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Abstract

The principles of thermodynamics apply to both equilibrium and nonequilibrium biochemical systems. The mathematical machinery of

the classic thermodynamics, however, mainly applies to systems in equilibrium. We introduce a thermodynamic formalism for the study of

metabolic biochemical reaction (open, nonlinear) networks in both time-dependent and time-independent nonequilibrium states. Classical

concepts in equilibrium thermodynamics–enthalpy, entropy, and Gibbs free energy of biochemical reaction systems–are generalized to

nonequilibrium settings. Chemical motive force, heat dissipation rate, and entropy production (creation) rate, key concepts in nonequilibrium

systems, are introduced. Dynamic equations for the thermodynamic quantities are presented in terms of the key observables of a biochemical

network: stoichiometric matrix Q, reaction fluxes J, and chemical potentials of species l without evoking empirical rate laws. Energy

conservation and the Second Law are established for steady-state and dynamic biochemical networks. The theory provides the

physiochemical basis for analyzing large-scale metabolic networks in living organisms.

D 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Thermodynamics is one of the branches of physics most

directly applied to biochemistry. Concepts such as entropy,
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enthalpy, and free energy are the cornerstones of under-

standing various biological processes such as protein

folding, protein–DNA interaction, and DNA supercoiling.

Yet, a majority of thermodynamic analyses and/or kinetic

studies focus only on bnon-livingQ systems. By a non-living

system, we mean that if one waits a sufficiently long time

compared with its relaxation time, the system approaches a
114 (2005) 213–220
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thermochemical equilibrium. In contrast, a living system

cannot be isolated; it is open to energy and material

exchange with its surrounding, accompanied with heat

dissipation. After a time sufficiently long compared with

its relaxation time, an open system approaches to a

nonequilibrium steady-state (NESS) [1–4], also known as

a stationary nonequilibrium state or dissipative structure.

The best known and most important example of such

living biochemical network is the central energy metabolism

operating inside a cell. From the perspective of molecular

biology, this subject may appear well-understood since the

majority of the pathways are elucidated and the enzymes

involved extensively characterized [5]. But knowledge of

the behavior of individual reactions in test tubes does not

directly translate to a comprehensive understanding of the

functioning of metabolic network as a whole inside a living

cell. In particular, modern biology and medicine demand

quantitative predictions on metabolic consequences of gene

deletion, attenuation, and over-expression. Analyses like

these are the challenges facing what is now called Systems

Biology [6,7].

To develop an integrative, open systems view of a

metabolic network, one needs to define its boundary. This is

an important issue and the different choices one makes lead

to different analyses. For example, one may consider the

metabolic reactions occurring in the cytosol. Under this

definition, the mitochondria will act as a source and a sink

for ATP and ADP, respectively. This approach raises the

question: how does one model the cytosolic concentrations

of ATP and ADP which are in exchange with the

mitochondria? A normal cell has an ability to maintain its

ATP concentration and phosphorylation potential through

various control mechanisms. Hence in modeling an open

system with normal ATP supply, one assumes either (i) the

ATP and ADP concentrations are held constant, or (ii) the

ATP influx and ADP efflux are balanced and relatively

constant. These two extreme scenarios will be called

concentration clamping and boundary flux injection. In

whole cells or whole organisms, the nonequilibrium state is

maintained by the boundary fluxes transporting material into

and out of the system. Concentration clamping and flux

injection are the ultimate bdriving forcesQ under which a

network necessarily approaches a NESS, with stationary

stochastic fluctuations, or possibly a complex dynamical

state with oscillations [8], rather than relaxing back to a

chemical equilibrium.

Still, there is currently no a single universal theory of

nonequilibrium thermodynamics applicable to biochemical

networks. In fact, nonequilibrium statistical thermodynam-

ics remains an active topic of research in the forefront of

theoretical physics [9–11]. However, for isothermal systems

in NESS, several cogent theories exist that are essentially

equivalent [1,2,12,13]. Thus concepts such as entropy and

free energy are defined and can be appropriately applied in

certain nonequilibrium situations. Prigogine and his col-

leagues have championed this cause for decades [14]; and
Oster et. al. were among the first to introduce network

thermodynamics [15]. Yet none of the classic works

provides an adequate and complete theory applicable to

the analysis of large-scale biochemical systems. In fact,

even today, when discussing nonequilibrium problems,

biochemists tend to think in terms of transient kinetics and

transport phenomena in closed systems instead of open-

system NESS thermodynamics. NESS is a state of living

matters research into which is becoming the focus of

biophysical chemistry and the systems biology of cells.

Hill, based on his own extensive work on ion channel

kinetics, muscle contraction, and linear aggregation, devel-

oped a rather complete theory for systems in isothermal

NESS [1,16]. But his approach, which was later shown to

be mathematically equivalent to an irreversible Markov

model [17], applies only to unimolecular reaction networks.

(In physics literature they are known as master equation

systems [18]. The theory of complex unimolecular reaction

networks is also developed independently in chemical

engineering literature [19].) The most important biological

processes applicable to Hill’s theory are single motor

protein kinetics [20,21], protein polymerization [22,23],

and active membrane transport and ion pumping, which

involve chemomechanical and electrochemical free energy

transduction.

In recent years, there has been a growing interest in

quantitative modeling of large-scale (whole cell) nonlinear

biochemical reaction networks [24–26], for example, in

profiling gene product network interactions. Therefore, it is

natural that one seeks a NESS thermodynamic theory

applicable to such systems [27–29]. The new computational

approach to metabolic networks complements new develop-

ments in laboratory studies of control and regulation of

cellular metabolism. For example, genetic manipulations

lead to the identification of essential and non-essential

genes. Fluorescence-based optical methods [30], NMR

spectroscopy, and mass spectroscopy all hold great potential

for providing data on in vivo metabolite concentrations and

reaction fluxes in the future.

The basic concepts and ideas in the thermodynamic

theory for isothermal NESS systems are closely related to

those in equilibrium. In fact, one can view equilibrium as a

special case of steady-state with all reaction fluxes J=0.

Because of this fact, there is a danger for confusion and mis-

conception. The objective of this paper is to provide a

simple and clear presentation of this important subject.

There is a growing need to clarify and further develop,

beyond the NESS regime, the new concepts of thermody-

namics applicable to biochemical networks.

In equilibrium thermodynamics, the basic questions are

change of free energy, enthalpy and entropy associated with

biomolecular processes. For a system in a NESS, important

quantities are the rate of work done to maintain a steady-

state and the rate of heat dissipation, as well as the rates of

increasing entropy and decreasing free energy. To be

concrete, we shall discuss in this paper only biochemical
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reaction networks with prescribed stoichiometry. We start

with a simple example, which requires no more than college

freshman chemistry and mathematics, to illustrate the

essential ideas and then introduce the general concepts

and results in a following section.
2. Basic concepts by a simple example

The simplest biochemical reaction is a unimolecular

isomerization between A and B with rate constants k1 and

k2:

A Ð
k1

k2
B: ð1Þ

If one leaves such molecules alone in a test tube, a

chemical equilibrium will eventually be reached that obeys

the well-known relation

B½ �eq
A½ �eq

¼ k1

k2
¼ e

�
lo
B
�lo

A
kBT : ð2Þ

(Here we have used kB rather than gas constant R, which

transform the chemical potential and other extensive

thermodynamic variables into molar quantities and is more

commonly used in biochemistry.) However, to simulate a

reaction in a living metabolic network, suppose that

someone is standing by the test tube and actively controlling

both the concentrations of A and B at prescribed levels of cA
and cB. Thus the system is open and the controller has to

take out an A molecule whenever the concentration of A is

greater than cA and put in an A into the test tube whenever

the concentration of A is less than cA; the controller has to

do the same for B. Under this setting, the system maintains a

steady-state since neither concentration changes with time.

This state is not an equilibrium state since the flux is not

zero:

J ¼ Jþ � J�p0: ð3Þ

Here J+=k1cA and J�=k2cB are the forward and back-

ward fluxes. Furthermore, one can calculate the chemical

potential difference between the A and B under this setting.

Since1

lA ¼ lo
A þ kBT lncA;

lB ¼ lo
B þ kBT lncB;
1 The validity of introducing chemical potentials for biochemical

species inside living cells is questionable when dealing with signaling

molecules with only a few copy numbers and due to molecular crowding.

Hence the main application of the present approach is to cellular

metabolic networks and concentrations should be understood as activities

when necessary [31].
the chemical potential difference between A and B is

Dl ¼ lB � lA ¼ lo
B � lo

A þ kBT ln
cB

cA
¼ kBT ln

J�
Jþ

� �
:

ð4Þ

Most interestingly from Eq. (4), one finds:

� JDl ¼ kBT Jþ � J�ð Þln Jþ
J�

� �
z0: ð5Þ

The equality of Eq. (5) holds true if an only if J=Dl=0,
e.g., if the system is in equilibrium.

The quantity on the left-hand side of Eq. (5) has

significance. It is the amount of work done by the controller

in order to maintain the NESS. The controller is bpumpingQ
A molecules in and B molecules out (or vice versa). Since

the system is not changing, the work done by the controller

has to leave the system in the form of heat dissipation—First

Law of Thermodynamics. The inequality in Eq. (5) is the

Second Law of Thermodynamics: one cannot transform heat

into work from a single temperature source.

One should note that the dissipated heat is related to Dl,
not enthalpic difference Dh ¼ B Dl=Tð Þ

B 1=Tð Þ . The entire reaction is

cyclic: the reaction heat �Dh from A to B in the test tube is

exactly balanced by the reaction heat from B to A carried

out by the controller, �Dh. If the DlN0 for the A to B in the

test tube, then the Dl for the B to A in the hand of the

controller is negative. Hence the external reaction carried

out by the controller is not spontaneous, rather it requires

active work. The cyclic reaction in NESS balances the work

and heat (First Law) and transforms useful energy into

entropy in the surrounding (Second Law).

One should also not be confused by the dissipated heat in

the NESS, Dl, and the enthalpic difference Dho ¼ B Dlo=Tð Þ
B 1=Tð Þ .

The latter can be positive or negative, depending on the

reaction AB being exothermal or endothermal, respectively.

However, the Dl contains the additional energy dissipation

associated with taking a B molecule from a solution with

concentration cB and putting an A molecule into a solution

with concentration cA.
3. Time-dependent energetics (Thermodynamics) of

stoichiometric biochemical networks

We now generalize the above simple example to a

network of biochemical reactions characterized by known

stoichiometry [32–34]. The system consists of N+NV species
among which NV species have their concentrations clamped.

There are M internal reactions and MV boundary fluxes,

which pump mass into or out of the system. The clamped

concentrations and boundary fluxes maintain the system in a

NESS. When MV=NV=0, the system is closed and its only

steady-state is thermodynamic equilibrium irrespective of

the complexity of the reaction networks.
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The stoichiometry of this set of reactions can be

mathematically represented by the (N+NV)	(M+MV) inci-

dence matrix Q (the stoichiometric matrix is usually

represented by S, but in this paper S is reserved for the

entropy of the system).

The lower-right 0 block indicates that there should be no

boundary flux to or from a clamped species (see Appendix

A). The matrix Q is the starting point of many approaches to

modeling biochemical networks, including flux balance

analysis (FBA) [35–37]. If there are no clamped metabolites

then Q̂=0. The matrix Q̃ contains only the dynamic species

and internal fluxes.

Let ci be the concentration of species i, where i=1, 2,. . .,
N indexes the N dynamic biochemical species in the system

and i=N+1,. . ., N+NV indexes the NV clamped concentra-

tions. Then,

li ¼ lo
i þ kBT ln

ci

ct

� �
ð6Þ

is the chemical potential for species i. ct ¼
PNþN V

S ¼1 CS is the

total concentration of all species. The quantity lo is further

decomposed into li
o=hi

o�Tsi
o in terms of partial molar

enthalpy and entropy. The total enthalpy, entropy, and free

energy of the system are

H ¼
XNþN V

i¼1

cih
o
i ; ð7Þ

G ¼
XNþN V

i¼1

cili; ð8Þ

S ¼
XNþN V

i¼1

ci soi � kBln
ci

ct

� �
¼ H � G

T
: ð9Þ

In terms of the stoichiometric matrix, the conservation of

mass is expressed as

dci

dt
¼

XMþM V

j¼1

QijJj; ð10Þ

for internal species i=1, 2,. . ., N where Jj is the flux in the

jth reaction. The chemical potential difference for the

internal reaction j, 1V jVM is

Dlj ¼
XNþN V

i¼1

liQij: ð11Þ
Some straightforward calculations (see Appendix A)

show that there is a dynamic equation for entropy:

T
dS

dt
¼ epr � hdr; ð12Þ

where epr is the entropy production (creation) rate, more

precisely the entropic contribution to the rate of free energy

degradation, which is never negative (Eq. (25)) and hdr is

the heat dissipation rate. In the isothermal biochemical

reaction network, the entropy of the system changes either

due to entropy created in the system or the heat leaving the

system. This is a well-known result in the irreversible

thermodynamics [38,39] in which epr and hdr are usually

expressed as T diS
dt

and T deS
dt

; or T dSrev
dt

and T dScr
dt
. We

choose to use epr and hdr instead of the traditional notations

Ṡi and Ṡe for the entropy production (creation) and heat

dissipation rates to emphasize that they are source and sink

term, not time derivatives [12]. Similarly we have a dynamic

equation for enthalpy:

dH

dt
¼ � hdr þ cmf ; ð13Þ

where cmf is the chemical motive force determined by either

flux injection or concentration clamping, or both at the

system’s boundary. For a closed system in which heat

becomes enthalpy, cmf=0. Eq. (13) is a statement of energy

conservation. Finally, we have a dynamic equation for

Gibbs free energy:

dG

dt
¼ cmf � epr: ð14Þ

Eq. (14) is a free energy balance equation. It is widely

known that free energy is not conserved quantity: epr is

constantly degrading the free energy. In a nonequilibrium

steady-state,

dG

dt
¼ dH

dt
¼ dS

dt
¼ 0:

Therefore,

cmf ¼ hdr ¼ eprz0: ð15Þ

The first equality is conservation of energy, the second

equality is the isothermal Clausius equality, and the last

inequality is the Second Law of Thermodynamics. As far as

we know, Eqs. (13) and (14) are not in the standard

textbooks on nonequilibrium thermodynamics.
4. Kirchhoff’s laws for biochemical networks

The thermodynamic formulae given in the previous

section can be thought of as Kirchhoff’s laws for bio-

chemical networks, in analogy to those for electric circuits

[27,28]. For a biochemical network in NESS with given



H. Qian, D.A. Beard / Biophysical Chemistry 114 (2005) 213–220 217
stoichiometric matrix Q, we expect the metabolic fluxes

inside a cell satisfies

QJ ¼ 0 ð16Þ

for flux balance (mass conservation) where J is a vector

listing all of the Jj. Eq. (16) is Kirchhoff’s current law. The

NESS J consists of internal reaction loops v, obtained from

Q̃v=0, and throughput fluxes. For each internal loop v (see

Appendix A):

XM
j¼1

Dlj � Dpext
j

� �
vj ¼ 0; ð17Þ

where

Dpext
j ¼

XNþN V

i¼Nþ1

liQij ð18Þ

is the force driving the internal reaction j, 0V jVM, via

concentration clamping—i.e., Dpj
ext is a chemical bbatteryQ.

This equality is the Kirchhoff’s loop law, reflecting energy

conservation. Finally, for each reaction in the NESS system,

as in Eq. (5),DlS ¼ kBT ln JS ;�=JS ;þ
� �

and JS ¼ JS ;þ�JS ;�.
Hence � DlS JS z0. This inequality is the Second Law of

Thermodynamics.

We see that even with no knowledge of kinetic rate

constants or kinetic mechanisms, the steady-state is

uniquely determined as the equilibrium state when all the

Dpext=0. Since DMd J=0, and for each reaction in the loop

DljJjV0, it is necessary that Jj=Dll=0 for all j.

The set of thermodynamic constraints (Eq. (17)

and the second law) can significantly reduce the thermody-

namically feasible NESS flux J and potential M. Knowledge

of the value of Mo for a species k, will provide insight into

the concentration for that species in NESS: ck=e
(lk�lk

o)/kBT.

This approach, generally known as constraint-based

biochemical network analysis, has already yielded sig-

nificant insights into the systems biology of cells [26–29,

35–37].
5. Relation to concentration fluctuations

Fluxes and concentrations are the most important

observables for an open biochemical network. Concentra-

tions together with the standard-state chemical potential lo

yields the nonequilibrium chemical potential. The theory we

present relates the thermodynamics of the open system to

the structure (Q) and the variables (J and M) of the

biochemical network.

Systems near but not at equilibrium are well understood

in Onsager’s theory of linear irreversibility [40]. In this

regime, the fluxes and chemical potentials are linearly

related. Using the simple example from Eq. (4), at
equilibrium J=J+
eq�J�

eq=0. Near equilibrium Jp0, while

JVJ+
eq and J�

eq, one has

Dl ¼ kBT ln
J�
Jþ

� �
¼ kBT ln 1� J

Jþ

� �
c� kBT

J
eq
þ

J : ð19Þ

Dl and J are not linearly related in general, and in our

theory. The phrase bfar from equilibriumQ is used to describe
the nonlinear regime. Eq. (19) also indicates that the

unidirectional flux, J+
eq is in fact the linear Onsager

coefficient between the force Dl and the flux J [41], also

called biochemical conductance [27].

Concentrations of biochemical species in living cells

are fluctuating. Spectroscopic measurements of such

fluctuations are now possible. Interestingly, the concen-

tration fluctuations can also be included in the present

theory. More specifically, one is able to predict the rates

of concentration fluctuations with known Q, J and M.

We shall briefly illustrate this idea. A complete treat-

ment of the problem will be published elsewhere.

Again, for the simple example in Eq. (4) we have at

equilibrium

J
eq
þ ¼ J eq� ¼ k1cA ¼ k2cB ¼ k1 þ k2

1

cA
þ 1

cB

¼ hDcADcAi
s

: ð20Þ

The significance of the right-hand side is that (1=cA+1/

cB)
�1 is in fact the equilibrium fluctuations in the

concentrations of A and B [42]. And the s=(k1+k2)
�1 is

the fluctuation relaxation time. Hence Eqs. (19) and (20)

together state that the biochemical conductance is intimately

related to the rate of concentration fluctuations.

More generally away from equilibrium, according to

Keizer [2], if we use matrix H to denote the linear relaxation

kinetics of concentrations back to a NESS: d(dci)/
dt=�

P
jHijdcj and rij=hDciDcji to denote the NESS

concentration fluctuations, then the rates of concentration

fluctuations [2]

c ¼ Hr þ rHT ; ð21Þ

which is a positive-definite matrix

cij ¼
XM
k¼1

QikQjk Jk;þ þ Jk;�
� �

¼
XM
k¼1

QikQjk

1þ eDlk=kBT

1� eDlk=kBT

� �
Jk : ð22Þ

It can be constructed from the Q, J and M. Eq. (20)

is a special case of this general result. We see that in

the linear regime, cij=2
P

kQikQjkJk,+
eq which is what
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known as conductance matrix of an electrical (linear)

network.
6. Summary

Starting with Eq. (10) which reflects the mass conserva-

tion in a stoichiometric chemical reaction network and the

concept of chemical potential of ideal solutions (Eq. (6)), we

have derived three balance equations, Eqs. (12), (13), and

(14), describing the time evolution of energetics of the open,

isothermal biochemical network in terms of its entropy,

enthalpy, and Gibbs free energy. These equations for

nonequilibrium thermodynamics are straightforward to

interpret. Eq. (13) states that the change in the enthalpy

of the system is balanced by the work done to the system

minus the dissipated heat. This is clearly the law of

energy conservation. The First Law, however, does not

differentiate bhigh gradeQ energy from blow gradeQ energy.
When input work is transformed into dissipated heat,

entropy is created. Eq. (12) states that the change in

entropy of the system is balanced by the entropy

production minus the expulsion of the low grade

energy-heat.

A few words on the existing literature are in order. It was

known to Gibbs [43] that the chemical equilibrium is

directly related to the minimization of the Gibbs free energy

function Eq. (8). Later, the relation between the Gibbs free

energy and the rate equations based on the mass-action law

was extensively studied [44] as well as the Gibbs free

energy minimization in terms of a general network

theory [45]. In the theory of the present paper, a closed

system has cmf=0 in Eq. (14) since all pext=0. The

dynamics thus follows dG/dt=�eprV0 in Eq. (14) since

epr is always non-negative (Eq. (25)). The entire

network approaches to the minimum of G, with zero

hdr (Eq. (13)) and epr=0 (Eq. (12)).2 Finally, all of the

Jj=0 (Eq. (25)).

For biochemical networks in living systems, sustained

energy input means cmfN0. Therefore the system

approaches a NESS. The significance of these new

equations in study systems biology of cells remains to be

explored.
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Appendix A. Mathematical formalism for

nonequilibrium thermodynamics

The dynamic equation for species i due to conservation

of mass is

dci

dt
¼

XM
j¼1

QijJj þ /ext
i ð23Þ

where the Qij’s are stoichiometric coefficients, Jj is the flux

in the jth reaction, and /i
ext (see below) represents a constant

external boundary flux that does not change with the

concentration of any species in the system. The Jj’s however

are functions of the concentrations of the participating

species (e.g., via the law of mass action). If ck is clamped at

a value ck*, the dck/dt equation is eliminated from the system

of equations, and the Jj(. . ., ck,. . .) as functions of ck will be

fixed at Jj(. . ., ck*,. . .).

The standard-state chemical potentials for species i–Eq.

(6)–are decomposed into li
o=hi

o�Tsi
o in terms of partial

molar enthalpy and entropy. The total enthalpy, entropy, and

free energy of the system are given in Eqs. (7) (8) (9). We

denote /ext
i ¼

PMþM V
j¼Mþ1 QijJj 1V iVNð Þ as the external injec-

tion flux into internal species i. For clamped species iNN,

we denote �
PM

j¼1 QijJj ¼ /ext
i so that dci/dtu0; this is the

flux required from the external in order to keep the constant

concentration for i species. The dynamic equation for

entropy is expressed as,

T
dS

dt
¼ T

XN
i¼1

dci

dt
soi � kBln

ci

ct

� �
¼ T

XN
i¼1

XMþM V

j¼1

	 QijJj soi � kBln
ci

ct

� �
¼

XN
i¼1

XMþM V

j¼1

	 QijJj h
o
i � li

� �
¼ epr � hdr ð24Þ

where entropy production rate and heat dissipation rate

epr ¼ �
XNþN V

i¼1

XM
j¼1

liQijJj

¼ �
XM
j¼1

DljJjz0; ð25Þ

hdr ¼ �
XN
i¼1

XMþM V

j¼1

hoi QijJj þ
XN
i¼1

li/
ext
i �

XM
j¼1

Dpext
j Jj

ð26Þ

¼ �
XNþN V

i¼1

XM
j¼1

hoi QijJj � T
XNþN V

i¼1

si/
ext
i : ð27Þ

Similarly, there is a dynamic equation for enthalpy

dH

dt
¼

XN
i¼1

dci

dt
hoi ¼ � hdr þ cmf ; ð28Þ
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where the chemical motive force is determined by either

flux injection or concentration clamping, or both:

cmf ¼
XNþN V

i¼1

li/
ext
i : ð29Þ

Finally, there is a dynamic equation for Gibbs free energy

dG

dt
¼ d H � TSð Þ

dt
¼ cmf � epr: ð30Þ

For any vector v satisfying Q̃v=0, i.e., v is in the null

space of matrix Q̃, representing an internal reaction loop in

the biochemical network, we have:

0 ¼
XN
i¼1

XM
j¼1

liQijvj ¼
XM
j¼1

Dlj � Dpext
j

� �
vj; ð31Þ

where

Dpext
j ¼

XNþN V

i¼Nþ1

liQij ð32Þ

is the driving force to reaction j due to concentration

clamping. Eq. (31) is Kirchhoff’s loop law for biochemical

networks.
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