochemistry to
population genetics. Although some of these relationships
between the two phyla, such as pollination, are mutually
beneficial, the most common interaction involves insect
predation of plants, and plant defences against herbivorous
insects. So common is this predator–host relationship that
virtually every plant species is preyed on by at least one insect
species, and, according to the coevolutionary theory of
Ehrlich & Raven (1964), insect feeding on plants has been a
determining factor in increasing species diversity in both
herbivores and hosts (Harborne, 1988).

On the basis of this long-standing relationship, it is not sur-
prising that the strategies employed by plants to attempt to
resist or evade their insect herbivores are very diverse. Some
species accumulate high levels of compounds which function
as biochemical defences through their toxicity, or their phys-
ical properties; other plants do not commit resources to the
accumulation of defensive compounds, but seek to minimise
herbivore damage through rapid growth and development,
dispersion, or choice of habitat. Even within a species, differ-
ent genotypes adopt subtly different strategies for coexisting
with insect pests, which can affect the partition of resources
between growth and defence (Jander 

 

et al

 

., 2001). In the face
of this diversity, it is perhaps more surprising that there also
seems to be a defensive mechanism common to plants in gen-
eral, based on the plant wounding response, and that this
mechanism appears to operate even in species such as Arabi-
dopsis (

 

Arabidopsis thaliana

 

), which have low levels of consti-
tutive defence and might be assumed to evade herbivores
rather than defend themselves. The induced resistance mech-
anism is also effective against a variety of insect herbivores on
a given plant species (Thaler 

 

et al

 

., 2001). This short review
will attempt to draw together a number of recent observations
on the molecular bases of plant defence against insect her-
bivores, which have deepened our understanding of this
complex interaction.

 

II. Accumulation of defensive compounds and 
induced resistance

 

Plant defence against insects was first envisaged in terms of
compounds which the plant synthesises during the course
of normal growth and development (i.e. in the absence of
herbivore damage). These compounds are accumulated and
stored, so that when attacked, the plant is already provided
with the means to deter, or kill, the herbivore. Secondary
metabolism, which involves specialised, often complex and
species-specific biosynthetic pathways, was thought to provide
the compounds which were accumulated, thus providing a

role for a biosynthetic function that had previously been
considered wasteful. These defence mechanisms can be
described as ‘static’ or constitutive, in contrast to ‘active’ or
induced mechanisms in which the synthesis of defensive
compounds is induced in response to insect attack (Harborne,
1988). The ‘static’–‘active’ distinction is a useful one in
considering many aspects of the plant–insect interaction. A
constitutive defence is often the causative factor in examples
where specific plant hosts are fully resistant to attack by
specific insect pests. The defence can act as a physical barrier,
as in lignification or resin production, or can act as a
biochemical signal perceived by the herbivore, as in deterrents
of feeding or egg deposition, or can act as a toxin. The range
of mechanisms of toxicity shown by different plant defensive
compounds is very wide, and includes membrane disruption,
inhibition of transport or signal transduction, inhibition
of metabolism, and even disruption of hormonal control of
developmental processes (Harbourne, 1988; Bennett &
Wallsgrove, 1994). Recent developments in the field of
constitutive plant toxins have been ably reviewed by
Wittstock & Gershenzon (2002).

On the other hand, an ‘active’ or induced defence mechan-
ism was initially conceived in terms of the synthesis of
proteins, as primary gene products, which themselves could
act as toxins, or could disrupt pest metabolism (Ryan, 1978).
Although this mechanism cannot come into play until the
plant is attacked, it does not involve the commitment of plant
resources to the synthesis of compounds which must be accu-
mulated and stored. The view that secondary compounds are
metabolic ‘dead-ends’ is not true in many cases, but with some
defensive compounds, for example the alkaloid nicotine in the
tobacco sp. 

 

Nicotiana sylvestris

 

 (Baldwin & Ohnmeiss, 1994),
the nitrogen invested in their synthesis cannot be recovered.
Induced resistance itself has a fitness cost (Baldwin, 1998;
Heil & Baldwin, 2002), but this cost is exacted only if pest
attack occurs, and can thus be less than that involved in
constitutive defences (Simms & Fritz, 1990). ‘Active’ defence
normally involves systemic induction. Not only does the
defence response occur at or near the site of damage by the
insect pest, but a response occurs throughout the plant, as a
result of signalling molecule(s) enabling communication
between different plant tissues. The systemic response may
result in the production of the same defensive proteins as the
local response, but differs in the kinetics of the production,
and often the detailed response is different. Induced defence
mechanisms are commonly involved in responses of plants
to insect species where the interaction is one of partial or
complete susceptibility of the host to the herbivore. The classic
example of the plant wounding response, synthesis of protei-
nase inhibitors in leaves of potato (

 

Solanum tuberosum

 

) or
tomato (

 

Lycopersicon esculentum

 

) in response to feeding by
larvae of lepidopteran pest species such as tobacco hornworm
(

 

Manduca sexta

 

; Ryan, 1978). The induced defence is not
sufficient to make the plant fully resistant to further attack,
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but results in reduced pest growth compared to plants in
which proteinase inhibitor (PI) synthesis does not occur
(Howe 

 

et al

 

., 1996).
Unfortunately, the useful distinction between ‘static’ and

‘active’ defence mechanisms has proven to be largely untena-
ble when the systems are fully characterised at the molecular
level. The end-products of the mechanisms, the defensive
compounds themselves, are often the same in constitutive and
induced defences in a given plant species. The toxic proteins
produced in induced defence responses are also accumulated
as constitutive defences; for example, the protein proteinase
inhibitors produced as a result of the plant wounding response
in potato are also accumulated as a constitutive defence
in potato tubers (Garcia-Olmedo 

 

et al

 

., 1987). Similarly,
tobacco species (

 

Nicotiana tabacum

 

; 

 

Nicotiana attenuata

 

)
accumulate proteinase inhibitors in its tissues before insect
feeding, although herbivory induces the synthesis of increased
levels of these defensive proteins (van Dam 

 

et al

 

., 2001). On
the other hand, it has become clear that the production of
defensive compounds via secondary metabolism can form
part of an induced response. Expression of genes encoding
enzymes involved in the biosynthesis of constitutive defensive
compounds has been shown to be up-regulated by wounding;
for example, synthesis of the terpenoid components of conifer
(

 

Abies grandis

 

 and related spp.) resins increase on wounding as
a result of enhanced gene expression (Gijzen 

 

et al

 

., 1991;
Bohlmann 

 

et al

 

., 1997, 1998), and insect herbivores have a
similar effect (Litvak & Monson, 1998). Phytoecdysteroids
are accumulated in spinach (

 

Spinacia oleracea

 

) foliage as
defensive compounds, and their synthesis is up-regulated
on exposure to vine weevil (

 

Otiorynchus sulcatus

 

) and con-
comitant tissue damage (Schmelz 

 

et al

 

., 1999); similar effects
are seen in oilseed rape (

 

Brassica napus

 

), where glucosinolate
content increases after insect damage by cabbage stem flea beetle
(

 

Psylliodes chrysocephala

 

; Bartlet 

 

et al

 

., 1999). The synthesis of
nicotine, the major alkaloid in tobacco, occurs during normal
plant development, but is also induced by herbivore attack
(Halitschke 

 

et al

 

., 2000). Nicotine is transported from its site
of synthesis in the plant roots to aerial parts of the plant, with
particular emphasis being placed on protecting reproductive
tissues when leaves are damaged (Baldwin & Karb, 1995;
Ohnmeiss & Baldwin, 2000), and thus this compound is both
accumulated and induced. Because the biosynthetic processes
involved in both ‘static’ and ‘active’ defence mechanisms are
fundamentally the same, and involve expression of the same
genes, the mechanisms differ only insofar as in one case gene
expression occurs as a result of the normal developmental
processes of the plant, whereas in the other case expression is
up-regulated by a signal caused by an external stimulus.

Although the argument above makes a case for considering
‘static’ and ‘active’ defence against insect attack in plants as
two sides of the same coin, current research has focussed
almost entirely on induced resistance. This is not surprising,
since the tools to unravel some of the signalling pathways

involved in up-regulation of gene expression in response to
insect attack have become available, and the results of apply-
ing them have opened up new and unexpected areas of
research. Nevertheless, it is well to remember that most, if not
all, the studies of plant–insect interactions which consider
changes in gene expression and causative signal pathways, are
based on plants that are essentially susceptible to attack by the
insect pest used. The survival of plants in the face of insect pre-
dation suggests that most interactions in nature do not result
in serious plant damage, as a result of constitutive defensive
strategies being employed, such as the accumulation of defen-
sive compounds deterring or preventing feeding. Induced
resistance, while of major importance in reducing the damage
suffered by plants as a result of attack by insect pests, is not
the causative factor in most examples of plant resistance to
herbivory.

 

III. Signalling pathways in wound-induced 
resistance

 

1. Overview

 

The complexity of the responses of plants to wounding
caused by insect feeding is at first sight daunting. In the model
plant Arabidopsis changes in the steady-state levels of over
700 mRNAs were detected during defence responses in a
microarray-based study (Schenk 

 

et al

 

., 2000), although not
all of these changes were associated with insect predation,
some being associated with pathogen-activated pathways. As
a comparison, in lima bean (

 

Phaseolus lunatus

 

) only approx.
100 mRNAs were up-regulated by spider mite (

 

Tetranicus
urticae

 

) infestation (Arimura 

 

et al

 

., 2000b), although a further
200 mRNAs (approx.) were up-regulated in an indirect
resistance response (q.v.) by volatile signalling molecules
released as a response to insect feeding. Approx. 500 mRNAs
have been estimated to constitute the insect-responsive
transcriptome in tobacco (Hermsmeier 

 

et al

 

., 2001). It is clear
that much of the complexity of these responses is a result of
changes in expression of genes which either do not encode
products involved in insect resistance, or are involved in
general responses to stress. For example, photosynthetic
genes, which are not involved in defence, are down-regulated
in tobacco in response to insect attack (Hermsmeier 

 

et al

 

.,
2001), presumably to allow more resources to be allocated
to producing proteins directly involved in the resistance
response. Similarly, coordinated up-regulation of all defence
genes, whether involved in insect resistance or not, occurs
in Arabidopsis (Schenk 

 

et al

 

., 2000). It is true to say that
although extensive lists of genes involved in plant defence and
wound responses have been made (Walling, 2000), many of
these genes have no known function, and only a few seem to
encode products that are obviously either toxic to insects
(such as proteinase inhibitors) or have the capacity to produce
toxins (such as enzymes involved in secondary metabolism).

 

NPH_519.fm  Page 147  Thursday, October 3, 2002  10:58 AM



 

Tansley review no. 140

 

www.newphytologist.com

 

© 

 

New Phytologist

 

 (2002) 

 

156

 

: 145–169

 

Review148

 

Ryan (2000) has attempted to simplify the situation by
dividing the genes encoding newly synthesised proteins after
wounding into three groups: antinutritional proteins or
defence genes; signal pathway genes; and proteinases. This
approach is helpful, and if extended a little, gives a global view
of the response, in which three classes of genes are up-
regulated: defence genes (including both genes encoding
defensive proteins such as proteinase inhibitors, and genes
encoding enzymes of secondary compound biosynthesis);
signalling pathway genes (including those involved in the
production of volatile compounds used as signals; q.v.); and
genes involved in rerouting metabolism into the production
of defensive compounds, such as proteinases involved in
protein turnover.

Although the global induced resistance response to insect
attack in plants is complex, a straightforward cause-and-effect
analysis of the factors involved in the production of defined
insecticidal compounds or proteins can still be made. This
approach has been pursued with some success in recent
publications by Ryan and coworkers (Ryan, 2000; Orozco-
Cardenas 

 

et al

 

., 2001), which have put forward a linear
description of events in the insect resistance response in
tomato. In this species, the major insecticidal gene products
in induced resistance are proteinase inhibitors (PIs) and
polyphenol oxidase (PPO), both of which are thought to
interfere with insect digestion, and thus nutrient uptake.
Transgenic potato plants in which the wound-induced
synthesis of PIs is suppressed by an antisense strategy down-
regulating an enzyme involved in the signalling pathway,
lipoxygenase (q.v.), support higher rates of development of
both Colorado potato beetle (

 

Leptinotarsa decemlineata

 

) and
beet armyworm (

 

Spodoptera exigua

 

) larvae compared to con-
trols, demonstrating the importance of this mechanism of
resistance (Royo 

 

et al

 

., 1999; Ortego 

 

et al

 

., 2001). The signal-
ling pathway leading from insect wounding to production of
these proteins, summarised in Fig. 1, involves four signalling
molecules, which are viewed as operating in a sequential
manner. The elucidation of the pathway from insect damage to
production of insecticidal gene products gives an explanation
for the wide-ranging global responses observed in the entire
transcriptome on insect attack. The global responses which do
not appear to have any direct connection with insect resist-
ance can be accounted for in this model by the production of
signalling molecules ( jasmonic acid, oligogalacturonides,
hydrogen peroxide) common to responses to abiotic stresses
and pathogen attack, as well as the induced insect resistance
response.

 

2. Systemin

 

The primary event in the signalling pathway leading to the
synthesis of the defensive PI and PPO proteins in tomato is
proteolytic cleavage of a precursor polypeptide, prosystemin,
to release the peptide hormone systemin. This 18 amino acid

peptide was the first plant peptide hormone to be identified,
and for a long time was the only peptide with a characterised
role in signal transduction in plants (Ryan, 2000). The
prosystemin precursor is a polypeptide of 200 amino acid
residues (or 201 amino acid residues in an alternatively spliced
form; Li & Howe, 2001). Prosystemin is present at low levels
constitutively in leaf tissue; it lacks a signal peptide sequence
or other targetting information, and is thus probably present
in the cytoplasm of cells (Ryan & Pearce, 1998). On
wounding, the cytoplasm is exposed to proteinases, probably
as a result of mixing with contents of other cellular compart-
ments (e.g. the vacuole), or possibly from insect saliva, and
thus activation of prosystemin can occur.

Systemin is the primary signal in the wound response, as
transgenic plants in which prosystemin expression is blocked
by an antisense RNA strategy (McGurl 

 

et al.

 

, 1992) show
severe impairment in their systemic responses to wounding,
and are more susceptible to attack by a lepidopteran insect
herbivore (tobacco hornworm) (Orozco-Cardenas 

 

et al

 

., 1993).
On the other hand, transgenic plants over-expressing prosys-
temin constitutively synthesised proteins that would normally
be wound-inducible, to high levels (McGurl 

 

et al

 

., 1994).
Systemin is mobile in the phloem of tomato plants, and thus
can account for signalling in the systemic induction of resist-
ance; it can pass across a graft junction between a transgenic
rootstock overexpressing prosystemin and wild-type aerial
tissue, to give high levels of constitutive proteinase inhibitor
synthesis throughout the plant (McGurl 

 

et al

 

., 1994), and can
be taken up through cut stems to produce a wound response
when supplied as prosystemin (Dombrowski 

 

et al

 

., 1999). It
is not clear whether this mobility involves transport of free
peptide, or ‘waves’ of activation of prosystemin synthesis in
vascular tissue (Jacinto 

 

et al

 

., 1999); systemin activates both
the synthesis of its precursor polypeptide and of the enzymes
putatively required to release the hormone, so a positive feed-
back system results (Ryan, 2000). Many alternative hypotheses
to systemin-based signalling have been put forward, and there
is some evidence that signalling pathways independent of
systemin (and jasmonic acid; q.v.) do exist in tomato and other
plant species to activate gene expression in unwounded tissues
(O’Donnell 

 

et al

 

., 1998; Leon 

 

et al

 

., 2001). However, systemin
signalling retains a central position in the wound response in
tomato, and has been demonstrated to play a role in induced
resistance to chewing insects.

Although the causative involvement of systemin in signal
transduction in the wounding response in tomato and related
species has been comprehensively established, the proteolytic
processing steps in the conversion of prosystemin to systemin
remain to be elucidated, as do the enzymes responsible. The
whole precursor polypeptide is polar, and contains many
potential protease cleavage sites; however, the cleavages which
release systemin do not occur in particularly polar regions, or
even at conserved sequence motifs (the N-terminal cleavage
occurs between leu-ala, the C-terminal cleavage between
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asp-asn). Whereas systemin release may be based on cleavages
by sequence-specific proteinases, as is the case for animal
peptide hormone processing at dibasic residues, it could also
be a result of susceptibility of regions of the precursor to relat-
ively nonspecific proteinase attack. Prosystemin is susceptible
to proteolytic cleavage by proteinases present in apoplastic
fluid (Dombrowski 

 

et al

 

., 1999), but these cleavages do not
result in the production of systemin, and thus involvement by
vacuolar or other proteinases is indicated. Proteinase genes
encoding enzymes of a number of different types (cysteine
and aspartic endoproteinases, and exoproteinases specific for
both amino- and carboxy-termini) are a distinct category of

wound-induced genes in tomato and other plant species
(Ryan, 2000). The induction of expression of these genes on
wounding would seem to exclude the encoded enzymes from
a role in systemin processing, but they may be present before
wounding at lower levels as a result of constitutive expression.
Since prosystemin synthesis is also stimulated by wounding,
there is a circumstantial connection between these proteinases
and systemin processing. A wound-induced serine carboxy-
peptidase has been localised to the vacuole (Moura 

 

et al

 

., 2001),
but the kinetics of its accumulation led to the conclusion
that it was concerned with protein turnover, not prosystemin
processing.

Fig. 1 Schematic diagram of the signalling 
pathway necessary for local and systemic 
synthesis of the insecticidal proteins 
proteinase inhibitor (PI) and polyphenol 
oxidase (PPO) in the wounding response in 
tomato. Adapted from Ryan (2000) and 
Orozco-Cardenas et al. (2001). Systemin is 
proposed to act as the systemic signal in this 
model, although evidence to suggest that 
jasmonate can also act systemically has been 
presented (Li et al., 2002).
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Despite the central role of systemin in triggering the
wounding response in tomato, peptides with sequence simi-
larity to the hormone and its precursor are only present in a
very limited range of plant species; at present this includes
tomato, potato, black pepper (

 

Capsicum annum

 

) and black
nightshade (

 

Solanum nigrum

 

) (Constabel & Ryan, 1998).
This range does not even include all members of the
Solanaceae, because tobacco does not contain sequences
similar to systemin or prosystemin. However, tobacco does
contain peptides with a similar function to that of systemin,
and a recent paper (Pearce 

 

et al

 

., 2001) characterises a pre-
cursor polypeptide in tobacco from which two peptides with
systemin-like activity are produced by proteolytic cleavage.
These peptides, and their precursor, show no apparent
sequence similarity to the systemins (although the presence of
at least one pair of pro-pro residues internal to the peptides is
a common feature, and all the sequences contain the tripep-
tide pro-pro-ser). The high level of variability between closely
related plant species in the sequence of not only the precursor,
but also the peptide hormone, accounts for the failure to
identify systemin homologues in other plant families. It is an
unexpected result, based on data from animal systems, where
the sequences of peptide hormones are normally well-conserved.
It is possible that recognition between peptide and receptor
for systemins is based on structural features other than the full
amino acid sequence. If, however, recognition is based prim-
arily on amino acid sequences, the lack of conservation of
sequence in systemin-function peptides suggests that the
sequences of binding regions in potential receptors for these
signalling molecules must also show a high level of variability.
Although it has proved possible to isolate peptide hormones

in plants using strategies based on sequence similarity, this
approach has not worked for systemins outside the limited
range of species given above (Ryan & Pearce, 2001).

The systemin peptide, after release from the precursor,
interacts with a receptor present on the surface of plant cells.
The presence of the systemin receptor has been shown by
binding labelled peptide, either using isolated cell membranes
or in cell culture (Meindl 

 

et al

 

., 1998; Scheer & Ryan, 1999).
The receptor protein, a polypeptide of Mr 160 000, has yet to
be fully characterised, but has the functional properties
(dissociation constant for systemin binding approx. 10

 

–10

 

 M)
that would be predicted for a similar receptor in animal sys-
tems. The receptor is assumed to be a transmembrane protein,
and binding systemin causes a signal transduction event that
activates a series of processes inside the cell.

 

3. Jasmonic acid

 

The signal transduction mediated by the systemin receptor
results in activation of phospholipase A2, via a MAP kinase,
and thus leads to the release of linolenic acid from membrane
lipids. Further effects such as calcium release from vacuoles,
calmodulin synthesis, and opening of ion channels in the
plasma membrane (leading to its depolarization) are also
stimulated by perception of the signal, and self-evidently
participate in the wounding response, but are not part of the
direct pathway from cause to effect in Ryan’s model. Linolenic
acid acts as a precursor for the synthesis of jasmonic acid, an
oxylipid signalling molecule involved in stress and develop-
mental responses in plants, via the octadecanoid pathway
(Fig. 2; note that the biosynthetic pathway produces (3R,7S)-

Fig. 2 The ocatadecanoid pathway for 
jasmonate biosynthesis. Jasmonate formed by 
this pathway can also be methylated on the 
carboxylic acid group by jasmonic acid 
carboxyl methyl transferase (using S-adenosyl 
methionine as the methyl group donor) to 
give the volatile signalling molecule methyl 
jasmonate.
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jasmonic acid, whereas the term ‘jasmonic acid’ correctly
refers to the mixture of epimers produced after isolation from
the plant. ‘Jasmonic acid’ or ‘jasmonate’ in this review will
refer to the biologically active molecule). Fatty acid-derived
signal molecules in plants and the biosynthesis of jasmonates
have recently been comprehensively reviewed (Schaller, 2001;
Weber, 2002), and thus only selected aspects will be described
here. Several complementary pieces of evidence show that
jasmonic acid plays a crucial role in the defensive response to
herbivores. In tomato, the 

 

def

 

1 mutant which does not up-
regulate levels of jasmonic acid after wounding also produces
lower levels of PIs, and is more susceptible to attack by
lepidopteran insects (Howe 

 

et al

 

., 1996). In Arabidopsis,
mutants exist which either do not produce, or are insensitive
to, jasmonic acid (

 

fad

 

3–2 

 

fad

 

7–2 

 

fad

 

8; McConn 

 

et al

 

., 1997:

 

coi

 

1; Rojo 

 

et al

 

., 1998); in both cases their defensive responses
to herbivorous insects are impaired.

Although activation of jasmonate biosynthesis appears to
involve a kinase cascade, with complex interactions with other
defence responses (Zhang & Klessig, 2001), a kinase directly
responsible for the wound-induced production of jasmonic
acid has been characterised. WIPK is a wound-induced protein
kinase of the MAP kinase family in tobacco. It has been shown
to be necessary for jasmonic acid production after wounding,
and the accumulation of proteinase inhibitors, by both loss
of function (suppression of expression) and gain of function
(constitutive expression) assays in transgenic plants (Seo 

 

et al

 

.,
1999). (Wound-induced protein kinase) WIPK has also been
shown to be involved in signalling cascades which lead to the
activation of omega-3 fatty acid desaturase, the enzyme which
converts linoleic acid to linolenic acid, and thus could activate
a pathway providing precursors for jasmonate biosynthesis
(Kodama 

 

et al

 

., 2000). Although activation of phospholipase
A2 was not demonstrated in these experiments, it is possible
that the jasmonic acid produced in the wound response can
originate from more than one source. Activation of phospho-
lipase A2 has been observed as an early event in response
to viral infection (Dhondt 

 

et al

 

., 2000). WIPK can be activ-
ated by phosphorylation by a MAP kinase designated
NtMEK2(DD) in tobacco, although it is not established that
this is its normal endogenous activator (Zhang & Liu, 2001).

The enzymes involved in jasmonic acid biosynthesis are
generally up-regulated by wounding, or treatment with jas-
monate (Mueller, 1997; Leon & Sanchez-Serrano, 1999),
resulting in the signalling system having positive feedback,
amplifying a small initial signal. The initial steps of the
process, through to the production of (9S, 13S)-OPDA (oxo-
phytodienoic acid), are thought to occur in the chloroplast,
and possibly also in the cytoplasm. A wound induced lipoxy-
genase putatively catalysing the first step in jasmonate biosyn-
thesis is targetted to the chloroplast (Heitz 

 

et al

 

., 1997), and
the enzyme catalysing the synthesis of OPDA, allene oxide
cyclase, is also present in chloroplasts (Ziegler 

 

et al

 

., 2000).
Allene oxide synthase, which catalyses the intermediate step,

and has been shown to be the major regulatory point in the
production of OPDA and jasmonate (Laudert & Weiler,
1998; Sivasankar 

 

et al

 

., 2000), also contains a chloroplast tar-
getting sequence, although this enzyme has been shown to
function in the cytoplasm (Wang 

 

et al

 

., 1999). The conver-
sion of linolenic acid to OPDA is necessary for synthesis of
defensive proteins to occur on wounding; a tomato mutant
deficient in this conversion was unable to synthesise PIs and
was more susceptible to insect attack (Howe 

 

et al

 

., 1996). The
remaining steps of jasmonic acid biosynthesis, after the for-
mation of OPDA, are thought to occur in peroxisomes. The
initial step (conversion of the cyclopentenone ring to
cyclopentanone) is catalysed by OPDA reductase (Vick &
Zimmerman, 1986; Schaller & Weiler, 1997), with sub-
sequent chain shortening of the alkane chain attached to the
cyclopentane ring in jasmonic acid being effected by the 

 

β

 

-
oxidation pathway. Evidence from an Arabidopsis mutant
deficient in OPDA reductase suggests that the latter part of
the jasmonic acid biosynthesis pathway is not necessary for a
normal wounding response to be exhibited, and that OPDA
can substitute for jasmonic acid as a signalling molecule
(Stintzi 

 

et al

 

., 2001). However, OPDA seems unable to sub-
stitute for jasmonate in other processes, such as control of
anther and pollen development (Stintzi & Browse, 2000).

The response to wounding in plants is complicated by the
first intermediate in the jasmonic acid biosynthesis pathway,
13-hydroperoxy-linolenic acid (the product of action of lipoxy-
genase on linolenic acid) also acting as an intermediate for the
synthesis of 6-carbon hexenols and hexenals. These molecules,
the so-called green leaf volatiles, play an indirect role in plant
defence (q.v.), and are formed by the action of hydroperoxide
lyase (Walling, 2000). Like jasmonic acid biosynthesis
enzymes, synthesis of hydroperoxide lyase is up-regulated
locally and systemically by wounding (Howe 

 

et al

 

., 2000).
Jasmonic acid produced locally within plant cells stimu-

lated by systemin binding to the cell surface functions as a dif-
fusible signalling molecule. The mobility of jasmonate as
a signalling molecule is still a matter of controversy, and the
literature contains contradictory data on whether the
compound is only mobile locally, or can act systemically.
Experiments in which the activity of the allene oxide synthase
promoter was assayed in trangenic Arabidopsis led to the
conclusion that neither jasmonic acid nor OPDA could lead
to systemic induction of jasmonate-activated promoters,
although wounding did so (Kubigsteltig 

 

et al

 

., 1999). On the
other hand, exogenous jasmonic acid is mobile in the phloem
(Zhang & Baldwin, 1997), and a recent paper by Li 

 

et al

 

.
(2002), using mutants of tomato deficient in jasmonate
synthesis or in jasmonate perception, makes a convincing case
for jasmonates acting as a mobile signal transmissable through
graft junctions. Both prosystemin synthesis and jasmonate
biosynthesis take place in vascular bundles ( Jacinto 

 

et al

 

.,
1997; Hause 

 

et al

 

., 2000) and there is a double feedback
system in that jasmonate biosynthesis is up-regulated by
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systemin, and prosystemin synthesis is up-regulated by jasmonate
(Jacinto 

 

et al

 

., 1999), as well as both compounds up-regulating
their own synthesis. Both molecules may therefore be able to
function as systemic signals, via a mutually amplifying up-
regulation spreading through vascular tissues.

Jasmonic acid is also a precursor for a volatile signalling
molecule, methyl jasmonate, formed by esterification. The
enzyme catalysing this reaction (jasmonic acid carboxyl
methyltransferase) has been characterised (Seo 

 

et al

 

., 2001),
and is itself up-regulated by wounding and jasmonate. Methyl
jasmonate has received much attention as a molecule respon-
sible for plant–plant communication. Airborne methyl
jasmonate has been shown to induce proteinase inhibitor syn-
thesis in plant leaves (Farmer & Ryan, 1990), and it has been
hypothesised that a wounded plant, which is being damaged
by insect herbivores, will up-regulate the synthesis of jasmonic
acid and methyl jasmonate, thereby signalling to neighbour-
ing unwounded plants to activate their defensive responses.
There is abundant evidence that treatment of plants with
methyl jasmonate increases resistance to a range of insect pests
(Avdiushko 

 

et al

 

., 1997). Although there has been some
doubt over whether the amounts of methyl jasmonate released
by plants in the field is sufficient to cause significant effects in
neighbouring unwounded plants, an increasing body of field-
based evidence supports the hypothesis (Bruin & Dicke,
2001; Preston 

 

et al

 

., 2001). It is equally possible that
methyl jasmonate may function as an airborne signal
between different parts of the same plant, or between cells
within tissues via the intercellular spaces (Seo 

 

et al

 

., 2001),
giving further scope for roles of jasmonates in systemic signal-
ling. A further volatile signalling molecule, ethylene, is also
produced by wounding and systemin (Felix & Boller, 1995),
and has been proposed as a necessary signal mediating the
wound response (O’Donnell 

 

et al

 

., 1996), although more
recent evidence suggests that ethylene production is regulated
by jasmonate, not vice-versa (Arimura 

 

et al

 

., 2002).

 

4. Oligogalacturonic acid

 

The next step in the pathway leading to up-regulation of
genes encoding insecticidal proteins in tomato is considered
to be the production of oligomeric polymers of galacturonic
acid (oligogalacturonic acid (OGA)), as a result of hydrolysis
of polygalacturonides in the pectic component of plant cell
walls. These oligogalacturonides were initially thought to
be the causative signal in up-regulating proteinase inhibtior
synthesis in wounded tobacco (Bishop 

 

et al

 

., 1984). Pectic
fragments with a degree of polymerisation of 10–20 are most
effective in producing a biological response, although frag-
ments as small as trisaccharides are active. This hydrolysis is
catalysed by polygalacturonase and pectic lyase ( John 

 

et al

 

.,
1997). Whereas it was initially thought that these enzymes
were produced by attacking pathogens, a more recent study
has identified an endogenous plant polygalacturonase encoded

by a gene whose expression is activated by wounding (Bergey

 

et al

 

., 1999). This distinction is important, because if poly-
galacturonase is produced only by an attacking pathogen,
oligogalacturonic acid can only participate in local responses,
and cannot be involved in systemic signalling. The signal
which activates expression of the wound-induced polygalac-
turonase gene appears to be jasmonic acid (Orozco-Cardenas &
Ryan, 1999), suggesting that jasmonate is earlier in the signal-
ling pathway than oligogalacturonic acid. This conclusion is
in contradiction to an earlier study which concluded that
oligogalacturonic acid caused jasmonate production (Doares

 

et al

 

., 1995), but the earlier work used exogenously applied
oligosaccharides rather than endogenously generated compounds.

Several complications are apparent when this step in the
signalling process is considered. First, the plant polygalac-
turonase can exist as a single catalytically active subunit, or as a
complex between the catalytic subunit and a regulatory (

 

β

 

-)
subunit. The 

 

β

 

-subunit appears to act as an inhibitor; both
subunits are induced on wounding, but the kinetics of induc-
tion for the catalytic subunit are faster than for the 

 

β

 

-subunit,
resulting in an increase, then a decrease in enzyme activity
over an 8-h period (Bergey 

 

et al

 

., 1999). A more fundamental
problem with the putative response is that polygalacturonase
expression is induced by the product of its action, oligogalac-
turonic acid. In the absence of any other controls, this would
result in an indefinite self-amplifying synthesis of active enzyme.
Possibly the 

 

β

 

-subunit of polygalacturonase functions to
prevent such a positive feedback loop being maintained;
alternatively, the processes of gene expression and polygalac-
turonase action may be spatially separated in different cellular
compartments, or in specific cell types (Bergey 

 

et al

 

., 1999).
Oligogalacturonic acid is not the only oligosaccharide that
can induce defence responses leading to proteinase inhibitor
synthesis in tomato leaves; oligomers of 

 

β

 

-1,4-linked glucosa-
mine (chitosan) can also do so (Shibuya & Minami, 2001).
This seems to be a distinct response from that caused by
oligosaccharides derived from chitin (β-1,4-linked N-
acetylglucosamine), which are active elicitors of plant defences
against fungal pathogens, since the concentrations of chitosan
required to produce a response are much higher than those of
N-acetylchitooligosaccharides. The structures of oligogalac-
turonic acid and chitosans are not very similar (see Fig. 3),
and it is surprising that they produce a similar response, if that
response is mediated by interaction with a common receptor.
In fact, no receptors for either type of oligomer have been
identified in plants, in contrast to the situation for putative
receptors for chitin oligomers (Shibuya & Minami, 2001),
and it may be that a relatively nonspecific interaction of the
charged oligosaccharides with charged membrane lipid
components takes place, rather than interaction with a
specific receptor protein (Kauss et al., 1989). Further events
in oligogalacturonic acid-mediated signalling pathways are
not well understood, but tomato leaf cell plasma membranes
are depolarized by oligogalacturonides (Thain et al., 1995),
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and evidence from Arabidopsis suggests that mobilisation
of intracellular calcium, and calmodulin-related activity are
involved in the response (Leon et al., 1998). The membrane
depolarization induced by systemin (see above) may thus
reflect a local production of oligogalaturonic acid molecules.

Oligosaccharides are not mobile within the plant, and thus
must act near their site of production (Baydoun & Fry, 1985).
In the local response, the production of oligogalacturonic acid
can take place both directly at the wounding site, as a result
of pest/pathogen polygalacturonase action, and in nearby
tissues in which wound-induced jasmonate synthesis has been
stimulated, and the endogenous plant polygalacturonase acti-
vated. In the systemic response, evidence based on localisation
of the next signalling molecule, hydrogen peroxide, suggests
that oligogalacturonic acid is produced in the vascular bundle,
and in cells adjacent to the vascular tissue (Orozco-Cardenas
et al., 2001). This is in agreement with the systemic response
being mediated by a signalling molecule transmitted through
the vascular system, rather than via gaseous diffusion; that is,
it supports the concept that systemin rather than methyl
jasmonate is the primary systemic signal within the plant.

5. Hydrogen peroxide

The involvement of reactive oxygen species in defensive
responses of plants towards pathogens is well-established;
infection, or the action of pathogen-derived elicitors causes an
oxidative burst characterised by the production of hydrogen
peroxide (Lamb & Dixon, 1997). Hydrogen peroxide is
produced in plant tissues on wounding (Olson & Varner,

1993), and this response is both local and systemic (Orozco-
Cardenas & Ryan, 1999). Herbivory by a chewing insect pest,
corn earworm (Helicoverpa zea) on soya bean is known to
result in the production of hydrogen peroxide in the plant as
a component of induced resistance (Bi & Felton, 1995); a
similar response is observed in Arabidopsis attacked by a plant
parasitic nematode (Heterodera glycine ; Waetzig et al., 1999).
The oxidative burst (and hydrogen peroxide production) can
be induced by oligogalacturonic acid in soya bean cell cultures
(Legendre et al., 1993), and by systemin in cultured tomato
cells (Stennis et al., 1998). The wounding response and
hydrogen peroxide generation are thus linked by a chain of
causative relationships via the production of jasmonic acid
and oligogalacturonic acid. Whereas high levels of hydrogen
peroxide have been implicated in the induction of cell death
in the hypersensitive response to pathogens (reviewed by
Lamb & Dixon, 1997), the molecule can also function as a
diffusible signalling molecule at lower concentrations (Alvarez
et al., 1998). Hydrogen peroxide can be produced by a
number of routes in plant tissues, but the oxidative burst is
thought to be a result of activation of a membrane-bound
NADPH complex (Doke et al., 1996). Activation of this
enzyme by signalling mediated by oligogalacturonic acid leads
to the model for defence gene induction proposed by Orozco-
Cardenas et al. (2001) and outlined in this review.

The role of hydrogen peroxide as the final signalling mole-
cule in the pathway leading to expression of genes encoding
defensive proteins (proteinase inhibitors and polyphenol
oxidase) in tomato has been demonstrated in a series of
experiments in which inhibitors were used to block its

Fig. 3 Charged oligosaccharides which can 
induce the synthesis of proteinase inihbitors 
as part of the wounding response in tomato. 
Oligogalacturonic acid (OGA) is the 
‘natural’ elicitor, formed by the action of 
polygalacturonase on plant cell wall pectins; 
chitosan will also act as an elicitor.
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generation by the membrane-bound NADPH complex
(Orozco-Cardenas et al., 2001). Under these circumstances,
induction of proteinase inhibitors in tomato plants exposed to
systemin, jasmonate or oligogalacturonic acid was reduced by
at least twofold when compared to uninhibited controls.
Hydrogen peroxide accumulates in or near vascular bundles,
and in intercellular spaces in leaves; the latter location is in
agreement with a hypothesised role for this compound as a
second messenger in stomatal closure induced by oligogalac-
turonic acid (Lee et al., 1999). Diphenylene iodonium, an
inhibitor of hydrogen peroxide production, inhibited the up-
regulation of genes encoding defensive proteins, but not genes
encoding proteins involved in the signalling pathway (prosys-
temin, jasmonate biosynthesis, polygalacturonase). Similarly,
if plants were supplied with a biochemical hydrogen peroxide
generation system (glucose oxidase plus glucose), up-regulation
of genes encoding defensive proteins was observed, but there
was no up-regulation of genes encoding proteins involved in the
signalling pathway. Similar results had previously been obtained
with transgenic potato plants over-expressing a fungal glucose
oxidase gene, which had elevated levels of hydrogen peroxide
and enhanced disease resistance (Wu et al., 1995, 1997).

The final step in the process occurs when hydrogen perox-
ide produced near vascular bundles in tomato leaves diffuses
into mesophyll cells, where it up-regulates the genes encoding
the defensive proteins, which are accumulated in the vacuole
in these cells. The mechanism through which the final signal
transduction occurs remains to be established. Hydrogen
peroxide has been shown to activate protein kinases, but it is
not clear whether these are involved in the wounding response,
or belong to signalling pathways leading to the production
of proteins associated with disease responses (Desikan et al.,
1999; Chico et al., 2002).

6. Crosstalk, species–species differences, and other 
complications

The sequential model for production of insecticidal proteins
in the wounding response outlined above is useful and
helpful, but represents only a small proportion of the global
changes in gene expression that take place on insect
wounding, and does not involve all the potential signalling
molecules (and processes) which have been shown to have
effects on those changes (Leon et al., 2001). It is obviously
only an approximation to a complex process involving
multiple parallel signalling pathways, all of which contribute
to the overall response. The central role of jasmonates in these
processes is apparent, and has been confirmed by identifying
sets of jasmonate-regulated genes in Arabidopsis (Sasaki et al.,
2001). Some of the multiple signalling pathways may involve
novel signalling molecules (O’Donnell et al., 1998), which
originate from the attacking insect (Korth & Dixon, 1997; see
section IV). Even in the species in which the sequential model
was developed, tomato, the nature of the systemic signal is still
keenly debated, and evidence suggests that more than one
factor may be involved (Li et al., 2002). It is beyond the scope
of this review to discuss plant signalling pathways in general,
but factors which influence the wounding response
(‘modulating signals’) are relevant. The actions of several
modulating signals are summarised in Fig. 4.

Several signalling molecules act as modulators of the
wounding response. Abscisic acid (ABA) has been suggested
to be necessary for a wounding response to occur; tomato
and potato plants deficient in abscisic acid were reported to
be unable to up-regulate proteinase inhibitor sysnthesis in
response to exposure to systemin (Pena-Cortes et al., 1995,
1996). ABA causes an up-regulation in jasmonic acid

Fig. 4 Overview of the plant wounding 
response, and signalling molecules which can 
modulate it. Black solid arrows indicate a 
‘leads to’ relation, either locally or in response 
to transmitted signals. Dark blue solid arrows 
indicate systemic signals within the plant; 
light blue blue solid arrows indicate signals 
transmitted by volatiles. Green dashed arrows 
indicative positive modulation of process, red 
dashed arrows indicate negative modulation 
of process. The solid arrow from ‘jasmonic 
acid’ to ‘volatiles’ indicates that jasmonic acid 
biosynthesis also leads to production of green 
leaf volatiles, and that jasmonic acid 
stimulates the synthesis of other volatiles 
such as terpenoids.
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biosynthesis, but has been suggested to up-regulate the synthesis
of defensive proteins through a jasmonic-acid independent
pathway (Damman et al., 1997). However, evidence suggests
that ABA is not required for the wounding response in
tomato, insofar as it only weakly induces the synthesis of the
final products, proteinase inhibitors and other defence genes
(Birkenmeier & Ryan, 1998). ABA appears to be required for
plants to respond maximally in the wounding response (Ryan,
2000); its local synthesis at wound sites may relate to desicca-
tion of the wounded tissues (Reymond et al., 2000). Of other
plant hormones, auxin is viewed as a negative modulator, and
ethylene as a positive modulator, at least in tomato (Leon
et al., 2001). Salicylic acid, a signalling molecule involved in
the development of systemic acquired resistance in response
to pathogen attack (see below), acts as a negative modulator
of the wounding response (Doares et al., 1995; Bostock et al.,
2001), although there is not a simple dichotomy between the
gene expression induced by insect damage and pathogens
(Fidantsef et al., 1999). The action of salicylic acid is one ex-
ample of cross-talk between different signalling pathways. The
sequential model for signalling in the wounding response,
where the intermediate signalling molecules are common to
many different processes, suggests that cross talk between sig-
nalling pathways should be routine. The present state of know-
ledge makes it more difficult to construct models which explain
why the end products of signalling processes, such as synthesis
of proteinase inhibitors, are specific to certain initial stimuli
(e.g. wounding) and not others (e.g. pathogen infection).

Interactions between plants and insect herbivores are fur-
ther complicated by differences in responses between different
plant species (differences in responses to different insect her-
bivores are considered below). The wound response in Arabi-
dopsis is based on separate signalling pathways mediated by
jasmonic acid and by oligogalacturonides, which are seen as
antagonistic – that is, a gene that is activated by one pathway
is repressed by the other, resulting in a local response mediated
by oligogalaturonides being different from a systemic response
mediated by jasmonate (Leon et al., 2001). However, unlike
the situation in tomato, where it is accepted that the synthesis
of proteinase inhibitors and polyphenol oxidase is the end
point of wound-induced insect resistance, there is no clear
consensus of what constitutes a similar response in Arabi-
dopsis. In common with other members of the Brassicaceae
(Cruciferae), Arabidopsis has the capacity to produce toxic
glucosinolates (Wittstock & Halkier, 2002), which can be
hydrolysed to the more toxic isothiocyanates and nitriles, and
these are known to be toxic to a variety of herbivores (Bones
& Rossiter, 1996). Although Arabidopsis is inherently suscept-
ible to insect herbivory, different genotypes do show varying
levels of partial resistance to generalist herbivores (Mauricio,
1998) which can be related to glucosinolate content. Defence
responses to wounding in Arabidopsis should thus involve
genes encoding enzymes involved in glucosinolate biosynthesis
as an ‘end point’ of the pathway. However, most studies of the

wounding response in this species seem to have been based on
a rather vaguely defined set of ‘responsive genes’ (Leon et al.,
2001), and thus are not really comparable to analyses of the
response in tomato. Nevertheless, it is clear that wounding
responses in tomato (and other Solanaceae) and Arabidopsis
are significantly different; for example, ethylene is thought to
be a positive modulator of the wounding response in tomato,
but is a negative regulator of the local response in Arabidopsis
(Stotz et al., 2000), and makes the plant more susceptible to
herbivory by a generalist herbivore, armyworm (Spodoptera
littoralis). A similar effect was observed in the legume Griffonia
simplicifolia (Zhu-Salzman et al., 1998). Such differences in
responses point out the high level of specificity in the interactions
of plants with their insect herbivores, and warn against extrapola-
tion of data derived from model species to other plants.

In the case of plant–insect interactions, is the use of model
species an inherently flawed approach if hypotheses about the
coevolution of plants and insect herbivores are to be devel-
oped and tested? Arguments can be advanced for both pos-
itive and negative answers, but neither is wholly satisfying. It
is apparent that model species do not give a full picture of
plant defences against herbivores, but if each specific inter-
action has to be considered individually, the accumulation of
detail can easily obscure all other considerations. This review
has tried to indicate those aspects of plant–insect interactions
which can be said to be ‘general principles’, such as constitu-
tive and induced defences in plants. The composition of the
defensive compounds, and even the signalling and synthetic
mechanisms involved in their production, can be expected to
vary greatly between plant species. This diversity is predicted
by Ehrlich and Raven’s coevolutionary hypothesis for plant–
insect interactions (1964), where the driver for the diversifica-
tion is insect adaptation to common defensive mechanisms
(see section 7). However, the fact that great diversity in plant–
insect interactions is observed in nature, does not mean this
diversity cannot be superimposed on an underlying defensive
system common to all plants, representing an earlier stage of
evolution in the interaction. On the basis of observations that
exposure to induced defences in oak (Quercus robur) made
larvae of gypsy moth (Lymantria dispar) less susceptible to attack
by a pathogenic nuclear polyhedrosis virus, Hunter & Schultz
(1993) have argued that induced defence is a general response
to tissue damage in plants, rather than an adaptive defence
against herbivores. This is an extreme viewpoint, especially in
view of subsequent findings that aspects of induced defence
show all the characteristics of adaptive responses, but one
which should not be ignored when the use of model species is
considered.

IV. Insect modulation of the wounding response

Much of the above discussion has considered mechanical
damage to plant tissues as equivalent to feeding by insect
pests. For insects that cause widespread tissue damage, by
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chewing plant tissues, or rasping surfaces, this is basically
a correct view, but underestimates the plant’s ability to
discriminate between external damage stimuli. Results pre-
sented by Korth & Dixon (1997) established that potato
plants being attacked by larvae of tobacco hornworm
responded by producing proteinase inhibitor more quickly
than if mechanically damaged, and also showed that the rapid
induction factor was a heat stable compound present in
regurgitant fluid, which would include products of the
salivary glands, and possibly gut contents. The regurgitant
increases jasmonic acid levels when applied to mechanical
wounds on tobacco leaves (McCloud & Baldwin, 1997),
suggesting that the increased response is mediated through
the signalling pathway described above. The compound(s)
produced by tobacco hornworm which cause this enhanced
response are fatty acid conjugates (Halitschke et al., 2001),
similar to the compound voliticin, which induces volatile
emission in maize (see below). This modulation of the
wounding response is specific to insects normally feeding on
tobacco; oral secretions from tobacco hornworm species
(Manduca spp.; specialised herbivores which preferentially eat
tobacco) and corn earworm (a generalist herbivore which
attacks tobacco) caused a response, but oral secretions from
larvae of cabbage white butterfly (Pieris rapae), a pest of
crucifers which does not feed on tobacco, did not cause up-
regulation of jasmonate levels (Schittko et al., 2000). The
plant is able to ‘recognise’ known herbivores and increase its
response to attempt to deter them.

Insect salivary components do not necessarily up-regulate
the wounding response. The corn earworm produces glucose
oxidase in its saliva and from labial glands (Eichenseer et al.,
1999), and a recent report has concluded that this salivary glu-
cose oxidase suppresses the production of nicotine, normally
induced on wounding as a defensive compound, in tobacco
which is attacked by these insects (Musser et al., 2002). This
observation appears to contradict the induction of defensive
proteins (proteinase inhibitors) observed in tomato treated
exogenously with glucose oxidase (Orozco-Cardenas et al.,
2001), where the hydrogen peroxide produced acts as a signal
to induce expression of the encoding genes. The different
defensive products in tobacco, proteinase inhibitors and the
alkaloid nicotine, have previously been observed to show dif-
ferent patterns of induction on mechanical damage and insect
feeding (Korth & Dixon, 1997), and oral secretions from the
specialist herbivore, tobacco hornworm specifically down-
regulate nicotine production while leaving other defence
responses (production of volatiles) unaltered (Kahl et al.,
2000). It is apparent that subtle shifts in defensive responses,
prompted by the herbivore, are an important factor in the
plant’s ability to deal with insect herbivores. For example, a
study in Arabidopsis using microarray analysis of 150 wound-
regulated genes showed that mechanical damage and feeding
by larvae of cabbage white butterfly resulted in ‘very different’
transcript profiles (Reymond et al., 2000). These differences

in responses also extend to a discrimination between different
insect herbivores; for example, in tomato, feeding by lepid-
opteran larvae, coleopteran leaf-miners and mites resulted in
different patterns of accumulation of defensive proteins
(proteinase inhibitors, polyphenol oxidase, peroxidase and
lipoxygenase; Stout et al., 1994, 1998). These differences in
responses could result from integration of the effects of mul-
tiple signalling pathways, and indicate why the complexity
apparent in the wounding response has arisen.

V. Insects which evade the wounding response

This review is based on the argument that the wound response
functions as a general, relatively nonspecific defence against
pests which damage plant tissues, which involves the action
of a relatively large set of genes, and multiple signalling
molecules. Such a mechanism would not be expected to show
the gene-for-gene resistance/susceptibility relationships that
are characteristic of plant interactions with pathogens, and
by and large this deduction is supported by experimental
observation. When genetic analysis is carried out, insect
resistance is often multigenic, continuous and associated with
quantitative trait loci (QTLs; Stotz et al., 1999; Yencho et al.,
2000). However, examples of specific, causal resistance genes,
or genes whose induction is induced by specific pests, are
known (Walling, 1999; Yencho et al., 2000). These examples
are associated with insect pests which have a feeding habit that
minimises tissue damage, and thus are able to avoid much
of the wounding response. Typically, these are homopteran
species, such as aphids and whitefiles.

Most aphids and other phytophagous homopterans feed
from plant vascular tissue by inserting a stylet into conductive
cells. By inserting the stylet between cells, rather than punc-
turing them, this process can minimise cell damage, and thus
avoid induction of a wounding response. A direct demonstra-
tion of this evasion of the wound response has been observed
in tomato, where feeding by the aphid Macrosiphum euphor-
biae does not induce the synthesis of proteinase inhibitors or
polyphenol oxidase, the toxic proteins induced by feeding by
lepidopteran larvae (Stout et al., 1998). The feeding habits
and gut physiology of many homopteran plant pests can be
viewed as a strategy both to evade the plant wounding response,
and to render the final products of the response, proteinase
inhibitors and polyphenol oxidase, ineffective. Exploitation of
the phloem and xylem saps as feeding sources allows the insect
to exploit free amino acids as a nitrogen source, and thus
inhibition of protein digestion by products of the wounding
response is less likely to limit nutrient availability. Sap-sucking
homopteran plant pests have been thought to lack digestive
proteolysis altogether, although the occurrence of putative
digestive proteinases has been reported in rice brown plan-
thopper (Nilaparvata lugens ; Foissac et al., 2002).

Although aphids and other homopterans can be affected by
‘static’ plant defences in the form of accumulated secondary
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defensive compounds if these are present in vascular tissues
(e.g. glucosinolates in Brassica spp.; Chen et al., 2001), or are
encountered by the insect on the plant surface, or during
stylet probing (Harborne, 1988), the absence of an induced
resistance mechanism for these pests appears to place the plant
at a disadvantage. However, while the plant wounding
response is not activated by many homopteran pests, plants
nevertheless respond to attack by these insects, and their
responses have been found to be typical of plant responses to
pathogen attack (Walling, 1999). These pathogen-induced
pathways induce expression of many of the genes up-regulated
during the wounding response, due to cross-talk between the
signalling pathways (see above), and the involvement of
reactive oxygen species, jasmonate and ethylene as common
signalling molecules; the pathogen-induced pathways differ
from the wounding response in the use of salicylic acid as a
signalling molecule, both in local responses, and in systemic
acquired resistance (Sticher et al., 1997).

Application of salicylic acid does not lead to up-regulation
of the synthesis of the products of the wound response, and
has no effect on plant resistance to chewing insects, such as
lepidopteran larvae, when effects on cotton were assayed (Bi
et al., 1997; Inbar et al., 2001). Similarly, insect feeding does
not normally cause the hypersensitive response leading to
localised cell death, which is so characteristic of pathogen
responses (Lamb & Dixon, 1997), although hypersensitive
cell death has been observed as a response to insect egg laying
by gall mites (Contarinta sp.; Fernandes, 1998). Because sali-
cylic acid has a negative effect on jasmonate production in the
wounding response (see above), it has the potential to
interefere with the synthesis of proteinase inhibitors and
polyphenol oxidase, and there is some evidence that the resist-
ance mechanisms induced by salicylic acid actually make
plants more susceptible to attack by chewing insect pests
(Felton et al., 1999). Analysis of plant responses is complicated
by the ill-defined nature of the ‘products’ of the pathogen
response in plants when resistance to homopteran insect
pests is considered; although much evidence has been gathered
on which gene products are up-regulated by insect feeding
(Walling, 1999) there is no evidence that any of the chitinases,
glucanases or peroxidases which are identified as defence-
response proteins are toxic to aphids, or lead to the produc-
tion of toxic products. The up-regulation of jasmonate levels
as a response to pathogen attack introduces further problems,
as increased jasmonate levels are central to the wound-induced
pathway also. Aphids induce both salicylic acid- and jasmonate-
responsive genes in Arabidopsis (Moran & Thompson, 2001),
leading to the over-hasty conclusion that both wound-induced
and pathogen-responsive resistance mechanisms have been
activated. While it is impossible to separate the wound-
induced and pathogen responsive resistance mechanisms as
parts of the global plant defensive system, in which many
genes are up-regulated in common in both responses, the end
results of the two processes are different. When considering

the synthesis of an insecticidal end-product up-regulated by
one mechanism, and not the other, there is sufficient justi-
fication for considering the pathways act separately.

The separation of resistance mechanisms mediated by the
wounding response, and via pathogen responses, is exempli-
fied by resistance to the aphid Macrosiphum euphorbiae in
tomato. As stated above, this aphid species evades the wound-
ing response, but it is susceptible to a resistance mechanism
mediated by the gene Mi, which is responsible for resistance
of tomato towards root-knot nematodes (Meloidogyne incog-
nita ; Rossi et al., 1998; Vos et al., 1998). The Mi gene encodes
a leucine-rich repeat protein similar to those causally involved
in resistance to fungal and bacterial pathogens (Milligan et al.,
1998), and resistance to both nematodes and aphids appears
to involve a specific recognition of a signal molecule origin-
ating from the pathogen/pest. In agreement with this hypo-
thesis, other aphid species are not susceptible to the resistance
caused by Mi, and the Mi-mediated resistance towards Mac-
rosiphum euphorbiae is specific towards certain biotypes of the
pest (Goggin et al., 2001), in a manner similar to the classical
gene-for-gene virulence/avirulence relationships observed
between plants and fungal pathogens. The insecticidal
factor(s) in the resistance mediated by Mi is not known as yet,
and there is a general lack of knowledge on molecules involved
in the putative gene-for-gene signalling relationships between
plants and homopteran insects. Whiteflies (Bemisia spp.)
show complex species- and development stage-specific induc-
tion of genes in tomato (Walling, 1999), suggesting that dif-
ferent signals are involved in determining the specificity of the
responses in the plant. Analysis of the interaction between
homopteran pests and plants at the molecular level may thus
pose considerable problems.

The recognition reaction mediated by receptors such as Mi
may involve molecules derived not from the insect pest itself,
but from pathogens carried by the insect acting as a vector
(Stotz et al., 1999). Tomato plants infested with whitefly
(Bemisia tabaci ) which was virus-free showed a negligible
pathogenesis-related response compared with noninfested
controls (measured by synthesis of pathogenesis-related
proteins), whereas infestation with whiteflies carrying tomato
mottle virus elicited a normal pathogenesis response (McKenzie
et al., 2002). This result provides a neat explanation of why insects
can elicit a pathogen response in plants, but does not eliminate
the possibility that insect-derived molecules are involved in
signalling.

VI. Insect-induced emission of volatiles and 
tritrophic interactions

The emission of volatile molecules from plant tissue has been
recognised as an important component in the interaction
between plants and insects for many years, both in the
attraction of pollinators and the deterrence of herbivores
(Harborne, 1988; Pichersky & Gershenzon, 2002). Many of
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these volatiles are preformed, and act in herbivore deterrence
as a constitutive defence, as defined above. However, the
wounding response includes the formation of volatile com-
pounds (Pare & Tumlinson, 1997). Some of these volatiles
(shown in Fig. 6) appear to be common to many different
plant species, including the C6 aldehydes, alcohols and esters
referred to as ‘green leaf volatiles’, C10 and C15 terpenoids,
and indole (Pare & Tumlinson, 1999), whereas others are
products of secondary metabolism specific to particular plant
species. The synthesis and release of volatiles as part of the
wounding response occurs both locally and systemically (Rose
et al., 1996), and is activated by jasmonate (Rodriguez-Saona
et al., 2001), although the green leaf volatiles themselves also
are able to induce defence-related genes (Bate & Rothstein,

1998), and the specific mixture of volatiles induced by
jasmonate is generally different from that induced by insect
feeding (q.v.; Walling, 2000). The biosynthetic routes to these
compounds are various; terpenoids are synthesised through
the mevalonate and 1-deoxyxylulose-5-phosphate pathways,
and indole is produced via amino acid biosynthesis. Nerolidol
synthase, the first enzyme on the dedicated pathway lead-
ing to C11 homoterpene biosynthesis, is induced by insect
herbivores such as spider mite, and has been identified and
characterised in cucumber, lima bean (Bouwmeester et al.,
1999) and maize (Degenhardt & Gershenzon, 2000). As
mentioned above, green leaf volatiles are formed as a branch
of the jasmonate biosynthesis pathway, through the action of
the enzyme hydroperoxide lyase (Fig. 5).

Fig. 5 Biosynthesis of green leaf volatiles from 
linolenic acid, via a branching reaction from 
the octadecanoid pathway. The biosynthetic 
route to volicitin, an insect inducer of defence 
responses, is also shown.

Fig. 6 Common plant volatiles synthesised in 
response to insect attack. These volatiles are 
produced both locally and systemically. 
Adapted from Pare & Tumlinson (1999).
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The volatiles emitted by plants, both preformed and induced,
contribute directly to defence, and play a vital role in indirect
defence strategies employed by plants (Pare & Tumlinson,
1999). As a direct defence, species-specific volatiles can have
a repellent or toxic effect (for example, monoterpenes in pine;
Litvak & Monson, 1998). More controversially, there is
evidence that the induced green leaf and other common
volatiles emitted by tobacco can deter oviposition by lepid-
opteran herbivores (De Moraes et al., 2001; Kessler & Baldwin,
2001), although it is not clear whether this is due to the toxi-
city of these compounds, or the insect wishing to avoid laying
eggs on a plant that is already damaged by predation. Volatiles
emitted by corn after damage by lepidopteran larvae have
a repellent effect on cereal aphids (Bernasconi et al., 1998).
Toxicity of the green leaf volatiles towards a generalist insect
pest, the aphid Myzus persicae, was tested in transgenic
potatoes in which levels of hydroperoxide lyase, the specific
biosynthetic enzyme for these compounds, were reduced by
an antisense strategy, leading to low levels of the compounds
being present (Vancanneyt et al., 2001). Aphids feeding on
the transgenic plants showed increased fecundity, an indicator
of improved performance, suggesting that the green leaf
volatiles could have an adverse effect. Similar results have
been reported when aphids were exposed directly to the com-
pounds (Hildebrand et al., 1993). However, it seems unlikely
that a nonspecific herbivorous aphid like Myzus persicae
would not be well-adapted to common compounds like the
green leaf volatiles, and possibly the signalling activity of
these compounds (see above) may also have led to an effect on
overall plant responses. Volatiles induced by herbivory in turn
induce expression of defence genes in undamaged, unconnected
leaves in lima bean (Arimura et al., 2000a).

The role of plant volatiles in indirect defence strategies has
received much attention in recent years (Baldwin et al., 2001),
following observations by Turlings et al. (1995) and others.
These studies identified a role for volatiles produced by corn
and cotton plants in attracting parasitic wasps to lepidopteran
larvae preying on the plants. Similar studies on Brassica spp.
exposed to herbivory by larvae of the cabbage white butterfly
had shown that plant volatiles were long-range stimuli which
attracted the parasitoid Cotesia rubecula (Hymenoptera; a
parasitic wasp) to the site of herbivory (Geervliet et al., 1994).
Parasitism causes paralysis in the lepidopteran larva, decreas-
ing feeding damage, and the mortality caused by the parasite
prevents pest populations building up to levels which the
plant could not survive. The overall result is an increase in
plant reproductive capacity (van Loon et al., 2000). The
interaction between plant, insect herbivore and natural enemy
of insect herbivore constitutes a tritrophic interaction, where
the plant-derived compound signals directly to an organism at
the third trophic level. Similar observations have been made
for other plant species and herbivores. For example, Arabi-
dopsis has been shown to respond to herbivory by cabbage
white butterfly larvae by producing green leaf volatiles and

terpenoids which attract a parasitoid of the pest (van Poecke
et al., 2001); this result emphasises that the production of
green leaf and terpenoid volatiles is a common response to
possibly all plant species. A response to a green leaf volatile
(Z)-3-hexen-1-ol, was shown directly in the two-spotted
stinkbug (Perillus binculatus), a predator of Colorado potato
beetle (Leptinotarsa decemlineata), by electroantennography
(Weissbecker et al., 1999). As a further example, the common
plant volatiles β-ocimene and cis-jasmone have been found to
attract predators of aphids (Birkett et al., 2000); the cis-jasmone
induced persistent synthesis of the β-ocimene, which is also
an effective parasitoid attractant. The plant response caused
by cis-jasmone was persistent, and qualitatively different from
that produced by methyl jasmonate. The volatile ‘signals’
involved in these indirect defence mechanisms are referred to
as synomones by some authors, but this term is not accepted
by other workers in the field.

Although some examples of indirect defence strategies
mediated by plant volatiles have been well-studied, there is
some debate at present over the extent to which predators and
parasitoids in general actually protect the plant from its her-
bivores, and to what extent the plant itself directs this process.
In the case of the tritrophic interaction between poplar trees
(Populus nigra), gypsy moth (Lymantria dispar) larvae and the
parasitoid wasp Glyptapanteles flavicoxis, the direct defences in
the host plant induced by herbivore feeding had a deleterious
effect on parasitoid development, which would greatly reduce
its ability to control the pest (Havill & Raffa, 2000). An example
has been described in which parasitised caterpillars show
improved survival, by extending their host range to a species
normally avoided (Karban & EnglishLoeb, 1997). On the
other hand, experimental evidence for significant levels of
protection, resulting in 30% increased seed production, has
been shown for maize plants attacked by unparasitised and
parasitised larvae of armyworm (Spodoptera littoralis ; Hobal-
lah & Turlings, 2001), and release of volatiles by the tobacco
species Nicotiana attenuata was concluded to reduce her-
bivores per plant by 90% (Kessler & Baldwin, 2001), partly
through decreased oviposition (see above) and partly through
attraction of a generealist predator of insect eggs. The work of
Baldwin and his group in studying the interaction between
insect herbivores and a wild tobacco species (Nicotiana
attenuata), under both laboratory and field conditions, has
provided a masterly body of work on the interplay of various
types of defence strategy and the fitness costs associated
with them during plant development (Baldwin, 2001). This
multidisciplinary approach has pointed the way to a more
detailed and mature understanding of plant–insect interac-
tions in general.

Although wounding itself can cause volatile emission, the
mixture of volatiles produced differs from that induced by
insect feeding, due to the presence of bioactive compounds in
insect saliva and regurgitant. For example, both wounding
and insect regurgitant contributed to attracting parasitoid
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wasps to larvae of the diamondback moth (Plutella xylostella)
feeding on cabbage plants (Shiojiri et al., 2000), and in the
stinkbug/Colorado potato beetle example given above, the
predator responded strongly to 2-phenylethanol, a volatile
emitted by potato specifically in response to Colorado potato
beetle feeding (Weissbecker et al., 1999). The identification of
a compound, volicitin, in the oral secretions of beet army-
worm which induced volatile synthesis in maize (Alborn et al.,
1997) linked insect feeding damage to plant recruitment of
natural enemies of the pest. A combination of mechanical
wounding and volicitin application caused volatile produc-
tion similar to that caused by insect feeding.

Volicitin is a fatty acid-amino acid conjugate, produced by
formation of an amide linkage between the carboxylic acid
group of linolenic acid and the amino group of glutamine
(Fig. 5), and 2-hydroxylation of linolenic acid; the linolenic
acid is plant-derived, whereas the glutamine is provided by the
insect, which also performs the chemical reactions required to
produce the compound (Pare et al., 1998). Volicitin has been
shown to cause up-regulation of expression of genes involved
in biosynthesis of both indole (Frey et al., 2000) and terpene
(Shen et al., 2000) volatiles in maize. Similar fatty acid conju-
gates have been identified in oral secretions of other lepid-
opteran larvae (Halitschke et al., 2001), and have been shown to
be necessary for induced responses in tobacco. Why an insect
pest should produce a compound which induces defensive
responses against itself in its host remains unclear; presumably
volicitin has a metabolic role within the insect, and the plant
has exploited the compound for its own purposes. It has been
suggested that volicitin may be a product of the gut microflora
in armyworm, and that it functions as a surfactant to aid
digestion (Spiteller et al., 2000). Insects do not contain
emulsifiers similar to bile salts in vertebrates, but do contain
surfactants including phospholipids and compounds con-
taining linolenic acid, and have been suggested to produce
fatty acyl-amino acid complexes for this purpose (Deveau
& Schultz, 1992; Turunen & Crailsheim, 1996). On the
other hand, two corn earworm species (Heliothis virescens and
Helicoverpa zea) contain enzymes in the midgut that are
able to cleave the amide linkage in fatty acid-amino acid
conjugates (Mori et al., 2001). The two species differ in the
enzymatic activity present, resulting in different levels of the
elicitors in oral secretions, gut and frass (excreta). It is sug-
gested that this difference in gut enzymes may be a causative
factor in the differences between blends of volatiles emitted by
plants attacked by one or other of these insect species, which
has previously been shown to be used by a parasitic wasp,
Cardiochiles nigriceps, to distinguish infestation by its host,
Heliothis virescens, from that by Helicoverpa zea (De Moraes
et al., 1998). Mechanisms of this type explain how plants
are able to produce herbivore-specific volatile mixtures that
attract host-specific parasitoids or predators. There are many
examples of this signalling specificity mediated by volatiles
(Walling, 2000), and it is likely that more than one bio-

chemical mechanism operates to stimulate the production of
herbivore-specific volatile mixtures by the plant, since aphid
feeding, which minimises tissue damage and does not involve
lipid digestion, can also lead to their production. For example,
the parasitoid wasp Aphidius ervi can distinguish between
plants infested by its host, the pea aphid (Acyrthosiphon pisum)
and nonhost bean aphids (Aphis fabae) on the basis of emitted
volatiles (Du et al., 1996; Powell et al., 1998). Nevertheless,
the solubilisation and digestion of ingested lipids in her-
bivorous insects is possibly an area that would be worth
further study, if the apparent contradictions in the production
of volicitin and other similar elicitors by insects are to be
understood.

As well as oral secretions, other insect-produced com-
pounds may also play a role in indirect defences; for example,
oviduct secretions, in combination with plant wounding, have
been shown to play a similar role to volicitin in attracting an
egg parasitoid of the elm leaf beetle (Xanthogaleruca luteola),
mediated by emission of volatiles (Meiners & Hilke, 2000).

VII. Insect adaptation to plant defences

1. Insect adaptation

The success of phytophagous insects as herbivores results from
their ability to successfully counteract the defensive strateg-
ies of their plant hosts. An extensive discussion of insect
adaptation to plant foodstuffs lies outside the scope of this
review; basic principles are very ably reviewed by Harborne
(1988).

In the same way that plant defence mechanisms were
formally divided into ‘static’ or constitutive and ‘active’ or
induced, insect mechanisms for dealing with plant defensive
compounds can also be divided formally into constitutive and
induced responses, with the proviso that the two categories
overlap to a large extent, as with plant defence mechanisms.
A further distinction may be made in insect feeding habits,
where species are divided into generalist herbivores, which are
able to survive on a wide range of host species (although in a
particular location they may preferentially consume a single
species), and specialist herbivores, which are only able to
survive on a limited range of host species, or, in extreme
cases, only a single host species. It is this adaptation to specific
host species which has been hypothesised to drive species
divergence in phytophagous insects, and although experi-
mental evidence for such a process has been lacking, an
emerging consensus is in support of the concept (Berlocher &
Feder, 2002). A specialist herbivore can adopt constitutive
detoxification mechanisms for dealing with plant defensive
compounds, since it is bound to encounter them when feed-
ing from its chosen plant hosts. For example, when the flea
beetles Phyllotreta nemorum and Phyllotreta cruciferae, special-
ist feeders on cruciferous plant species containing glucosi-
nolates, were allowed to feed on transgenic Arabidopsis plants
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expressing glucosinolates at four times the normal level, no
deleterious effects compared to controls were observed
(Nielsen et al., 2001). On the other hand, Arabidopsis plants
engineered to accumulate dhurrin, a cyanogenic glycoside
normally produced in sorghum, were resistant to Phyllotreta
nemorum, showing that the insect’s detoxification mechan-
isms were specific to the secondary metabolites it normally
encountered (Tattersall et al., 2001). Even in specialist her-
bivores there is considerable evidence for a metabolic cost
involved in constitutive detoxification (e.g. furanocoumarin
detoxification in parsnip webworm, Depressaria pastinacella;
Berenbaum & Zangerl, 1994). Specialist herbivores with con-
stitutive adaptations, like plants with constitutive defences,
also show induced up-regulation of the ‘constitutive’ detoxifica-
tion mechanisms. Tobacco hornworm constitutively expresses
the cytochrome P-450 enzymes needed to detoxify nicotine,
the constitutive defence compound produced by tobacco
(Snyder et al., 1994), but the amounts of these enzymes are
increased by the presence of nicotine in the diet (Snyder et al.,
1993). A major advantage gained by specialist herbivores is
the ability to sequester plant secondary compounds as a defence
against their own predators (Dobler, 2001), which can simply
be stored, or metabolised to insect-specific compounds.
Generalist herbivores trade off their ability to be effective
herbivores of a wider range of plant species against less efficient
mechanisms for dealing with specific insecticidal compounds,
having to rely on induced responses (Bernays & Chapman,
2000). Nevertheless, they have the capacity to deal with many
insecticidal compounds under suitable circumstances; for
example, desert locusts (Schistocerca gregaria) can feed on
crucifer species with very high glucosinolate contents if
allowed to adapt to this food source (Mainguet et al., 2000).
A comparison of specialist and generalist insects feeding on
Hypericum perforatum concluded that specialists needed less
adaptation to deal with hypericin, the phototoxin accumulated
as a plant defence, and were able to detoxify the compound
more effectively (Guillet et al., 2000).

The main types of detoxification enzymes used by insects
are cytochrome P-450 monooxygenases (Feyereisen, 1999)
and glutathione S-transferases (GSTs; Yu, 1996). These
enzymes have been studied extensively in connection with the
ability of many insect pests to detoxify insecticides, but their
role in detoxifying plant secondary compounds has become
well-established. Cytochrome P-450 enzymes are induced by
isoquinoline alkaloids encountered in a natural host, saguaro
cactus, in the fruit fly (Drosophila melanogaster ; Danielson
et al., 1998), and by xanthotoxin in the generalist herbivore
corn earworm (Li et al., 2000). The availability of the com-
plete sequence of the Drosophila melanogaster genome will
enable a systematic study of its detoxifying enzymes, both
P-450 s and GSTs, to be made (Wilson, 2001). This insect may
prove a useful model for studying how herbivorous insects
exploit the resources of their genome to overcome plant
defences, although each plant–insect interaction has its own

species-specific aspects. In contrast to the situation in plants,
one aspect of insect adaptation responses that has received
comparatively little attention is the signalling mechanism(s)
linking ingestion of the toxin and induction of gene expres-
sion; Drosophila melanogaster may also prove a good model for
elucidating the pathways involved.

The responses of insect herbivores to insecticidal proteins
in the plant wounding response have also been studied in
some detail. Polyphenol oxidase has been identified as insec-
ticidal on the basis of conjugation of phenolics to proteins,
decreasing its digestibility (Felton et al., 1992), and is system-
ically induced on wounding in potato (Thipyapong et al.,
1995) and tomato (Constabel et al., 1995). Phenolic acids
have been shown to induce oxidative stress in herbivorous
lepidopteran larvae (Summers & Felton, 1994). However,
recent results have identified mechanisms by which lepidopteran
larvae can overcome the effects of dietary oxidised phenolics
by maintaining reducing conditions in the gut (Barbehnen et al.,
2001). A study in which transgenic tobacco lines over- and
under-producing phenols were tested for resistance to larvae
of corn earworm did not provide evidence for these com-
pounds having any causal role in insect resistance, and instead
led to the conclusion that foliar phenolics could have benefi-
cial antioxidant effects for insects ( Johnson & Felton, 2001).
Coleopteran and lepidopteran herbivorous insects are also
able to adapt to dietary proteinase inhibitors ( Jongsma & Bolter,
1997) by the production of inhibitor-insensitive proteinases
(Bolter & Jongsma, 1995; Broadway, 1995; Jongsma et al.,
1995; Broadway, 1996), which are selected from a repertoire
of digestive enzymes available in the insect genome (Bown
et al., 1997). Larvae of a generalist lepidopteran herbivore,
Helicoverpa armigera, were shown to be adapted to the inhibitors
present in their host plant, but not to inhibitors from non-host
plants (Harsulkar et al., 1999).

In a natural ecosystem, there must be a balance between
plants and herbivores. Although an adapted insect may be
able to complete its life cycle on a plant which produces
defensive compounds, the plant defensive strategy must be
sufficient to prevent the insect eliminating its host, that is, the
plant must also be able to complete its life cycle. This review
has tried to indicate how many factors are involved in deter-
mining the success of insect herbivory, and plant defence, but
the net result is often a partial success for both parties. The
balance of a natural ecosystem is a different situation from
that in agriculture, where uncontrolled insect pests can lead to
very high levels of crop damage and loss. The high density
of suitable host plants in intensive agriculture means that
insect adaptation to defence responses by the crop, even if only
partially successful, can lead to very rapid increases in the
pest population. Some crop pests are specialist herbivores,
originally of the wild progenitors of agricultural crop species,
and thus have constitutive adaptations to crop defences, but
many serious insect pests, such as corn earworm, are generalist
herbivores. The ability of these insects to detoxify a variety
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of insecticidal compounds or proteins, particularly those
encountered as a common plant response to damage, such as
proteinase inhibitors, makes them pests of many different
crops. Endogenous mechanisms of plant defence are thus
likely to have only a limited success in insect control in agri-
cultural contexts, although spraying with methyl jasmonate
has been put forward as a method of inducing defence
responses against pests in the field (Baldwin, 1996).

2. Exploitation of plant defence mechanisms 
in agriculture

Pest control in modern agriculture has undergone some-
thing of a revolution, and is increasingly moving away from
reliance on exogenously applied pesticides, towards more
‘environmentally friendly’ methods. This move has been
brought about partly by consumer pressure, partly by eco-
nomic considerations (cost of spraying for pesticides being a
significant factor) and partly by an increasing level of
resistance to common pesticides in many agricultural insect
pests. Exploitation of plant defences is already a component
of integrated pest management (IPM) programmes, which
seek to minimise insect damage through a combination of
crop rotation to prevent build-up of pest populations, natural
biological control (exploiting predators and parasitoids of
pests), endogenous resistance in the crop, whether partial
or almost complete, and a minimal level of pesticide applica-
tion only when necessary. Breeding programmes to exploit
naturally occurring resistance genes in the gene pool available
to a crop species have met with some success; for example,
resistance genes to rice brown planthopper have been
incorporated into improved rice varieties from pre-existing
germplasm (Khush & Brar, 1991). However, the limitations
to this technique are also shown by this example, as resistance
is only effective against specific biotypes of the pest, and can
be broken easily by introduction of a different biotype. Pest
adaptation is equally a problem when endogenous resistance
is used to defend plants against herbivores as it is when
pesticides are used, with the strength of the selection pressure
being a determining factor. This may be why many examples
of plant resistance to pests in natural systems prove to depend
on more than one mechanism, with the resistance produced
by any one mechanism being partial. The partial resistance
can be viewed as a balance between the deleterious effects on
the pest of adapting to the plant’s defensive mechanisms being
balanced by the selection pressure to do so.

Although, as argued above, endogenous resistance in many
crops is not adequate to deal with heavy pest infestations in
an agricultural environment, it should be exploited in agri-
culture. On the basis of increased knowledge of defence mech-
anisms, particularly induced responses, there is clearly scope
for enhancing endogenous defence against herbivores in
crops, without introducing genetic material from outside the
available gene pool, by conventional breeding strategies. The

level of partial resistance against pest species achieved using
inherent genetic resources may well be sufficient to give ade-
quate protection to a crop under a suitable IPM programme,
especially with an increased contribution from predators
and parasitoids of the pest. However, the work of Halkier’s
group (Nielsen et al., 2001), showing that increased levels of
endogenous defence compounds (glucosinolates) did not give
resistance to specialised herbivores in Arabidopsis, clearly
points out the limitations of this approach. The strategy of
reliance of the available gene pool in a crop for protection
against herbivores cannot give complete protection, and is
therefore dependent on two factors: first, that farmers are will-
ing to tolerate a level of pest damage that is below a certain
threshold, determined by the IPM programme; and second,
that consumers are willing to tolerate produce that has been
subjected to that level of pest damage. If a good economic case
is made, the requirements of the farmer can be met; whether the
requirements of the consumer can be met is another matter.

The introduction of foreign genes conferring resistance to
insect herbivores into crop plants has been, in the case of Bt
toxins, the major success in applying plant genetic engineer-
ing technology to agriculture. Bt toxins are highly active and
specific, and give a very high level of protection in a crop
against specific pest species, although resistance to other pest
species may be low or nonexistent. The limited range of effect-
iveness of these toxins makes it necessary to continue to pro-
tect the crop against herbivores, often by continuing to use
exogenous pesticides, albeit at reduced application rates. In
deploying these insect-resistant transgenic plants, compre-
hensive IPM-style resistance management plans have been
found essential to prevent pest resistance to the toxin develop-
ing (Feldman & Stone, 1997). Given that such programmes
are already in place, they could be exploited to give increased
control of nontarget herbivores, with enhanced endogenous
defence playing an important role. The limitations of relying
on the available gene pool in enhancing endogenous
defence, discussed above, can be ignored in this case, since the
use of transgenic plants is already assumed. There is thus the
possibility of exploiting the whole range of plant defence
mechanisms, by transferring the necessary genes from one
species to another, in addition to exploiting bacterial toxins.
Where suitable Bt toxins are not available for control of
specific pests, for example, in targetting homopteran insects,
plant defence mechanisms could even be the preferred option
for pest-resistant transgenics. Transfer of endogenous defence
mechanisms from one plant species to another has been
achieved many times since the first report of a proteinase
inhibitor from one plant species (cowpea; Vigna unguiculata)
protecting transgenic plants of another (tobacco) against an
insect herbivore (Hilder et al., 1987). This strategy has yet
to be applied in a commercial agricultural setting, mainly
because the levels of protection achieved are usually not
considered sufficient to be commercially viable. Engineering
a multimechanistic resistance, which could exploit induced
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and indirect defences as well as a constitutive direct defence,
and which could incorporate highly effective and specific
insecticides such as Bt toxin as well as a range of partial resist-
ance mechanisms (Maqbool et al., 2001), remains for the
most part a possibility for the future.

VIII. Conclusions

1. The basic response of plants to herbivory is the wounding
response, leading to the activation of defence genes and
the production of insecticidal compounds (including
proteins).

2. Many plant species also accumulate insecticidal com-
pounds and proteins as a ‘static’ or constitutive defence
against insect herbivores. In a given species, insecticidal
products used in induced and constitutive defences may
be the same.

3. The production of defensive compounds by plants
carries a metabolic penalty, and the balance between
induced and constitutive defences can be altered by both
genotype and environment.

4. The wounding response is both local and systemic; the
local and systemic responses may differ both qualitatively
and quantitatively.

5. The wounding response is different to the response to
pathogens, and systemic acquired resistance, although
some genes are activated by both pathways.

6. The wounding response involves multiple signalling
pathways and signal molecules, but jasmonate plays a
central role in mediating anything other than very local
responses.

7. The wounding response is made species-specific to the
plant host both by the presence of genes responsible for
the production of specific secondary compounds, and by
the production of potentially insecticidal proteins which
differ from species to species.

8. In species (and/or tissues) which accumulate secondary
compounds as a constitutive defence the wounding
response becomes a secondary defence, which is used
to deter herbivores adapted to the accumulated
compound(s).

9. The wounding response can be modulated by chemicals
produced by the insect, or by the action of insect enzymes,
to adapt the response to specific herbivore species.

10. Production of certain volatiles (green leaf volatiles, ter-
penoids) is a common aspect of the wounding response
in many plant species.

11. Species-specific responses by the host, and modulation by
the herbivore, make the overall volatile production spe-
cific to a given plant–insect interaction.

12. Although volatile production may have a deterrent
effect, a common aim in these plant responses is to recruit
natural enemies of the pest (predators, parasites) as an
indirect defence mechanism.

13. Insects which feed on the contents of vascular tissue
evade the wounding response to a greater or lesser degree
by avoiding extensive tissue damage, but may instead
activate the pathogen response mechanism, and produce
defensive responses through that route.

14. Plants are able to use volatile signalling molecules
to communicate between individuals, so that defence
responses to insect herbivores can be induced in unat-
tacked plants.

15. Insect adaptations to overcome the effects of plant
defences can also be considered as constitutive and
induced. Insect species which have a limited host range
tend to rely more on constitutive adaptation mechanisms,
which can be optimised for the chosen host(s). Gener-
alist insect herbivores rely more on induced mechanisms
to deal with a range of insecticidal compounds and
proteins.

16. Adaptations to plant defence mechanisms carry a cost to
the insect, which results in retardation of growth and
development.
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