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Introduction
The creation of models of the integrated functions of genes and proteins in cells is of
fundamental and immediate importance to the emerging field of computational systems
biology. Some of the most successful attempts at cell-scale modeling to date have been based
on piecing together networks that represent hundreds of experimentally-determined
biochemical interactions, while others have been very successful at inferring statistical
networks from large amounts of high-throughput data. These networks (metabolic, regulatory,
or signaling) can be analyzed, and predictions about cellular behavior made and tested. Many
types of models have been built and applied to study cellular behavior and in this review we
focus on two broad types: biochemical network models and statistical inference models.
Through iterative model prediction, experimentation, and network refinement, the molecular
circuitry and functions of biological networks can be elucidated. The construction of genome-
scale models that integrate the myriad components that produce cellular behavior is a
fundamental goal of systems biology today.

Biochemical Reaction Networks
Biochemical reaction networks represent the underlying chemistry of the system, and thus at
a minimum represent stoichiometric relationships between inter-converted biomolecules. The
stoichiometry of biochemical reaction networks can now be reconstructed at the genome-scale,
and at smaller scale with sufficient detail to generate kinetic models. These biochemical
reaction networks represent many years of accumulated experimental data and can be
interrogated in silico to determine their functional states. Genome-scale models based on
biochemical networks provide a comprehensive, yet concise, description of cellular functions.

For metabolism the reconstruction of the biochemical reaction network is a well-established
procedure [1–7], while methods for the reconstruction of the associated regulatory [8,9] and
signaling networks [10–12] with stoichiometric detail are being developed. The typically used
formalism is to reconstruct the stoichiometric matrix, where each row represents a molecular
compound and each column represents a reaction. For metabolism, these networks are often
focused on just the metabolites, where the existence of a protein that catalyzes this reaction is
used to allow that reaction to be present in the network. It is also possible (and truer to the
realities in the system) to represent the proteins themselves as compounds in the network, which
enables the integration of proteomics, metabolomics, and flux data (Figure 1). For regulatory
and signaling networks, the inclusion of the proteins as compounds is essential. This process
of reconstructing biochemical reaction networks has been referred to as the “two-dimensional
annotation” of genomes [13].
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Genome-scale models can be generated using a constraint-based approach, as has been
reviewed in detail elsewhere [14]. This modeling process involves a three-step procedure. First,
the biochemical network is reconstructed, as described above. Second, the physico-chemical
constraints under which the reconstructed network operates are represented mathematically.
Such constraints are based upon properties such as enzyme capacity, reaction stoichiometry
and thermodynamics associated with reaction directionality and biochemical loops. This
approach is most commonly used to describe fluxes through biochemical networks at steady
state (i.e. flux balance analysis). The statement of constraints leads to the definition of a solution
space that contains all non-excluded network states, describing the possible functions of the
reconstructed network or all the allowable phenotypes. The third step is the determination of
the possible solutions in this space that correspond to physiologically meaningful states. This
constraint-based modeling procedure has been successfully utilized to study phenotypes in
various model [15–18] and infectious [19,20] microorganisms. Recently, this approach has
passed a significant milestone, namely the reconstruction of the human metabolic network
[1]. Constraint-based analysis has been applied to selected human systems in the past [21,22],
but with this reconstruction in place, this approach is poised to begin to have a much more
significant impact on modeling human systems.

Stoichiometric reaction networks can be expanded into dynamic models using standard
differential equation models and the addition of information in the form of kinetic rate
constants. These systems, unlike the usual constraint-based approach, do not make the steady-
state assumption for all compounds but rather can simulate detailed dynamic behavior. Thus,
they can model a greater degree of complexity for a given network and simultaneously account
for both concentrations of compounds and fluxes through reactions. The disadvantage of these
systems compared with constraint-based analysis is that they require many more parameters
and are thus more data intensive to create and/or can be more prone to overfitting when large
numbers of parameters are unknown. Thus, these models are not typically created at the whole
cell scale, with a notable exception being cell-scale models of red blood cell metabolism [23,
24].

In recent years, these types of dynamic models have been used very successfully to provide
mechanistic models of, for example, key signaling pathways involved in critical physiological
and pathophysiological processes. For example, a differential equation model of NF-kB
signaling [25] was updated and used to elucidate the role of tumor necrosis factor in controlling
the sustained phase of lipopolysaccharide-induced IKK activation [26,27], demonstrating the
usefulness of these models for deciphering functions of biological networks. Another example
was the use of a model to study the integrated dynamic behavior of a network of epidermal
growth factor receptor family members [28]. Christopher et al. have constructed a dynamic
simulator of gene expression and signaling networks in a human cancer cell [29]. In the long
run, such dynamic models set the stage for personalized medicine by offering the promise of
rational drug design and control of the outcome of induced molecular perturbations.

Statistical Influence Networks
A second approach to modeling biological networks also holds tremendous potential for
advancing knowledge of biology – namely, statistical influence networks. The growing
amounts of microarray gene expression data along with improvements in data fidelity are now
making it possible to make robust statistical systems-level inferences about the structure and
dynamics of biomolecular control mechanisms, such as transcriptional regulatory networks.

Many approaches attempt to infer relationships between gene expression measurements using
deterministic or stochastic formalisms. The fundamental idea behind these approaches is that
models that faithfully capture such relationships have predictive capacity as regards system
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behavior and can be used to gain insight about system-wide properties, such as steady-state
behavior or responses to perturbations or specific stimuli. There are a number of ways in which
such relationships can be represented, both in the discrete and continuous domains.

One popular modeling approach that captures the nonlinear multivariate relationships exhibited
by biological control circuits, such as gene regulatory networks, is the class of Boolean
networks, which owes its inception to the work of Stuart Kauffman in the late 1960s [30]. In
the Boolean network model, the variables (e.g., genes or proteins) are binary-valued, meaning
that their states can be either on or off, and the relationships between the variables are captured
by Boolean functions. Each (target) gene is assigned a Boolean rule that determines its value
as a function of the values of a set of other (predictor) genes, possibly including the target gene
itself. System dynamics are generated by updating the Boolean functions, either synchronously
or asynchronously, causing the system to transition from state to state in accordance with its
Boolean update rules, where a state is a binary representation of the activities of all of the
variables in the system (i.e., a binary vector representing the genes that are on or off at any
given time).

Boolean network models have been constructed and analyzed for a number of developmental
and physiological processes. For example, Albert et al. constructed a Boolean network model
for a subset of genes of the fruitfly Drosophila melanogaster, which describes different stable
gene expression patterns in the segmentation process of the developing embryo [31]. The
steady-state behavior of this model was in excellent agreement with experimentally observed
expression patterns under wild type and several gene mutation conditions. This study
highlighted the importance of the network topology in determining biologically correct
asymptotic states of the system. Indeed, when the segment polarity gene control network was
modeled with more detailed kinetic models, such as systems of nonlinear differential equations,
exceptional robustness to changes in the kinetic parameters was observed [32].

Boolean networks have also been used to model the yeast and mammalian cell cycle [33,34].
Li et al. demonstrated that the cell cycle sequence of protein states, which is a globally attracting
trajectory of the dynamics, is extremely robust with respect to small perturbations to the
network. The Boolean network formalism was also recently used to model systems-level
regulation of the host immune response, which resulted in experimentally validated predictions
regarding cytokine regulation and the effects of perturbations [35]. Boolean rules can be learned
from gene expression data using methods from computational learning theory [36] and
statistical signal processing [37].

A limitation of the Boolean network approach is its inherent determinism. Because of the
inherent stochasticity of gene expression and the uncertainty associated with the measurement
process due to experimental noise and possible interacting latent variables (e.g. protein
concentrations or activation states that are not measured), the inference of a single deterministic
function may result in poor predictive accuracy, particularly in the context of small sample
sizes (e.g., number of microarrays) relative to the number of genes.

One approach to “absorb” this uncertainty is to infer a number of simple functions (having few
variables), each of which performs relatively well, and probabilistically synthesize them into
a stochastic model, called a probabilistic Boolean network (PBN) [38]. The contribution of
each function is proportional to its determinative potential as captured by statistical measures
such as the coefficient of determination, which are estimated from the data [37]. The dynamical
behavior of PBNs can be studied using the theory of Markov chains, which allows the
determination of steady-state behavior as well as systematic intervention and control strategies
designed to alter system behavior in a specified manner [39–41]. The PBN formalism has been
used to construct networks in the context of several cancer studies, including glioma [42],
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melanoma [41], and leukemia [40]. PBNs, which are stochastic rule-based models, bear a close
relationship to dynamic Bayesian networks [43] – a popular model class for representing the
dynamics of gene expression.

Bayesian networks are graphical models that have been used to represent conditional
dependencies and independencies among the variables corresponding to gene expression
measurements [44]. One limitation of Bayesian networks for modeling genetic networks is that
these models must be in the form of directed acyclic graphs and, as such, are not able to
represent feedback control mechanisms. Dynamic Bayesian networks, on the other hand, are
Bayesian networks that are capable of representing temporal processes [45,46] that may include
such feedback loops. Since not all causal relationships can be inferred from correlation data,
meaning that there can be different directed graphs that explain the data equally well,
intervention experiments where genes are manipulated by overexpression or deletion have been
proposed to learn networks [47]. The Bayesian network formalism has also been used to infer
signaling networks from multicolor flow cytometry data [48].

There exist a number of other approaches for inferring large-scale molecular regulatory
networks from high-throughput data sets. One example is a method, called the Inferelator, that
selects the most likely regulators of a given gene using a nonlinear model that can incorporate
combinatorial nonlinear influences of a regulator on target gene expression, coupled with a
sparse regression approach to avoid overfitting [49]. In order to constrain the network
inference, the Inferelator performs a preprocessing step of biclustering using the cMonkey
algorithm [50], which results in a reduction of dimensionality and places the inferred
interactions into experiment-specific contexts. The authors used this approach to construct a
model of transcriptional regulation in Halobacterium that relates 80 transcription factors to
500 predicted gene targets.

Another method that predicts functional associations among genes by extracting statistical
dependencies between gene expression measurements is the ARACNe algorithm [51]. This
information-theoretic method uses a pairwise mutual information criterion across gene
expression profiles to determine significant interactions. A key step in the method is the use
of the so-called data processing inequality, which is intended to eliminate indirect relationships
in which two genes are co-regulated through one or more intermediaries. Thus, the relationships
in the final reconstructed network are more likely to represent the direct regulatory interactions.
The ARACNe algorithm was applied to 336 genome-wide expression profiles of human B
cells, resulting in the identification of MYC as a major regulatory hub along with newly
identified and validated MYC targets [52].

A method related to the ARACNe algorithm, called the context likelihood of relatedness
(CLR), also uses the mutual information measure but applies an adaptive background
correction step to eliminate false correlations and indirect influences [53]. CLR was applied
to a compendium of 445 E. coli microarray experiments collected under various conditions
and compared to other inference algorithms on the same data set. The CLR algorithm had
superior performance as compared to the other algorithms, which included Bayesian networks
and ARACNe, when tested against experimentally determined interactions curated in the
RegulonDB database. It also identified many novel interactions, a number of which were
verified with chromatin immunoprecipitation [53].

Comparison of Network Analysis Approaches
There are fundamental differences between the biochemical and statistical classes of network
modeling described herein. One clear difference is the manner in which these underlying
networks are reconstructed. For biochemical networks, reconstruction is typically a work-
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intensive process requiring significant biochemical characterization with little network
inference done (other than inferences of single gene function for catalyzing a reaction based
on sequence homology). Thus, the ability to rapidly generate networks for organisms that are
relatively uncharacterized from high-throughput data is an inherent advantage of the inferred
statistical networks. One advantage of the biochemical network models is that, once
reconstructed, the networks are not as subject to change (other than addition) since many of
the links are based directly on biochemical evidence. Inferred networks, on the other hand, can
undergo substantial changes in light of additional data. Another common difference, although
not fundamental, is that constraint-based biochemical network models have mostly been used
to model flux, whereas inference networks have mostly been used to predict substance amounts
(e.g. mRNA expression). One way this can be thought of is that the biochemical network
models currently link more closely to functional phenotype (i.e. fluxes) [54], while the inferred
networks relate more directly to available high-throughput data (i.e. transcriptomes). The
kinetic biochemical network models, of course, have the capacity to account for both flux and
abundance, but suffer from the limitation that they are by far the most data intensive to
reconstruct. Another key advantage of biochemical reaction networks, stemming from their
basis in chemistry, is that physico-chemical laws apply, such as mass-energy balance, while
such laws are not generally applicable to the inferred networks. Of course, the advantage of
the inferred networks is that, since they do not need to be mechanistic or require biochemical
detail, they can be applied very broadly to systems that are not yet well characterized and can
link very disparate data types as long as underlying correlations exist. In summary, both
modeling types are essential to contemporary computational systems biology and provide
advantages over each other in different settings.

One interesting challenge going forward is whether hybrid models that take advantage of the
strengths of the different modeling approaches can be constructed to move us further towards
the goal of predictive whole-cell models and beyond. Early attempts have been done to link
Boolean regulatory networks with constraint-based flux models [8], but the extent to which
these approaches can be married to provide significant advances in our ability to model
biological networks remains an open question.
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Figure 1.
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