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Significant advances in Ca2+ and calmodulin signalling in
whole plants and individual cells have been recently reported.
Particular relevant contributions have been made to the study
of the modification of gene expression by osmotic, light and
gravity signals and the growth of root hairs and pollen tubes.
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Abbreviations
ABA abscisic acid
[Ca2+]

c

cytosolic free calcium
cADP-R cyclic adenosine phosphate ribose
CaM Ca2+/calmodulin
CBP calcium binding protein
CDPK Ca2+ dependent protein kinase
cADP-R cyclic ADP-ribose
ER endoplasmic reticulum
IP3 inositol (1,4,5) triphosphate

Introduction
Cytosolic free Ca2+, [Ca2+]c, is a convergence point for
many disparate signalling pathways. Each signal creates its
own Ca2+ fingerprint: a spatially unique structure involv-
ing specific combinations of several hundred proteins
acting in concert. Particular combinations of ion flux
change and gene expression underpin the eventual physi-
ological response. [Ca2+]c transients are known to be
induced by a range of signals, from Nod factors [1,2] to
those which elicit an oxidative burst [3]. It is, therefore,
important to distinguish Ca2+ changes which are associat-
ed with degenerative processes, such as senescence [4],
from adaptive responses which are the essence of sig-
nalling. Focus on the signalling aspect is emphasised here,
mainly on papers published in 1997 and 1998. Previous
significant contributions on this subject have been recent-
ly reviewed by us in two parallel manuscripts [5••,6••].

Signalling in whole plants and cell cultures
Incubating tobacco seedlings containing transgenic
aequorin, a luminescent Ca2+-sensitive reporter protein,
in continuous high temperature induces [Ca2+]c transients
lasting 20–25 minutes. New heat shock [Ca2+]c transients
can only be induced after a recovery period of eight hours
at ambient temperatures [7]. Throughout this recovery
period, however, normal [Ca2+]c transients can still be
induced by cold and wind signals [7]. Heat, cold and wind

thus use different transduction pathways or mobilise
spatially-distinct pools of [Ca2+]c to produce a signal-spe-
cific [Ca2+]c fingerprint. The amplitude of the transients is
probably modulated by cytoskeletal organisation as shown
for cold shocks [8]. 

The kinetics of [Ca2+]c transients induction have been
measured in response to some ten signals [6••]. The lag
period length before the transient starts, the rise time to
the transient peak and the decay time back to the resting
level are unique to each signal. Among the possible targets
for these transients are plasma membrane anion channels
and vacuolar K+ release [9,10]. Organelle and membrane-
targeted aequorins [7,11,12] can help resolve the
complexity of [Ca2+]c signalling and luminescence imag-
ing at the single cell level is now possible (Figure 1).

Hyper-osmotic shock mobilises [Ca2+]c via Ca2+ release
from the vacuole and Ca2+ entry through the plasma mem-
brane [11]. The mRNA’s for ∆1- pyrrolidone-5-carboxylate
synthetase (an enzyme required for proline synthesis),
lti78 and rab18 accumulate in a Ca2+-dependent manner
implicating [Ca2+]c in cellular drought and salination adap-
tation. As abscisic acid (ABA) is known to induce lti78
expression, these data indirectly implicate [Ca2+]c in the
ABA transduction pathway. In contrast, hypo-osmotic
shock results in a large [Ca2+]c transient [13], which can be
inhibited by protein kinase inhibitors and is dependent on
extracellular Ca2+ [14•]. Tobacco cells, shocked in the
absence of extracellular Ca2+, could still produce a large
[Ca2+]c transient if Ca2+ is added to the cells within a 20
minute period of the initial signal [14•]. These cells are
thus able to ‘remember’ the initial hypo-osmotic signal,
perhaps by a similar mechanism to the 30 minute [Ca2+]c
‘memory’ induced by cold shock [12]. Hypo-osmotic
shock-induced [Ca2+]c transients are themselves con-
trolled by protein kinases and in turn the transients
activate other protein kinase cascades [15].

Ca2+ and light regulation
Microinjection of signalling intermediates have implicated
cGMP and Ca2+/calmodulin (CaM) in the up regulation of
photosystem 1 genes by phytochrome. Down regulation of
asparagine synthetase may use the same second messen-
ger pathways [16•]. Whereas phytochrome negatively
regulates chalcone synthase (CHS) expression via
Ca2+/CaM, the same two signal transduction molecules are
used by UV light to positively regulate CHS expression
[17]. Results from combined red and UV irradiations sug-
gest that the phytochrome response could be activated
first and the UV response subsequently. The apparently
antagonistic functions of Ca2+ and CaM could, therefore,
operate in the same cell because each response is tempo-
rally separated from the other. 
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Powerful though microinjection (and associated caged
probe) technologies can be, they are nevertheless invasive
techniques. Thus, only a potential role in signalling can be
deduced. Demonstration of second messenger involve-
ment requires measurements of signal-enhanced flux
through [Ca2+]c and cGMP as well. Experimentally mimic-
king the amplitude and kinetics of these [Ca2+]c and
cGMP transients in responsive cells would then enable a
significant assessment to be made of the transduction
pathways controlling gene expression. Without this infor-
mation, confusing observations could result as conflicting
pathways are artificially activated and indeed natural indi-
vidual cell variation is eliminated [6••]. For example, red
light induces [Ca2+]c transients in wheat protoplasts but
not in Physcomitrella [18] or tobacco (G Baum, GI Jenkins
and AJ Trewavas, unpublished data). Furthermore, appar-
ent contradictory reports of blue light transduction through
[Ca2+]c between Arabidopsis [9] and Physcomitrella [18]
have been reported.

Ca2+ release and uptake
Ca2+-signalling pathways generally involve changes in the
concentration of [Ca2+]c. These changes can arise from the
activation of membrane-associated transporters — chan-
nels and pumps — or through changes in the affinity of
Ca2+ binding proteins (CBPs). Channels and pumps have
now been localised in the plasma membrane, tonoplast and
endoplasmic reticulum (ER) and regulate inward Ca2+ cur-
rent (Thuleau et al., this issue pp 424–427). Ion channels
located in the tonoplast and plasma membrane are
believed to be responsible for most of the Ca2+ inward cur-
rents. Data collected during an action potential in Chara,
however, suggests that [Ca2+]c increases arise mainly from
internal stores other than the vacuole [19]. Touch-induced
[Ca2+]c transients also originate from internal stores [20•],
although here the nuclear envelope may be a primary
source (A van der Luit, MR Knight and AJ Trewavas
unpublished data). The second messengers, inosi-
tol(1,4,5)triphosphate (IP3) and cyclic adenosine
phosphate ribose (cADP-R) mobilise Ca2+ release from the
internal stores of the vacuole and probably the ER
[10,21•]. Phospholipase C is now the proven enzymatic
plant source of IP3 and diacylglyceride [22•], whereas
cADP-R is synthesised from NAD [23].

CBP’s (soluble or attached to the cytoskeleton) still lack
critical examination in plant cells. Estimates of the cytoso-
lic buffer capacity for Ca2+ (1–20 mM) [24] do suggest that
CBP’s could play a crucial role in signalling mechanisms.
Phosphorylation of CBP’s, subsequently modifying Ca2+

binding, could act to trigger the initial stimulus or modu-
late the transduction of the signal or even initiate Ca2+

wave propagation [6••,13].

Decoding the Ca2+ signalling pathway
Phosphorylation cascades regulated by protein kinases and
phosphatases represent primary downstream transduction
routes interpreting the [Ca2+]c signal. Ca2+-dependent
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Figure 1

Luminescence images of tobacco containing the aequorin transgene and
subjected to cold shock. (a) whole 10 day old seedling (b) single
cotyledon of whole seedling; note discrete luminescent spots (c) bright
field image of cotyledon surface on whole seedling containing two guard
cells (d) luminescence image of the same surface subjected to cold
shock; note that some discrimination of internal guard cell structure is
possible. Most guard cell cytoplasm is located in the middle and ends of
the cell. (Helen Page, Nick Read, Tony Trewavas, unpublished data.)



protein kinase (CDPK), Ca2+/Calmodulin-dependent pro-
tein kinase (CaM kinase) and a protein kinase C-type
enzyme have either been cloned or substantial evidence
presented for their presence in plant cells [25,26•,27].

Single [Ca2+]c transients are sufficient to initiate the accu-
mulation of mRNA of the ABA dependent lti78 and kin1/2
genes [12]. The effects of ABA on lti78 expression can be
mimicked either by transformation of maize protoplasts
with CDPK cDNA or with simple Ca2+ ionophore treat-
ments to increase [Ca2+]c [28]. lti78 and kin2 cDNAs have
been loaded into tomato cells as reporter gene constructs.
Co-injection of cyclic ADP-ribose (cADP-R) mimics the
inducing-effect of ABA and up-regulates lti78 and kin2
expression [29••]. From experiments with inhibitors it was
confirmed that cADPR-mediated induction of ABA-
responsive gene expression is regulated by protein
phosphorylation [29••], and the enzyme responsible for this
could be CDPK [28]. Heparin, an inhibitor of IP3-depen-
dent Ca2+ release failed to block ABA-induced lti78 and
kin2 cDNA expression suggesting that IP3 may be involved
in the secondary rather than primary ABA response.
Transduction chains are linked by ‘cross talk’ [5••], howev-
er, and [Ca2+]c information flow through cADP-R could
compensate for inhibition of information flow through IP3.
Comparative measurements of [Ca2+]c flux through cADP-
R and IP3 in heparin treated cells are needed. Guard cells
can easily switch between Ca2+ dependent and Ca2+ inde-
pendent transduction pathways [30].

Mutations in ABI1 render plants insensitive to ABA and
encode proteins with homology to Ca2+ regulated ser-thr
protein phosphatases. The stomatal guard cells of abi1 fail
to respond to CO2 and extracellular Ca2+ [31]. The signal
transduction pathway for all three stimuli must converge
on, or be close to, the ABI1 gene product. CDPK modifies
H+ flux [32] and cytoplasmic pH is thought to be a second
messenger mediating ABA action in guard cells [30].

The ubiquity of CDPK in ABA response chains can only
be speculated. Specific inhibition of CDPK in aleurone
cells using a peptide substrate, syntide-2, indicated its
involvement only in a gibberellin-(GA), but not an ABA-
dependent [Ca2+]c transduction pathway [33••].
Furthermore, syntide-2 did not affect the GA-induced
increase in [Ca2+]c suggesting that syntide inhibited GA
action downstream of the Ca2+ signal. Targets downstream
from CDPK are still unknown but may involve a MAP
kinase cascade [5••].

Ca2+ and calmodulin
CaM is a primary decoder of Ca2+ signals in eukaryotic
cells. Vos and Hepler [34••] imaged the distribution of flu-
orescent-tagged bovine CaM during stamen hair cell
mitosis. Only a uniform distribution was observed, in con-
flict with previous data using chemical fixation which
suggested strong attachment to the spindle. A fundamen-
tal reassessment of much early-acquired data using

chemical fixation is thus indicated. A uniform distribution
of fluorescent calmodulin in living pollen tubes has also
been reported [35•]. When the concentration of exoge-
nous CaM was raised above the endogenous pool, a
putative interaction with the actin cytoskeleton could be
visualised. Although strict threshold conditions were used
in this experiment, it nevertheless suggests the localisa-
tion of potential targets for CaM regulation in polarised
growth [36]. In contrast with these two studies, microin-
jection of CaM into developing and polarising Fucus
zygotes showed an accumulation in the precise cellular
region from which the rhizoid emerged several hours later
[37]. These observations help support the classical theory
of Fucus polarity involving [Ca2+]c which has seen recent
difficulties. A putative Ca2+ channel identified by dihy-
dropyridine staining was also found to localise in the Fucus
tip rhizoid [38], but equivalent experiments in pollen
tubes failed to reveal tip localisation (L Camacho, AJ
Trewavas and R Malhó, unpublished data). Future credi-
ble CaM distribution studies urgently require the
incorporation of fluorescence polarisation anisotropy tech-
nology to image the distribution of free and bound CaM
in living plant cells — it is the dynamics of bound CaM
which most researchers wish to map.

Tobacco cells transformed with a mutant calmodulin gene,
(K115R) exhibit enhanced NAD kinase activity [39••].
When challenged with elicitors or environmental stress sig-
nals, these cells also accumulate higher levels of active
oxygen species. Transformation with defined CaM
mutants is a subtle, but very powerful, future technology
which will enable ready dissection of transduction routes
through specific CaM binding proteins.

Tip growth in pollen tubes, rhizoids and root
hairs
Pollen tubes, root hairs and Fucus rhizoids contain a tip-
high [Ca2+]c gradient in the apical 10–40µm [40•,41–44].
Patch clamp data from fungal hyphae, Fucus rhizoids and
Mn2+ quench procedures with higher plant cells [45] sug-
gest a tip-based activity of stretch-activated or mechano
sensitive channels [13,46] to be responsible for controlling
Ca2+ entry to these cells. The extreme tip Ca2+ may regu-
late protein kinases, putative IP3 receptors [47] and Rho
GTPases [48•] involved in vesicle fusion/docking and tip
growth/orientation.

The [Ca2+]c gradient oscillates in the Lily pollen tube, the
extreme tip varying from 700 nM to 10 µM with a period-
icity of less than one minute [40•,41]. Oscillations are in
phase with pulsatile growth patterns but out of phase with
extracellular Ca2+ entry measured by the vibrating probe
[40•]. The apparent discrepancy between oscillations in
Ca2+ entry and [Ca2+]c was suggested to result from direct
movement of extracellular Ca2+ into the ER, from where it
is subsequently released in pulsatile fashion (so-called
capacitative Ca2+ entry [5••]) or Ca2+ binding to newly
secreted wall [40•]. But, the discrepancy may also result
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from flawed measurements of the actual peak values.
Estimates with aequorin of peak values indicate it is
10–20 µM Ca2+ [41], well beyond the reporting range of
the fluorescent dye Fura-2 [40•]. 

Oscillations of [Ca2+]c could represent a conversion of ana-
logue to digital information, improving environmental
sensing by noise reduction [5••]. Alternatively, [Ca2+]c
oscillations may simply originate from a chaotic-like prop-
erty common to complex systems of interaction but
appearing only under discrete conditions. Lily pollen
tubes can grow to 1 mm with no detectable [Ca2+]c oscilla-
tions [40•,41]. No difference in overall growth rate
accompanies tubes that oscillate from those that do not.
[Ca2+]c oscillations (frequency < 1 min) can be induced in
unicellular algae by modifying intracellular mobilisation of
Ca2+ with caffeine or strontium [49]. The metabolic
change from a non-oscillating to an oscillating pollen tube
may then be subtle. In root hairs, Nod factors induced
[Ca2+]c oscillations of similar periodicity but these were
confined to the nuclear region [1].

Localised photolysis of loaded caged Ca2+ in different
cytoplasmic regions of pollen tubes and root hairs has
shown that [Ca2+]c modifications in the tip can directly
alter growth orientation [50,51••]. But root hairs rapidly
recover their initial growth orientation, suggesting an
innate fixed polarity. Root hair tips contain spectrin [52]
which could permanently anchor a microfilament structure
directing a fixed growth orientation. Photolysis of caged
IP3 in pollen tube tips did not elicit significant changes in
[Ca2+]c or orientation [47]. IP3 receptors may thus be func-
tionally unique in the tip region.

These studies on single cells have used three different types
of [Ca2+]c measurement. Single wavelength dyes can be
excited by visible light. Quantitation of [Ca2+]c images is
precluded because of variations in cell thickness or uneven
dye distribution. But single wavelength dyes, the most pop-
ular for animal studies, can be used to easily record
signal-induced changes in [Ca2+]c by comparing adjacent
time points or adjacent images [50]. Dual wavelength dyes
are used for accurate image quantitation but may have to be
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Figure 2

Summary of Ca2+ signalling knowledge at present in plant cells. Areas of extreme ignorance which most likely deserve future attention are
indicated by question marks.
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loaded to 20µM to compensate for reduced brightness.
Possible participation of the dye in Ca2+ signalling can then
become a complication and UV excitation with dye break-
down (for Fura-2 or Indo-1) can cause toxicity, impeding the
frequency with which images can be collected. Aequorin has
weaker binding affinity for Ca2+ binding, minimising cell
perturbation. But interference from Mg2+ and limitations on
loading concentrations or expression of transgenes will place
constraints on image discrimination. Both single and dual
wavelength dyes have been used in pollen tube self-incom-
patibility [Ca2+]c measurements [44,53] and [Ca2+]c
oscillations [40•,41]. Root hair and pollen tube [Ca2+]c gradi-
ents and caged Ca2+ photolysis have employed both
procedures [47,50,51••]. Comparison between these meth-
ods has not revealed any fundamental difference. Each
method has value in particular circumstances and all are use-
able, provided the limitations of each are recognised. We
recommend use of the simplest technique commensurate
with the information desired.

Gravitropism
A rigorous test of the involvement of [Ca2+]c signalling in
gravitropism has been performed in Arabidopsis roots [20•].
Variations in [Ca2+]c on gravi-stimulation were not detected
although a mechanical signal was easily imaged. Images
were only collected at one minute intervals, however, to
avoid cell damage. Short transients could have been
missed; those induced by mechanical signals, for example,
last less than 10 seconds [6••]. Statocytes, the obvious tar-
get for gravisensing, possess a 10 fold higher CaM content
than other root cells, which should enable discrimination of
much lower, difficult-to-detect, [Ca2+]c thresholds. Brief,
only slight elevations in [Ca2+]c may modify the activity of
Ca2+/CaM-dependent protein kinases [45,54] and could
trigger a statocyte response sufficient for gravisensing.
Gravi response could instead arise from subtle changes in
plasma membrane–cell wall interactions [55].

Conclusions
While knowledge of [Ca2+]c has gained apace, there are seri-
ous areas of ignorance which are illustrated in Figure 2.
Characterisation of transduction component interaction and
imaging of the spatial movement of transduction compo-
nents in living cells represents the way forward and is where
we predict most spectacular advances will now be made. 
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