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SUMMARY

All plants are inhabited internally by diverse microbial communities comprising bacterial, 

archaeal, fungal, and protistic taxa. These microorganisms showing endophytic lifestyles play 

crucial roles in plant development, growth, fitness, and diversification. The increasing awareness 

of and information on endophytes provide insight into the complexity of the plant microbiome. 

The nature of plant-endophyte interactions ranges from mutualism to pathogenicity. This depends 

on a set of abiotic and biotic factors, including the genotypes of plants and microbes, 

environmental conditions, and the dynamic network of interactions within the plant biome. In this 

review, we address the concept of endophytism, considering the latest insights into evolution, 

plant ecosystem functioning, and multipartite interactions.

INTRODUCTION

Endophytes are microorganisms that spend at least parts of their life cycle inside plants. 

Endophyte definitions have changed in the past years and expectedly will evolve further 

over the coming years. The term “endophyte” has commonly been used for fungi living 

inside plants, but later researchers realized that interior parts of plants could be colonized by 

bacteria as well (1, 2). Plants do not live alone as single entities but closely associate with 

the microorganisms present in their neighborhood, and especially with those living 

internally. The emergence of the concept of the “plant microbiome,” i.e., the collective 

genomes of microorganisms living in association with plants, has led to new ideas on the 
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evolution of plants where selective forces do not act merely on the plant genome itself but 

rather on the whole plant, including its associated microbial community. Lamarckian 

concepts of acquired heritable traits may be explained via the hologenome concept by 

vertical transmission of valuable traits provided by endophytes to plants (3).

The most common definition of endophytes is derived from the practical description given 

in 1997 by Hallmann and coauthors (2), who stated that endophytes are “…those (bacteria) 

that can be isolated from surface-disinfested plant tissue or extracted from within the plant, 

and that do not visibly harm the plant.” This definition has been valid for cultivable species 

in most laboratories in the world over the past 2 decades. However, due to the suspected 

lack of adequate elimination of nucleic acids after disinfection of plant surfaces, this 

definition appeared to be less suitable for noncultured species upon the introduction of 

molecular detection techniques in endophyte research (4).

Conceptual aspects related to the nature of endophytes are under dispute. For instance, must 

plant pathogens be considered endophytes or not, even when they have lost their virulence 

(5)? Recently, a typical bacterial group of endophytes beneficial to plants, the group of 

fluorescent pseudomonads, turned out to be detrimental to leatherleaf ferns under specific 

conditions (6). This indicates that potential plant mutualists can become deleterious for their 

hosts. Endophytes should not be harmful to the plant host, but what about harmfulness to 

other species, for instance, when particular bacteria that colonize internal compartments of 

plants are harmful to humans (7)?

The most common endophytes are typed as commensals, with unknown or yet unknown 

functions in plants, and less common ones are those shown to have positive (mutualistic) or 

negative (antagonistic) effects on plants (2). However, these properties are often tested in a 

single plant species or within groups of closely related plant genotypes, but rarely over a 

taxonomically wide spectrum of plant species. Also, the environmental conditions wherein 

plant-endophyte interactions are studied are often rather narrow. Furthermore, interactions 

between members of the endophyte community have rarely been investigated. A few studies 

demonstrated that interactions between taxonomically related microbial endophytes can shift 

whole populations inside the plant (8, 9). Bacterial and fungal endophytic communities are 

commonly investigated separately, but the interaction between both groups inside plants can 

become a fascinating new field in endophyte research (10).

Studies of plant-endophyte interactions are commonly based on controlled, optimized 

conditions for growth of host plants and seldom based on variable, field-realistic conditions. 

Effects ascribed to endophytes in healthy plants might change when host plants are grown 

under less favorable, or even stressful, conditions. In conclusion, our current understanding 

of endophytes is built on a rather small set of experimental conditions, and more varied 

experimental settings would be required for deeper insight into endophyte functioning. 

Because of this and the general preference to investigate microbial species that are relatively 

easy to cultivate, our knowledge of the ecology and interactions of endophytes in plants is 

still biased.
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New developments in high-throughput technologies, such as next-generation sequencing, 

permit the investigation of complex microbiomes and will facilitate larger sample sizes and 

encourage deeper analyses of microbial communities (11). The new “omics” approaches are 

valuable tools for exploring, identifying, and characterizing the contributions of genetic and 

metabolic elements involved in the interactions between host plants and endophytes. For 

instance, metagenome sequencing has revealed important functions required for survival of 

bacterial endophytes inside plants (12), and metabolome analysis demonstrated the effects of 

beneficial endophytes on primary metabolites of plants (13). The combination of cultivation-

independent and improved cultivation technologies will allow the exploration of hitherto 

uncultured groups living in association with plants (14, 15). In addition, the locations of 

endophytes in different plant compartments are disputable (16), but powerful image analyses 

can provide information about the exact colocalization within plant tissues and about 

physical contacts between different microbial groups (17–19). We are reaching a pivotal 

point in our perception of endophytes, and we expect that technical innovations in microbial 

detection will soon drastically change our concepts of endophytes as living entities 

colonizing internal plant compartments.

In this paper, we present a historical overview of the endophyte research leading to the 

current understanding of endophytes. The state of science for defined groups of endophytes 

is described in succeeding sections, based on the vast number of peer-reviewed publications 

on endophytes, which have been growing exponentially over the last 3 decades. 

Furthermore, we elaborate the expected impacts of novel technologies on endophyte 

research. It is our purpose to revisit current concepts on endophytes and to assess directions 

for new research on microbial endophytes based on the latest technological developments.

HISTORY OF ENDOPHYTE DEFINITIONS

The German botanist Heinrich Friedrich Link was the first to describe endophytes, in 1809 

(20). At that time, they were termed “Entophytae” and were described as a distinct group of 

partly parasitic fungi living in plants. Since then, many definitions have evolved; for a long 

time, they mostly addressed pathogens or parasitic organisms, primarily fungi (21–23). Only 

Béchamp described so-called microzymas in plants, referring to microorganisms (24). 

Generally, in the 19th century, the belief was that healthy or normally growing plants are 

sterile and thus free of microorganisms (postulated by Pasteur; cited in reference 25). 

Nevertheless, Galippe reported the occurrence of bacteria and fungi in the interior of 

vegetable plants and postulated that these microorganisms derive from the soil environment 

and migrate into the plant, where they might play a beneficial role for the host plant (26, 27). 

Other studies in the late 19th century and the beginning of the 20th century confirmed the 

occurrence of beneficial microorganisms within plants (28, 29). Nevertheless, contrasting 

views on the existence of plant-beneficial endophytes prevailed at that time (28, 30–34). 

Nowadays, it is a well-established fact that plants are hosts for many types of microbial 

endophytes, including bacteria, fungi, archaea, and unicellular eukaryotes, such as algae (35) 

and amoebae (36).

An important discovery was made in 1888 by the Dutch microbiologist Martinus Willem 

Beijerinck, who isolated root nodule bacteria in pure culture from nodules of Leguminosae 
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plants and showed that these isolates, which were later classified as Rhizobium 

leguminosarum (37), were capable of fixing atmospheric nitrogen (38). At the same time, 

Hermann Hellriegel and Hermann Wilfarth reported mineral N independence of leguminous 

plants, as well as the importance of symbiotic nitrogen fixation by rhizobia (39). Albert 

Bernhard Frank reported another important mutualistic symbiosis, i.e., the living together of 

unlike organisms (40), between roots of trees and underground fungi (41). He coined the 

term “mycorrhiza” to describe the interaction, which literally means “fungus roots.”

More recently, in 1991, Orlando Petrini defined endophytes as “all organisms inhabiting 

plant organs that at some time in their life cycle can colonize internal plant tissues without 

causing apparent harm to their host” (42). Since then, many definitions have been 

formulated (2, 43–48), essentially all pertaining to microorganisms which for all or part of 

their life cycle invade tissues of living plants without causing disease. Although this 

endophyte definition has been the basis of many studies and might be a pragmatic approach 

to distinguish between endophytes and pathogens, it has some drawbacks and raises some 

questions.

First, this definition is more suitable for cultivated endophytes, as only with those is it 

possible to assess phytopathogenicity. However, in most cases, pathogenicity assays are not 

performed, or they are performed with only one plant species, although pathogenicity might 

occur with a different plant genotype or under different conditions. Second, it is well known 

that some bacteria may live as latent pathogens within plants and become pathogenic under 

specific conditions (6) or are pathogens of other plants. Third, it has been shown that 

bacterial strains belonging to a well-known pathogenic species of a specific plant host may 

even have growth-promoting effects on another plant (49, 50). These findings demonstrate 

that it is not trivial to clearly distinguish a nonpathogenic endophyte from a pathogen and 

that properties such as pathogenicity or mutualism may depend on many factors, including 

plant and microbial genotype, microbial numbers, and quorum sensing or environmental 

conditions. With cultivation-independent analyses, it is now even more difficult to assess the 

pathogenicity of individual microbiome members. In conclusion, we question the currently 

applied definition of endophytes and claim that the term “endophyte” should refer to habitat 

only, not function, and therefore that the term should be more general and include all 

microorganisms which for all or part of their lifetime colonize internal plant tissues.

PLANT-MICROBE SYMBIOSES

Different groups of bacteria and fungi interact with higher plants. Genetic links between the 

association of plants with arbuscular mycorrhizal fungi (AMF) and root nodule symbioses 

have been found (51–53), suggesting that at least segments of bacterial and fungal 

endophytic populations coevolved with each other and with their host. Mutualistic 

interactions leading to adaptive benefits for both partners occasionally evolved to even more 

complex forms, in which more than two partners were involved (10).

Evolution of Plant-Fungus Symbioses

Plant-fungus symbioses are known to have occurred during early colonization of land by 

terrestrial plants (54). The fungal group Glomeromycota has for a long time been the prime 
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candidate for interaction with the first terrestrial plants, in the Ordovician era, but members 

of the Mucoromycotina are also speculated to have had symbiotic interactions with the first 

terrestrial plants (55). The association between AMF and plants evolved as a symbiosis, 

facilitating the adaption of plants to the terrestrial environment (56). The oldest known 

fossils representing terrestrial fungi with properties similar to those of AMF were collected 

from dolomite rocks in Wisconsin and are estimated to be 460 million years old, originating 

from the Ordovician period (54). It was therefore assumed that terrestrial AMF already 

existed at the time when bryophyte-like, “lower” plants covered the land. All other plant-

AMF interaction types, such as ectomycorrhiza and orchid and ericoid mycorrhiza, appeared 

later and are considered to be derived from the first interactions between AMF and the first 

terrestrial plants (57).

It is assumed that no tight interactions between plants and fungi occurred initially but that, 

due to nutritional limitations, interactions between both partners evolved (57). It is still 

unknown whether the first AMF were already mutualistic symbionts or whether mutualistic 

lifestyles evolved from pathogenic forms. The internal spaces of plants became important 

habitats for plant-colonizing fungi. Specific tissue layers, such as the endodermis and 

exodermis, evolved, forming the borders of cortex cells surrounding fungi internalized in the 

roots (57). This finally resulted in the formation of arbuscules, which are typical structures 

in plant-AMF interactions. AMF became more dependent on their host for energy sources 

and adopted an obligate life cycle. On the other hand, intraradical hyphae increased the total 

root surface area of the host plant, allowing substantially more nutrient (P) uptake from the 

soil environment. As evolution progressed, more extreme forms of plant-fungus interactions 

appeared, such as mycoheterotrophic plants, i.e., plants that fully exploit their fungal 

counterparts during interaction (58).

Evolution of Plant-Bacterium Symbioses

The best-described plant-bacterium interaction is the one between leguminous plants and 

rhizobia. The interactions of nitrogen-fixing bacteria belonging to the genera Azorhizobium, 

Bradyrhizobium, Ensifer, Mesorhizobium, Rhizobium, and Sinorhizobium (collectively 

called “rhizobia”; for a full list of genera, see http://www.rhizobia.co.nz/taxonomy/rhizobia) 

are capable of inducing differentiation in root nodule structure, as demonstrated in Fabaceae 

and Parasponia plants (60). Typical symptoms in roots of leguminous plants infected by 

rhizobia are curling of root hairs and the appearance of infection threads and, finally, nodule 

primordia in the inner root layers—these are all processes mediated by signal exchange 

between plants and rhizobia (for a review, see reference 61). In primordium cells, the 

bacteria become surrounded by the plant membrane, and together, the bacteria and plant 

structure form the symbiosome, in which atmospheric nitrogen is fixed and transferred in 

exchange for carbohydrates (62). Symbiosomes have a structure similar to that of 

mycorrhizal arbuscules, which are also surrounded by a plant membrane. It is interesting 

that a number of legume-nodulating rhizobial strains form endophytic associations with 

monocotyledonous plants, such as rice (63), maize (64), and sugarcane (65), and 

dicotyledonous plants, such as sweet potato (66). Although nodule primordia were not 

observed, rhizobial nifH transcripts were found inside roots of rice and sugarcane plants (12, 

Hardoim et al. Page 5

Microbiol Mol Biol Rev. Author manuscript; available in PMC 2015 September 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://www.rhizobia.co.nz/taxonomy/rhizobia


65). The contribution of rhizobium-assimilated nitrogen to the total nitrogen pool in 

nonleguminous plants is still a matter of debate (67).

Recent studies revealed that the nature of the association of both AMF and rhizobia with 

host plant species can be mutualistic, parasitic, or nonsymbiotic (68, 69). A meta-analysis 

demonstrated that the plant response to AMF depends on various factors, most importantly 

the host plant type and N fertilization (69). Apart from mutualistic rhizobia, parasitic strains 

which infect legumes but fix little or no nitrogen have been reported (68). The rhizobium-

legume symbiosis seems to be characterized by a continuum of different types of symbiotic 

interactions, in many cases dependent on the presence of symbiotic genes, frequently located 

on plasmids, needed for the mutualistic interaction (70).

ENDOPHYTE DIVERSITY

Prokaryotic Endophytes

We present an overview of prokaryotic endophytes reported to date, based on a curated 

database (see Data Sets S1 and S2 in the supplemental material) comprising all currently 

available 16S rRNA gene sequences assigned to endophytes (published in peer-reviewed 

journals indexed to the PubMed or Web of Science databases and deposited in the 

International Nucleotide Sequence Database Collaboration repository, as of 1 March 2014). 

Only sequences longer than 300 bp and from studies that applied well-established surface 

sterilization procedures, such as the application of sodium hypochlorite (NaOCl) or mercury 

chloride (HgCl2), were included. The database comprises 4,146 16S rRNA gene sequences 

from isolates (56%) and 3,202 16S rRNA gene sequences from uncultured organisms (44%). 

Sequences from earlier next-generation high-throughput sequencing technologies (e.g., 454 

pyrosequencing) were able to produce only relatively short nucleotide stretches (i.e., <300 

bp), which limits the discriminatory power for classification of different taxonomic groups, 

and thus were not included in our database.

Prokaryotic endophytes considered in this database are diverse and comprise 23 recognized 

and candidate phyla (2 from Archaea and 21 from Bacteria) (Table 1; see Fig. S1 in the 

supplemental material). Despite this remarkable diversity, more than 96% of the total 

number of endophytic prokaryotic sequences (n = 7,348) are distributed among four 

bacterial phyla (54% Proteobacteria, 20% Actinobacteria, 16% Firmicutes, and 6% 

Bacteroidetes). These phyla have also been reported to be dominant in the plant 

environment (71, 72). The database comprises only a few (n = 29) sequences from Archaea, 

which were mainly detected in coffee cherries (73), rice and maize roots (74, 75), and the 

arctic tundra rush Juncus trifidus (76).

Most of the prokaryotic endophytes (26%) could be assigned to the Gammaproteobacteria, 

including 56 recognized and 7 unidentified genera as well as the “Candidatus Portiera” 

genus (see Data Set S1 and Fig. S2 in the supplemental material). It should be noted that 

Gammaproteobacteria also comprise a large number of genera and species which are known 

as phytopathogens (77, 78). Endophytic Gammaproteobacteria are largely represented by a 

few genera: Pseudomonas, Enterobacter, Pantoea, Stenotrophomonas, Acinetobacter, and 

Serratia (>50 sequences each) (see Fig. S2). Members of the genus Enterobacter associate 
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with diverse organisms, and their ecological relationships range from mutualism to 

pathogenesis. For instance, four species of Enterobacter in plants have been described as 

opportunistic pathogens, whereas many others (at least five) are beneficial to the host (79), 

including a monophyletic clade that was recently named Kosakonia (80). The nature of the 

interactions of other members of the Gammaproteobacteria, including Pseudomonas, 

Pantoea, and Stenotrophomonas species, is similar to that for Enterobacter, with few 

species described as plant pathogens and many others described as plant mutualists. 

Similarly, the Alphaproteobacteria encompass a large number (18%) of endophytic 

sequences, belonging to 57 recognized and 14 unidentified genera as well as the 

“Candidatus Liberibacter” genus (see Data Set S1 and Fig. S3). Most of the sequences can 

be assigned to the genera Rhizobium and Bradyrhizobium, known for their N2-fixing 

symbioses with legumes, and Methylobacterium and Sphingomonas (>50 sequences each) 

(see Fig. S3). Methylobacterium is capable of growth on methanol as the sole source of 

carbon and energy and has been hypothesized to potentially dominate the phyllosphere 

environment (81). The Betaproteobacteria sequences (10%) comprise 53 recognized and 10 

unidentified genera of endophytes (see Data Set S1), mainly belonging to Burkholderia, 

Massilia, Variovorax, and Collimonas (≥40 sequences each) (see Fig. S4). Burkholderia 

strains have the potential to colonize a wide range of hosts and environments (82), 

suggesting a great metabolic and physiological adaptability of endophytes belonging to this 

genus.

Among Gram-positive endophytes, the class Actinobacteria (20%) comprises diverse 

endophytes belonging to 107 recognized and 15 unidentified genera (see Data Set S1 in the 

supplemental material). Most of the sequences group with the genera Streptomyces, 

Microbacterium, Mycobacterium, Arthrobacter, and Curtobacterium (>50 sequences each) 

(see Fig. S5). Members of the genus Streptomyces are well known for their capacity to 

synthesize antibiotic compounds (83). The class Bacilli (15%) comprises 25 recognized and 

2 unidentified genera of endophytes (see Data Set S1). The genera Bacillus, Paenibacillus, 

and Staphylococcus have more than 100 sequences assigned to them (see Fig. S6). Within 

the genus Bacillus, the species Bacillus thuringiensis is well known for its production of 

parasporal crystal proteins with insecticidal properties (84).

Overall, most bacterial endophytes belong to mainly four phyla, but they encompass many 

genera and species. Their functions cannot be assigned clearly to taxonomy and seem to 

depend on the host and environmental parameters.

Eukaryotic Endophytes

A data set of eukaryotic endophytic full-length internal transcribed spacer (ITS) regions was 

also built for this study (see Data Set S3 in the supplemental material). A total of 8,439 

sequences were retrieved from the National Center for Biotechnology Information (NCBI) 

nucleotide database (Table 2 shows the details of data retrieval and analysis; data were 

current as of 1 August 2014). Endophytes mainly belong to the Glomeromycota (40%), 

Ascomycota (31%), Basidiomycota (20%), unidentified phyla (8%), and, to a lesser extent, 

Zygomycota (0.1%) (Table 2).
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The phylum Glomeromycota only comprises endophytes known as arbuscular mycorrhizal 

fungi (AMF) (85) (see Data Set S3 in the supplemental material). Most of the eukaryotic 

endophytes (39%) can be assigned to the class Glomeromycetes. All members of this class 

form ubiquitous endosymbioses with most land plants and are of undeniable ecological and 

economic importance (86–88). AMF of the genera Glomus and Rhizophagus form obligate 

symbioses with a wide variety of host plants from the subkingdom Embryophyta (86). 

Among the Ascomycota, a large number of endophytes are identified in the class 

Dothideomycetes (15%). Besides endophytes, many members of the Dothideomycetes class 

are necrotrophic plant-pathogenic fungi, which are remarkable because of their production 

of host-specific toxins, such as phytotoxic metabolites and peptides that are biologically 

active only against a particular plant species (89–92). Overall, this class contains many 

species of the genera Alternaria and Epicoccum comprising endophytes (see Data Set S3). 

Although Alternaria brassicae is considered an opportunistic plant pathogen (93), it is 

frequently detected in high abundance in healthy plants (94, 95). Many members of the class 

Sordariomycetes (9%) are endophytes, such as species of the genera Balansia, Epichloë, 

Nemania, Xylaria, and Colletotrichum, but this class is also well known for phytopathogenic 

members, such as Cryphonectria parasitica (the causal agent of chestnut blight), 

Magnaporthe grisea (rice blast), Ophiostoma ulmi and Ophiostoma novo-ulmi (Dutch elm 

disease), and Fusarium, Verticillium, and Rosellinia species (96).

Among the Basidiomycota (Table 2), the class Agaricomycetes (18%) contains a large 

number of endophytes, mainly mushroom-forming (basidiome) fungi causing wood decay, 

white and brown rot saprotrophs, and the beneficial ectomycorrhiza (EMC) symbionts (97). 

Furthermore, members of the order Sebacinales form mycorrhizal symbioses with a broad 

range of plants, including woody plants and members of the families Orchidaceae and 

Ericaceae and the division Marchantiophyta (98). Additional assigned classes containing 

endophytes are Atractiellomycetes, Cystobasidiomycetes, Microbotryomycetes, and 

Tremellomycetes (see Data Set S3 in the supplemental material). Similar to the case for 

bacterial endophytes, various taxa comprise known phytopathogens and strains without 

known pathogenic effects, indicating that the functions of endophytic fungi also cannot 

necessarily be linked to taxonomy.

LIFESTYLES OF ENDOPHYTES

Degrees of Intimacy between Plants and Endophytes

Microorganisms can be strictly bound to plants and complete a major part or even their 

entire life cycle inside plants. Microorganisms requiring plant tissues to complete their life 

cycle are classified as “obligate.” Well-documented examples of obligate endophytes are 

found among mycorrhizal fungi and members of the fungal genera Balansia, Epichloë, and 

Neotyphodium, from the family Clavicipitaceae (Ascomycota) (99, 100). On the other 

extreme are “opportunistic” endophytes that mainly thrive outside plant tissues (epiphytes) 

and sporadically enter the plant endosphere (101). Among these are rhizosphere-competent 

colonizers, such as bacteria of the genera Pseudomonas and Azospirillum and fungi of the 

genera Hypocrea and Trichoderma (102–105). It is interesting that endophytes, which are 

transmitted vertically via seeds, are often recovered as epiphytes, suggesting that various 
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endophytes might also colonize surrounding host plant environments (106, 107). Between 

these two extremes is an intermediate group, which comprises the vast majority of 

endophytic microorganisms, the so-called “facultative” endophytes. Whether facultative 

endophytes use the plant as a vector for dissemination or are actively selected by the host is 

still a matter of debate (107–110). However, facultative endophytes consume nutrients 

provided by plants, which would in fact reduce the ecological fitness of the host plant. This 

point is therefore often used as an argument that the so-called facultative endophytes must 

be mutualists in plants, even if the details of the interaction are unclear.

Overlaps exist between these three groups; thus, these categories must be considered 

“marking points” within the continuum of colonization strategies existing among 

endophytes. Independent of class, the microbial species thriving inside plant tissues are 

ecologically fit to survive and to proliferate under the local conditions of the plant interior, 

and aspects of survival are discussed later.

COLONIZATION OF THE ENDOSPHERE

Colonization Behavior of Fungal Endophytes

Successful colonization by endophytes depends on many variables, including plant tissue 

type, plant genotype, the microbial taxon and strain type, and biotic and abiotic 

environmental conditions. Different colonization strategies have been described for 

clavicipitaceous and nonclavicipitaceous endophytes (111, 112). Species of the 

Clavicipitaceae, including Balansia spp., Epichloë spp., and Claviceps spp., establish 

symbioses almost exclusively with grass, rush, and sledge hosts (47, 113), in which they 

may colonize the entire host plant systemically. They proliferate in the shoot meristem, 

colonizing intercellular spaces of the newly forming shoots, and can be transmitted 

vertically via seeds (113). Some Neotyphodium and Epichloë species may also be 

transmitted horizontally via leaf fragments falling on the soil (114). At the stage of 

inflorescence development, the mycelium of Neotyphodium can also colonize ovules and be 

present during infructescence development in the scutellum and the embryo, as 

demonstrated for Lolium perenne (115). When the inflorescence of the grass host develops, 

Epichloë can also grow over the developing inflorescence and form stromata, which can be 

differentiated sexually with the help of Botanophila flies (116).

Based on colonization characteristics, Rodriguez et al. (117) classified clavicipitaceous 

endophytes as class 1 fungal endophytes. Fungi colonizing above- and below-ground plant 

tissues, i.e., the rhizosphere, endorhiza, and aerial tissues (118), and being horizontally 

and/or vertically transmitted (119) were grouped as class 2 fungal endophytes (117). Class 3 

endophytes were defined to contain mostly members of the Dikaryomycota (Ascomycota or 

Basidiomycota), which are particularly well studied in trees, but also in other plant taxa and 

in various ecosystems (120–126). Members of this class are mostly restricted to aerial 

tissues of various hosts and are horizontally transmitted (127, 128). Class 4 endophytes 

comprise dark, septate endophytes, which, similar to mycorrhizal fungi, are restricted to 

roots, where they reside inter- and/or intracellularly in the cortical cell layers (129).
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Colonization Behavior of Bacterial Endophytes

Many bacterial endophytes originate from the rhizosphere environment, which attracts 

microorganisms due to the presence of root exudates and rhizodeposits (130, 131). Mercado-

Blanco and Prieto (132) suggested that the entry of bacterial endophytes into roots occurs 

via colonization of root hairs. To a certain extent, stem and leaf surfaces also produce 

exudates that attract microorganisms (130). However, UV light, the lack of nutrients, and 

desiccation generally reduce colonization of plant surfaces, and only adapted bacteria can 

survive and enter the plant via stomata, wounds, and hydathodes (130, 133). Endophytes 

may also penetrate plants through flowers and fruits via colonization of the anthosphere and 

carposphere (18, 130).

Depending on the strain, various colonization routes have been described, and specific 

interactions have been suggested (133, 134). Several of these routes involve passive or 

active mechanisms enabling bacteria to migrate from the rhizoplane to the cortical cell layer, 

where the plant endodermis represents a barrier for further colonization (130, 135). For 

bacteria that can penetrate the endodermis, the xylem vascular system is the main transport 

route for systemic colonization of internal plant compartments (134), whereas others 

colonize intercellular spaces locally. Bacteria have been shown to colonize xylem vessels, 

and the sizes of the holes of the perforation plates between xylem elements are sufficiently 

large to allow bacterial passage (130, 134, 136–138). However, vertical spread of bacteria 

through plants may take several weeks (139), and it is unclear why bacterial endophytes 

progress so slowly in the vascular system. Bacteria might even migrate to reproductive 

organs of Angiospermae plants and have been detected in the inner tissues of flowers 

(epidermis and ovary), fruits (pulp), and seeds (tegument) of grapevines (18) and in 

pumpkin flowers (140), as well as in the pollen of pine, a Gymnospermae plant (141). 

Suitable niches for colonization by bacterial endophytes have been described for different 

plant taxonomic groups, including Bryophytes, Pteridophytes, Gymnospermae, and 

Angiospermae (17, 130, 142) (Fig. 1). Overall, it is not known whether endophytes need to 

reach a specific organ or tissue for optimal performance of the functions which have been 

identified for endophytes.

FUNCTIONS OF ENDOPHYTES

Some endophytes have no apparent effects on plant performance but live on the metabolites 

produced by the host. These are termed commensal endophytes, whereas other endophytes 

confer beneficial effects to the plant, such as protection against invading pathogens and 

(arthropod) herbivores, either via antibiosis or via induced resistance, and plant growth 

promotion (Fig. 2). A third group includes latent pathogens (143). Generally, endophytes 

can have neutral or detrimental effects to the host plant under normal growth conditions, 

whereas they can be beneficial under more extreme conditions or during different stages of 

the plant life cycle. For example, the fungus Fusarium verticillioides has a dual role both as 

a pathogen and as a beneficial endophyte in maize (144). The balance between these two 

states is dependent on the host genotype, but also on locally occurring abiotic stress factors 

that reduce host fitness, resulting in distortion of the delicate balance and in the occurrence 

of disease symptoms in the plant and production of mycotoxins by the fungus (144). 
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However, beneficial effects have also been demonstrated, e.g., strains of the endophytic 

fungus F. verticillioides suppress the growth of another pathogenic fungus, Ustilago maydis, 

protecting their host against disease (145).

Plant Growth Promotion and Protection against Biotic and Abiotic Stresses

ISR and production of antibiotic secondary metabolites—Carroll (111) suggested 

in 1988 that endophytes play a role in the defense systems of trees. Because life cycles of 

endophytes are considered to be much shorter than the life cycle of their host, they may 

evolve faster in their host, resulting in higher selection of antagonistic forms that contribute 

to resistance against short-living pathogens and herbivores. Later, in 1991, Carroll suggested 

that endophyte-mediated induced resistance occurs in Douglas fir trees (146). Endophytes 

may induce plant defense reactions, so-called induced systemic resistance (ISR), leading to a 

higher tolerance of pathogens (147, 148). There is increasing evidence that at an initial 

stage, interactions between beneficial microorganisms and plants trigger an immune 

response in plants similar to that against pathogens but that, later on, mutualists escape host 

defense responses and are able to successfully colonize plants (148). Bacterial strains of the 

genera Pseudomonas and Bacillus can be considered the most common groups inducing ISR 

(reviewed in references 149 and 150), although ISR induction is not exclusive to these 

groups (151, 152). Bacterial factors responsible for ISR induction were identified to include 

flagella, antibiotics, N-acylhomoserine lactones, salicylic acid, jasmonic acid, siderophores, 

volatiles (e.g., acetoin), and lipopolysaccharides (152, 153) (Fig. 2). The shoot endophyte 

Methylobacterium sp. strain IMBG290 was shown to induce resistance against the pathogen 

Pectobacterium atrosepticum in potato, in an inoculum-density-dependent manner (151). 

The observed resistance was accompanied by changes in the structure of the innate 

endophytic community. Endophytic community changes were shown to correlate with 

disease resistance, indicating that the endophytic community as a whole, or just fractions 

thereof, can play a role in disease suppression (151). In contrast to bacterial endophytes, 

fungal endophytes have less frequently been reported to be involved in protection of their 

hosts via ISR (154–156).

Fungal endophytes are better known for their capacity to produce compounds that have 

growth-inhibitory activities toward plant pathogens and herbivores. These compounds 

comprise alkaloids, steroids, terpenoids, peptides, polyketones, flavonoids, quinols, phenols, 

and chlorinated compounds (157–159) (Fig. 2). Alkaloids produced by the clavicipitaceous 

fungi of grasses are among the best-described compounds produced by endophytes. For 

example, the neurotoxic indole-diterpenoid alkaloids, so-called lolitrems, are responsible for 

intoxication of cattle grazing on the endophyte-infected grass (160, 161). Some of these 

compounds, as well as some other alkaloids, are important for protection of the plant against 

insect herbivores (162, 163). Also, several reports have been published on the production of 

antiviral, antibacterial, antifungal, and insecticidal compounds by fungal endophytes, and 

most of these endophytes are transmitted horizontally, forming local infections in their hosts 

(157, 164). Not all horizontally transmitted fungal endophytes produce protective 

compounds, and due to the often small window of opportunity for contact with plant 

pathogens, in both time and space, their role in host protection against plant pathogens is 

still under dispute. A study made with cacao plants indicated that pathogens commonly 
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colonize tree leaves but that infection does not always result in the occurrence of disease, 

and even that they can act as beneficial or harmless endophytes in their host (165–167). A 

recent report supported this finding and further demonstrated that production of endophytic 

antimicrobial compounds by endophytes can be induced by the presence of a pathogen 

(168).

Bacterial endophytes also produce antimicrobial compounds (Fig. 2). For example, the 

endophyte Enterobacter sp. strain 638 produces antibiotic substances, including 2-

phenylethanol and 4-hydroxybenzoate (169). Generally, endophytic actinomycetes are the 

best-known examples of antimicrobial compound producers, and compounds discovered so 

far include munumbicins (170), kakadumycins (171), and coronamycin (172). Recently, 

multicyclic indolosesquiterpenes with antibacterial activity were identified in the endophyte 

Streptomyces sp. HKI0595, isolated from the mangrove tree (Kandelia candel) (173), and 

spoxazomicins A to C, with antitrypanosomal activity, were found to be produced by 

Streptosporangium oxazolinicum strain K07-0450T, isolated from orchid plants (174). Some 

of these compounds appear to be valuable for clinical or agricultural purposes (175), but 

their exact roles in plant-microbe interactions still need to be elucidated.

Production of additional secondary metabolites—Secondary metabolites are 

biologically active compounds that are an important source of anticancer, antioxidant, 

antidiabetic, immunosuppressive, antifungal, anti-oomycete, antibacterial, insecticidal, 

nematicidal, and antiviral agents (157, 175–182). In addition, endophytes produce secondary 

metabolites that are involved in mechanisms of signaling, defense, and genetic regulation of 

the establishment of symbiosis (183). Besides the production of secondary metabolite 

compounds, endophytes are also able to influence the secondary metabolism of their plant 

host (182). This was demonstrated in strawberry plants inoculated with a Methylobacterium 

species strain, in which the inoculant strain influenced the biosynthesis of flavor 

compounds, such as furanones, in the host plants (184–186). Recently, bacterial endophytes, 

along with bacterial methanol dehydrogenase transcripts, were localized in the vascular 

tissues of strawberry receptacles and in the cells of achenes, the locations where the 

furanone biosynthesis gene is expressed in the plant (187). Similarly, biosynthesis and 

accumulation of phenolic acids, flavan-3-ols, and oligomeric proanthocyanidins in bilberry 

(Vaccinium myrtillus L.) plants were enhanced upon interaction with a fungal endophyte, a 

Paraphaeosphaeria sp. strain (188).

Iron homeostasis—Some bacterial and fungal endophytes are producers of vivid 

siderophores (153, 189–192). Siderophores are essential compounds for iron acquisition by 

soil microorganisms (193, 194), but they also play important roles in pathogen-host 

interactions in animals (195, 196). The role of siderophores produced by endophytes in plant 

colonization is unknown, but it has been suggested that these compounds play a role in 

induction of ISR (153) (Fig. 2). Furthermore, siderophore production was shown to play an 

important role in the symbiosis of Epichloë festucae with ryegrass, as shown upon 

interruption of the siderophore biosynthesis gene cluster in E. festucae (191). It is possible 

that siderophores modulate iron homeostasis in E. festucae-infected ryegrass plants. 

Siderophores produced by endophytic Methylobacterium strains are also involved in 
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suppression of Xylella fastidiosa, the causative agent of citrus variegated chlorosis in Citrus 

trees (189). A recent comparative genomic analysis of proteobacterial endophytes revealed 

that strains lacking the gene clusters involved in siderophore biosynthesis have a larger total 

number of genes encoding membrane receptors for uptake of Fe3+-siderophore complexes, 

hence potentially allowing them to take up siderophores produced by other endophytes 

(197).

Protection against biotic and abiotic stresses—Whereas most of the described 

endophytes protect the plant from biotic stresses, some endophytes can also protect the plant 

against different abiotic stresses. For example, fungal strains of Neotyphodium spp. were 

shown to be able to increase tolerance toward drought in grass plants by means of osmo- and 

stomatal regulation (198), and they protected the plants against nitrogen starvation and water 

stress (199). The root fungal endophyte Piriformospora indica was shown to induce salt 

tolerance in barley (200) and drought tolerance in Chinese cabbage plants (201). In both 

cases, increases in antioxidant levels were the proposed mechanisms behind elevation in 

stress tolerance in these plants. Colonization of fungal endophytes of the genus Trichoderma 

in cacao seedlings also resulted in a delay in the response to drought stress (202), and the 

bacterial endophyte Burkholderia phytofirmans strain PsJN elevates drought tolerance levels 

in maize (203) and wheat plants (204). Furthermore, fungal endophytes have been shown to 

interfere with cold tolerance of rice plants (205), and B. phytofirmans strain PsJN has been 

shown to enhance chilling tolerance in grapevine plantlets (206).

ACC deaminase is a bacterial enzyme that is often associated with alleviation of plant stress 

(Fig. 2). This enzyme is responsible for lowering the levels of ethylene in the plant by 

cleaving the plant-produced ethylene precursor 1-aminocyclopropane-1-carboxylate (ACC) 

to ammonia and 2-oxobutanoate, preventing ethylene signaling (207). The plant hormone 

ethylene acts in the germination of seeds and in response to various stresses, and it is the key 

regulator of colonization of plant tissue by bacteria (208). This suggests that, apart from 

stress alleviation, ACC deaminase supports colonization of a number of bacterial 

endophytes. When the ACC deaminase gene of B. phytofirmans PsJN was inactivated, the 

endophyte lost the ability to promote root elongation in canola seedlings (209). Another 

study performed on cut flowers indicated that bacterial endophytes are able to colonize the 

shoot and that ACC deaminase delays flower senescence (210).

Plant growth stimulation—Some endophytes are involved in plant growth promotion, 

despite the fact that they are promoting growth at the expense of obtaining valuable nutrients 

provided by the host plant (211–213). High endophyte infection loads in plants indicate that 

benefit-cost balances are at least neutral or positive, suggesting that most endophytes must 

be beneficial to their hosts. Such beneficial effects may result from interference in 

photosynthesis and carbon fixation processes taking place in plants. A fungal grass 

endophyte strain of Neotyphodium lolii was found to influence CO2 fixation but was not 

shown to be able to interfere with light interception, photochemistry, or net photosynthesis 

(214). No effect on photosynthesis, stomatal conductance, photosynthetic water use 

efficiency, or the maximum and operating efficiencies of photosystem II was found in 

poplar trees inoculated with the bacterial plant growth-promoting endophyte Enterobacter 
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sp. 638 (215). On the other hand, inoculation of wheat with the bacterium B. phytofirmans 

strain PsJN increased the photosynthetic rate, CO2 assimilation, chlorophyll content, and 

water use efficiency under drought conditions (204).

Phytohormone production by endophytes is probably the best-studied mechanism of plant 

growth promotion, leading to morphological and architectural changes in plant hosts (213, 

216, 217). The ability to produce auxins and gibberellins is a typical trait for root-associated 

endophytes (213, 216–219). It was proposed that indole-3-acetic acid (IAA), a member of 

the auxin class, increases colonization efficiency (220), possibly via interference with the 

host defense system (221), and production of this compound or related compounds may be 

an important property for plant colonization by endophytes (Fig. 2). Cytokinin production is 

commonly observed in endophytes, but on one occasion, in a root-colonizing fungal strain of 

Piriformospora indica, cytokinin biosynthesis was demonstrated and mutational deletions in 

cytokinin biosynthesis genes resulted in abortion of any plant growth-promoting effect 

(222).

Besides the production of plant growth hormones, additional mechanisms for plant growth 

promotion exist. Adenine and adenine ribosides have been identified as growth-promoting 

compounds in endophytes of Scots pine (223). Volatile compounds, such as acetoin and 2,3-

butanediol, can stimulate plant growth (224–226) and are produced by some bacterial 

endophytes (227, 228). Polyamines affect plant growth and development in plant-

mycorrhiza interactions (229) and are produced by the bacterium Azospirillum brasilense 

(230). It can be expected that additional, not yet understood mechanisms exist among plant-

associated bacteria to promote plant growth.

Nitrogen fixation—Nutrient acquisition for plants via nitrogen fixation is another 

mechanism behind plant growth promotion. This trait is well studied in rhizobial and 

actinorhizal plant symbioses. Several root endophytes fix nitrogen (e.g., Acetobacter 

diazotrophicus, Herbaspirillum spp., and Azoarcus spp.) (231, 232), but the efficiencies of 

nitrogen fixation in free-living endophytes are far lower than those in root nodules of 

leguminous plant-rhizobium interactions (233). One exception is the relatively high nitrogen 

fixation efficiency observed in endophytic strains of Gluconacetobacter diazotrophicus in 

symbiosis with sugarcane plants (234). Other G. diazotrophicus strains were shown to be 

present in the microbiome of pine needles, including some potential N2-fixing strains (235). 

This indicates that G. diazotrophicus strains play important roles as nitrogen fixers in wider 

taxonomic ranges of host plants. Another example of a N2-fixing endophyte is Paenibacillus 

strain P22, which has been found in poplar trees (13). Strain P22 contributed to the total 

nitrogen pool of the host plant and induced metabolic changes in the plant. Nitrogen fixation 

contributes to the fitness of the host plant, especially in nitrogen-poor environments. Even if 

the quantities of fixed nitrogen measured in single nitrogen-fixing species are low, it 

remains to be clarified if the fixed N is for the endophytes’ own demands and/or for 

provision to the host plant (236).

In summary, various mechanisms in endophytes can explain the profound effects that 

endophytes have on their plant hosts. A recent report indicates that endophyte infection can 
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also affect the gender selection of the host plant (237), which suggests that many new 

properties remain to be identified among endophytes.

Plant-Microbe Symbioses Leading to Improved Plant Fitness

Endophytes taxonomically differing from AMF and rhizobia were also shown to confer 

increased fitness to their hosts (238, 239). As an example, spotted knapweed (Centaurea 

stoebe) became more competitive toward bunchgrass (Koeleria macrantha) upon 

inoculation with the fungal endophyte Alternaria alternata (238). Stimulation of the 

production of secondary compounds by the endophyte played an important role in increased 

fitness of the host plant. However, inoculation with other Alternaria sp. endophytes did not 

result in increased fitness of knapweed plants (239), indicating that the endophyte-host plant 

interaction was strain specific. In another case, it was shown that infection of wild red fescue 

plants with the ergot fungus Claviceps purpurea, a seed pathogen in many grass species, 

resulted in decreased herbivory by sheep (240). In association with its host, C. purpurea 

produces alkaloids that are toxic to mammalian species, thus protecting the host from 

predation. From this case, it is clear that particular microorganisms or taxa showing a 

lifestyle typical for endophytes can be both pathogenic and beneficial for their host. It was 

furthermore shown that plant-endophyte interactions can shift the gender balance in the 

offspring of the plant host. The fungus Epichlöe elymi, an endophyte in Elymus virginicus 

plants, is vertically and maternally transmitted from parent to offspring plants, thereby 

increasing its opportunity to establish new infections in succeeding plant generations (237). 

Manipulation of the sex ratio in offspring is an example of how endophytes can manipulate 

the fitness of their hosts, in analogy to Wolbachia infection of particular insect species, 

indicating that manipulation of the gender balance in offspring is common among higher 

eukaryote-microbe interactions (241).

DECIPHERING THE BEHAVIOR OF ENDOPHYTES BY COMPARATIVE 

GENOMIC ANALYSIS

Comparative genomics is an important tool for identifying genes and regulons that are 

important for plant penetration and colonization by endophytes (242). Specific properties 

discriminating endophytes from closely related nonendophytic strains have been found on 

several occasions (169, 197, 243–246). Lateral gene transfer (e.g., by mobile elements, such 

as plasmids and genomic islands) plays an important role in the acquisition of properties 

responsible for the capacity of bacteria and fungi to colonize the endosphere of plants. As an 

example, the assembled genome of the obligate biotroph fungus Rhizophagus irregularis 

was shown to contain up to 11% transposable elements (244). No loss of metabolic 

complexity was detected, only a drift of genes involved in toxin synthesis and in degradation 

of the plant cell wall. Also, the genome sequence of the competent bacterial endophyte 

Enterobacter sp. 638 revealed many transposable elements, which were often flanked by 

genes relevant to host-bacterium interactions (e.g., amino acid/iron transport, hemolysin, and 

hemagglutinin genes), as well as a large conjugative plasmid important for host colonization 

(169).
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A comparative genomic and metabolic network study revealed major differences between 

pathogenic (n = 36) and mutualistic (n = 28) symbionts of plants in their metabolic 

capabilities and cellular processes (246). Genes involved in biosynthetic processes and 

functions were enriched and more diverse among plant mutualists, while genes involved in 

degradation and host invasion were predominantly detected among phytopathogens. 

Pathogens seem to require more compounds from the plant cell wall, whereas plant 

mutualists metabolize more plant-stress-related compounds, thus potentially helping in 

stress amelioration. The study revealed the presence of secretion systems in pathogen 

genomes, probably needed to invade the host plants, while genomic loci encoding nitrogen 

fixation proteins and ribulose bisphosphate carboxylase/oxygenase (RubisCO) proteins were 

more exclusive to mutualistic bacteria (246). Bacteria carrying relatively large genomes are 

often able to successfully colonize a wide range of unrelated plant hosts, as well as soils, 

whereas strains with smaller genomes seem to have a smaller host range (247).

Comparative Genomics To Elucidate Specific Properties That Evolved in Bacterial 
Endophytes

To further expand on potential functional and mechanistic aspects of endophytes, we 

compared the genomes of 40 well-described bacterial strains which were isolated from the 

plant endosphere (i.e., endophytes) with those of 42 nodule-forming symbionts, 29 well-

described plant bacterial pathogens, 42 strains frequently found in the rhizosphere (i.e., 

rhizosphere bacteria), and 49 soil bacteria (see Data Set S4 in the supplemental material). 

Sequences from protein-encoding genes of each genome were assigned KEGG Ortholog 

(KO) tags by using the Integrated Microbial Genome (IMG) comparative analysis system 

(248). A feature-by-sample contingency table was created, using properties with abundances 

of >25% and samples within each group with <98% functional similarity. The assigned KO 

tags were normalized by cumulative sum scaling (CSS) normalization, and then a mixture 

model that implements a zero-inflated Gaussian distribution was computed to detect 

differentially abundant properties by using the metagenomeSeq package (249). A 

comparison of relevant properties in the process of host colonization and establishment for 

each investigated group (i.e., nodule-forming symbionts, phytopathogens, and bacterial 

strains isolated from the rhizosphere and from soil) and for endophytes is shown in Table 3. 

We are aware of the fact that endophytes may colonize the rhizosphere (soil) or may even, 

under certain circumstances, have a phytopathogenic lifestyle (as discussed in other parts of 

this review). However, the aim of the comparative genomic analysis was to obtain 

indications of potential typical endophytic properties, which require further confirmation.

Motility and chemotaxis—The ability to sense and respond to environmental cues is one 

of the major properties driving colonization of microorganisms (249–252). Our comparative 

genomic analysis of properties involved in chemotaxis and motility of bacteria suggested 

that protein-encoding genes related to the use of aspartate/maltose (Tar) and dipeptides 

(Tap) are more abundant among endophytes than among strains obtained from the 

rhizosphere. The response regulator proteins CheBR and CheC and the flagellum 

biosynthesis and motility mechanisms are more abundant among endophytes than among 

phytopathogens (Table 3). These results indicate the specificity of aspartate and dipeptide 

metabolism among endophytes, whereas serine metabolism seems to be used largely by 
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phytopathogens. In addition, endophytes might be more responsive to different 

environmental cues than phytopathogens and nodule-forming symbionts.

Signal transduction—Regulation of two-component response systems is essential for the 

process of bacterial cell communication and fundamental for the synchronization of 

cooperative behavior (253, 254). In this category, bacterial endophytes differ mainly from 

nodule-forming symbionts and only marginally from the other investigated groups. Genes 

putatively involved in antibiotic resistance (evgS and evgA), redox response (regB and 

regA), nitrogen fixation and metabolism (ntrY and ntrX), and cell fate control (pleC and 

pleD) are found more prominently among endophytes than among phytopathogens and 

rhizobacteria (for the last two). A variety of energy-generating and energy-utilizing 

biological processes, including photosynthesis, carbon fixation, nitrogen fixation, hydrogen 

oxidation, denitrification, aerobic and anaerobic respiration, electron transport, and aerotaxis 

mechanisms, are known to be regulated in response to cellular redox balance (255) and 

might assist endophytes to thrive inside the host. The transmembrane nitrogen sensor protein 

NtrY interacts with the regulator protein NtrX to induce the expression of nif genes (256). 

Under nitrogen-limiting conditions, endophytes might be better able to fix nitrogen for their 

own benefit than phytopathogens or rhizobacteria. Overall, these results reveal distinct 

characteristics that are suitable for bacteria to thrive and survive in different environmental 

niches and conditions.

Transcriptional regulators—Transcriptional regulators are essential for prokaryotes to 

rapidly respond to environmental changes, improving their adaptation plasticity, cellular 

homeostasis, and colonization of new niches (257). Genes putatively involved in the 

transcriptional regulation of nitrogen assimilation (nifA), reduction of nitric oxide (norR), 

regulation of carbon storage (sdiA), beta-lactamase resistance (ampR), pyrimidine 

metabolism (pyrR), and thiamine metabolism (tenA) are detected in significantly larger 

proportions among endophytes than among the other investigated groups (Table 3). 

Regulatory genes related to the stoichiometry of nitrogen and carbon metabolism and those 

involved in the metabolism of nucleotides and vitamins and in stress responses might be of 

great importance for a life inside plants. Nodule-forming symbionts and plant pathogens that 

also thrive inside plant tissues reveal mechanisms different from those in endophytes to cope 

with stress and metabolism of nutrients, suggesting that each group has its own regulatory 

set of genes required for its typical behavioral responses.

Detoxification and stress-related enzymes—Due to an abrupt burst of reactive 

oxygen species (ROS) and reactive nitrogen species (RNS), the internal compartments of 

plants are inhospitable niches for aerobic microorganisms. Therefore, enzymes with 

detoxification capacities are essential for plant endosphere colonization and may also 

function as ameliorating agents upon host-induced stresses (258). Genes encoding 

glutathione peroxidase (btuE), glutathione S-transferase (gst), catalase (katE), and nitric 

oxide reductase (norR) are enriched, according to our analysis, in endophyte genomes 

compared to phytopathogen or nodule-forming symbiont genomes (Table 3). These ROS- 

and RNS-scavenging enzymes might assist endophytes to cope with the plant oxidative burst 
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and might also ameliorate host biotic and abiotic stresses by protecting plant cells from 

oxidative damages (12, 259).

Transporters—Nutrient transport is an important function for life inside plants (169, 197). 

The proportion of endophytes harboring genes for ATP-binding cassette (ABC), major 

facilitator superfamily (MFS), phosphotransferase system (PTS), solute carrier family 

(SLC), and other transport systems varied largely in our analysis (Table 3). Genes putatively 

involved in the uptake of capsular polysaccharides, organic ions, peptides, amino acids, and 

carbohydrates were detected more prominently among endophytes than in the other 

investigated groups (Table 3). These results indicate the complexity of nutrient transport 

systems of endophytes, which might reflect their various lifestyle strategies for acquiring 

nutrients inside plants.

Secretion systems—Protein secretion plays an important role in plant-bacterium 

interactions (67, 260). Major differences in secretion systems of endophytes and nodule-

forming symbionts were observed in our analysis (Table 3). Genes putatively involved in 

type III secretion systems are more typical of nodule-forming symbionts and 

phytopathogens than of endophytes, whereas they are detected in a significantly larger 

proportion of endophytes than soil bacteria (Table 3). This type of secretion system is more 

often employed by pathogens to manipulate host metabolism (261, 262). Conversely, type 

IV conjugal DNA-protein transfer secretion systems were detected more prominently among 

endophytes than among rhizosphere bacteria (Table 3). Type IV secretion is likely to be 

involved in host colonization and conjugation of DNA (263–265). Protein-encoding genes 

involved in adhesion to the host via twitching motility and type I pilus assembly are also 

detected more prominently among endophytes than among nodulating symbionts. These 

systems might be determinants of host colonization success (266, 267).

Genes involved in plant growth promotion—The nitrogenase (nifH) gene, putatively 

involved in the fixation of atmospheric N2, was detected in a significantly larger proportion 

of endophytes than of phytopathogens (Table 3). Surprisingly, 28% of the investigated 

group of prokaryotic endophytes harbored this gene, indicating that it has an important 

function in improving plant productivity under conditions of N limitation (see above). One 

of the genes thought to be involved in plant stress alleviation, encoding 1-

aminocyclopropane-1-carboxylate deaminase (acdS), is detected more prominently among 

endophytes than among soil bacteria. Recent analyses of bacterial endophyte genomes 

suggest that ACC deaminase is not as widely spread among endophytes as previously 

thought (197, 263). However, endophytes differ significantly in their favored pathways for 

the biosynthesis of the plant hormones acetoin, 2,3-butanediol, and IAA compared to 

phytopathogens or rhizosphere bacteria, thus suggesting some particular characteristics that 

promote plant growth.

To summarize, genomic differences can be found between the different functional groups 

(i.e., endophytes, nodule-forming symbionts, phytopathogens, rhizobacteria, and soil 

bacteria), but we have to be aware that borders between functional groups are not clear-cut. 

Properties that are largely discriminative for endophytes compared to the other groups are a 

higher responsiveness to environmental cues, nitrogen fixation, and protection against 
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reactive oxygen and nitrogen species. Endophytes might exhibit phytopathogenic effects 

under certain conditions, and rhizosphere bacteria might also be able to colonize plants 

internally. Furthermore, the balance between mutualism and antagonism depends on 

multiple parameters and might depend on a very fine-tuned interaction between microbial 

elicitors and plant responses (268).

PATHOGENS AND ENDOPHYTES: THE BALANCE OF THE INTERACTION 

IS CRUCIAL

Pathogenicity: Definition and Mechanisms

Pathogenicity to humans, animals, and plants is the most acclaimed feature of 

microorganisms. Traditionally, pathogens have been defined as causative agents of diseases, 

guided by Koch’s postulates for more than a century and later advanced by making use of 

molecular markers (269). Next-generation sequencing-based technologies have drastically 

revolutionized our knowledge of the microbiome, and also of pathogens (270, 271). We 

learned particularly from the human microbiome that it is involved in many more diseases 

than recently thought and that pathogen outbreaks are associated with shifts of the whole 

community, including those supporting pathogens (272, 273). Recently, this was also shown 

for plant pathogens (140, 274).

The generally used definition of endophytes excludes pathogenic microorganisms per se. 

However, all recent studies have shown that plant-endophyte interactions have a much 

broader range reaching from beneficial to pathogenic (275, 276). Many potential human as 

well as plant pathogens have the capacity to colonize the plant endosphere (275, 277). 

Therefore, endophytes and internal pathogens share several mechanisms (277). Several 

studies have provided evidence that similar or even identical functions are responsible for 

beneficial interactions with plants and virulence in humans. For example, the involvement of 

siderophore uptake systems or extracellular enzymes is common to both beneficial bacteria 

and human pathogens (278). Dörr et al. (279) reported that type IV pili of the plant-

associated Azoarcus sp. strain BH72 are responsible for adhesion to plant and fungal cells. 

Furthermore, the amino acid sequence of the pilus shows high similarities to those of the pili 

of human-associated strains of Pseudomonas aeruginosa and Neisseria gonorrhoeae. While 

a mutant of Pseudomonas fluorescens deficient in a lauroyl transferase involved in lipid A 

biosynthesis resulted in impaired root colonization (280), a similar mutant of Salmonella 

enterica serovar Typhimurium was limited in its ability to colonize organs of the lymphatic 

system of mice (281). Type III secretion systems are responsible for the introduction of 

effectors into eukaryotic host cells, and they have been found in pathogenic bacteria as well 

as plant-associated bacteria with beneficial effects on host plants (282). Genome 

comparisons of plant- and human-associated Stenotrophomonas strains identified many 

similar properties responsible for host-microbe interactions (275), but also different ones, 

which included factors responsible for host invasion, antibiotic resistance, and several 

crucial virulence factors (283, 284). Interestingly, heat shock proteins were absent and a 

suicide vector activated at 37°C was identified in the plant-associated Stenotrophomonas 

strain (283). In addition, Stenotrophomonas rhizophila DSM14405T possessed unique genes 

for the synthesis and transport of the plant-protective compound spermidine, plant cell wall-
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degrading enzymes, and high salinity tolerance (283). The role of mutation frequency in 

niche adaptation was identified by Turrientes et al. (285). The factors described above are 

important mechanisms by which harmless bacteria can behave as pathogens with a change 

of host or host niche, upon which their virulence potential is frequently revealed to its full 

extent. Stenotrophomonas maltophilia is a multiresistant pathogen, and clinical and plant-

associated strains show similar levels of resistance against clinically relevant antibiotics 

(286). For example, quinolone resistance mediated by the efflux pump SmeDEF is important 

for clinical issues but also for colonization of plant roots (287). In addition, clinical 

Stenotrophomonas strains are still able to colonize plant environments, such as tomato roots 

(Fig. 3A).

Occurrence of Potential Pathogens in the Endosphere of Plants

The plant endosphere can be colonized by plant, animal, and human pathogens. In plant 

microbiome analyses, several plant pathogens were identified, although no disease 

symptoms were observed (277). The fungal endophyte Verticillium dahliae is an interesting 

example; this is a pathogen which causes large yield losses in a broad range of crops, e.g., 

strawberry, potato, and olive (288). On the other hand, the fungus was found in many 

healthy plants as a commensal endophyte, e.g., in medicinal plants, potato, and grapevine 

(289). Moreover, “beneficial” strains of V. dahliae were used to biologically control 

Ophiostoma novo-ulmi, the fungus which causes Dutch elm disease (290). Animal and 

human pathogens, especially Escherichia coli pathovars (7, 242), are also able to colonize 

endospheres (291). Figure 3D shows the invasion of E. coli cells into lettuce leaves via 

stomata. Opportunistic pathogens play a special role because plants, including the 

endosphere, are an important reservoir for emerging opportunistic pathogens (276, 277). 

There are many genera comprising endophytes, including Burkholderia, Enterobacter, 

Herbaspirillum, Mycobacterium, Ochrobactrum, Pseudomonas, Ralstonia, Serratia, 

Staphylococcus, Stenotrophomonas, and Xylella, that enter bivalent interactions with plant 

and human hosts. Several members of these genera show plant growth-promoting properties 

as well as excellent antagonistic properties against plant pathogens and have therefore been 

utilized to control pathogens or to promote plant growth (277). However, many strains of 

these species also successfully colonize human organs and tissues and thus cause diseases.

Enterobacteriaceae is a large family of Gram-negative bacteria that includes, along with 

many harmless symbionts, many of the more familiar, so-called enteric pathogens (292). 

Many members live in the intestines of animals, but interestingly, the plant endosphere is 

also a reservoir for enterobacteria (293, 294). In particular, the abundance of human enteric 

pathogens is enhanced after intermediate disturbances (274). Although the incidence of 

outbreaks of enteric pathogens associated with fresh produce in the form of raw or 

minimally processed vegetables and fruits has recently increased, the ecology of enteric 

pathogens outside their human and animal hosts is less well understood (7).

Which Functions Could Pathogens Have Inside Plants?

Plant microbiota, i.e., microbial communities associated with a particular plant, play an 

important role in plant growth and health. Microorganisms can support nutrient uptake and 

produce a broad range of phytohormones or influence the latter. Another important function 
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is the involvement of plant-associated bacteria in pathogen defense (276). Resistance against 

leaf pathogens is often encoded in the plant genome but may also be mediated by plant-

associated microorganisms (295). It is more difficult to find resistance genes against 

soilborne pathogens. Cook et al. (296) suggested that antagonistic rhizobacteria fulfil this 

function.

Another hypothesis is that bacteria associated with the human diet, such as 

Enterobacteriaceae, act as stimuli for our immune systems. Recently, Hanski et al. (297) 

showed that declining environmental biodiversity is associated with reduced microbial 

diversity on human skin and enhanced allergic disposition, as shown through significant 

interactions with Enterobacteriaceae. Furthermore, they showed a positive association 

between the abundance of Acinetobacter organisms and interleukin-10 expression in 

peripheral blood mononuclear cells of healthy human individuals. Interleukin-10 is an anti-

inflammatory cytokine and plays a central role in maintaining immune tolerance to harmless 

substances (298). The endotoxin derived from Gram-negative bacteria, such as 

Enterobacteriaceae, is known to have allergy-protective and immune-modulatory potentials 

(299). If plants are a natural reservoir of Enterobacteriaceae, then these bacteria must have 

been a “natural” part of our diet for a long time. Taking into account how many vegetables 

and fruits are eaten by people worldwide, these outbreaks seem to be more an accident than 

the norm, particularly considering that, traditionally, food was not processed and sterilized 

before being eaten. Therefore, the function of the plant-associated microbiome as an 

immune stimulant or “natural vaccination” was suggested by Berg et al. (300).

THE PLANT BIOME AND MULTIPARTITE INTERACTIONS

Our increasing understanding of the structure and complexity of microbial communities in 

various environments has led to comparisons between the microbiota associated with 

humans and those associated with plants, particularly with roots (301, 302). Plant roots have 

been suggested to be analogous to the human gut, as they are the primary organs interacting 

with the environment and mediating signal exchange and communication between plants 

and microorganisms. Microbiota of both animals and plants have important functions for 

host health by protecting against pathogens (247, 303) as well as regulating host gene 

expression and nutrient uptake and providing metabolic capacities (304). The plant 

microbiome can be considered an extension of the host phenotype (302, 305), and the plant 

secretory machinery has been suggested to play an important role in establishing an 

extended phenotype with microbial life (306).

Determinants of Endophyte Community Structures

The composition of endophyte communities is governed by biotic and abiotic factors. Most 

importantly, the plant, i.e., the host genotype and developmental stage, as well as the 

environment from which endophytes originate (such as soil for root endophytes and air for 

foliar fungal endophytes), contribute to community assembly; however, the magnitudes of 

the effects may differ between distinct systems. Few studies have attempted to evaluate the 

extents to which these parameters shape the endosphere microbiome. Rasche et al. (307) 

investigated potato-associated bacterial endophyte communities colonizing the lower stem 

sections of plants grown under greenhouse conditions. Different varieties, including 
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genetically modified plants, were grown in contrasting soil types, and plants were sampled 

at different vegetation stages. In addition, the experiment included a pathogen 

(Pectobacterium atrosepticum) treatment. Molecular community analysis showed that the 

soil type was the most important driver of bacterial community composition, followed by 

the plant developmental stage. Recently, a thorough investigation making use of next-

generation sequencing technologies investigated root-associated microbiomes of eight 

diverse, inbred Arabidopsis accessions, cultivated in two different soil types (308). Although 

the developmental stage had less of an effect on structures of the microbial communities in 

that study, the effect of the soil environment was more pronounced than that of the plant 

genotype. Ding et al. (309) studied bacterial leaf endophyte communities associated with 

distantly related plant species grown under natural conditions. In their study, the host species 

was the main factor shaping the community composition, followed by sampling dates and 

sampling locations. Generally, genetically related plants seem to host more similar bacterial 

endophyte communities, although host effects have repeatedly been reported (8, 76, 307, 

308, 310–313). Nevertheless, the host phylogenetic distance alone does not explain bacterial 

microbiota diversification (314). The host effect on bacterial communities can be explained 

by the fact that many or most bacterial endophytes enter the plants via roots. Different plant 

species and varieties are characterized by different root exudation patterns, which are likely 

to attract different microorganisms colonizing the rhizoplane and subsequently gaining entry 

into the plant. In addition, plant physiology and chemical or physical characteristics are 

likely to play a major role. This is evidenced by the finding of different bacterial 

communities in different plant tissues (315, 316).

Microbiota Associated with Plant Reproductive Organs

Seed transmission is well known for fungal endophytes. Recently, it was suggested that 

bacterial endophytes may also be transmitted via seeds. Johnston-Monje and Raizada (227) 

showed that seed endophyte diversity was conserved to a certain extent in maize seeds, from 

wild ancestors to modern varieties, across boundaries of evolution, ethnography, and 

ecology. Seed bacterial endophyte communities have been reported to be quite independent 

from the soil environment (317), suggesting that vertical transmission of bacterial 

endophytes might also contribute to the establishment and fitness of the host. The frequency 

of vertical transmission of bacterial endophytes along host generations is a matter of debate. 

Hardoim et al. (107) reported that up to 45% of the seed-borne bacterial community was 

transmitted vertically from two consecutive generations in rice plants. It is interesting that in 

insect-pollinated plants, such as apple plants, flower-associated bacterial communities were 

dominated by taxa that are rare in plants (318). This indicates that bacterial endophytes 

associated with reproductive organs of allogamous plants may have an origin different from 

that of bacterial endophytes associated with other organs and might derive from the air or 

from feeding insects. Some of these endophytes might be transmitted via seeds. The 

flowering and pollination properties of the host genotype likely influence the community 

composition of bacterial endophytes transmitted via seeds.

Grasses have very specific interactions with fungi, with many endophytes being transmitted 

vertically via host seeds, and communities are therefore greatly dependent on the host 

genotype (110, 319). Other fungal endophytes are transmitted via spores colonizing plant 
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leaves or may derive from members of the soil environment colonizing roots (117, 285). 

Although the interaction between plant hosts and horizontally transmitted endophytes is less 

specific than the symbiosis between Neotyphodium/Epichloë and grasses, host genotype 

specificity has frequently been reported for horizontally transmitted endophytes (320–323). 

Similarly to what has been described for bacterial endophytes, specific fungal communities 

colonize plant tissues representing distinct niches (324, 325). Above- and below-ground 

plant tissues seem to obtain their fungal endophytes from different sources. Root fungal 

endophytes are likely to derive from the soil environment (326), whereas fungal endophytes 

colonizing above-ground tissues are transmitted via spores in the air (327). Bacterial and 

fungal endophyte communities greatly differ between different plant developmental stages 

(307, 324), again indicating the tight interaction between endophytes and host physiology.

Multitrophic Interactions

The plant biome comprises the plant and multiple fungal and bacterial players, including 

both pathogens and mutualists, and is characterized by a dense network of multitrophic 

interactions, which are still poorly understood. Particularly in the case of tight interactions 

between the plant host and endophytes, signaling and recognition processes are highly 

important, inducing molecular, physiological, and morphological changes (328). However, 

plant-associated microorganisms may also influence plant pathways and phenotypes more 

generally. Quambusch et al. (329) reported distinct endophytic communities for easy- and 

difficult-to-propagate cherry genotypes, indicating the need for a specific microbiome, or at 

least specific microbiome components, for plant growth in general. The interaction of 

endophytes with their plant host may also affect its relationship with other microbes.

It is well known that endophytes may directly antagonize plant pathogens, which might be 

detectable in confrontation assays. Nevertheless, antimicrobial effects may also be induced 

by more sophisticated chemical communication. Combès et al. (168) demonstrated that 

Paraconiothyrium variabile, a fungal foliar (needle) endophyte, showed direct antagonism 

toward the phytopathogen Fusarium oxysporum; however, extracts of pure cultures did not 

show any effects. Only dual cultures of endophyte and pathogen led to competition-induced 

metabolite production. Oxylipins were identified as the induced metabolites, and their 

production was also associated with decreased mycotoxin production by the Fusarium 

pathogen. It is evident that chemical signaling and cross talk between endophytes and host 

plants are complex (330), and this example illustrates the importance of chemical 

communication not only between endophytes and plants but also between microorganisms. 

However, we are at the very beginning of understanding multitrophic metabolic interactions, 

which probably involve diverse chemical compounds produced by either the plant or 

microorganisms within the framework of their interaction (175, 183). Chemical interactions 

may also occur between fungal endophytes and endofungal bacteria. Hoffman and Arnold 

(331) reported that filamentous fungal endophytes frequently harbor diverse endohyphal 

bacteria, with mostly unknown importance. The same authors also recently found that such 

an endohyphal bacterium, a Luteibacter sp., greatly enhances IAA production from a foliar 

fungal endophyte, although the bacterium does not show IAA production when grown in 

pure culture under standard laboratory conditions (332). Another example of endofungal 

bacterial activity is toxin (rhizoxin) production by the fungus Rhizopus microsporus, which 
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is responsible for rice seedling blight, but the actual toxin producer is the endofungal 

bacterium Burkholderia endofungorum (333, 334).

Bacteria might also play important roles in the interactions of AMF with plants and may 

represent examples of the evolution of multipartner associations. Representatives of the 

Mollicutes and “Candidatus Glomeribacter,” a group of Burkholderia-related Gram-negative 

species, have been demonstrated to live in hyphae and spores of AMF (335, 336). 

Relationships of these so-called mycorrhiza helper bacteria with AMF are close, and these 

bacteria most likely contribute to colonization and formation of the mycorrhizal structures in 

plant roots (337, 338). Another example of tripartite interactions is provided by a virus-

infected fungal endophyte of Curvularia protuberata, which systemically colonizes the 

geothermal grass Dichanthelium lanuginosum (119, 339, 340) and increases its tolerance to 

high temperatures. The host plant and the endophyte can tolerate temperatures only as high 

as 40°C when grown separately, but in symbiosis, the plant-fungus combination is able to 

grow at soil temperatures as high as 65°C.

Endophytes can be prone to phage infections, and in principle, phages infecting endophytes 

can modulate bacterial and fungal endophytic communities (339, 341, 342). Several studies 

indicate that phages can play important roles in microbial community structuring (343, 344). 

Phages infecting endophytes of horse chestnut were more virulent for endophytes of the 

same trees than those of other trees, indicating selective forces on endophytic communities 

and that their phages can be tree specific. These examples demonstrate that neither plants 

nor individual endophytes act independently but that multiple organisms interact and 

influence the performance of the plant (biome).

Interactions between Endophytes and Pathogens/Pests

Endophytes may increase the defense against herbivores, including insects that transmit 

pathogens (319, 345). Deterrence of herbivores is known to be mediated via in planta 

production of biologically active alkaloids in grasses by endophytes, which can reduce 

arthropod feeding and, consequently, damage to the host (346). However, in relation to wild 

grasses, Faeth and Saari (347) reported that herbivore abundance and species richness may 

be even greater on endophyte-infected plants with high alkaloid contents than on endophyte-

free plants; they argued that herbivores may develop detoxification pathways. Endophyte 

infection in grasses has also been tested for reducing aphid-transmitted virus infections 

(348). Endophyte infection and alkaloid production resulted in reduced aphid feeding, as 

expected, but no effect on virus titers could be observed. Nevertheless, the impact of virus 

infection on the host was reduced in endophyte-infected plants, indicating that the endophyte 

induced a host response, which was probably responsible for this effect. The interactions 

between plants, endophytes, aphids, and viruses were also influenced by the host and 

endophyte genotypes (348) as well as by abiotic factors, such as temperature (349).

The endosphere microbiome composition is affected by pathogen infection (49, 350–353), 

potentially leading to effects on microbial functioning. Some studies reported a reduction of 

bacterial (351) and fungal (353) diversity in diseased or pathogen-containing plants. 

Douanla-Meli et al. (353) compared culturable fungal endophyte communities of healthy 

and yellowing citrus leaves. The latter showed higher levels of colonization by fungal 
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endophytes but lower levels of richness than healthy leaves. Phytoplasma infection of 

grapevines resulted in a reduction in diversity of bacterial endophyte communities (351). On 

the other hand, Reiter et al. (49) found a higher diversity of bacterial potato endophytes due 

to the presence of Pectobacterium atrosepticum; however, no disease symptoms were 

observed. Rasche et al. (307) reported that the extent to which P. atrosepticum affected the 

structure of bacterial endophytic communities depended on the plant genotype and on the 

soil environment. The various findings can be explained by the use of different plant hosts 

and pathogens and by the severity of disease. Pathogens induce a cascade of reactions 

leading to the synthesis of stress metabolites, including ROS or phytoalexins, and a range of 

stress signals, and these may provide a habitat with different physiological characteristics. 

Such an altered habitat is likely to support a differently structured endophyte community 

showing different functional characteristics. In addition, endophytes or rhizosphere bacteria 

that induce a systemic response in plants, such as Methylobacterium strains tested by 

Ardanov et al. (354), were reported to affect endophyte communities. The resulting bacterial 

community structures correlated with resistance or susceptibility to disease caused by 

Pectobacterium atrosepticum, Phytophthora infestans, and Pseudomonas syringae in potato 

and by Gremmeniella abietina in pine (354).

Interactions between Endophytes and Other Symbionts

In addition to the interactions between endophyte communities and phytopathogens, 

endophytes interact with other symbiotic microorganisms. Foliar fungal endophyte species 

composition was reported to be altered by AMF colonization (355). Wearn et al. (324) 

suggested that there is competition or antagonism between AMF and root endophytes, as 

they found negative correlations between mycorrhizal colonization and the presence of 

endophytes in roots of herbaceous grassland species. Some studies suggest that AMF 

colonization of grasses may be affected by the production of alkaloids or other allelopathic 

compounds by fungal endophytes (356–358). However, different AMF species or strains 

may behave/interact differently with plants and endophytes. For grasses, Larimer et al. (359) 

reported that Glomus mossae enhanced endophyte growth through increased tiller 

production, and in return, G. mossae showed higher colonization levels. On the other hand, 

colonization by another AMF species, Glomus claroideum, declined in endophyte-infected 

plants. In Pinus sylvestris, the interaction between a bacterial endophyte and an 

ectomycorrhizal fungus was shown to be species dependent, as endophytic 

Methylobacterium extorquens enhanced the growth of pine seedlings with one fungal 

species but decreased the growth when coinoculated with another ectomycorrhizal fungus 

(360).

In conclusion, the plant biome is characterized by multiple and complex interactions 

between the plant, the associated microbiota, i.e., endophytes with different functions, 

including pathogens, and the environment. The plant phenotype not only is determined by 

the response of the plant to the environment but also is regulated by the associated 

microbiota, the response of the microbiota to the environment, and the complex interactions 

between individual members.
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CONCLUDING REMARKS

Technological developments, especially with respect to “-omics” technologies, will 

revolutionize our concepts on endosphere microbiomes. At present, we are better able to 

distinguish between properties specific to phytopathogens, endophytes, and other 

microorganisms from soil and plant habitats. This will allow us to better understand 

mutualists and pathogens, because from an ecological perspective, the boundaries between 

both groups are not always clear. Furthermore, microbial groups previously thought to be 

distinctive of other environments, such as human pathogens in warm-blooded animals, have 

been demonstrated to thrive in plants. Genomics will teach us how microbial groups from 

other environments adapt to plant environments and will reveal the minimal genetic 

requirements for successful penetration and internal colonization of plants. Novel 

technologies will also allow us to investigate multiple interactions between microbial groups 

associated with plants and the plant host itself. Nowadays, we have a better capacity to 

analyze impacts of invading microorganisms on the whole endophytic community 

composition and functioning, and vice versa. We can also better explain the resilience of 

plants upon invasion by potentially deleterious microorganisms by the functioning and 

complexity of the endophytic communities. We must learn more, however, about the still 

unknown roles of endophytes, particularly the so-called commensal endophytes. This group, 

which causes no apparent effects on plant performance but lives on the metabolites produced 

by the host, is presumably the most dominant functional group among endophytes by 

quantity (2, 361). We expect to find hidden functions within this group and to learn more 

about the complexity of microbial interactions within plants, including the consequences for 

the host plant. We also need to learn more about the interactions between endophytes and 

plants as well as the mechanisms employed by all partners. It will be highly relevant to 

elucidate the physiological conditions present in endophytes and plants during colonization, 

as it can be expected that an endophyte will have different characteristics inside the plant 

compared to growth in the soil or in the lab. Similarly, research is needed to better 

understand under which conditions and by which mechanisms microorganisms exhibit 

harmful, beneficial, or neutral effects on plant performance. By implementing new 

technologies and multidisciplinary approaches, our understanding of endophyte biology and 

ecology will consistently evolve further, leading to a better knowledge of the plant 

holobiome.
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FIG 1. 
Microphotographs of endophytes showing (arrows) endophytic fungi in Sphagnum sp. (Alex 

Fluor 488-wheat germ agglutinin [WGA]) (A), endophytic fungi in a fern stem (Alex Fluor 

488-WGA) (B), endophytic fungi in a stem of a Pinus sp. (Alex Fluor 488-WGA) (C), 

fungal endophytes in a stolon of a Trifolium sp. (Alex Fluor 488-WGA) (D), and mycorrhiza 

colonizing Eleutherococcus sieboldianus (toluidine blue) (E). (F and G) Bacterial 

endophytes in Sphagnum magellanicum (fluorescence in situ hybridization [FISH] with 

probes targeting Alphaproteobacteria [F] and Planctomycetes [G]). (H and I) Bacterial 

endophytes in fern leaves (double labeling of oligonucleotide probes-fluorescence in situ 

hybridization [DOPE-FISH] with EUBMIX-FLUOS probe for all bacteria [H] and with 

NONEUB-FLUOS probe [I]). (J and K) Colonization of Scots pine seedling by green 

fluorescent protein-tagged Methylobacterium extorquens DSM13060. (L) Bacterial 

endophytes in flowers of grapevine plants (FISH with EUBMIX-Dylight488 and LGC-
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Dylight549 probes, targeting all bacteria and Firmicutes, respectively). (M) Bacterial 

endophytes in the xylem of grapevine plants (DOPE-FISH with EUBMIX-FLUOS and 

HGC69a-Cy5 probes, targeting all bacteria and Actinomycetes, respectively). (N and O) 

Bacterial endophytes in a nodule of Medicago lupulina (DOPE-FISH with EUBMIX-

FLUOS probe targeting all bacteria [N] and with NONEUB-FLUOS probe [O]). (Panel E 

reprinted from reference 362. Panels F and G reprinted from reference 17 by permission 

from Macmillan Publishers Ltd. [copyright 2011]. Panels J and K reprinted from reference 

369 with kind permission from Springer Science and Business Media. Panel L reprinted 

from reference 18 with kind permission from Springer Science and Business Media. Panel 

M reprinted from reference 363 by permission of the Society for Molecular Biology and 

Evolution.) All photographs show environmental samples, except those in panels J and K. 

Note that Alexa Fluor 488-WGA can also detect microbes other than fungi.
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FIG 2. 
Beneficial properties of endophytes. The left panel shows plants inoculated (In) with 

beneficial microorganisms that significantly improve plant growth compared to 

noninoculated (Ni) plants. Various microorganisms, in particular bacteria (orange) and fungi 

(purple), can colonize the internal tissues of the plant (middle panel). Once inside the plant, 

the endophytic bacteria and fungi interact intimately with the plant cells and with 

surrounding microorganisms (large panel). Endophytic fungi, represented here as arbuscular 

mycorrhizal fungi (AMF) (lilac), might form specialized structures, called arbuscules, where 

plant-derived carbon sources, mainly sucrose (Su), are exchanged for fungus-provided 

phosphate (Pi), nitrogen (NH4
+), and potassium (K+) elements (blue). Plant cytoplasmic 

sucrose is transported to the periarbuscular space, where it is converted to hexose (HEX) to 

be assimilated by the fungus. Hexose is finally converted to glycogen (G) for long-distance 

transport. Phosphate and nitrogen are transported inside the fungal cytoplasm as 

polyphosphate granules (Poly-P), which are converted to Pi and arginine (Arg) in the 

arbuscule. Pi is transported to the host cytoplasm, whereas Arg is initially converted to urea 

(Ur) and then to ammonium (NH4
+). Fungal and bacterial plant hormones, such as auxins 

(IAA), gibberellins (GAs), cytokinins (CKs), volatile organic compounds (VOCs), and 

polyamines (Poly-NH2), as well as secondary metabolites (SMs), are transferred to the host 

(violet). Various bacterial structures, such as flagella, pili, secretion system machineries 

(e.g., TIV SS and SEC), and lipopolysaccharides, as well as bacterium-derived proteins and 

molecules, such as effectors (EF), autoinducers, and antibiotics, are detected by the host 

cells and trigger the induced systemic resistance (ISR) response (red). ACC, the direct 

precursor of ethylene (ET), is metabolized by bacteria via the enzyme ACC deaminase 

(ACCd), thus ameliorating abiotic stress (light green). A range of reactive oxygen species 
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detoxification (ROS detox) enzymes might also ameliorate the plant-induced stress (orange). 

Diazotrophic bacterial endophytes are capable of fixing atmospheric nitrogen (N2) and 

might actively transport NH4
+ and nitrate (NO3

−) to the host (dark green). Bacterial 

processes of siderophore production (Sid) and uptake (Fe) that are involved in plant growth 

promotion, biocontrol, and phytoremediation are shown in brown. Examples of various 

substrates on which the transmembrane proteins are enriched among endophytes are shown 

in yellow. Transcriptional regulators (TR) are also shown (orange). Communications and 

interactions between cells of microorganisms dwelling inside the plant tissues are promoted 

by growth factor (GF), antibiotic (A) (fuchsia), and autoinducer molecules.
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FIG 3. 
Colonization of endosphere tissues by clinical bacterial strains. Volume renderings are 

shown for confocal laser scanning micrographs for FISH analyses of stained 

Stenotrophomonas maltophilia cells (red signal) within the emerging lateral root of a tomato 

plant (beige signal) (A to C) and stained Escherichia coli cells (red signal) invading a lettuce 

leaf via a stoma (green signal) (D and E). (Panels A to C reprinted from reference 370 with 

kind permission from Springer Science and Business Media. Panel E reprinted from 

reference 371.)
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TABLE 1

Summary of the endophytic data set from all peer-reviewed publications with prokaryotic 16S rRNA gene 

sequencesa

Phylogenetic affiliationb No. of sequences % of sequences

Bacteria 7,319

  Acidobacteria 53 0.72

  Actinobacteria 1,461 19.88

  Armatimonadetes 6 0.08

  Bacteroidetes 462 6.29

 GOUTA4c 1 0.01

 ODc 6 0.08

 TM7c 2 0.03

  Chlamydiae 8 0.11

  Chlorobi 5 0.07

  Chloroflexi 3 0.04

  Cyanobacteria 102 1.39

  Deinococcus-Thermus 7 0.1

  Elusimicrobia 1 0.01

  Firmicutes

    Bacilli 1,132 15.41

    Clostridia 68 0.93

  Fusobacteria 3 0.04

  Nitrospirae 3 0.04

  Planctomycetes 5 0.07

  Proteobacteria

  Alpha- 1,337 18.2

  Beta- 736 10.02

  Delta- 26 0.35

  Epsilon- 3 0.04

  Gamma- 1,878 25.56

  Spirochaetae 3 0.04

  Tenericutes 2 0.03

  Verrucomicrobia 6 0.08

Archaea 29

  Euryarchaeota 23 0.31

  Thaumarcheota 6 0.08

Total 7,348

a
Endophytic sequences with >300 bp were retrieved from peer-reviewed manuscripts available in the ISI Web of Science and PubMed databases 

(as of 1 March 2014).

b
Based on comparison with the small-subunit rRNA SILVA database (version 115) (372) by using the SINA aligner (364).

c
Candidate division phyla.
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TABLE 2

Summary of the endophytic data set from all peer-reviewed eukaryotic full-length ITS sequences (as of 1 

August 2014)a

Taxonomic assignmentb No. of sequences % of sequences

Total 8,439

Ascomycota 2,610 30.92

  Archaeorhizomycetes 2 0.02

  Dothideomycetes 1,272 15.07

  Eurotiomycetes 54 0.64

  Incertae sedis 2 0.02

  Lecanoromycetes 5 0.06

  Leotiomycetes 171 2.03

  Orbiliomycetes 0 0

  Pezizomycetes 112 1.33

  Saccharomycetes 11 0.13

  Sordariomycetes 785 9.30

 Unidentified 196 2.32

Basidiomycota 1,712 20.3

  Agaricomycetes 1,560 18.49

  Atractiellomycetes 26 0.31

  Cystobasidiomycetes 3 0.04

  Exobasidiomycetes 0 0

  Microbotryomycetes 23 0.27

  Pucciniomycetes 1 0.01

  Tremellomycetes 30 0.36

  Ustilaginomycetes 0 0

 Unidentified 69 0.82

Glomeromycota 3,390 40.17

  Glomeromycetes 3,294 39.03

 Unidentified 96 1.14

Zygomycota

  Incertae sedis 5 0.06

Unidentified 722 8.56

a
Fungal ITS sequences were retrieved from the NCBI nucleotide database by using the following search strings for the endophytic data set: 

“Endophyt*[ALL] AND nuccore_PubMed[Filter] AND internal[Title]” and “Mycorrhiza*[ALL] AND nuccore_PubMed[Filter] AND 
internal[Title].” Full-length ITS (ITS1, 5.8S, and ITS2 regions) sequences were extracted using ITSx (365) and assigned to operational taxonomic 
units (OTUs; definition set at 97% sequence similarity) with UCLUST (366), using the QIIME pipeline (367).

b
Based on comparison with the UNITE fungal ITS reference database (version 6) (368), using the QIIME pipeline (367).
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TABLE 3

Comparative genomics of properties relevant to plant colonization and establishmenta

Log2 fold change in abundance in the indicated group versus endophytes

Category and feature (gene) Symbionts Phytopathogens Rhizosphere bacteria Soil bacteria

Chemotaxis and motility

 Aerotaxis (aer) −0.983*** 0.029 −0.259 −0.354

 Serine chemotaxis (tsr) −0.697** 0.471* −0.284 0.162

 Aspartate/maltose chemotaxis (tar) −0.315 −0.262 −0.276* −0.041

 Ribose chemotaxis (rbsB) 1.076*** −0.423 −0.108 −0.252

 Galactose chemotaxis (mglB) −0.257*** 0.030 0.390*** 0.283**

 Dipeptide chemotaxis (tap) −0.174** −0.172 −0.215*** −0.089

 Response regulators (cheBR) −0.276 −0.519*** −0.153 −0.280*

 Response regulator (cheV) −0.880*** −0.271 0.143 0.069

 Response regulator (cheD) −0.206* −0.086 0.040 0.009

 Response regulator (cheC) −0.367* −0.861*** 0.096 −0.298

 Response regulator (cheZ) −0.271 −0.202 −0.396*** −0.155

 Flagellar apparatus (fliI) −0.252** −0.201* −0.149 0.045

 Chemotaxis and motility (motA) −0.555*** −0.297* 0.094 −0.065

Signal transduction—two-component systems

 Magnesium assimilation (phoQ-phoP) −0.951*** 0.052 −0.034 0.042

 Stress (rstB-rstA) −0.951*** −0.022 −0.005 0.070

 Carbon source utilization (creC-creB) −0.726*** 0.077 −0.098 −0.016

 Multidrug resistance (baeS-baeR) −0.804*** 0.032 0.074 0.000

 Copper efflux (cusS-cusR) −0.821*** −0.415 0.258 0.300

 Carbon storage regulator (barA-uvrY) −0.989*** −0.044 −0.058 0.017

 Antibiotic resistance (evgS-evgA) −0.868*** −0.522*** 0.143 −0.288

 Nitrogen fixation/metabolism (ntrY-ntrX) −0.037 −0.233*** −0.615*** −0.089

 Type IV fimbria synthesis (pilS-pilR) −0.902*** 0.038 0.039 0.180

 Amino sugar metabolism (glrK-glrR) −0.974*** −0.021 −0.061 0.232

 Twitching motility (chpA-chpB) −0.783*** 0.120 0.026 0.003

 Extracellular polysaccharide (wspE-wspR) −0.612*** −0.072 0.044 −0.023

 Cell fate control (pleC-pleD) −0.131*** −0.255** −0.639*** 0.094

 Redox response (regB-regA) −0.004 −0.204* −0.099 −0.136

Transcriptional regulators

 Nitrogen assimilation (nifA) −0.133 −0.757*** −0.359*** −0.220

 Carbon storage regulator (sdiA) 0.617*** −0.067 −0.055 −0.279*

 Biofilm formation (crp) −0.976*** 0.036 −0.036 0.068

 Nitric oxide reductase (norR) −0.625*** −0.156* 0.193 0.129

 NAD biosynthesis (nadR) −0.257*** 0.012 −0.103 −0.079

 Beta-lactamase resistance (ampR) 0.091 0.016 −0.060 −0.339***

 Pyrimidine metabolism (pyrR) −0.326** −0.051 0.121 0.015

 Thiamine metabolism (tenA) 0.070 −0.976*** 0.109 0.195

Microbiol Mol Biol Rev. Author manuscript; available in PMC 2015 September 01.



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Hardoim et al. Page 58

Log2 fold change in abundance in the indicated group versus endophytes

Category and feature (gene) Symbionts Phytopathogens Rhizosphere bacteria Soil bacteria

Stress-related enzymes

 Glutathione peroxidase (btuE) −0.360** −0.031 0.104 −0.195

 Glutathione S-transferase (gst) 0.562** −0.435* −0.230 −0.351

 Catalase (katE) −0.362* −0.237 0.084 0.042

Transport system

 ABC, capsular polysaccharide (kpsT) −0.045 −0.277*** −0.244* −0.221

 ABC, thiamine-derived products (thiY) −0.449** −0.958*** 0.000 0.000

 ABC, spermidine/putrescine (potD) 0.718*** −0.308** 0.092 0.081

 ABC, dipeptide (dppF) 0.204** −0.230*** −0.027 0.09

 ABC, branched-chain amino acid (livK) 0.571 −0.884** −0.629 −0.734

 ABC, cystine (fliY) −0.28 −0.270* 0.225 −0.355*

 ABC, methionine (metN) −0.478*** −0.336* 0.031 −0.163

 ABC, histidine (hisJ) −0.302 −0.096 0.349* −0.266*

 ABC, lysine/arginine/ornithine (argT) 0.216 −0.336 0.464 −0.182

 ABC, L-arabinose (araG) 0.145 −0.067 0.066 −0.342***

 ABC, rhamnose (rhaT) −0.129 −0.826*** −0.043 −0.724***

 PTS, cellobiose (celB) −1.425*** −0.947*** −0.073 −0.146

 PTS, glucose (ptsG) −0.860*** 0.000 0.000 0.000

 PTS, mannose (manY) −0.433*** −0.287** −0.374*** −0.264*

 PTS, ascorbate (sgaA) −0.433** 0.003 −0.207 0.158

 PTS, phosphocarrier (furB) −0.317* −0.007 −0.065 0.059

 Others, multidrug (mdtB) 0.076 −0.042 −0.217** 0.134

 Other, tricarboxylic (tctA) 0.670*** −0.018 0.352* 0.481*

 Others, C4-dicarboxylate (dctP) −0.123 −0.462* 0.382* 0.553**

 Others, membrane pore protein (ompC) −1.149*** 0.090 −0.053 0.071

Secretion systems

 Type I RaxAB-RaxC system (raxB) −0.270 0.357 −0.234 −0.186

 Type II general pathway protein (gspD) −0.199 0.213 −0.265 0.064

 Type III secretion core apparatus (yscJ) 0.354* 0.263** 0.051 −0.181**

 Type IV conjugal DNA protein (virB2) 0.370 0.125 −0.718*** −0.143

 Type VI Imp/Vas core components (hcp) −0.360 −0.038 −0.045 0.095

 Twitching motility protein (pilJ) −0.850*** 0.058 0.028 −0.002

 Type I pilus assembly protein (fimA) −0.676*** −0.300 0.282 0.158

Plant growth-promoting properties

 Nitrogenase (nifH) 0.301** −0.676*** 0.226 0.030

 ACC deaminase (acdS) 0.118 0.223 0.119 −0.344**

 Acetoin reductase (budC) 0.024 −0.259*** −0.024 −0.059

 Acetolactate decarboxylase (alsD) −1.000*** 0.000 0.000 0.000

 Butanediol dehydrogenase (butB) −0.089 −0.090 0.469** −0.319

 IAA biosynthesis, IAM pathway (amiE) 0.201 −0.067 −0.017 −0.029

 IAA biosynthesis, IPyA pathway (ipdC) 0.077 −0.157 0.291*** −0.043
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Log2 fold change in abundance in the indicated group versus endophytes

Category and feature (gene) Symbionts Phytopathogens Rhizosphere bacteria Soil bacteria

 IAA biosynthesis, IAN pathway (nit) −0.156 0.088 0.084 −0.019

 IAA biosynthesis, IAN pathway (nthAB) −0.136 −1.054*** −0.596*** −0.147

a
The relative abundances of the assigned functional properties in each investigated group (symbionts [n = 42], phytopathogens [n = 29], 

rhizosphere bacteria [n = 42], or soil bacteria [n = 49]) compared to endophytes (n = 40) are shown as normalized log2 fold changes. Negative 

values are shown if the endophyte group has a higher abundance.

Significant changes were computed with a zero-inflated Gaussian mixture model, and the alpha levels, denoted by *, **, and ***, were assigned to 
q-value thresholds of 0.05, 0.01, and 0.001, respectively.
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