Plant hormone perception and action: a role for G-protein signal transduction?

Richard Hooley

Institute of Arable Crops Research (IACR)-Long Ashton Research Station, Department of Agricultural Sciences, University of Bristol, Long Ashton, Bristol BS41 9AF, UK (richard.hooley@bbsrc.ac.uk)

Plants perceive and respond to a profusion of environmental and endogenous signals that influence their growth and development. The G-protein signalling pathway is a mechanism for transducing extracellular signals that is highly conserved in a range of eukaryotes and prokaryotes. Evidence for the existence of G-protein signalling pathways in higher plants is reviewed, and their potential involvement in plant hormone signal transduction evaluated. A range of biochemical and molecular studies have identified potential components of G-protein signalling in plants, most notably a homologue of the G-protein coupled receptor superfamily (GCR1) and the Ga and Gb subunits of heterotrimeric G-proteins. G-protein agonists and antagonists are known to influence a variety of signalling events in plants and have been used to implicate heterotrimeric G-proteins in gibberellin and possibly auxin signalling. Antisense suppression of GCR1 in Arabidopsis leads to a phenotype which supports a role for this receptor in cytokinin signalling. These observations suggest that higher plants have at least some of the components of G-protein signalling pathways and that these might be involved in the action of certain plant hormones.

Keywords: cytokinin; gibberellin; heterotrimeric G-protein; plant hormones; receptor

1. PLANT HORMONES AND MEMBRANE-BASED SIGNALLING MECHANISMS

Currently, six principal classes of plant hormones, ethylene, cytokinin, auxin, gibberellin (GA), abscisic acid (ABA), and brassinosteroids (BRs) are recognized. Each is necessary for normal growth and development and influences a range of events during the life cycle of plants. Evidence is accumulating that each of these classes of plant hormone may be perceived by membrane-located receptors. The ethylene receptor is a transmembrane protein with good homology to histidine-kinase two-component response-regulators (Bleecker & Schaller 1996). It has been suggested that cytokinins may also be perceived by a receptor of this class, CKII (Kakimoto 1996). The putative BR receptor is a transmembrane receptor kinase with leucine-rich repeats on one side of the membrane (probably the plasma membrane) and a serine-threonine protein kinase domain on the other (Li & Chory 1997). GA appears to be perceived at the plasma membrane of aleurone cells (Hooley et al. 1991; Gilroy & Jones 1994) although a candidate receptor has yet to be identified. In the case of ABA, there is evidence for both cell surface and intracellular receptors (Gilroy & Jones 1994; Allan et al. 1994; Anderson et al. 1994). Finally, auxin is thought to act at the cell surface (Venis & Napier 1995). These observations suggest that membrane-located signalling systems are involved in the perception and transduction of plant hormones.

2. G-PROTEIN SIGNALLING PATHWAY COMPONENTS IN PLANTS

(a) Heterotrimeric G-proteins

One of the most highly conserved membrane-located signalling mechanisms is the G-protein signalling pathway (Strader et al. 1994). Heterotrimeric G-proteins are an essential component of this pathway and are associated with the cytoplasmic face of the plasma membrane of a variety of eukaryotic cells where they transduce information from cell surface G-protein coupled receptors (GPCRs) to downstream effector proteins (Neer 1993). A range of biochemical, molecular and cell biological evidence suggests that higher plants employ heterotrimeric G-proteins as signalling components. However, the extent to which these might be functional counterparts of mammalian and other eukaryotic heterotrimeric G-proteins is, for the moment, unclear (Ma 1994).

The first evidence for plant heterotrimeric G-proteins came from biochemical and immunological studies. Microsomal and plasma membranes from a number of plant species have been shown to contain high affinity $\alpha^{35}P$GTP- and $\gamma^{35}S$GTP-γ-S-binding activity along with polypeptides which can be ADP-ribosylated or cross-react with antisera against Ga subunits or Gb subunit peptides (reviewed by Ma (1994)). These observations suggest that polypeptides similar to the Ga subunit of heterotrimeric G-proteins might be present in plants. This was confirmed by the isolation of genomic and cDNA
clones encoding a single class of Gα subunit (GPA1), and a
Gβ subunit, from several plant species (Ma et al. 1990,
1991; Poulsen et al. 1994; Weiss et al. 1994; Kim et al.
1995; Ishikawa et al. 1995; Seo et al. 1995). To date no gene
encoding a Gγ subunit has been isolated from plants.

The high sequence conservation of GPA1 between
different plant species suggests that it might have an
important function. In an attempt to gain insight into the
possible roles of GPα1, Weiss et al. (1993) studied its
expression in Arabidopsis by immunolocalization using
antiseraum against a synthetic peptide corresponding to
the GPα1 C terminus, and by monitoring expression of a GPA1
promoter–GUS fusion. This revealed that GPα1 has a complex
expression pattern. It is present in roots, rosette leaves, floral
stems, cauline leaves, flowers and seed pods, though it is not
present in mature seeds. Highest levels of GPα1 occur in
meristems and immature organs. In mature tissues it is found
in various cell types but particularly in the vascular system.
This pattern of expression does not suggest a specific function
for the protein and if anything indicates that it might be
involved either in responses to a range of different signals
or to a stimulus that has pleiotropic effects possibly
depending on the developmental stage and/or tissue.

At a subcellular level GPα1 appears to be present in the
ER and plasma membrane. This may also be consistent
with a multi-functional role. GPα1 might be involved in
transducing signals at either, or both, of these locations.
It might also be involved in endomembrane trafficking
(Weiss et al. 1997).

The involvement of plant heterotrimeric G-proteins in
signalling pathways has also been investigated by using
pharmacological agonists and antagonists. There is a
wealth of evidence indicating a role for G-proteins in the
regulation of K+ influx channels of stomatal guard cells
(Assman 1996). The non-hydrolysable GTP analogues,
GTPγS and GDPβS, the bacterial cholera and
tetanus toxins, and the G-protein agonist Mas 7, have
been shown to modulate guard cell inward K+ channel
activity in a complex manner. This has been interpreted
as indicating that several G-protein signalling pathways
may operate in guard cells (Fairley-Grenot & Assmann
1991; Li & Assmann 1993; Lee et al. 1993; Wu & Assman

Similar studies have implicated G-proteins in responses
to blue and red light (Warphe & et al. 1991; Romero
& Lam 1993; Neuhans et al. 1993; Bowler et al. 1994),
pathogen resistance and pathogen-related gene expression
(Bean et al. 1995), fungal elicitors (Legendre et al. 1992)
and plant hormones (Boisen et al. 1991; Zaina et al.
1990). In addition, it is possible that one effect of G-protein
activation in plants is the stimulation of a phospholipase D

(b) G-protein coupled receptors

A primary component of the G-protein signalling
pathway is the receptor. The superfamily of GPCRs are
involved in the transduction of a wide range of ligands
that include excitatory amino acids, pheromones, polypeptide
hormones and odorants. GPCRs have been identified
in vertebrates, invertebrates, arthropods, insects,
matadases, fungi, yeast and viruses. The deduced protein
sequence of more than 700 GPCRs is known and these all
have seven stretches of hydrophobic amino acids each
capable of forming a transmembrane α-helix. Thus,
GPCRs are thought to traverse the membrane seven
times forming a cluster of seven α-helices connected by
alternating intracellular and extracellular loops (Strader
et al. 1994). When activated by a ligand it is thought that
GPCRs undergo a conformational change, such that the
cytosolic loop regions are able to interact with the Gα
subunit of a heterotrimeric G-protein and stimulate a
GDP–GTP exchange reaction thus initiating a signalling
cascade.

The fact that higher plants appear to have functional
heterotrimeric G-proteins led to the suggestion that
they might also have GPCRs (Müller & Causier 1996;
Armstrong & Blatt 1995). In an attempt to determine if
plant heterotrimeric G-proteins are regulated by
GPCRs, Mu and co-workers (1997) introduced five
human muscarinic acetylcholine receptors (MACHRs)
into stably transformed tobacco plants and BY2 callus.
Of the constructs, two were wild-type m1 and m2
MACHRs, the others were MACHR β-adrenergic
receptor chimeras that are thought to be less selective
for their cognate G-proteins and therefore more likely
to interact with heterologous G-proteins. All of the
constructs were expressed in calli; four were expressed
in plants. Expression levels were comparable with other
heterologous systems and the receptors displayed the
expected ligand-binding specificity and kinetics indi-
cating that functional MACHRs and MACHR chimeras
had been produced in tobacco. However, there was no
obvious phenotype in tobacco plants expressing the
receptors, and no reproducible effects of the agonist on
the expression of genes thought to be regulated by plant
G-proteins. Thus, although tobacco cells are able to
express functional human GPCRs these were unable to
stimulate plant G-proteins. This might be because the
human GPCRs were unable to mimic their plant coun-
terparts or because plant G-proteins are regulated by a
different mechanism that does not involve this class of
receptors.

Recently however, a plant homologue of the GPCR
superfamily has been identified (Josefson & Rask 1997;
Plakidou-Dymock et al. 1998). The database of expressed
sequence tags (dbEST) (Boguski et al. 1993) contains
several Arabidopsis sequences, and one each from pine
and rice, that predicted products with sequence simi-
larity to GPCRs. One of the Arabidopsis ESTs was used to
isolate the GCRI gene and cDNA (Plakidou-Dymock
et al. 1998). The GCR1 cDNA encodes a 326-amino-acid
polypeptide that has up to 23% amino-acid identity
(53% similarity) to known GPCRs. Hydrophathy
analysis indicates that GCRI has seven potential trans-
membrane-spanning domains and membrane topology
prediction algorithms support a structure characteristic of
GPCRs.

Arabidopsis therefore has homologues of three essen-
tial components of a G-protein signalling pathway, GCRI, a
putative GPCR, GPα1, a putative Gα subunit and AGBI a
putative Gβ subunit. Although further investigation is
required, the possibility exists that these components, or
polypeptides related to them, may interact with one
another as elements of a plant G-protein signal trans-
duction chain.

Phil. Trans. R. Soc. Lond. B (1998)
3. ARE HETEROTRIMERIC G-PROTEINS AND GCR1 INVOLVED IN PLANT HORMONE SIGNALLING?

(a) Auxin

Preliminary evidence for the possible involvement of G-proteins in plant hormone signalling has come from the work of Zania and co-workers (1990) who found that indole-3-acetic acid (IAA) increased binding of \[^3H\]GTP\(\gamma\)S to rice coleoptile membrane vesicles. Naphthyl-2-acetic acid, which has lower biological activity than IAA, did not affect \[^3H\]GTP\(\gamma\)S binding. These observations have been interpreted as suggesting that IAA might stimulate GDP–GTP exchange by a G-protein. In addition, Zania and co-workers (1990) observed that GTP\(\gamma\)S reduced \[^3H\]IAA binding to rice coleoptile membrane vesicles and suggested that this might indicate that G-protein activation somehow inhibits IAA binding by a receptor. These observations have not been followed up in further investigations, although there has been a report of a possible involvement of G-proteins in swelling responses of protoplasts isolated from etiolated wheat leaves to auxin and other hormones (Bosson et al. 1991).

(b) Gibberellin

More substantive evidence of a role for heterotrimeric G-proteins in plant hormone signalling has come from studies with wild oat aleurone protoplasts. Aleurone cells respond to GA by expressing genes encoding a variety of hydrolases, including \(\varepsilon\)-amylase, and secreting these enzymes into the endosperm. This response is one of a number of plant responses to GAs, and it has been used extensively to study GA signal transduction (Hooley 1991). Evidence from two quite different experimental approaches suggests that GAs are perceived at the receptor (reviewed by Bethke 1997). These include that are downstream of a plasma membrane-located GA receptor and recent research has examined the possible role of heterotrimeric G-proteins in signal transduction in wild oat aleurone (Jones et al. 1990). The mastoparan analogue Mas7 stimulates GDP–GTP exchange by heterotrimeric G-proteins and is thought to mimic an activated GPCR (Higashijima et al. 1988, 1990). Jones et al. (1998) found that when wild oat aleurone protoplasts are incubated with Mas7 they produce and secrete \(\varepsilon\)-amylase in a dose-dependent manner. Concentrations as low as 0.1mM Mas7 produce a significant response compared with untreated controls. Mas7 induces \(\varepsilon\)-amylase mRNA and drives expression of an \(\varepsilon\)-Amy2/54:GUS promoter:reporter construct. It stimulates \(\varepsilon\)-amylase enzyme production and secretion with a virtually identical time course to GA and, similar to GA, its effect is largely overcome by ABA. The inactive mastoparan analogues, MasCP (control peptide), differing from Mas7 by a single amino-acid substitution, and Mas7-COOH, a peptide with the same amino-acid sequence as Mas7, but with a free acid replacing the amine group at the C-terminus, do not induce \(\varepsilon\)-amylase. Mas7 therefore appears to be an effective GA mimic, thus raising the possibility that it is activating a heterotrimeric G-protein in the GA signalling pathway.

Further evidence that GA signalling may involve a heterotrimeric G-protein has come from studying the effects of hydrolysis-resistant guanine nucleotides on GA-induction of \(\varepsilon\)-Amy2/54:GUS expression (Jones et al. 1998). The hydrolysis-resistant guanine nucleotide analogues GTP-\(\gamma\)S- and GDP-\(\beta\)-S bind to \(G_a\) subunits and hold them in either the activated (GTP-\(\gamma\)-S-bound) or inactivated (GDP-\(\beta\)-S-bound) form. GDP-\(\beta\)-S introduced into aleurone protoplasts during transfection with reporter gene constructs completely prevented GA induction of \(\varepsilon\)-Amy2/54:GUS expression, whereas GTP-\(\gamma\)-S stimulated expression slightly. Jones and co-workers (1998) also used PCR to clone a partial \(G_b\) subunit cDNA (AfG\(_b\)) and two related \(G_b\) cDNAs (AfG\(_{b1}\) and AfG\(_{b2}\)) from wild oat aleurone. Northern blot analysis confirmed that these are expressed in aleurone cells. The deduced amino-acid sequence of AfG\(_b\) is 40% identical to GPa1 (Ma et al. 1990). The amino-acid sequence of one of the \(G_b\) subunits, AfG\(_{b1}\), is 91% identical to the maize \(G_b\) subunit ZG\(_b\) (Weiss et al. 1994). AfG\(_{b2}\) has been partially sequenced and appears to be related to, but distinct from, the \(G_b\) subunit, with 51% identity to AfG\(_{b1}\) over a 250-amino-acid region.

The effects of Mas7 and guanine nucleotide analogues on GA-induction of \(\varepsilon\)-amylase and \(\varepsilon\)-Amy2/54:GUS expression in wild oat aleurone protoplasts, combined with the expression of transcripts encoding \(G_a\) and \(G_b\) subunits suggest that a heterotrimeric G-protein or proteins are involved in GA signal transduction in this tissue.

(c) Cytokinin

The plant GPCR homologue GCR1 has the highest sequence similarity to the Dictyostelium discoideum cAMP receptors and this raised the possibility that it might be involved in the action of a purine or purine-related signalling molecule in plants. Antisense suppression of GCR1 expression in transgenic Arabidopsis gave rise to a specific reduction in sensitivity to the cytokinin benzyl adenine in both root and shoot tissues, suggesting a role for GCR1 in the perception or transduction of this plant hormone (Plakidou-Dymock et al. 1998).
At present it is not known if GCR1 is a cytokinin receptor. It might equally be a downstream component in cytokinin signalling, or a receptor for another ligand, the signalling pathway for which interacts with cytokinin signalling. In fact, another membrane protein, CKII, that has sequence similarity to histidine-kinase two-component response-regulators, is also a candidate cytokinin receptor (Kakimoto 1996). Further research should help elaborate the function of, and relation between, these molecules.

4. CYTOKININS AND G-PROTEIN SIGNALLING: NEW LIGHT ON ESTABLISHED DATA?

Cytokinin action might, directly or indirectly, involve a G-protein signalling pathway initiated by GCR1. This possibility prompts a re-examination of some published data that are based on the use of G-protein agonists and antagonists, to question whether or not certain G-protein mediated responses might actually involve cytokinins.

(a) Stomata

Stomatal aperture is regulated by a range of environmental and endogenous signals including light, carbon dioxide, abscisic acid and auxin. The effect of cytokinins on stomata has been overlooked in recent years although there is clear evidence that they can open stomata (Blackman & Davies 1984). Could some of the known effects of G-protein agonists and antagonists on guard cell K⁺ influx channel activity (Assmann 1996) be the result of perturbations of a cytokinin signalling pathway?

Lee and co-workers (1993) demonstrated that release of caged GTPγS that had been microinjected into Commelina communis guard cells stimulated stomatal opening. Opening of stomata involves stimulation of K⁺ influx channels and it is has been shown that the G-protein antagonist GDPβS can inhibit guard cell K⁺ influx channel activity (Kelly et al. 1995). Both these observations are consistent with the GTPγS activating and the GDPβS inhibiting a heterotrimeric G-protein that could possibly be involved in transducing a cytokinin signal that causes stomata to open. Clearly this theory will require testing experimentally. However, it does present an alternative interpretation of some of the data obtained with G-protein agonists and antagonists in stomata.

From other observations it is clear that regulation of guard cell K⁺ influx channel activity by heterotrimeric G-proteins is more complex (Assmann 1996; Thiel & Wolf 1997). Measurements made under different experimental conditions suggest that cytoplasmic Ca²⁺ concentration may influence G-protein regulation of inward K⁺ channel activity, and that there may also be a Ca²⁺-independent mechanism (Thiel & Wolf 1997). Thus, in other reports there is clear inhibition of K⁺ influx channels by the G-protein agonists Mas 7 and GTPγS (Fairley-Grenot & Assmann 1999; Armstrong & Blatt 1995) which suggest that a heterotrimeric G-protein may also be involved in stomatal closure. These data are not irreconcilable and could be explained by a dual regulation of K⁺ influx channels by opposing heterotrimeric G-proteins in which cytoplasmic Ca²⁺ might be an important regulator. It is possible that cytokinins might influence one or more of these pathways.

(b) Phytochrome

A number of investigations have suggested that phytochrome signalling involves activation of one or more heterotrimeric G-proteins. For example, treatment of dark-adapted soybean cells with cholera or pertussis toxins uncouples phytochrome-dependent expression of chlorophyll a/b-binding protein ζcab (Romero & Lam 1993). In the aurea mutant of tomato G-protein agonists and antagonists are able to reproduce the effects of phyA on three light-regulated events: (i) anthocyanin production; (ii) chloroplast development; and (iii) the expression of a cab promoter–GUS reporter construct (Neuhaus et al. 1993; Bowler et al. 1994). These studies also led to the proposal that phytochrome stimulation of heterotrimeric G-proteins activated three different signalling pathways: (i) cGMP-dependent; (ii) Ca²⁺-dependent; and (iii) cGMP and Ca²⁺-dependent (Neuhaus et al. 1993; Bowler et al. 1994).

The suggestion that a heterotrimeric G-protein or proteins may be very close to the initial photoreception event in phyA signalling (Neuhaus et al. 1993; Bowler et al. 1994) raises some intriguing questions about how phyA might activate a G-protein. Phytochrome is a cytoplasmic protein that does not associate with membranes (Quail 1991). Therefore, if a direct interaction occurs between phyA and a heterotrimeric G-protein(s) this will involve a mechanism quite unlike that in which these signalling molecules are stimulated by photoreceptors in other eukaryotic cells.

Cytokinin and light signals interact in a complex way that is not understood (Thomas et al. 1997). Photomorphogenesis, and some light-regulated genes such as cab and chalcone synthase, are also regulated by cytokinins (Chory et al. 1994; Thomas et al. 1997). The discovery of a plant homologue of the GPCR superfamily (GCR1) identifies a receptor which could potentially directly stimulate plant heterotrimeric G-proteins, although this has yet to be proven experimentally. However, because GCR1 appears to be involved in cytokinin signal transduction (Plakidou-Dymock et al. 1998) it is possible that one or more of the heterotrimeric G-protein(s) implicated in phyA signal transduction might also be components of a cytokinin signalling pathway. This theory will need to be tested experimentally. However, it does illustrate that recent insight gained into potential G-protein signalling mechanisms in plants might help elaborate the molecular basis of plant signalling systems and their interactions.

IACR receives grant-aided support from the Biotechnology and Biological Sciences Research Council (BBSRC) of the UK. This work was supported by the BBSRC Intracellular Signalling and Integration in Cellular Responses Programmes and European Union Biotechnology.

REFERENCES

