
Plants and animals: a different taste for microbes?
Cyril Zipfel� and Georg Felix
Plants and animals can recognize potential pathogens by

detecting pathogen-associated molecular patterns (PAMPs).

Significant advances over the past few years have begun to

unveil the molecular basis of PAMP perception by pattern

recognition receptors (PRRs). Although these discoveries

highlight common recognition strategies among higher

eukaryotes, they also show differences with respect to the

nature of the receptors involved and the exact molecular

patterns recognized. This suggests a convergent evolution of

microbe sensing by the innate immune systems of these

various organisms.
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Introduction
A key aspect of active defence mechanisms is a prompt

and efficient detection of microbial invaders. In higher

eukaryotes, this is achieved by pattern recognition recep-

tors (PRRs), either directly by detecting pathogen-asso-

ciated molecular pattern (PAMPs) [1] or indirectly by

sensing wound- and injury-related structures that signal

danger [2]. With the exception of antiviral RNA silencing,

which exhibits features of adaptive recognition [3], plants

seem to rely on ‘innate’ mechanisms for their defence

against pathogens. The cases of plant innate immunity

that have been studied most thoroughly involve a ‘gene-

for-gene’ interaction in which dominant resistance (R)

genes in the host plant are responsible for the recognition

of pathogen-derived signals that are encoded by the

corresponding avirulence (Avr) genes in the pathogens

[4,5�]. In addition to recognition of these Avr-products,

plants have perception systems for patterns that are

characteristic of entire groups or classes of microorgan-

isms, so-called general elicitors. It is now clear that
www.sciencedirect.com
general elicitors are conceptually equivalent to PAMPs

[6�]. In this review, with a special emphasis on some

classical bacterial PAMPs, we compare the pattern-per-

ception systems of plants with those of insects and

mammals. In our opinion, these comparisons indicate

that plants, insects and mammals share common strate-

gies of recognition but that the molecular patterns that are

recognized and the receptor molecules involved differ

among these three groups.

Conserved inner structure and variable
surface: prototypic bacterial PAMPs
Lipopolysaccharide (LPS) is the principal component of

the outer membrane of Gram-negative bacteria. It con-

tains a long-chain polysaccharide, which is highly variable

with respect to composition, length and the branching of

its carbohydrate subunits (Figure 1a). This variable part

of LPS, termed the O-antigen, is responsible for the

enormous inter- and even intra-strain diversity of bacter-

ial surfaces. It acts as a strong antigen for the antibody-

based adaptive immune system of vertebrate animals. By

contrast, the oligosaccharide core and the lipid A, which

form the sheet of the membrane, are highly conserved

in different bacteria. This invariable part of the outer

membrane of Gram-negative bacteria is the most potent

stimulator of innate immunity in mammals and is con-

sidered as a prototypic model PAMP [7�]. Several reports

suggest that LPS also acts as a PAMP in plants [8��,9,10].

However, doses more than 1000-fold greater than those

that induce defence responses in animals are commonly

required to induce responses in plants, leaving concerns

about the potential presence of minor, highly-active

contaminants in the LPS preparations used. Contamina-

tion with a highly active peptidoglycan (PGN) has

recently been proposed to explain earlier reports of the

effects of LPS-preparations in Drosophila [11��]. Accord-

ing to this report, Drosophila has no PRR that recognises

LPS. Support for LPS recognition in Arabidopsis, how-

ever, originates from the finding that the lipid A part of

LPS is as effective as intact LPS in inducing a defence

response [8��]. An interesting recent report also shows

that synthetic oligorhamnans, which are common compo-

nents of the otherwise highly variable O-chain in LPS,

can trigger defence responses in Arabidopsis [12��], indi-

cating that this plant species might have more than one

perception system for LPS.

Flagellum-based motility is important for the virulence of

bacterial pathogens [13�]. Flagellin is a protein subunit

that builds up the flagellar filament. The terminal regions

of this polypeptide are embedded in the flagellum inner

core and build the filament architecture. The central part
Current Opinion in Plant Biology 2005, 8:353–360
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Structure of lipopolysaccharide and flagellin. (a) Schematic representation of bacterial lipopolysaccharide (LPS), which forms the sheet of the

outer membrane in Gram-negative bacteria. Boxes on the right indicate recognition systems for LPS that have been found in mammals [7�] and

plants [8��,9,10,12��]. (b) Structure of a flagellin monomer from Salmonella typhimurium [14], based on structural data deposited in PubMed

(MMDB: 24173 and PDB: 1UCU) and visualized by the CN3D program (version 4.1). Red-shaded areas and boxes indicate domains for which

recognition systems have been described in mammals [13�,20��,21] and plants [15–19,22].
of the polypeptide, which is highly variable in sequence

and length (Figure 1b), forms the surface of the flagellum

[14]. These hypervariable surface are prime antigens for
Current Opinion in Plant Biology 2005, 8:353–360
the adaptive immune system of mammals and, as recent

work suggests, might also allow some plants to recognize

specific strains of pathogenic bacteria [15–19]. In these
www.sciencedirect.com
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cases, glycosylation (an uncommon modification of pro-

karyotic proteins) of flagellin seems to allow or prevent

recognition by the plant defence system. By contrast, the

conserved part of the flagellin polypeptide, which faces

the inside of the flagellar tube, is recognized as PAMP by

the innate immune systems of plants and animals. Inter-

estingly, mammals detect a specific part of flagellin

domain D1 [13�,20��,21], whereas many plant species

recognize the flg22-domain [22], which spans a part of

the flagellin polypeptide termed ‘spike’ (Figure 1b).

Peptidoglycans build the cell wall of Gram-positive bac-

teria and are also present as a thin layer in the periplasmic

space of Gram-negative bacteria. PGN is formed by

polymer strands of muramyl dipeptide (MDP) that are

cross-linked by short peptides that can vary considerably

between different bacterial strains. In Drosophila, PRRs

for PGN-fragments discriminate Gram-positive and

Gram-negative bacteria and trigger different sets of

defence responses [11��]. Mammals, but not Drosophila,

are responsive to the minimal motif MDP [11��,23],

indicating that insects and mammals have evolved dif-

ferent perception systems for this complex bacterial

structure. In plants, a single report suggests that PGN

might be active as an elicitor of defence responses [24].

This activity was not characterized in detail, however, and

in analogy to the problem of contaminants discussed

above, might be due to a minor highly active component

present in the PGN preparation used. Indeed, the most-

active component identified in a crude PGN preparation

from Staphylococcus aureus was a bacterial cold-shock

protein (CSP) [24]. Despite their name, CSP proteins

are universal constitutive bacterial proteins. The epitope

that is active as a PAMP in tobacco and other Solanaceae is

the RNA-binding motif that is conserved in all of these

proteins.

Arabidopsis and other Brassicaceae, by contrast, have a

perception system for the amino-terminus of elongation

factor Tu (EF-Tu), the most abundant protein in the

bacterial cytoplasm [25�]. EF-Tu is essential for protein

translation and is one of the most-conserved proteins

known in bacteria.

As illustrated above, molecular structures that are essen-

tial for the architecture and function of microbial cells are

often not freely exposed to the cell surface. Nevertheless,

plants and animals have evolved systems that are able to

recognise such hidden or embedded structures, and per-

ception systems also exist for structures that are known to

reside within the cytoplasm of the microbes. Examples

include the detection of EF-Tu [25�] and CSP [24] by

plants and the perception of heat shock proteins and non-

methylated bacterial DNA by mammals [26]. While

greatly extending the repertoire of structures that might

serve as PAMPs, these studies accentuate the question of

how hidden or embedded PAMPs are exposed to the
www.sciencedirect.com
corresponding receptors of the innate immune systems.

At present, these mechanisms are not fully understood

but lytic enzymes of the hosts and, at least in animals,

phagocytosis appear to play important roles in releasing

PAMPs from their ‘hidden’ locations.

PAMPs that are characteristic of fungi and
oomycetes
Oomycetes and fungi are major classes of plant patho-

gens. Structures that are hallmarks of fungi include

ergosterol, fungal-specific glycosylated proteins, and

the wall components chitin and b-glucan. Although the

activity of these structures has not been studied in mole-

cular detail in animals, they have all been found to act as

PAMPs in plants [6�]. Similarly, cell-wall components

that are characteristic of phytopathogenic oomycetes have

long been known as potent inducers of plant defence [6�].
The best-studied examples are heptaglucoside, the classic

general-elicitor that induces a defence response in soy-

bean, and the conserved Pep13-domain of the cell-wall

transglutaminase, which activates resistance responses in

Solanaceae [27]. Apparently, some of these fungal- and

oomycetes-derived patterns are recognized by only a

few plant species whereas others, notably chitin, are recog-

nized by all of the higher plant species tested [6�,28].

Pattern recognition receptors in the spotlight
Mammalian innate immunity relies on several groups of

structurally different transmembrane pattern recognition

receptors (PRRs) for the detection of PAMPs [29�,30].

The most prominent group of PRRs comprises the Toll-

like receptors (TLRs), a family of a dozen transmembrane

proteins containing leucine-rich repeat (LRR) ectodo-

mains that sense bacteria, fungi, protozoa and viruses

([29�]; Figure 2).

Drosophila Toll, the namesake of the TLR family, is a

receptor involved in larvae development that responds to

the endogenous cytokine Spaetzle ([31,32�]; Figure 2). In

the adult fly, however, Toll is essential for defence

responses mediated by soluble PRRs that recognize

Gram-positive bacteria and fungi [31,32�]. An indirect

mechanism is also involved in LPS recognition in mam-

mals in which the soluble LPS-binding protein interacts

first with LPS, allowing subsequent interaction of this

complex with CD14 and MD-2, and then with TLR4 [7�].
Cooperative interaction with other TLR or non-TLR

pattern recognition proteins explains the observation that

some TLRs are involved in sensing several structurally

different PAMPs [26].

The first PRR protein to be identified in plants is a

soluble, cell-wall located protein that specifically binds

the classic heptaglucoside elicitor from oomycetes ([33];

Figure 2). Recent data show that this glucan-binding

protein has an intrinsic endo-b-glucanase activity

[34��]. Astonishingly, homologs of this glucanase seem
Current Opinion in Plant Biology 2005, 8:353–360
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Figure 2
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to be present in diverse plant species, but high-affinity

binding and elicitor response to the heptaglucoside is

restricted to a few species of the Fabaceae. Thus, the

receptor component that is involved in transmembrane

signalling remains to be identified.

Some TLRs of mammals directly interact with their

PAMP-ligands. A well-studied example is TLR5, which

binds flagellin [20��,35��]. In Arabidopsis plants, flagellin

is perceived through its direct interaction with the trans-

membrane LRR-receptor kinase FLAGELLIN-SEN-

SING 2 (FLS2) ([36,37]; D Chinchilla, Z Bauer, M

Regenass, T Boller, G Felix, unpublished; Figure 2).

Mutation of the FLS2 protein of Arabidopsis leads to loss

of flagellin perception and enhanced susceptibility to

bacterial infection [38�]. Similarly, a polymorphism that

causes a translational stop in one of the TLR5 alleles in

humans correlates with increased susceptibility to Legio-

nellosis [39��]. However, other than sharing the common

feature of an extracellular LRR domain, there is no

obvious sequence similarity between FLS2 and TLR5.

Plants seem to have no clear homologs of TLRs but they

have large gene-families that encode receptor-like

kinases (RLKs) [40,41] and receptor-like proteins (RLPs)

[42]. RLKs are transmembrane proteins that have versa-

tile amino-terminal ectodomains, which are thought to act

as recognition sites for extracellular signals, a transmem-

brane domain and an intracellular kinase domain. RLPs

can be defined as RLKs that lack the intracellular kinase

domain. Relative to the total number of genes in these

families, more than 600 in Arabidopsis and more than 1000

in rice, only a few RLKs and RLPs have been assigned

specific roles in development, growth, symbiosis and

defence [40,41]. Most of the RLPs characterized to date

have roles in defence, as exemplified by the Cf genes of

tomato (Figure 2) and RPP27 of Arabidopsis [40]. Recent

work on the tomato receptor for the fungal elicitor xyla-

nase has provided a first example of an RLP that functions
(Figure 2 Legend) Schematic representation of proteins that are involved in

Drosophila flies, infection by fungi or Gram-positive bacteria leads to activa

microorganisms do not directly interact with Toll; rather, PGN from Gram-po

(PGRPs). These complexes activate an as-yet-unknown circulating protease t
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binding protein (GBP) interacts with the Phytophthora-derived heptaglucosid
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(reviewed in [4,5�]). For the establishment of symbiosis with Rhizobiaceae (r

and NRF5, prime candidates for receptors that perceive Nod-factor signals.

association with both bacterial and fungal symbionts, but its ligand is still u
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as a PRR [43��]. In Arabidopsis, the FLS2 protein repre-

sents the only RLK currently known to be involved in

PAMP perception, but other members of this large family

are likely to play similar functions.

Co-evolution of hosts and pathogens:
a never-ending play of hide and seek
PAMPs are essential microbial structures that are intrin-

sically difficult to modify without loss of functionality.

Plants and animals recognize multiple PAMPs that signal

the same class of microbes. This redundancy probably

ensures and potentiates the efficiency of recognition by

the hosts and, on the side of pathogens, sets multiple

hurdles for strategies to avoid PAMP-based recognition.

Nevertheless, as observed for flagellin, a strategy of

recognition-avoidance seems to be important for bacterial

pathogens of animals [13�]. Similarly, peculiar variations

in the sequence of flagellins from some plant-associated

bacteria might reflect selection pressure for a non-detect-

able flg22-domain [22,44].

Apart from hiding or masking their PAMPs, microbial

pathogens have evolved other strategies to overcome the

ancient forms of PAMP-based defence systems. Suppres-

sion of defence by the pathogens is one of these strate-

gies. Microbial secretion systems that directly inject

effectors into their host cells are currently a hot topic

in the field of plant–pathogen interactions [45,46��,47��].
In turn, some plant species or cultivars have evolved R

proteins to detect these effectors, or rather the modifica-

tions triggered by them, as summarized by the guard

hypothesis [4,5�]. Conceptually, R proteins are related to

PRRs. Recent data suggest that cytoplasmic proteins that

have a nucleotide oligomerisation domain (NOD) act as

receptors for PGN within mammalian cells [23]. Cyto-

plasmic R proteins of plants, some of which also carrying

NOD domains (Figure 2), have long been known to be

involved in the detection of Avr products [4,5�]. One can

wonder whether some members of the large and rapidly
microbe sensing in Drosophila, mammals and plants. (a) In adult

tion of the Toll pathway (as reviewed in [31,32�]). PAMPs from these

sitive bacteria (Lys-PGN) interacts with PGN-recognition proteins

hat cleaves Spaetzle. The cleavage product finally triggers Toll signalling.

ctivation by a process that is triggered in the presence of unknown fungal

) binds to different PGN-recognition proteins that trigger the immune

Ps in mammals. TLR1 recognizes bacterial triacyl lipopeptides. TLR2, in

acid and fungal zymosan. TLR5 directly interacts with flagellin, whereas

PS that is bound to LPS-binding protein. TLR3, TLR7, TLR8 and TLR9 are

ble-stranded viral RNA and non-methylated bacterial-DNA. The

known. Bacterial peptidoglycans are served by the cytoplasmic

ors or binding proteins for PAMP perception have been identified

ind fungal ethylene-inducing xylanase (EIX) and the soybean b-glucan-

e (HG) [33,34��]. Many R proteins that are involved in recognizing

y a few representative examples: the rice RLK Xa21, which recognizes an

Cf-9, which is required for perception of the fungal Avr9 from

recognition of AvrRpm1and AvrRps4 from Pseudomonas syringae

ight panel), legumes such as Lotus require the LysM-type RLKs NRF1

Interestingly, symbiosis receptor kinase (SYMRK) is required for

nknown (reviewed in [49�]).
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evolving families of R genes [48] might encode receptors

that sense more-general microbial patterns.

Conclusions
The structural and functional similarities of proteins that

are involved in innate immune recognition in animals and

plants have been interpreted as evidence for evolutionary

conservation. However, this conservation refers to mod-

ules that are required for the perception of extracellular

signals in general. The RLKs of plants use common

elements of signal perception and transmembrane signal-

ling to perceive endogenous signals that regulate growth,

development and reproduction as well as non-self signals

that are important for symbiosis and defence. Thus, the

flagellin receptor FLS2 is more closely related to CLA-

VATA1, which regulates meristem maintenance, than to

any of the known animal PRRs.

Recent data point towards the evolution of a convergent

repertoire of PAMPs that are detected by different

organisms. For example, conserved abundant surface

structures of the microbes represent well-suited targets

for detection of non-self. The PAMPs that are perceived

by different plant species highlight overlapping but non-

congruent repertoires, indicating a rather rapid evolution

of the corresponding PRRs. It is therefore not surprising

that the PAMPs that are recognized by organisms belong-

ing to different kingdoms also differ. In animals, studies

on innate immunity have been focused on only a few

model organisms, notably humans, mice and Drosophila.

One can anticipate that a bigger, more diverse, repertoire

will emerge from studies with animals from different

phyla.

Plants possess a big array of potential receptors, most of

them orphan with respect to their functions or ligands.

The combination of forward and reverse genetics with

biochemistry should allow us to identify new receptors

and to understand the molecular basis of receptor activa-

tion. Finally, the position of PAMP-based recognition in

the disease resistance of plants is not fully established,

but future work might further loosen boundaries between

Avr and PAMP perception.
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