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INTRODUCTION

The functional role of action potentials (AP) in
higher plant organisms attracts close attention of
researchers [1–5]. This role has been studied most thor-
oughly for a relatively small group of so-called
“motile” plants that employ AP in fast locomotory
responses analogous to seismonastic movements [2, 6].
The AP seems also involved in preparing plant genera-
tive organs to fertilization [7, 8].

The function of AP is less certain for vegetative
organs of higher plants, where AP are generated and
propagated along the stem over long distances under
the action of adverse factors [1]. Presently, it is only
known that AP behave as fast distantly transmitted sig-
nals that induce short-term transient changes of many
vitally important processes (respiration, photosynthe-
sis, growth, etc.) along the route of their propagation [1,
3–5].

The following questions remain opened so far:

(1) If AP is a signal, what kind of information it
transmits?

(2) What is the mechanism for accomplishing the
AP signaling role?

(3) What is the meaning of AP-induced short-term
effector response? What does it signify?

This article is an attempt to provide comprehensive
responses to the above questions based on investiga-
tions performed in our laboratory.

WHAT KIND OF SIGNALING INFORMATION
IS CARRIED BY ACTION POTENTIAL?

The generation of AP in cells of vegetative organs of
higher plants is preceded by the appearance of a gradual
bioelectric response. This gradual response consists in
plasma membrane depolarization whose properties are
similar to those of the receptor potential [9, 10]. When
the depolarization attains a certain critical (threshold)
level, AP is generated according to the “all or none”
rule [11]. The action potential appears usually as a sin-
gle pulse; in rare cases several repeated pulses are gen-
erated [11, 12]. Next, AP propagates along the conduct-
ing bundles of stem beyond the area of its generation [1,
13, 14]. After reaching leaves, roots, ovary, etc., the
propagating AP induces functional responses in these
organs. There is no unanimous view on whether AP
propagates over the root and the leaf directly or as a
transformed signal or whether it acts via a series of
mediators.

The generation of AP in excitable higher plant cells
is chronologically linked to the early stage of stimulus
action [12]. This circumstance clearly indicates the
alarming (signaling) function of the pulsed bioelectric
response. One may suppose that the purpose of this bio-
electric response is the transmission of some informa-
tion to resting tissues and organs. Meanwhile, analysis
shows that the AP transmitted beyond the region of
stimulation apparently cannot transfer information on
the quality of stimulating external factor; it can only
signalize about the onset of this factor action. Two rea-
sons support this inference.

(1) The transmission of frequency-coded informa-
tion, as it occurs in animals, would require repeated
pulsed activity, which is uncharacteristic of plants. Fur-
thermore, unlike animals, the plants have no special-
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ized organ for decoding this information, analogous to
the central nervous system [16].

(2) The transfer of information on stimulating factor
by means of a single AP is only possible under condi-
tion that AP parameters depend on stimulus modality.
Some researchers reported on the existence of such
dependency [17, 18]. Particularly, the AP amplitude
and propagation rate in potato plants was reportedly
dependent on the nature of stimulating factors [17].
However, these data need additional explanations.

The “all or none” principle, underlying the origin of
genuine AP, makes unlikely the dependency of electric
pulse on stimulus specificity, provided that no variation
potential (variable wave) is superimposed on the AP
during injuring treatments [4].

At the same time, it is known that the cell perception
of stimuli of various modalities and the subsequent
transduction of the arising signals involve different
transport mechanisms [19–21]. This circumstance
might be reflected in the dependence of AP parameters
(duration and/or amplitude) when the AP is recorded
directly in the stimulation zone. However, the propaga-
tion of AP along the stem involves common conducting
pathways and a unified mechanism [1], which virtually
excludes the possibility that the electric pulse would
depend on the physical nature of stimulus.

Thus, there is good evidence to believe that the AP
transmitted along the stem of higher plants is a nonspe-
cific bioelectric signal independent of the stimulus ori-
gin; consequently, it does not carry any stimulus-spe-
cific information.

A major part of published data supports this state-
ment. In particular, the research of our laboratory has
shown that the stems of 2-week-old pumpkin seedlings
generate action potentials in response to burning (there
was no variation potential) and chilling with principally
similar AP parameters (amplitude, duration, and propa-
gation velocity) [22].

Being a nonspecific bioelectric signal, the transmit-
ted AP induces transient nonspecific functional distur-
bances in tissues and organs on the way of its propaga-
tion. In this case, the AP-mediated receptor–effector
relationship in higher plants represents a very short
chain:

The receptor–effector chain in animals is more com-
plex because it involves the central nervous system as a
decoding and coordinating center [16].

OPERATION MECHANISM FOR SIGNALING 
ROLE OF ACTION POTENTIAL

The action potential as a biolelectric response repre-
sents the pulsed version of plasma membrane depolar-

Signal perception and transduction  

AP 

Effector (functional) response.

 

ization in the plant cell. Depolarization may initiate
functional effects by three means [23]: (a) owing
directly to the decrease in membrane potential;
(b) through ionic shifts underlying depolarization; and
(c) through ion flows and changes in ionic balance trig-
gered by depolarization.

The decrease in membrane potential always releases
the electromechanical tension (electrostriction) of the
membrane lipid matrix, which would affect the mem-
brane permeability and conformational mobility of pro-
tein systems residing in the membrane matrix [24].
However, since the membrane depolarization during
generation and propagation of AP is transient and
reversible, one can hardly expect any functional signif-
icance of these changes.

A more probable alternative is that the AP transmis-
sion initiates various nonspecific functional changes
(e.g., enhancement of respiration, suppression of pho-
tosynthesis, biosynthesis of stress hormones, etc. [4])
owing to intracellular concentration changes resulting
from ion flows involved in AP generation (

 

Ca

 

2+

 

, Cl

 

–

 

, K

 

+

 

,
and 

 

H

 

+

 

 fluxes [1, 25, 26]). Two circumstances should be
taken into account.

The first circumstance is that physiological activity
of ion species involved in AP generation is very high. It
is known that Ca

 

2+

 

 is one of the principal intracellular
messengers [27–29]. During AP generation and propa-
gation, Ca

 

2+

 

 enters the cytoplasm through voltage-gated
Ca

 

2+

 

 channels of the plasma membrane and is released
from intracellular stores [26, 30–32]. These fluxes give
rise to the Ca

 

2+

 

 signal [27–29]. Within the framework of
this signaling, Ca

 

2+

 

 ions bind to a regulatory protein
calmodulin, thus acquiring the ability to activate a
series of enzymes, e.g., protein kinases that phosphory-
late various intracellular and membrane proteins and
modulate their functional activity.

A factor of no less importance is the close associa-
tion of the calcium signal during AP generation and
propagation with other forms of intracellular signaling,
the proton signaling in particular [26].

The proton signal is due to the fact that the AP gen-
eration in higher plant cells is coupled to the activity of
the plasma membrane electrogenic 

 

ç

 

+

 

 pump (

 

ç

 

+

 

-
ATPase). This pump is temporally inactivated during
the initial stage of cell excitation, which results in the
transient alkalization of the apoplast and, supposedly,
acidification of the cytoplasm [25, 26]. The temporal
acidification of the cytoplasm during AP generation ini-
tiates the proton signaling system, which in turn is
implicated in the control of cell metabolism and gene
expression [27, 33, 34].

The second important circumstance is that changes
in ionic concentrations during AP generation and prop-
agation are rather large for some ion species [1, 30, 35].
For example, 

 

ä

 

+

 

 concentration in parenchymal cells in
conducting bundles of the pumpkin stem decreases dur-
ing a single AP by 30 mM [30], whereas the 
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+

 

 concen-
tration in nerve cells of animals decreases by only 1 
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after one pulse [15]. The reason behind these large
changes is that ion flux densities during AP in higher
plant cells are similar to those in animals, whereas the
pulse duration is several orders of magnitude longer
[1]. A considerable efflux of 

 

ä

 

+

 

 from the cells where
AP are generated and propagated under injuring treat-
ments might have a protective role related to modula-
tion of cell metabolism, enzyme activities, turgor, etc.
[36, 37].

By considering all these circumstances, we con-
clude that the Ca

 

2+

 

 and H

 

+

 

 influxes into the cytoplasm
and the efflux of K

 

+

 

 during cell excitation may be of key
significance for the formation of AP-induced effector
response.

WHAT IS THE MEANING OF ACTION 
POTENTIAL-INDUCED EFFECTOR RESPONSE?

Owing to a short length of receptor–effector chain in
higher plants, the requirements imposed upon AP as a
mediator element are inevitably different from those
imposed on the nerve pulse (Table 1).

The AP in plants usually represents a single sys-
temic signal affecting all organs and tissues where it
propagates. Considering large-scale ionic and meta-
bolic shifts during AP generation and propagation in
plants [1, 25, 38], AP can be regarded not merely as a
signal linking stimulus reception and the effector
response but also as a part of the effector response. At
the same time, as noted above, the AP transmitted along
the plant stem does not carry information on the stimu-
lus origin, but it gives a signal to resting tissues and
organs about the onset of adverse conditions in some

region. This information is linked to the very fact of AP
appearance and propagation.

In the absence of the coordinating center analogous
to the central nervous systems of animals, AP provides
for the direct connection between reception and the
effector response. The propagating AP can effectively
perform the signaling role because, similarly to the
excitation stimulus, it induces changes analogous to
nonspecific component of the functional response in
the region of immediate excitation.

In order to substantiate the above statement, let us
consider Table 2, where the left column lists the most
significant nonspecific changes characteristic of higher
plant cells under stress, while the right column contains
data on the development of similar changes during AP
generation and propagation.

Table 2 shows that the correlation of the above
changes has been already found for most items listed.
This refers to the earliest nonspecific changes, includ-
ing membrane depolarization, permeability changes,
and ionic shifts during AP, and is also valid with respect
to functional rearrangements comprising major meta-
bolic and physiological processes, gene expression,
biosynthesis of stress hormones, etc.

On the whole, Table 2 suggests that the AP electrical
signals in higher plants behave similarly to the excita-
tion agent and induce the condition of short-term func-
tional perturbation (stress) away from the excitation
region. However, it is not excluded that the observed
similarity is only phenomenological, because the
mechanisms underlying unidirectional effects of AP
and some stressful factors on physiological and meta-
bolic processes in plant cells can differ substantially
[55]. The durations of these effector responses also dif-

 

Table 1.  

 

Comparative characterization of AP signals in animals and higher plants

AP in animals AP in “usual” higher plants

1.  Rhythmical repeated pulses combined in groups; appear-
ance of single AP seems to be an artifact rather than the norm

1. Usually appear as a single AP; rarely, in groups of few re-
peated pulses

2. AP arise in specialized receptor cells 2. AP arise in cells of surface tissues exposed to stimulation

3.  AP generation is not associated with large ionic shifts and 
metabolic changes

3. AP generation is accompanied by large ionic shifts and 
changes in metabolism

4. AP carry frequency-encoded information on the stimulus 4. AP do not contain information on the stimulus

5. AP are coordinated by the central nervous system 5. “Uncontrolled” signals

6. AP induce specific effector response in particular parts of 
the organism

6. AP induce nonspecific effector response throughout the 
pathway of AP transmission over the organism

7.  AP is a “pure” signal (i.e., it performs a signaling role 
only)

7. AP is a systemic signal that represents a part of the effector 
response
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Table 2.  

 

Involvement of AP in initiation of stress in higher plants

The most significant nonspecific changes 
in stressed plant cells [39, 40]

Initiation of analogous nonspecific changes during 
AP generation and propagation

1. Changes in ionic permeability of cell membranes 1. Considerable changes of plasma membrane permeability during 
AP to Ca

 

2+

 

, Cl

 

–

 

, and K

 

+

 

 [1, 41]

2. Plasma membrane depolarization 2. Representative AP in higher plants is generated and transmitted 
as a pulse-like depolarization with an amplitude of several tens of 
millivolt [1, 4]

3.  The increase in cytoplasmic Ca

 

2+

 

 concentration 3. During AP generation and propagation, Ca

 

2+

 

 enters the cyto-
plasm of higher plant cells from the external medium through the
plasma membrane channels and is released from intracellular stores
[26, 31, 32]

4. Acidification of the cytoplasm 4. During AP generation in plant cells, the cytoplasmic pH decreas-
es and the external medium is alkalized [26, 42], which is suppos-
edly caused by transient suppression of electrogenic plasma mem-
brane H

 

+

 

 pump (H

 

+

 

-ATPase) during excitation [25]

5. Multiphase development of the stress-induced re-
sponse

5.  Multiphase changes were observed for root absorption after ar-
rival of AP to the root from the leaves [43], for ATP content in the 
phloem exudate after AP transmission along the stem [38], etc. The 
AP was shown to control multiphase changes in resting potential in 
the region of stress treatment [44]

6. The increase in free radical content 6. Propagation of AP over the plant is accompanied by generation 
of free radicals [45]

7. Enhanced catabolism of lipids and biopolymers 7. No data

8. Enhancement of respiration 8. Respiration rate increases under the influence of AP or AP-com-
prising electric signals* [46, 47]

9. Inhibition of photosynthesis 9. Photosynthetic parameters undergo transient changes under the 
influence of AP or AP-comprising electric signals*, which indicates 
temporal suppression of photosynthesis [48, 49]

10.  Increase in ABA and jasmonic acid content 10. Induction of ABA and jasmonic acid under the influence of AP 
or AP-comprising electric signals [50, 51]

11. Ethylene production 11. AP stimulates ethylene production [52]

12.  Suppression of cell division and growth 12. Stem elongation is retarded after generation and propagation of 
AP [53]

13. Synthesis of stress (shock) proteins 13. No data

14. Accelerated synthesis of cell wall components (lig-
nin, cutin, callose, etc.)

14. No data

15. Proline accumulation 15. No data

16. Accumulation of organic polyamine 16. No data

17.  Action of biostressors (bacteria, fungi, viruses, and 
insects) results in production of various pathogen-in-
duced proteins, chitinases, and proteinase inhibitors

17. The AP or AP-comprising electric signals* induce the expres-
sion of proteinase inhibitors and calmodulin genes [51, 52]

 

Note: * Electric signals generated and propagated under the treatments of injuring intensities have usually complex structure and include
AP in combination with a slower wave of variable shape [54].
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fer: unlike the sustained stress, the AP-induced
response is a short-term reversible transient [4].

It is known that the development of stress in plants
eventually elevates plant resistance to stress factors,
provided that reliability resources are unexhausted
[56]. Therefore, it is natural to expect that the plant may
acquire to some extent the condition of elevated resis-
tance under the influence of AP. Our studies [57, 58]
provided convincing evidence that AP propagation rap-
idly elevates nonspecific resistance of plant tissues out-
side the stimulation area (in the regions affected by
propagating AP) for 12–60 min after the pulse trans-
mission. This phenomenon was designated as the AP-
induced preadaptation [57]. The resistance of plant
materials was assessed by means of electrophysiologi-
cal method in combination with tissue freezing [57] and
from the delayed fluorescence measurements in photo-
synthetic tissues under unified conditions [58].

The development of preadaptation state is thought to
facilitate the survival of higher plants under unfavor-
able conditions in the period before the adaptive
changes are mobilized [4]. Therefore, this phenomenon
can be considered as an important aspect of plant “intel-
ligent” behavior [59]. The extent of AP-induced pread-
aptation in plants is apparently regulated through the
increase in the number of generated and transmitted
signals (from one to several), as it was observed, for
example, under combined action of several different
stress factors [60].

It should be noted in conclusion that the presented
view of AP as a stress (excitatory) signal and the AP-
induced phenomenon of preadaptation provide satisfac-
tory explanation for numerous reports on fast long-dis-
tance transmission of not only “stress signals” but also
“hardening signals” [61–64].
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