
Long ago plants ventured forth from the rela-
tively stable world of the oceans to the land,
where mineral nutrients and water were often
scarce commodities. In their quest to cope with
the changing conditions of life on land, many
plant species appear to have lost much of their
ability to deal with higher sodium concen-
trations. With the exception of the halophytes,
which occupy the sodium-rich terrestrial habi-
tats of estuaries, marshes and other niche
environments, land plants have evolved a re-
quirement for fresh water. However, in recent
years, we have learned that the cells of most
higher plants are capable of adjusting to high
levels of NaCl. Indeed, if exposed in a grad-
ual manner, plants can grow and reproduce
during exposure to very high concentrations
of sodium1. It is this ability to adjust that has
led many to believe that most of the cellular
machinery for dealing with excessive sodium
still exists in the majority of plant species.
What distinguishes many salt tolerant species
is the ability to engage that machinery when
needed. By understanding the signaling sys-
tem that allows a plant to sense excess sodium
in the environment and to make appropriate
adjustments, plant biologists hope to be able
to influence the growth behavior of crop plants
in arid and inhospitable conditions.

When plants are challenged with salinity
stress, an increase in the concentration of Ca21

often can ameliorate the inhibitory effects on
growth2. Although the underlying mechanism
has remained largely unexplained, prevailing
models for Ca21 function include both mem-
brane stabilization and signaling roles. Numer-
ous studies indicate that a variety of stress
conditions, including salinity, induce cyto-
solic Ca21 accumulation3. The role of Ca21 as
a second messenger in many biological sys-
tems, coupled with these observations, indi-
cates that plants are able to adjust to high salt
environments by activating a signal transduc-
tion system involving Ca21.

Recent advances
Insight into the role of Ca21 in salt adaptation
has been provided by the recent reports from
the laboratory of Jian-Kang Zhu4,5. Zhu’s group
have used a molecular genetic approach, fo-
cusing on the isolation of loss-of-function
mutants, to identify the determinants of salt
tolerance. In Arabidopsis, this approach has led
to the identification of a genetic locus that is
necessary for salt tolerance. A mutation in this
locus, sos3, results in hypersensitivity to NaCl
and LiCl. Increased Ca21 abrogated this hyper-
sensitivity, and millimolar levels of the divalent
cation suppressed the mutant phenotype. The
sequence of the SOS3 allele was recently de-
termined6. The gene codes for a protein with

regions of homology to EF hand Ca21-binding
domains and has highest sequence homology
with the yeast calcineurin B subunit and a
neuronal calcium sensor, both of which are
activated by Ca21.

Involvement of calcineurin
Previous work had already implicated cal-
cineurin, a Ca21- and calmodulin-dependent
PP-2B protein phosphatase, in the regulation
of ion transport in plants. Pharmacological and
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Plants use calcium to resolve salt stress

Fig. 1. A hypothetical model of salt stress signal perception, transduction and regulation 
of effectors that mediate Na1 homeostasis based upon evidence from plants and yeast19. 
Salt stress is perceived by an unknown sensor, and initiates a Ca21-dependent signal trans-
duction pathway. This cascade regulates transport proteins that control net Na1 influx
across the plasma membrane and compartmentation into the vacuole. To date, the only
components of the model that are known to actually affect the phenotype of salinity tol-
erance in plants are products of the SOS3 gene from Arabidopsis and the yeast CNA/CNB
genes. Abbreviations: AtCDPK1/1a, Ca21-dependent protein kinase from Arabidopsis;
CAM, calmodulin; CNA/B, calcineurin A and B subunits (PP-2B phosphatase); PP-2C,
phosphatase; SOS3, CNB-/NCS-like protein.
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biochemical evidence has established that 
the regulation of plasma membrane and tono-
plast guard cell ion channels is mediated by
calcineurin-like activity7,8. In addition, Ca21-
dependent signaling through protein kinases is
involved in stress responses of plants. Two
Ca21-dependent protein kinases (CDPKs) func-
tion to elicit osmotic/ionic activation of a stress
responsive promoter9, and mitogen-activated
protein kinase (MAPK) cascades are impli-
cated in coordinate regulation of osmotic tol-
erance determinants10. It was recently reported
that activated yeast calcineurin facilitated salt
stress adaptation of transgenic plants11. It has
become increasingly obvious from these ob-
servations that salt stress activates a Ca21-
dependent signal transduction pathway(s) 
that results in tolerance. In spite of the long-
standing evidence for the involvement of Ca21,
our understanding of the process by which Na1

is perceived and a signal transduced is only
now, with the identification of SOS3, begin-
ning to take shape.

Salt tolerance in plants: 
following the pathway in yeast?

Fortunately, Saccharomyces cerevisiae has
provided us with an excellent model in which
to make comparisons. The most intriguing
aspect of these recent findings is the consist-
ency of the central role for Ca21 signaling in
the salt adaptive response of both plants and
yeast4–6,11,12 (Fig. 1).

Genetic and physiological evidence has
demonstrated conclusively that NaCl stress
perception and tolerance in yeast involves Ca21-
dependent signaling events. In yeast, calci-
neurin is a pivotal signaling intermediate that
mediates K1 and Na1 homeostasis in saline
environments12,13. Exposure to excess NaCl in-
duces the expression of the ENA1/PMR2A gene
encoding a plasma membrane Na1-ATPase
that is primarily responsible for Na1 extrusion.
Coordinately, there is a reduction in Na1 influx
mediated by a modulation of the K1 uptake sys-
tem (involving TRK1 and TRK2 proteins). This
results in a change from a resting state of low
K1 affinity and low K1/Na1 selectivity (equiva-
lent to system 2 of K1 uptake in plants) to a
transport mode with high affinity for K1 and
high K1/Na1 selectivity (analogous to system 1
of plants). Both responses, which function to
limit net intracellular Na1 accumulation, are
effected substantially by Ca21 activation of
calcineurin13. Calcium facilitates calcineurin
activity by binding directly to the CNB regu-
latory subunit and through activation of cal-
modulin, which in turn binds to and activates the
catalytic CNA subunit. Activated calcineurin
interacts with the transcription factor TCN1/
CRZ1 and induces transcription of ENA1 and
other calcineurin-dependent genes14,15. The use
of mutant forms of calmodulin and calcineurin
revealed that Ca21/calmodulin conjugates also

enhance NaCl tolerance via a calcineurin-
independent mechanism, which activates the
ENA1/PMR2 ion pump post-transcription-
ally16. Mutant forms of calmodulin that do not
bind Ca21 support cell growth but do not con-
fer salt tolerance16. However, additional extra-
cellular Ca21 suppressed the NaCl sensitivity of
these calmodulin mutants through an unknown
mechanism. Surprisingly, this process required
functional calcineurin, but was independent of
Ca21-activated calmodulin17. These findings
suggest that calcineurin interacts with other
Ca21-dependent, but calmodulin-independent,
components to mediate salt tolerance.

At present, it is not known how yeast cells
perceive ion stress and how Ca21 signaling is
subsequently initiated. External Ca21 influx
appears to be required to trigger the response
because mutants deficient in CCH1 (a putative
plasma membrane inward rectifying Ca21

channel) and in MID1 (an ancillary subunit re-
quired for CCH1 channel function) are de-
fective in calcineurin-dependent processes,
including the expression of ENA1/PMR2A
and ion tolerance18.

Conclusions
Thus, in yeast, calcineurin is a primary target
of the increased cytosolic Ca21 induced by
high salinity. Although there is considerable
sequence divergence between SOS3 and the
calcineurin B subunit, the two appear to be
functionally conserved11, and SOS3 may rep-
resent the plant counterpart that coordinates
K1 and Na1 transport and selectivity4,6.
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