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Cell biological processes are controlled by an interact-

ing set of biochemical and electrophysiological events

that are distributed within complex cellular structures.

Computational models, comprising quantitative data

on the interacting molecular participants in these events,

provide a means for applying the scientific method to

these complex systems. The Virtual Cell is a compu-

tational environment designed for cell biologists, to

facilitate the construction of models and the generation

of predictive simulations from them. This review sum-

marizes how a Virtual Cell model is assembled and

describes the physical principles underlying the calcu-

lations that are performed. Applications to problems in

nucleocytoplasmic transport and intracellular calcium

dynamics will illustrate the power of this paradigm for

elucidating cell biology.

Fundamental cell biological processes, such as growth,
signaling, differentiation and death, are extraordinarily
complex, depending upon an enormous number of different
molecules and molecular interactions. High-throughput
methods for analysis of DNA and RNA (genomics) and
protein (proteomics) are now providing an overwhelming
amount of qualitative data, cataloguing the molecules
involved in these complex pathways. The field of ‘systems
biology’ [1–3] uses computational analyses to sift through
the large volume of data, to identify unique sets of mol-
ecules involved in particular cellular responses, and to
develop statistical relationships between molecules that
suggest causal interactions. Such largely qualitative
data and analyses can offer significant insights into the
operation of large, complex biochemical systems, such as
those involved in metabolic and signaling networks.

To develop a full understanding of the mechanisms
underlying a cell biological event, however, the quantitat-
ive physical–chemical details must be elucidated. As a
first prerequisite, this requires measurements of the
concentrations, locations, biochemical reaction rates and
membrane transport kinetics for the involved molecules.
Such data can come from traditional biochemical methods,
but are also available through direct in vivo measurements
on live cells, using modern microscope imaging with
fluorescent probes and indicators and electrophysiological

techniques such as patch-clamp single-channel recording.
Once such data are acquired, a crucial and obvious
challenge is to determine how these, often disparate and
complex, details can explain the cellular process under
investigation. The ideal way to meet this challenge is to
integrate and organize the data into a predictive model.
Indeed, the value of computational approaches in cell
biology has been increasingly recognized as demonstrated
by several recent reviews [4–6] and a book [37]. However,
for cell biologists, formulating a mathematical model
based on quantitative data and solving its equations to
generate simulations can present significant technical
challenges. Overcoming this barrier, in order to complete
the cycle of hypothesis–prediction–experiment, is required
to understand the biophysical mechanisms underlying the
function of a cellular subsystem. To meet these needs for
quantitative cell biology, we have developed a software-
modeling environment called the Virtual Cell. [7–9].

The Virtual Cell provides a formal framework for
modeling biochemical, electrophysiological, and transport
phenomena while considering the subcellular localization
of the molecules that take part in them. This localization
can take the form of a three-dimensional (3D) arbitrarily
shaped cell, where the molecular species might be hetero-
geneously distributed. The geometry of the cell, including
the locations and shapes of subcellular organelles, can be
imported directly from microscope images. Such a model
explicitly considers the diffusion of the molecules within
the geometry, as well as their reactions. Simulations from
such a ‘spatial’ model require the solution of partial dif-
ferential equations. Alternatively, the localization can be
more crudely represented by considering the average
concentrations of molecules within well-mixed compart-
ments that correspond to the cellular and subcellular
structures. This corresponds to the assumption that dif-
fusion is fast compared with the timescales of all the
biochemical transformations, so that any diffusible mol-
ecule will be uniformly distributed as soon as it is produced
and no matter how convoluted the geometry of its com-
partment; such a nonspatial model will result in ordinary
differential equations that can be numerically solved much
more efficiently. Thus, these two classes of models result in
very different mathematical forms, although the original
quantitative mechanistic hypothesis could be the same.
Simulation results on the dynamic distributions of the
molecules controlling a cellular function are displayed
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within the software environment and can also be exported
as arrays of numerical values, sets of images or digital
movies. Box 1 provides details of the software and how to
access it through the Internet.

Quantitative cell biology

The paradigm that we term quantitative cell biology is
described in Figure 1, where a study of calcium dynamics
in a neuronal cell [10,11] is used as a concrete illustration.
In this study, the neuromodulator bradykinin applied to
the cells produced a calcium wave that starts in the neurite
and spreads to the soma and growth cones. The calcium
wave was monitored using digital microscope imaging of a
fluorescent calcium indicator. The hypothesis was that
interaction of bradykinin with its receptor on the plasma
membrane induced the production of inositol (1,4,5)-
trisphosphate (Ins(1,4,5)P3) that diffused to its receptor
on the endoplasmic reticulum (ER), leading to calcium
release. The model contained details of the relevant recep-
tor distributions (through immunofluorescence analysis)
within the cell geometry, the kinetics of Ins(1,4,5)P3 pro-
duction (through biochemical analysis of Ins(1,4,5)P3 in
cell populations and photorelease of caged Ins(1,4,5)P3 in
individual cells); the transport of calcium through the
Ins(1,4,5)P3 receptor calcium channel and the SERCA
pump (from literature studies of single-channel kinetics
and radioligand flux); and calcium buffering by both
endogenous proteins and the fluorescent indicator (from
confocal measurements of indicator concentrations). The
mathematical equations generated by this combination of
molecular distributions and reaction and membrane
transport kinetics was then solved to produce a simulation
of the spatiotemporal pattern of calcium that could be
directly compared with the experiment.

The procedure described in Figure 1 is just a restate-
ment of the scientific method, where ‘model’ is simply
defined as a complex quantitative ‘hypothesis’. Practically,
however, a model is typically composed of several hypo-
theses, where even the choice of which of the hypothetical
components to include can in itself be a hypothesis.
Because of the complexity of models, it is difficult to
formulate them as a string of verbal hypotheses; a text

format also cannot capture the quantitative relationships.
Model features are, therefore, most effectively expressed
in terms of diagrams linked to mathematical expressions.
Figure 1a shows diagrams taken directly from the Virtual
Cell user interface for the compartmental distribution of
the molecules, transport processes in the ER membrane,
and the assignment of compartments to the spatial geo-
metry of a neuroblastoma cell. Furthermore, generating
quantitative predictions from a model requires solving
mathematical equations (i.e. simulations). Computational
tools such as the Virtual Cell facilitate both the process of
model construction and the generation of simulations.

Building a model in the Virtual Cell

Building a biological model in the Virtual Cell is an
iterative process that should start with a simple model
that is incrementally validated against simulations and
experimental observations. In our calcium dynamics illu-
stration, for example, an initial assumption was that the
Ins(1,4,5)P3 receptor was distributed uniformly through-
out the cell. The simulations produced under this assump-
tion gave calcium amplitudes that were much too high
in the neurite and too low in the soma compared with
the experimental calcium dynamics. This prompted us
to investigate the Ins(1,4,5)P3 receptor distribution by
immunofluorescence, which revealed that the calcium
density in the soma was twice as high as that in the
neurite; the simulation resulting from this new elabora-
tion of the model provided an excellent match to the
experimental calcium wave. Furthermore, a model (or
hypothesis) should lead to predictions that can be further
tested with new experiments. For example, our model
predicted that if bradykinin were applied to different
regions of the cell, rather than globally, application to the
proximal neurite would be sufficient to produce a calcium
wave; but activation of bradykinin receptors in only the
growth cone or soma would produce an aborted calcium
wave. These predictions were subsequently borne out by
experiments in which bradykinin was regionally applied
through pressure application, using a micropipette [10].

A Virtual Cell biological model is composed of three
parts in an expanding tree structure: a single ‘physio-
logical model’ that captures the mechanistic hypothesis;
one or more ‘applications’, where experimental conditions,
geometry and modeling approximations are introduced
to pose a concrete mathematical problem; and one or
more ‘simulations’, where each represents a numerical
solution to the mathematical problem posed by an
application (Figure 2).

A physiological model consists of molecular species and
mechanisms (reactions and fluxes) localized to cellular
structures. Cellular structures are created by specifying
the topological arrangement of membranes and mem-
brane-bound compartments. Biochemical reactions are
defined within volumetric compartments of the cell, as well
as in membranes; molecular fluxes and electrical currents
are defined across membranes. The reaction and flux
rates are determined as an explicit function of the local
environment (e.g. concentrations, surface densities and
membrane potential) and one or more kinetic parameters
(e.g. kf and kr, the forward and reverse mass action rate

Box 1. Access to the Virtual Cell and its database

The Virtual Cell software is maintained at a central server within the

National Resource for Cell Analysis and Modeling (NRCAM) at the

University of Connecticut Health Center, and is available to users

worldwide through JAVA technology on a web browser. This web-

based client-server architecture has several advantages: it obviates

the task of software distribution and installation on heterogeneous

hardware platforms – the Virtual Cell runs equally well on Windows,

Linux and Macintosh machines; enhancements and bug fixes are

available to the entire user community as soon as they are deployed;

the computationally intensive calculations, which might be unac-

ceptably slow on the computer of a user, are optimized for a

dedicated cluster of fast computers at NRCAM; and, most impor-

tantly, a central database of user models, maintained at NRCAM,

facilitates the online sharing of model components, collaboration,

and interactive publication of models.
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constants). Mass action and Michaelis–Menten rate laws
are available automatically, but user-defined general
kinetic expressions are also possible. Membrane transport
kinetics can be specified with expressions for molecular
flux or, for ions, the electric current. The transport kinetics
can be described in terms of standard electrophysiological
formulas (e.g. Goldman–Hodgkin–Katz permeability or
Nernst conductance) or as user-defined molecular flux
or current.

After the physiological model has been defined, a non-
spatial application should be constructed to investigate the

steady-state (basal) behavior of the model. A steady state is
achieved when concentrations and membrane potentials
do not change over time. If the relative surface areas and
volumes of the cellular structures are specified, based on
the true 3D cellular geometry, the steady state compart-
mental solution will generally also apply to the full spatial
problem. It is worth noting that most physiological models
are not ‘closed’ systems, and that they will exchange mass
and energy with the environment. For example, in a
typical physiological state a model of glucose metabolism
would continuously consume glucose, oxygen and ADP and

Figure 1. Quantitative cell biology is dependent on computational modeling. Experiments provide image, biochemical and electrophysiological data on the initial

concentrations, kinetic rates, and transport properties of the molecules and cellular structures, which are presumed to be the key components of a cellular event. If the

system is perturbed by addition of a ligand, electrical stimulus or other experimental intervention, the model should be capable of predicting changes in the spatiotemporal

distribution of all the molecules. This cycle is illustrated by reference to a study of calcium waves evoked by activation of the bradykinin receptor in the plasma membrane

of a neuronal cell. [10,11] Inputs to the model in the Hypothesis panel include the identity of the molecules hypothetically involved in calcium release, and the cellular

compartment in which they are located (upper left); the reactions and transport processes between theses molecules (illustrated with a scheme for transport and reactions

within the endoplasmic reticulum (ER) membrane); the assignment of compartments and molecular locations to a specific cell geometry (illustrated with the geometry of

a neuroblastoma cell in the center); and specification of initial concentrations, boundary conditions and diffusion coefficients. This information is sufficient to generate

simulations of the calcium dynamics (illustrated in the Predictions panel) that can be directly compared with the experimentally observed calcium dynamics (illustrated in

the Experiment panel). If the prediction and the experiment do not agree, the assumptions underlying model inputs will need to be reexamined. The model can also be

used to perform ‘virtual’ experiments in advance of a real experiment and can simulate the behavior of molecules that are not easily visualized experimentally.

TRENDS in Cell Biology 

Concentrations of all molecular
species as a function of

time and space

• What are the initial concentrations,
  diffusion coefficients and locations of
  all the implicated molecules?

• What are the rate laws and rate constants
  for all the biochemical transformations?

Quantitative cell biology 

Hypothesis (Model)Experiment

Predictions
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continuously create ATP and carbonic acid. If this steady
state consumption and production were not considered,
the model would consume all metabolites and not achieve a
physiological steady state. Therefore, the model bound-
aries are set with either a fixed concentration (equivalent
to an infinitely large bathing medium) or a fixed rate offlux
across the boundary, which, when set to zero, corresponds
to a closed barrier.

Next, the response of the system to external stimuli
might be considered. Typical perturbations include: hor-
mone injected into the extracellular media, voltage- or
current-clamp protocols, and photorelease of a caged
compound within the cytosol. It is essential, however,
that the steady-state behavior be characterized first, so
that the response to the stimuli can be distinguished
from a spontaneous change caused by nonequilibrium
initial conditions.

After characterizing the steady state and transient
behaviors of the nonspatial system, one or more spatial
applications can be created to investigate the impact of cell
geometry. Spatial simulations are necessary to capture the
behavior of the model when the distributions of molecular
species are spatially inhomogeneous and, on the timescale
of the biochemical transformations, diffusion is slow.
A cellular geometry must be defined based on either

idealized shapes (e.g. spheres, hemispheres and cylin-
ders), or on a segmented experimental image that has been
classified according to the cell morphology (e.g. an image
or image stack with one color for cytosol, another for
extracellular, and yet another for the nucleus as in
Figure 2). Inhomogeneous initial conditions might be
specified as an explicit function of spatial coordinates.
Boundary conditions are then specified to determine how
the diffusive transport will behave at the edge of the
simulation domain. This realistic spatial representation
allows for the direct comparison of simulation results
with data obtained from tools such as fluorescent
microscopy. This technology allows modeling to investi-
gate the impact of cell morphology and localization on
cellular physiology.

An application is sufficient to fully specify the math-
ematics to be passed to a simulation. As fully described in
the next section, several simulations, using different
numerical solver algorithms and algorithmic parameters
(e.g. time steps and spatial mesh resolutions), can be
generated from a single application. Model parameter
variations and sensitivity analysis can also be performed
at the level of the simulations. Results are displayed in a
convenient window that allows for visualization of tem-
poral and spatial variations of any concentration, flux,

Figure 2. A Virtual-Cell biological model consists of a single mechanistic physiological model that encodes the general structure and function of the cellular system,

and multiple applications that allow specific geometries, initial concentrations, protocols and modeling assumptions required to apply the model to various experimental

contexts. Each application, in turn, can spawn multiple simulations with different numerical methods and varying parameters.

TRENDS in Cell Biology 

Physiology

Applications

Simulation
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current or membrane potential, and for the export of
spreadsheet data, images or movies.

Under the hood: the mathematics and physics for the

Virtual Cell

Once the biological model is formulated, it has to be
translated into a mathematical model. This is done
automatically in the Virtual Cell based on the fact that
mathematically, the range of the mechanisms accommo-
dated by the Virtual Cell – diffusion, reactions, molecular
and ionic transport across membranes – can be generally
described by means of reaction–diffusion equations (Box 2,
see supplementary data online). The most recent exten-
sion of the software allows a user to study the effects of
membrane potential on spatiotemporal changes of mol-
ecular species and vice versa, even for processes as
fast as action potentials in cells where the space-clamp
conditions apply (for electrical modeling of neurons with
complex geometries, there are other excellent software
packages [12,13]).

The spatiotemporal changes to the concentrations of
molecular species are governed by a mass conservation
law: the rate of concentration change of a molecular
species inside a volume element is caused by all the
reactions that affect this species and diffusion fluxes
coming in and out of the element. The dynamics of the
membrane potential are governed by conservation of
electrical charge: the total cross-membrane electrical
current is the sum of the capacitative current and the
‘direct’ current associated with cross-membrane fluxes
of ions and charged molecules. The mass and charge
conservation laws, which form the physical basis in the
Virtual Cell, are mathematically expressed by a system of
differential equations (Box 2, equations (2) and (3), see
supplementary data online). Equation (2) also requires
additional conditions to be specified at the membranes
and at the boundaries of the computational domain
(boundary conditions).

Any realistic biological model usually results in a
system of nonlinear differential equations with multiple
variables. Because no general algorithms exist that would
lead to an explicit analytical solution for such a system,
particularly if it were mapped on irregular geometry taken
from an experimental image, the Virtual Cell solves the
mathematical model numerically. This means that the
solution of the Virtual Cell to the mathematical model is
approximate and obtained only for a finite set of time and
spatial points. The results are then presented in the form
of tables of numbers that appear as graphs or images.
Thus, numerical modeling requires sampling of the simu-
lated time interval and the spatial computational domain.
The differential equations are then approximated by finite
differences with respect to selected grid and time points;
essentially, the original equations are replaced with an
algebraic system of equations from which the values of
variables at those points can be found. Although the
algebraic system is usually solved with high precision, it is
important to realize that the solution is an approximation
to that of the original system of differential equations. The
magnitude of the error depends on the time step and

the mesh size and, generally, as they decrease, the solution
of the algebraic system should converge to that of the
original problem.

The Virtual Cell provides tools for both spatial and
nonspatial modeling. Solving a problem both in time and
space (known as spatial modeling) is a computationally
intensive process, requiring solution of partial differen-
tial equations. Additional complexity is associated with
defining and meshing geometry [9]. However, when dif-
fusion is fast compared with reactions, the approximation
of a ‘well-mixed’ compartment is physically justified and
the problem reduces to finding the average concentration
within each compartment for each species as a function
of time (nonspatial, or compartmental, modeling). Non-
spatial models generate ordinary differential equations,
which can be numerically solved much more efficiently.
The Virtual Cell also offers a variety of robust numerical
algorithms for solving equations (solvers) in the nonspatial
case. Some of them assure precision within the prescribed
tolerance without asking a user to specify an integration
time-step. As mentioned above, even if the ultimate goal is
spatial modeling, the non-spatial approximation is a good
starting point for determining the initial steady state and
sensitivities of the model to parameter changes.

If the model contains drastically different time scales –
some reactions are expected to be much faster than other
reactions or diffusion – integration with very short time-
steps will be required even if only the long timescale
behavior of the system is of interest. To alleviate this, one
can use a procedure in the Virtual Cell that automatically
implements the pseudo-steady approximation with respect
to any reactions labeled as ‘fast’ [14]. This algorithm will
update all the variables in two substeps: first, those asso-
ciated with the slow processes using an appropriately long
time-step, and then solving the minimal system of non-
linear algebraic equations for instantaneous equilibration
of fast reactions. This can improve the computational
times required for a simulation by many orders of mag-
nitude and make it practical to include explicitly the effects
of rapid buffers and fluorescent indicators on the behavior
of molecules to which they bind.

A case study for quantitative cell biology with the Virtual

Cell: nucleocytoplasmic transport

The Virtual Cell has been successfully applied to several
research projects in our laboratory and, since its appear-
ance online ,three years ago, in several other labora-
tories. Several of these have involved the modeling of
calcium dynamics [10,11,15–18], where the availability of
fluorescent indicators for calcium enables direct compari-
son of model predictions with experimental studies of
spatiotemporal patterns. Analysis of photorelease experi-
ments, the translocation of fluorescently labeled proteins
and markers, and restricted diffusion within highly con-
fined volumes, such as the crista of mitochondria [19–24],
are other areas of application of the Virtual Cell software.

Nucleocytoplasmic transport, and in particular the
transport of the small GTPase Ran, serves as a particu-
larly good example of the application of the Virtual Cell to
quantitative cell biology [25]. Nuclear transport is in many
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ways an ideal system to which computational cell biology
methods can be applied: it involves only two cellular
compartments; the components are soluble, mixing within
each compartment is rapid compared with transport
between them, and communication between the two
compartments occurs largely by facilitated diffusion
through pores in the nuclear envelope. Moreover, detailed
in vitro kinetics have been studied for many of the
components that mediate transport. Lastly, because the
nuclear and cytoplasmic compartments are large, it is
relatively easy to obtain quantitative data on transport
rates, so predictions from computational models can be
rigorously tested.

Ran (in its GDP-bound state) is carried into the
nucleus in a complex with the nuclear transport factor 2
(NTF2). Within the nucleus, a Ran guanine nucleotide
exchange factor (RanGEF) catalyzes GTP/GDP exchange,
producing Ran–GTP that is released from NTF2. NTF2
then cycles back through the nuclear pores to the cyto-
plasm. Ran–GTP binds to members of a family of proteins
called karyopherins. These proteins facilitate the import
or export of specific classes of cargo (either proteins or
RNAs) that need to be moved from one compartment to the
other. Importins can only bind their cargo in the absence of
Ran–GTP (i.e. in the cytoplasm). Once the importin–cargo
complex arrives in the nucleus, Ran–GTP displaces the
cargo to produce an importin–Ran–GTP complex that
cycles back out to the cytoplasm. There a GTPase-
activating protein (RanGAP) hydrolyzes the GTP to pro-
duce Ran–GDP, which is released from importin to com-
plete the transport cycle. We included each of these steps
in the Virtual Cell model for Ran transport, using kinetic
parameters that had been obtained by several other
groups for individual steps in the cycle. Because the rela-
tive abundance of the various karyopherins in the cell is
not known, a ‘generic’ karyopherin, and an estimated
concentration of 15 mM in the cell were used. Additionally,
a simplified version of the kinetics of the RanGEF was
used. This basic model produced the expected gradient
of Ran across the nuclear envelope. To test the model
experimentally, however, we needed to simulate the micro-
injection of fluorescent Ran into the cytoplasm and the
subsequent movement of this protein into the nucleus.
This requirement added a second layer of complexity to
the model, because for each reaction involving Ran an

independent reaction had to be added for the tagged
Ran protein. An example of a 3D spatial simulation is
shown in Figure 3, in which three time-points are shown
following a simulated injection of fluorescent Ran into the
cytoplasm of a cell.

The Virtual Cell model was able to simulate qualita-
tively and quantitatively Ran transport over a range of
conditions. It presented the first estimates for the steady-
state flux of Ran across the nuclear envelope, which in turn
provided a lower estimate for the total nucleocytoplasmic
flux (,20 million macromolecules per cell per minute).
It also predicted that a very high (,500-fold) gradient of
Ran–GTP exists between the nucleus and cytoplasm – a
prediction that has since been verified experimentally
using a fluorescence resonance energy transfer (FRET)
biosensor [26]. Lastly, the model also predicted that
the concentration of uncomplexed Ran–GTP within the
nucleus is very low (,10 nM) – lower than the measured
equilibrium binding-constants for Ran–GTP binding to
certain karyopherins [27]. This concentration would be
too low to trigger the release of bound cargo from these
karyopherins, and it indicates that cofactors, in addition to
Ran–GTP might be required to facilitate cargo release.

Several important questions, about nuclear transport
and Ran that are amenable to computational approaches,
remain unanswered. Open issues include the role of adap-
tor proteins for binding cargo to karyopherins, the details
of Ran transport through nuclear pores, and the function
of Ran in the organization of chromosomes during mitosis.
Gratifyingly, several groups are now using computational
approaches to address these questions [28–30].

Concluding remarks

Although the Virtual Cell has very broad applicability to
cell biological problems, there are areas that it does not yet
tackle. For example, if the number of molecules involved
in a cellular event is small (i.e. ,100), a probabilistic
treatment involving stochastic reactions and Brownian
motion might be required to properly simulate the biology;
the Virtual Cell is currently only able to treat deterministic
processes. Also, large biochemical networks with partially
known reaction rates or initial concentrations would be
cumbersome to model using the Virtual Cell. There are
other software systems that have complementary strengths

Figure 3. the Virtual Cell simulation of Ran transport. Left to right shows three frames from a simulation of Ran, microinjected into the cytoplasm, over a period of ,5 min.

Concentrations of the injected Ran are represented in pseudocolors from red (high concentration) to blue (low concentration).
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in areas such as parameter optimization for metabolic and
signaling pathways [31], graphic representation of com-
plex networks, [32] stochastic spatial simulations in small
volumes, [33] or whole-cell metabolic modeling. [34] Indeed,
software for computational cell biology is rapidly expand-
ing and has been reviewed recently. [35] However, there
are no cell-biology software systems that can treat prob-
lems involving cell mechanics, and general mathematical
software, such as Matlabw (Mathworks, Inc.), are cur-
rently the only choice for dealing with this important
range of problems. Fortunately, important progress is
being made towards facilitating the export and import of
models between the different software systems [36] and
the Virtual Cell can even export models to Matlabw.

The emergence of powerful fluorescent protein probes,
fluorescent indicator dyes, confocal microscopy, as well as
techniques such as fluorescence recovery after photo-
bleaching (FRAP), FRET, total internal reflection fluor-
escence (TIRF), fluorescence correlation spectroscopy
(FCS) and uncaging, have made fluorescence microscopy
an indispensable tool for cell biological investigation and,
particularly, have opened opportunities for quantitative
measurement of molecules in vivo. Indeed, new cell-based
high-throughput screening technologies are becoming
commercially available and have spawned the new field
of ‘cytomics’, which recently had its first International
Symposium (http://www.isac-net.org/cytomics). Thus, the
acquisition of quantitative data on the dynamic spatial
distributions of molecules in cells has become routine in
many cell biology laboratories. To realize the full potential
of these data for elucidating cellular mechanisms, soft-
ware-modeling tools such as the Virtual Cell are destined
to become as indispensable to a cell biology laboratory as
the microscope.
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