SIGNALS THAT CONTROL PLANT VASCULAR CELL DIFFERENTIATION

Hiroo Fukuda

Plant vascular cells originate from procambial cells, which are vascular stem cells. Recent studies with Zinnia elegans cell culture and Arabidopsis thaliana mutants indicate that intercellularsignalling molecules such as auxin, cytokinin, brassinosteroids and xylogen regulate the maintenance or differentiation of procambial cells through distinct intracellular-signal transduction and gene-expression machineries. This intercellular- and intracellular-signalling system might be involved in determining the continuity and pattern formation of vascular tissues.

PLANT CELL BIOLOGY

The body plan of plants is controlled by a combination of clonal fate and positional information that is provided by local signals, as is commonly seen in multicellular organisms. Recent advances in molecular genetics and genome biology have uncovered unique mechanisms of plant-body formation. Vascular cells are formed under a well-defined plant-differentiation programme. Although vascular cells usually differentiate at predicted positions and at a predicted time to form a specific vascular pattern, the arrangement of the vascular network can be altered by local signals or in response to environmental stimuli. This indicates the involvement of a non-clonal and flexible mechanism in vascular-pattern formation.

VASCULAR CELLS are produced continuously from the APICAL MERISTEMS of shoots and roots in adult plants (FIG. 1). In this situation, local cell-cell communication between developing vascular cells and cells that are not destined to differentiate into vascular cells might have a pivotal role in determining vascular cell differentiation. On the other hand, long-distance signalling also seems to be necessary for the continuous production of vascular strands.

Vascular strands connect plant organs that are often separated by many metres, and provide a pathway for the transport of signalling molecules as well as water and nutrients. For such vascular function, their continuity is a prerequisite. Vascular strands — which are also referred to as vascular bundles — are composed of three tissues: XYLEM, PHLOEM and meristematic tissues

such as procambium and vascular cambium. But mono-COTYLEDONOUS PLANTS and ferns, in which secondary thickening growth does not occur, lack cambium. Individual species of vascular plants form distinct radial patterns of vascular bundles in each organ, which have been categorized as collateral, bicollateral, amphivasal or amphicribral patterns (FIG. 1a, b).

Procambial cells are vascular stem cells that are derived from the apical meristem and give rise to xylem and phloem precursor cells. The final step in vascular development is the specification into distinct types of vascular cells from the precursor cells. Phloem precursor cells differentiate into various phloem cells such as SIEVE ELEMENTS (which are components of SIEVE TUBES), COMPANION CELLS, phloem PARENCHYMA cells and phloem fibres. Xylem precursor cells give rise to tracheary ELEMENTS (TEs), xylem parenchyma cells and xylem fibres, which together form xylem. TEs are components of a vessel — or tracheid — and at maturity, they are emptied by the loss of all cell contents, including the nucleus, to form hollow tubes through which fluids move. Therefore, cell death of TEs is programmed developmentally. TEs possess a characteristic secondary cell wall of annular, spiral, reticulate or pitted wall thickenings, which add strength and rigidity to the wall and prevent TEs from collapse under the high pressure that is exerted on fluid uptake.

Molecular-genetic studies with Arabidopsis thaliana mutants and cellular studies with Zinnia elegans xylogenic cultures (BOX 1) have revealed the integrated

VASCULAR CELLS Cells that form the plant vascular tissues, including procambial cells, cambial cells, sieve elements, companion cells, fibre cells, xylem and phloem parenchyma cells, and tracheary elements.

APICAL MERISTEM The meristematic tissue that is located at the tip of the shoot and root. It is composed of stem cells, which allow plants to continue to grow in height.

The tissue that is responsible for transporting water and minerals. It also gives strength to the stem

PHLOEM

The tissue that is responsible for transporting the carbohydrates that are produced in leaves.

Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan. e-mail: fukuda@biol.s. u-tokyo.ac.jp doi:10.1038/nrm1364

PROCAMBIUM
A primary meristem that is derived from the apical meristem and which gives rise to primary vascular tissues and vascular cambium.

VASCULAR CAMBIUM
A lateral meristem that gives rise to secondary vascular tissues — secondary xylem on the inner side and secondary phloem on the outer side in stems and roots, which results in an increase in the diameter of those organs.

MONOCOTYLEDONOUS PLANTS A class of angiospermous plants that is characterized by the production of seeds with one cotyledon, such as rice, maize and wheat.

SIEVE ELEMENT

The components of sieve tubes that are separated from each other by sieve plates. In contrast to tracheary elements, which are depleted of all cell contents, sieve elements contain a nucleus even after maturation.

SIEVE TUBE

A series of sieve elements that form a long cellular tube that functions in the transport of photosynthetic products.

COMPANION CELLS
Cells that are associated with
sieve elements and support
them. An asymmetrical
cell division of a precursor cell
produces a sieve element and a
companion cell.

PARENCHYMA
A tissue that is composed of cells
that have thin cell walls and has a
relatively flexible ability to

differentiate

TRACHEARY ELEMENT
The thick-walled cylindrical cell
that is a component of vessels, or
tracheids, which are waterconducting tissues.

BASIPETALLY Toward the root tip from the shoot tip.

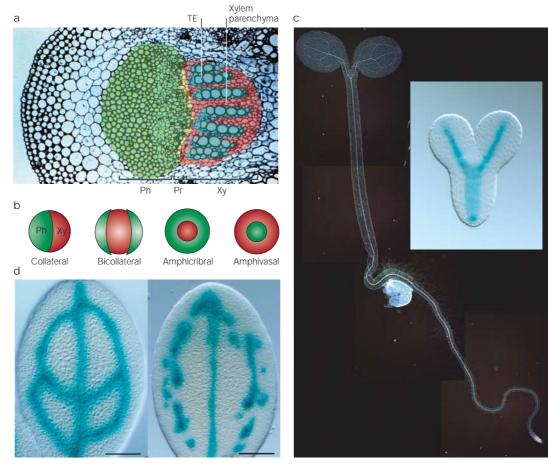
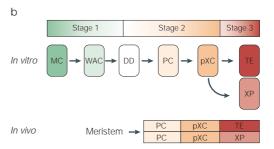


Figure 1 | **Vascular-pattern formation.** a | The vascular system is composed of phloem (green, Ph), procambium (and/or vascular cambium; yellow, Pr) and xylem (Xy) that contains tracheary elements (grey) and xylem parenchyma cells (red), which make a distinct radial pattern of vascular bundles depending on the organ and plant species. Reproduced with permission from **REF. 120** © (1982) John Wiley & Sons Inc. b | Four distinct radial patterns of phloem and xylem (red) within vascular bundles. c | The procambium, stained blue to show the promoter activity of the *HD-ZIP-III* homeobox gene *AtHB8*, is formed as continuous columns of cells in embryos. In seedlings, the shoot and root meristems produce procambial cells to keep the continuity of vascular bundles. Reproduced with permission from **REF. 119** © (2000) Shujyunsha Co. Ltd. d | van3 mutants have a fragmented vascular network in a cotyledon (right) compared with that in a wild-type cotyledon (left)¹⁴. Reproduced with permission from **REF. 14** © (2000) The Company of Biologists Ltd.

nature of plant vascular formation, including the integrity of the vascular system, intravascular-radial-pattern formation and vascular cell specification^{1,2}. Here, I review recent findings on plant vascular cell differentiation, with a special emphasis on intercellular and intracellular signalling. Because little is known about the molecular mechanism of phloem cell differentiation, vascular cell differentiation is described mainly with regard to xylem cell differentiation. In appropriate cases, *A. thaliana* and *Z. elegans* genes and proteins are distinguished by the prefixes At and Ze, respectively.

Intercellular signals and vascular continuity *A role for auxin flow.* Pioneering studies by Jacobs³ and Sachs^{4,5} showed that indoleacetic acid (IAA) — a natural auxin that is produced in the apical region of shoots (including the apical meristem and expanding leaves) and transported BASIPETALLY — was the limiting


and controlling factor in the regeneration of vascular strands around a wound. These studies also showed that polar auxin flow is needed for continuous vascularpattern formation. Indeed, the prevention of polar auxin transport by specific inhibitors causes the formation of local aggregates of vascular cells and discontinuous veins in newly developed leaves^{6,7}. By contrast, such inhibitors were less effective at inhibiting vascular differentiation from the procambium, patterns of which had already formed in embryonic cotyledons. So, these inhibitors seem to affect vascular development through disruptions in the development of procambial patterns. Sachs^{4,5} proposed the 'auxin-flow canalization hypothesis', which suggests that auxin flow, starting initially by diffusion, induces the formation of the polar-auxintransport-cell system. This, in turn, promotes auxin transport, leading to canalization of the auxin flow along a narrow column of cells (FIG. 2). This continuous

Box 1 | Xylem cell differentiation induced in vitro without cell division

Single mesophyll cells (see figure part a, left panel) can be isolated mechanically from expanding leaves of Zinnia elegans. When the isolated mesophyll cells are cultured in vitro in the presence of auxin and cytokinin, they transdifferentiate synchronously within 72 hours, and at a high frequency, into tracheary elements (TEs; see figure part a, right panel) and at a low frequency into xylem parenchyma cells (not shown)^{59,106}. This transdifferentiation can occur without intervening cell division. It is interesting that differentiating TEs still have chloroplasts, as shown by red fluorescence. This xylogenic Z. elegans system is useful for studying the sequence of events during xylem differentiation, largely because differentiation occurs at a high frequency and because the process can be followed in single cells. For example, a recent microarray analysis with this system has uncovered an expression profile of 9,000 genes that change during xylem cell transdifferentiation²¹.

The process of transdifferentiation is divided into three stages (see figure part b)⁵⁹. Stage 1 immediately follows the induction of differentiation by wounding and a combination of auxin and cytokinin, and corresponds to the functional dedifferentiation process. During stage 1, isolated mesophyll cells (MC in the figure) lose their ability to carry out photosynthesis and dedifferentiate via wound-activated cells (WAC in the figure). However, it should be emphasized that this process of dedifferentiation is not accompanied by cell

20 µm

division. At stage 2, dedifferentiated cells (DD in the figure) differentiate into procambial cells (PC in the figure) and then into xylem cell precursors (pXC in the figure). At stage 3, the differentiation of TEs and xylem parenchyma cells (XP in the figure) occurs from xylem cell precursors. The TE-differentiation process involves patterned secondary-cell-wall deposition and programmed cell death. Brassinosteroids are synthesized actively during stage 2 and are essential for differentiation of procambial cells to xylem cell precursors and/or of xylem cell precursors to TEs and xylem parenchyma cells 77.78. This *in vitro* transdifferentiation process mimics *in vivo* xylem cell development during which meristematic cells differentiate into TEs and xylem parenchyma cells via procambial cells and xylem cell precursors. The image in the right panel of part a of the figure is reproduced with permission from Macmillan Magazines Ltd.

polar transport of auxin through cells finally results in the differentiation of strands of procambial cells and, subsequently, vascular strands.

Mechanisms of auxin transport

The recent characterization of A. thaliana mutants that are defective in auxin transport and signalling has provided a cellular and molecular basis for the polar transport of auxin along the plant axis, thereby supporting the canalization hypothesis^{5,8}. An auxin-efflux carrier, AtPIN FORMED 1 (AtPIN1), locates specifically on the plasma membrane that contacts the basal end wall in both procambial cells and xylem parenchyma cells, and contributes to basipetal transport of auxin^{9,10}. Indeed, quantification of the IAA concentration in Pinus sylvestris trees showed the highest IAA concentration in the cambial zone and a gradual decrease in IAA from the cambial zone to the mature xylem¹¹. Asymmetrically transported AtPIN1 causes a polarized auxin flow, which might lead to the formation of continuous columns of procambial cells. AtPIN1 is recycled in cells — it is transported from endomembranes to the plasma membrane by endosome-like, AtPIN1-specific vesicles (AtPINSVs; FIG. 2). A specific guanine-nucleotide-exchange factor for ADP-ribosylation factor G protein, GNOM (also known as VAN7 or EMB30), promotes the asymmetrical transport of AtPINSVs by the activation of ADP-ribosylation factor ^{12,13}. In a *van7* (*emb30-7*) mutant, an excess of fragmented vascular structure is induced in leaves and cotyledons ¹⁴. A serine/threonine kinase known as PINOID might also be involved in the asymmetrical transport of AtPINSVs — possibly by phosphorylating an unknown component of AtPINSVs — because the phenotype of the *pinoid* mutant is similar to that of *Atpin1* (REF. 15). Interestingly, *PINOID* is expressed preferentially in xylem precursor cells and xylem parenchyma cells ¹⁶.

In addition to GNOM and PINOID, many proteins with a role in IAA efflux have been identified ¹⁷. Muday and Murphy ¹⁷ have pointed out striking similarities between the IAA-efflux-related proteins and proteins that mediate the insulin-inducible, asymmetric vesicle cycling of mammalian glucose transporters ^{18,19}, raising the possibility that a mammalian glucose-transporter-like mechanism might underlie polarized AtPIN1 cycling (FIG. 2). Although auxin can be transported inside the cell without a transporter,

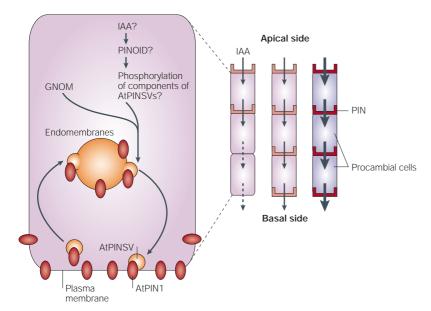


Figure 2 | Molecular mechanism of auxin polar transport. Asymmetrically transported auxin-efflux carriers (PIN proteins) cause a polarized flow of auxin, which leads to the formation of continuous columns of procambial cells. AtPIN1 is recycled in cells — it is transported from endomembranes to the plasma membrane by endosome-like AtPIN1-specific vesicles (AtPINSVs). A guanine-nucleotide-exchange factor for the ADP-ribosylation factor G protein, GNOM/EMB30, and the serine/threonine kinase PINOID are thought to promote the asymmetrical transport of AtPINSVs by the activation of ADP-ribosylation factor and the phosphorylation of an unknown component of AtPINSVs, respectively. This process might be initiated by the natural auxin indoleacetic acid (IAA) to create a positive-feedback loop of IAA flow, which is consistent with the IAA-flow canalization model.

auxin-influx carriers support the rapid influx of auxin into cells. AUX1, an auxin-influx carrier, is also asymmetrically localized on one side of the cell²⁰. Although AUX1 locates in Protophloem in roots²⁰, which is different from the localization of AtPIN1, it is still possible that a distinct member of the *AUX1*-gene family might have a role in auxin flow in procambium or xylem columns. Interestingly, exogenously supplied auxin enhances the expression of the *PINOID* gene in xylem¹⁶ and of a *Z. elegans AUX1* homologue in the xylogenic culture²¹. Therefore, auxin-dependent transcriptional activation of these genes could function as a component of a positive-feedback loop of polar auxin transport that was predicted in the auxin-flow canalization hypothesis.

PROTOPHLOEM
The primary phloem that is first formed from procambium during organ development.

AUX/IAA PROTEINS
A class of short-lived nuclear proteins that share four conserved domains and that are generally encoded by early-auxin-response genes. They repress auxin responses by dimerizing with auxin-response factor (ARF) transcriptional activators that reside on auxin-responsive promoter elements.

Auxin perception

Not all cells that are subjected to polar auxin flow differentiate into vascular cells. Therefore, in addition to polar auxin flow, auxin perception is needed for the continuous formation of vascular strands. Indeed, *A. thaliana* mutants, such as *auxin resistant-6* (REF. 22) and *bodenlos*²³, which are defective in perceiving auxin, show a severely reduced vascular network. The *MONOPTEROS* (*MP*) gene encodes a transcription factor that belongs to a family of 23 auxinresponse factors (ARFs)²⁴, and MP binds to *cis*-acting auxin-response elements to activate transcription²⁵. *MP* is initially expressed in a broad area of the embryo, but becomes gradually confined to the procambium²⁴.

mp mutations disturb the body organization along the apical–basal axis and cause the formation of discontinuous and reduced vascular strands^{24,26}. These findings have indicated that MP might function to promote continuous vascular-pattern formation by mediating the axial formation of plant cells in response to auxin cues²⁷.

The auxin-induced short-lived AUX/IAA PROTEINS (of which there are at least 24 in A. thaliana) are thought to bind to specific ARFs and repress their transcriptional activities²⁸. Auxin stimulates the degradation of AUX/IAA proteins by the activation of a specific ubiquitin ligase, which, in turn, promotes ARF-dependent gene expression. Because auxin also induces the expression of AUX/IAA genes, ARF-dependent gene expression is again repressed by the increased levels of AUX/IAA proteins. Therefore, it is important to find the AUX/IAA protein(s) that bind specifically to MP. Even though IAA8, which encodes an AUX/IAA protein, and MP are both expressed preferentially in procambial cells²⁹, there is no evidence for an interaction between IAA8 and MP in these cells. Altogether, it is clear that polar auxin transport is crucial for the continuous formation of vascular bundles; however, the precise molecular mechanisms are still mostly unknown. To gain a better understanding of this process, we need to identify more components that are involved in auxin-flow-dependent procambial cell differentiation.

Auxin-flow-independent patterning

The auxin-flow canalization hypothesis assumes that polarized auxin flow establishes a canal for conducting auxin flow by itself, without any blueprints, and that this canal results in the formation of a vascular pattern. Therefore, mutations that prevent canalized auxin flow and vascular continuity are expected to have defects in the overall architecture of the vascular pattern. There are a number of A. thaliana mutants that have discontinuous secondary vascular strands in cotyledons and leaves, although the main vein in cotyledons and leaves, and vascular strands in other organs, are continuously formed $^{4.30-32}$. Interestingly, in most of the mutants, although the vein networks were fragmented, the overall architecture was normal.

Detailed analysis of a mutant, van3, showed that vein fragmentation occurred at the time of procambium formation. This pattern of vein formation cannot be explained simply by the auxin-flow canalization hypothesis. To explain vein patterns, some other hypotheses have been proposed. These include the leaf-venation hypothesis, according to which shifts in the sites and concentrations of auxin, in association with leaf development, control venation-pattern formation³³. And they include the diffusion-reaction prepattern hypothesis, in which local autocatalysis and long-range inhibition of the reaction by interacting substances that have different diffusion rates generate stable patterns autonomously 34,35. The discontinuous vein formation might be explained by the diffusion-reaction prepattern hypothesis. According Box 2 | Relationship between abaxial-adaxial identity and radial patterns of vascular tissues.

Adaxial side

Collateral

Ph

Abaxial side

In wild-type cells xylem (Xy in the figure) and phloem (Ph in the figure) form on different sides of the vascular bundle (see figure part a). The loss-of-function mutants of adaxial-identity genes and the gain-of-function mutants of abaxial-identity genes induce amphicribral vascular bundles in which the

Loss-of-function of adaxial-identity genesGain-of-function of abaxial-identity genes

Loss-of-function of abaxial-identity genes
Gain-of-function of adaxial-identity genes

Amphivas

phloem encircles the xylem (see figure part b). The loss-of-function mutants of abaxial-identity genes and the gain-of-function mutants of adaxial-identity genes induce amphivasal vascular bundles, whereby the xylem surrounds the phloem (see figure part c).

to this hypothesis, slight changes in the autocatalytic condition can be expected to induce a spotted pattern of vascularization as a result of fragmentation of the striped pattern without destroying the overall architecture. The VAN3 gene, therefore, might encode components of the diffusion-reaction systems, as in the case of the Leopard gene of zebrafish, mutations of which change the pigmentation pattern from stripes to spots³⁶. These results indicate the presence of at least two different mechanisms for the continuous formation of vascular networks — a polar-auxintransport-controlled mechanism and a second mechanism, for example, an autonomous pattern-formation mechanism that is induced by a secreted activator(s) and inhibitor(s). The A. thaliana cov1 mutant shows a dramatic increase in vascular-tissue development in place of the interfascicular region that normally separates the vascular bundles³⁷. Analysis of the interaction of cov1 with a known auxin-signalling mutant and direct analysis of auxin concentrations indicate that *cov1* affects vascular patterning by a mechanism that is independent of auxin.

Dorsoventral identity and radial patterning In the vascular bundles of the leaves of many plant species, xylem, procambium and phloem show a distinct dorsoventral organization — xylem is localized on the dorsal (adaxial) side, phloem is on the ventral (abaxial) side and procambium is positioned between xylem and phloem. Antirrhinum majus and A. thaliana mutants that show defects in the identity or maintenance of the dorsoventral axis indicate the involvement of the dorsoventral axis in the radial-pattern formation of leaf vascular tissues (BOX 2). The PHANTASTICA (PHAN) gene, which encodes a MYB-LIKE TRANSCRIPTION FACTOR, is expressed in organ initials and in adaxial cells in developing leaves³⁸. Loss-of-function mutations of PHAN show a phenotype in which tissues that are normally associated with the adaxial part of the wildtype leaf are replaced by tissues with abaxial characteristics, which indicates that PHAN is probably involved in the adaxial identity of leaves³⁹. In phan leaves, the vein vascular system changes into a cylinder in which phloem encircles xylem — that is, it becomes an amphicribral vascular bundle (BOX 2). By contrast, gain-of-function mutations of an A. thaliana homeobox leucine-rich repeat (LRR) class-III gene (HD-ZIP III) PHABULOSA (PHB)/AtHB14 or REVOLUTA (REV)/INTERFASCICULAR FIBERLESS 1(IFL1) cause a dramatic transformation of abaxial-leaf fates into adaxial fates and result in the formation of an amphivasal vascular bundle in which xylem surrounds phloem⁴⁰⁻⁴² (BOX 2). Plants that are homozygous for loss-of-function alleles of three genes — phb phv (phavoluta/AtHB9) rev — produce only a single, radial, abaxialized cotyledon with no bilateral symmetry in the most severe manifestation, and two radialized cotyledons with amphicribral vascular bundles in lesssevere manifestations⁴² (BOX 2).

On the other hand, the YABBY gene family of abaxial-identity genes are known to be expressed in the abaxial side of leaves and to specify abaxial cell fates in A. thaliana^{43,44}. Ectopic expression of FILAMENTOUS FLOWER (FIL) or YABBY3, which are both members of this family, is sufficient to specify the development of ectopic abaxial tissues in lateral organs. Occasionally, amphicribral vascular bundles are also observed in the PETIOLES of FIL-overexpressing plants (S. Sawa, personal communication). Although loss-of-function of FIL and YABBY3 changed abaxial cell fates to adaxial ones, the vascular system still retained a normal adaxial-abaxial polarity (xylem, adaxial; phloem, abaxial)44. KANADI is another gene family that specifies abaxial identity 45,46. Triple loss-of-function mutants of KANADI1 KANADI2 KANADI3 show radialized amphivasal vascular bundles in stems⁴² (BOX 2).

Altogether, the collateral pattern of xylem and phloem in vascular bundles might be determined by the proper balance between adaxial- and abaxial-identity genes. The predominance of either adaxial or abaxial identity causes amphivasal and amphicribral vascular bundles, respectively. In other words, adaxial- and abaxial-identity genes might interact to specify xylem and phloem formation, respectively, in vascular bundles. In

MYB-LIKE TRANSCRIPTION FACTOR
A member of the transcription-

factor family that contains the MYB motif, which consists of a helix-turn-helix structure with three regularly spaced Trp residues. This family is substantially larger in plants than in animals and functions in the regulation of a variety of events, including secondary metabolism and plant morphogenesis.

PETIOLE

The part of the leaf that connects the leaf blade and the stem.

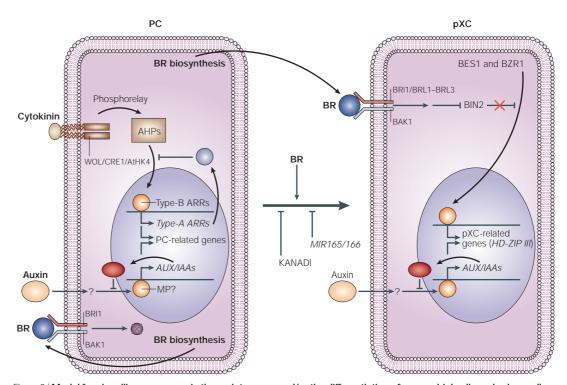


Figure 3 | Model for signalling processes in the maintenance and/or the differentiation of procambial cells and xylem cell precursors. In procambial cells (PCs), the coordinated signalling by cytokinin and auxin induces the expression of genes that are involved in the maintenance of procambial activities. The auxin-signalling pathway might involve gene expression of auxin-response factors, such as MONOPTEROS (MP), that also function as transcriptional activators, and their repressors, the AUX/IAA proteins. Cytokinin might be perceived by the WOL/CRE1/AtHK4 cytokinin receptor, which, in turn, transmits an intracellular signal that is mediated by a His-Asp phosphorelay mechanism to PC-related histidine-containing phosphotransfer factors (AHPs) and then to PC-related type-B response regulators (ARRs). The type-B ARRs might function as transcriptional activators of PC-related genes including the genes of their repressors, the type-A ARRs. The presence of repressors in auxin- and cytokinin-signalling pathways might allow cytokinin and auxin signalling to be temporal. Brassinosteroids (BRs in the figure) are biosynthesized actively in PCs and secreted, but brassinosteroids do not work as a signal for the maintenance of procambial activities. Instead, brassinosteroids, in the presence of auxin, might initiate differentiation of procambial cells to precursors of xylem cells (pXCs) after recognition by a receptor, which might be a heterodimer composed of either brassinosteroid-insensitive-1 (BRI1) or one of the BRI1-like proteins (BRL1-BRL3), plus BRI1associated receptor kinase-1 (BAK1). The brassinosteroid signal inactivates the negative regulator BIN2 (brassinosteroid-insensitive-2), which allows the unphosphorylated form of bri1-EMS-suppressor-1 (BES1) and brassinazole-resistant-1 (BZR1) to translocate to the nucleus and to promote pXC-related gene expression. Among the most important pXC-related genes that are induced by brassinosteroids might be the HD-ZIP-III-homeobox gene family, which might function in further xylem cell differentiation. KANADI and the microRNAs MIR165 and MIR166 might suppress differentiation of PCs to pXCs. The suppression by the microRNAs might be caused by the rapid degradation of the HD-ZIP-III gene mRNA through RNAi machinery.

fact, the loss-of-function alleles of *KANADI* lead to an expansion of *PHB*, *PHV* and *REV* expression ^{45,47}. This indicates that abaxial-identity genes function as negative regulators of *PHB*, *PHV* and *REV*, leading to the suppression of xylem differentiation. The *APL* gene, which encodes a Myb-like transcriptional factor, was recently identified and found to have a dual role in promoting phloem differentiation and in repressing xylem differentiation ⁴⁸. Therefore, it will be quite interesting to uncover the interrelationship between *APL* and the *KANADI* genes, and *PHB*, *PHV* and *REV*.

Vascular-cell-development factors

Cytokinin. CYTOKININ has a crucial role in the formation and/or maintenance of procambial cells. In a recessive A. thaliana mutant known as wooden leg (wol), the number of procambial cells in embryos is reduced and the vascular system in emerging roots is composed only

of xylem $^{\rm 49}$. Mähönen and others found that WOL was identical to CRE1/AtHK4, which encodes a histidine kinase that functions as a cytokinin receptor⁵⁰. The corresponding gene is expressed preferentially in the procambium, which indicates that cytokinin function through WOL/CRE1/AtHK4 is probably necessary for the maintenance of procambial activity (FIG. 3). By contrast, the role of WOL/CRE1/AtHK4 in phloem differentiation might be indirect and result from the regulation of cell proliferation during procambial development. In the A. thaliana genome, there are two other cytokinin receptor genes, AtHK2 and AtHK3 (REF. 51), which are also expressed in vascular cells and the products of which might have affinities for cytokinin that are different from that of AtHK4 (T. Kakimoto, personal communication). Therefore, different cytokinin affinity might be required for the maintenance of procambial cells and other vascular cells.

CYTOKININ N^s -substituted adenine derivatives that have diverse effects on important physiological functions such as cell division, greening and differentiation in plants.

These cytokinin receptors function together with downstream components, such as histidine-containing phosphotransfer factors and response regulators. The signal is mediated by a His-Asp-phosphorelay mechanism — that is, the sequential phosphotransfer between His and Asp residues in each component. A. thaliana has five genes that encode histidine-containing phosphotransfer factors (AHP1-AHP5). AHP2 is thought to function downstream of CRE1/WOL/AtHK4 (REF. 52). There are 22 response regulators (ARR1-ARR22) in A. thaliana, and these can be divided into two distinct subtypes: type A, with 10 members; and type B, which has 11 members (ARR22 represents an atypical subtype). Type-B ARRs function as transcriptional activators, whereas type-A ARR genes are induced rapidly by cytokinin but the corresponding proteins do not have DNA-binding activity^{53,54}. In cre1 roots, cytokinin induces all the type-A ARR genes, except ARR15 and ARR16 (REF. 32). In wild-type roots, cytokinin induces ARR15 in procambial cells, but not in xylem and phloem cells, and ARR16 in the PERICYLCE. Recently, ARR15 was found to function as a repressor of type-B ARRs⁵⁵. Because a loss-of-function mutant of ARR15 shows no phenotype, other ARR genes might be functionally redundant. The factor(s) that activates the expression of procambium-related genes, including ARR15, downstream of the CRE1/WOL/AtHB4 signalling pathway, remains to be clarified.

The key step in cytokinin biosynthesis is the transfer of an isopentenyl group to the N^6 position of ADP/ATP, which is catalysed by dimethylallyl diphosphate:ATP/ADP isopentenyltransferase (IP)^{56,57}. There are several *IP* genes (*AtIP1* and *AtIP3*–*AtIP8*) in *A. thaliana*⁵⁶. Many *AtIP* genes are expressed in the tips or vascular bundles of *A. thaliana* roots, which indicates that the vascular bundle is an active site of cytokinin biosynthesis and might function as a source of cytokinin⁵⁸. The demonstration of cytokinin biosynthesis in a distinct vascular cell type indicates that cytokinins are signalling molecules that induce vascular differentiation.

It should be emphasized that cytokinin function in procambial cells might require auxin (FIG. 3). For example, in *Z. elegans* xylogenic cultures, an exogenous supply of both auxin and cytokinin is a prerequisite for the differentiation of procambium-like cells from dedifferentiated cells⁵⁹. In procambium-like cells, there is preferential expression of genes that are involved in auxin signalling, such as homologues of *A. thaliana MP, IAA8, AUX1* and a gene encoding an *A. thaliana* putative 'no apical meristem' (NAM)-like protein^{21,29}. The establishment of new intracellular-auxin-signalling systems must be included in a programme for maintaining procambial activities or for further vascular development.

HD-ZIP-III-gene family and microRNAs. Differentiation of xylem cells from procambial cells is coupled with the gradual expression of HD-ZIP-III homeobox genes. The A. thaliana HD-ZIP-III gene family contains AtHB8 and AtHB15 in addition to PHB, PHV and REV, which were mentioned above.

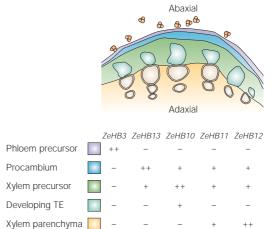


Figure 4 | Radial-accumulation pattern of transcripts for homeobox genes in vascular tissues. Zinnia elegans ZeHB3, ZeHB13, ZeHB10, ZeHB11 and ZeHB12 transcripts accumulate in vascular tissues in this order from the abaxial to the adaxial side⁶¹. Transcripts for ZeHB3, which belongs to the HD-ZIP-I homeobox-gene family, accumulate preferentially in phloem precursor cells on the abaxial side. Transcripts for ZeHB13, ZeHB10 and ZeHB11/ZeHB12, which correspond to AtHB15, AtHB8 and REVOLUTA, respectively, accumulate preferentially in procambial and xylem cells. Reproduced with permission from REE.64 © (2003) The Japanese Society of Plant Physiologists. TE, tracheary element.

PHB, PHV and REV are commonly expressed in both the vascular and adaxial region of lateral organs⁴⁰, whereas AtHB8 and AtHB15 are expressed strictly in vascular bundles — in particular, in the procambial or xylem precursor region^{60,61}. A detailed analysis of the expression of Z. elegans HD-ZIP-III genes in leaf veins showed overlapping, but distinct, layer patterns of mRNA accumulation from the central (procambium) to the adaxial side (mature xylem; FIG. 4). ZeHB13 (which corresponds to AtHB15) mRNA accumulates in procambial and xylem precursor cells. ZeHB10 (which corresponds to AtHB8) is expressed highly in xylem precursor cells and developing TEs. mRNA for ZeHB12 and ZeHB11 (both corresponding to A. thaliana REV) is abundant in xylem precursor cells and developing xylem parenchyma cells^{61,62}. This cellular localization is consistent with results from the following functional analysis. Loss-of-function mutations at the REV locus cause a reduction in the number of xylem cells, in particular interfascicular fibre cells^{63–65}. By contrast, overproduction of AtHB8 under the control of a promoter that directs ubiquitous gene expression results in the formation of excess xylem, including TEs and interfascicular fibre cells⁶⁶. So the differential expression patterns of different HD-ZIP-III proteins, together with the finding that these HD-ZIP-III proteins can form both homo- and heterodimers⁶², results in various combinations of HD-ZIP-III proteins from the central to the adaxial region that might initiate or promote specific stages of xylem differentiation to produce a radial pattern of xylem tissues.

PERICYLCE
The tissue that is composed of one or a few layers of cells that are located outside of the vascular tissues in roots and stems. In roots, lateral roots originate from this tissue.

INTERFASCICULAR
'Between the bundles'; the bundles being the strands that contain the vascular tissue.

The HD-ZIP-III homeobox proteins have a predicted sterol/lipid-binding domain known as START. Many mutations in the START domain of PHB, PHV and REV are dominant and cause gain-of-function phenotypes^{40,42}. These phenotypes are the result of an alteration of RNA sequences with no consequent alteration of amino-acid sequences in the START domain⁴² — the stability of the transcripts is elevated in the gain-offunction mutants⁴⁰. Bartel and others showed the existence of two microRNAS — MIR165 and MIR166 — that overlap with a region of the START domain in which mutations in PHB, PHV and REV occurred 67-69. These results strongly indicate that the instability of PHB, PHV and REV transcripts is regulated by an RNA interference (RNAi) mechanism through MIR165 or MIR166. Interestingly, the START domains of ZeHB13 and AtHB15, which are expressed at the earliest stage of xylem differentiation, are complementary to MIR166, and those of the other Z. elegans and A. thaliana HD-ZIP-III genes were complementary to MIR165 (REF. 61). Therefore, MIR166 might function as a negative regulator of ZeHB13 and AtHB15 and restrict the distribution of its transcript within the procambium, whereas MIR165 might limit the distribution of the other HD-ZIP-III transcripts in xylem tissues. Another possibility is that a combination of MIR165 and MIR166 suppresses the expression of all the HD-ZIP-III genes in tissues other than xylem, preventing them from differentiating to xylem. A. thaliana mutants that are defective in ARGONAUTE1, the gene product of which is a component of the RNAi machinery and functions in gene silencing, show pleiotropic defects in plant architecture, including reduced vascular formation⁷⁰. A homologue of ARGONAUTE1, PINHEAD/ZWILLE, is expressed strongly in vascular tissues as well as the adaxial side of lateral organs⁷¹. These findings also support the idea that the RNAi machinery functions in the spatial pattern formation of vascular cells.

Brassinosteroids. Brassinosteroid (BR)-deficient mutants that have defects in different enzymes of the BR biosynthetic pathway show common phenotypes including dwarf stature, altered photomorphogenesis and abnormal vascular patterning, with increased amounts of phloem and decreased amounts of xylem^{72,73}. The application of brassinazole — a specific inhibitor of BR biosynthesis74 — to cress seedlings causes excess formation of phloem and reduced formation of xylem75. These findings strongly indicate that endogenously biosynthesized BRs promote xylem formation and suppress phloem formation. But when are BRs synthesized and when do they function during xylem differentiation? The answers to these questions have come from experiments with xylogenic Z. elegans cultures (BOX 1). Iwasaki and Shibaoka showed that an inhibitor of cytochrome P450 enzymes inhibited xylem cell differentiation in cultured Z. elegans cells and that an active BR brassinolide — overcame this inhibition⁷⁶. Because such BR-biosynthesis inhibitors do not suppress gene expression during stages 1 and 2 of xylem cell differentiation, but suppress the expression of most genes that function specifically in stage 3, endogenous BRs might be necessary for the transition from stage 2 to stage 3. Indeed, a drastic increase in BR biosynthesis occurs at stage 2 when procambium-like cells are produced by differentiation 77.78. Therefore, BRs that are biosynthesized in procambium-like cells during stage 2 might initiate the progression to stage 3 (BOX 1).

HD-ZIP-III genes might be crucial BR-regulated genes in vascular cells. In Z. elegans xylem cell differentiation, BR depletion severely suppresses the expression of ZeHB10, ZeHB11 and ZeHB12 in xylem precursor cells and differentiating xylem cells, but does not greatly suppress the expression of ZeHB13 in procambial cells and xylem precursor cells^{61,62}. The three genes are induced within 1 hour by brassinolide in *Z. elegans* stage-2 cells, indicating that these genes respond rapidly to BRs⁶¹. Therefore, BRs might regulate differentiation from procambium to xylem through the expression of specific members of the HD-ZIP-III family (FIG. 3). Interestingly, a considerable amount of BR is secreted from the cell77, which is consistent with the fact that the perception of BR occurs on the plasma membrane by an extracellular ligand-binding domain of BR receptors, as discussed below⁷⁹.

How do BRs regulate vascular formation? BRI1 (brassinosteroid-insensitive-1) is a membrane-associated, LRR receptor serine/threonine kinase that transduces the BR signal⁸⁰. Because BRI1 is ubiquitously expressed in plants⁸¹ and *bri1* loss-of-function mutants show similar phenotypes to BR-deficient mutants⁸², BRI1 is thought to function ubiquitously in BR-signal perception. Recently, BRI1-associated receptor kinase-1 (BAK1), an A. thaliana LRR receptor-like protein kinase, was shown to interact with BRI1 and modulate the BR signaling^{83,84}. This protein is also expressed ubiquitously. These findings seem to imply that the BR-perception system itself is not involved in differentiation of specific tissues. However, there are other genes with high sequence homology to BRI1 and BAK1 in A. thaliana85. Of these, three genes — *BRL1* (*BRI1-like protein-1*), BRL2/VH1 (vascular highway-1) and BRL3 — contain a sequence that encodes an LRR (which serves as a ligandbinding site) that is homologous to that of BRI1. Because both BRL1 and BRL3, but not BRL2, can bind brassinolide⁸⁵ and, in fact, rescue the *bri1* mutant phenotype when driven by the BRI1 promoter (J. Li, personal communication), at least BRL1 and BRL3 seem to function as BR receptors. Interestingly, all three genes are preferentially expressed in vascular tissues 86 (J. Li, personal communication). These results strongly point to the existence of a vascular-cell-specific BR-perception system. After plasma-membrane perception of BRs, the signalling pathway begins to resemble elements of the Wingless/WNT pathway87. The BR signal inactivates the negative regulator BIN2 (brassinosteroid insensitive-2), a glycogen-synthase kinase-3 (GSK3)/shaggy-kinase homologue, which allows the unphosphorylated form of bri1-EMS-suppressor-1 (BES1) and brassinazoleresistant-1 (BZR1) to translocate to the nucleus and to promote BR-regulated gene expression (FIG. 3).

In addition to BRs, other sterols might function in vascular development. A discontinuous venation pattern

microRNA
The approximately 21–22ribonucleotide RNA that arises
from the action of the Dicer
double-stranded ribonucleases
on short stem-loop precursors.
It initiates blocking of the
targeted mRNAs, which have
nucleotide sequences that are
complementary to the

BRASSINOSTEROID A group of naturally occurring plant polyhydroxysteroids with wide-ranging biological activity.

microRNA

composed of cellulose microfibrils and cementing

substances that contain lignin, hemicellulose, pectin

and other proteins, which add strength and rigidity to

the wall. The coordinated and transient synthesis of

these substances has provided hints regarding the regulatory mechanism of TE differentiation.

Secondary-wall formation in developing TEs requires

cytoskeleton-oriented cellulose microfibril deposition, deposition of other secondary-cell-wall components

along the cellulose microfibrils, degradation and mod-

ification of primary cell walls, and ${\tt LIGNIFICATION}^{59}.$ The

formation of patterned cellulose microfibrils is a coor-

dinated process in which actin filaments initiate the

reorganization of microtubules, which, in turn, deter-

mine the spatial disposition of cellulose microfibrils by controlling the movement of the cellulose biosynthetic

complex on the plasma membrane⁹³. CESA genes

encode catalytic subunits of the plant cellulose synthase⁹⁴. Ten CESA isoforms exist in A. thaliana (see

The Cellulose Synthase Superfamily in the online links

box). Distinct CESA isoforms participate specifically in secondary-cell-wall formation in developing TEs95.

In A. thaliana, IRX1/CESA8, IRX3/CESA7 and

IRX5/CESA4 interact as subunits within a cellulose

complex in secondary cell walls^{95,96}, whereas CESA1,

CESA3 and CESA6 form the complex in primary

walls⁹⁷. This difference might reflect the distinct prop-

erties of cellulose in secondary walls, which have more

β-glucan chains per microfibril and a higher overall

cellulose content than primary walls. During matura-

tion of TEs, IRX1/CESA8, IRX3/CESA7 and

IRX5/CESA4 move from the cytoplasm to the plasma

membrane to colocalize with bands of cortical micro-

tubules⁹⁶. Arrays of cortical microtubules, but not

those of actin filaments, are required continually to

maintain normal CESA protein localization, support-

ing the direct involvement of cortical microtubules in

Z. elegans xylogenic culture^{21,98}, poplar trees⁹⁹ and pine

trees¹⁰⁰ has revealed a number of genes that are newly

and coordinately expressed in association with sec-

ondary-wall formation. These include genes for specific

cell-wall structural proteins, enzymes that degrade cell

walls, enzymes that modify the cell-wall structure,

enzymes that catalyse lignin-precursor biosynthesis, and

lignin-polymerizing enzymes, as well as specific CESA

genes. Although specific MYB and LIM TRANSCRIPTION

FACTORS are known to coordinately upregulate several

enzymes that are related to lignin precursor

biosynthesis^{101,102}, the transcription mechanism that

upregulates genes encoding other proteins that have

various tasks in secondary-wall formation remains to

be elucidated. Because almost all TE-specific genes

are suppressed by depletion of endogenous BRs in

the Z. elegans culture system, profiling of genes that are

induced immediately by BR treatment in developing

xylem cells might provide an important insight into the

Recent systematic gene-expression analysis with the

patterned cellulose deposition⁹⁶.

is observed in several biosynthetic mutants that affect both sterols and BRs, including orc (which encodes sterol methyltransferase-1)88, fackel (which encodes C-14 sterol reductase)⁸⁹ and cvp1 (which encodes sterol methyltransferase-2)90. In contrast to mutants that are defective in the BR-specific biosynthetic pathway, the wild-type phenotype cannot be restored by supplementing these mutants with BRs. In orc, the membrane localization of the auxin-efflux carrier proteins AtPIN1 and AtPIN3 is disturbed, whereas polar positioning of the influx carrier AUX1 is normal88. These results imply that balanced sterol composition or the shortage or overproduction of an unknown specific sterol(s) might have a role in vascular continuity through the establishment of auxin efflux.

Xylogen. Motose et al.91 first showed the involvement of local intercellular communication during TE differentiation using gel-embedding culture methods, in which Z. elegans MESOPHYLL cells embedded in a thin sheet of agarose gel were cultured on solid medium (thin-sheet culture), or those in microbeads of agarose gel were cultured in liquid medium (microbead culture). Statistical analysis of the two-dimensional distribution of TEs in thin-sheet culture indicated that TEs were not randomly distributed but, rather, were aggregated. This result indicates that local intercellular communication has a positive regulatory role in TE differentiation from Z. elegans mesophyll cells. The characterization of a putative factor that mediates local intercellular communication, using a bioassay system based on microbead culture, showed that the mediator is a secretory non-classical type of ARABINOGALACTAN PROTEIN, which was called xylogen⁹². The depletion of arabinogalactan proteins from the culture medium with β-GLUCOSYL YARIV REAGENT specifically inhibits TE differentiation without affecting cell division, which is consistent with the conclusion that xylogen is an arabinogalactan protein. Xylogen activity is induced in stage 2 of Z. elegans cell differentiation, probably in procambial and/or xylem precursor cells, by a combination of auxin and cytokinin. The specific localization of xylogen mRNA in procambial and xylem precursor cells has recently been revealed (H. Motose and H. Fukuda, unpublished observations). From these findings, a positive-feedback loop is assumed in which cells are drawn into the pathway towards TE differentiation by the presence of xylogen and such cells come to produce more xylogen. Therefore, xylogen might be responsible for the continuous formation of TE strands.

Tracheary-element differentiation

The final step in vascular cell development is the specification of a vascular cell with a particular task. One of the most distinctive specification processes is the TE-differentiation process, which involves two main morphological events: patterned secondary-wall formation and programmed cell death.

Secondary-wall formation and transcriptional activation.

The most striking feature of TE formation is the develop-

ment of patterned secondary walls. The secondary wall is

Secondary-wall formation in TEs is tightly coupled with the degradation of primary walls, which is

coordinate induction of TE-specific genes.

MESOPHYLL. The photosynthetic tissue between the upper and lower epidermis of the leaf. Mesophyll cells contain chloroplasts

ARABINOGALACTAN PROTEIN A class of hydroxyproline-rich proteoglycans to which branched 3,6-β-D-galactans containing arabinose are attached by O-glycosidic bonds. They are widely distributed throughout the plant kingdom.

β-GLUCOSYL YARIV REAGENT A synthetic phenyl glycoside that interacts selectively with arabinogalactan proteins and that is used for the purification and quantification of arabinogalactan proteins and for disturbing arabinogalactan protein function.

LIGNIFICATION The deposition of lignin on secondary cell walls of tracheary elements and fibre cells to reinforce them mechanically and

chemically LIM TRANSCRIPTION FACTOR A member of the transcriptionfactor family that contains the LIM domain, which is a cysteine-rich polypeptide

composed of two special zinc

fingers separated by a two-

amino-acid spacer.

NATURE REVIEWS | MOLECULAR CELL BIOLOGY

VOLUME 5 | MAY 2004 | 387

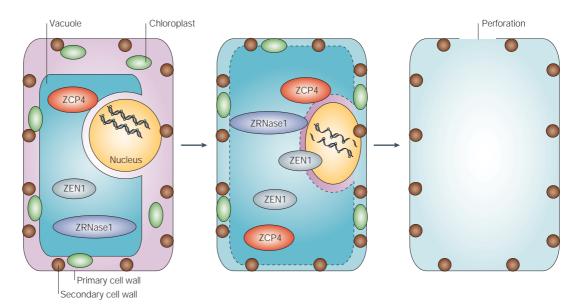


Figure 5 | **Programmed cell death during tracheary-element differentiation.** Brassinosteroids (BRs) induce tracheary element (TE) differentiation through the expression of genes that are related to secondary-cell-wall formation and programmed cell death (PCD). In developing TEs, PCD-specific hydrolytic enzymes — such as an S1-nuclease (ZEN1), RNases (ZRNase1) and cysteine proteases (ZCP4) — are newly synthesized and accumulate in the vacuole. The vacuole enlarges and the enlarged vacuole then bursts, shrinks and fragments. Vacuole collapse causes the insulated hydrolytic enzymes to be released into the cytoplasm and to attack various organelles, resulting in autolysis of the cell contents and part of the cell walls. Finally, perforation of the wall leads to the loss of all cell contents from TEs and the formation of mature hollow tubes that are reinforced by secondary walls. It takes about 6 hours to lose all the cell contents after the formation of visible secondary-wall thickenings and only 15 minutes to lose nuclear DNA after vacuole collapse.

accompanied by new and specific expression of many cell-wall-degrading enzymes in developing TEs^{21,103}. Moreover, localized degradation and modification of walls in TEs require intracellular positional information. The MIDDLE LAMELLA is resistant to autolysis when it is between neighbouring cells and when only one cell will differentiate into a TE, although the middle lamella between two neighbouring TEs is digested completely¹⁰⁴. In a continuously formed vessel strand, a differentiating TE opens pores at one longitudinal end adjacent to a mature dead TE but not to an immature TE. Even in single TEs that are formed in vitro, the perforation is restricted to one longitudinal end105. These findings indicate the existence of anisotrophy (polarity), which might occur autonomously, without cell-cell interaction, on cell walls of developing TEs. Because monoclonal antibodies against TE-specific cell-wall components recognize cell walls only at the tip of TE-precursor cells¹⁰⁶, cell polarization of TEs must occur at an early stage of TE differentiation. Transcripts for a Rac-like small G protein are restricted to the site that faces developing TEs in TE precursor cells and xylem parenchyma cells in situ107. Similarly polarized intracellular mRNA localization in procambial cells has been reported for genes that encode expansins — cellwall proteins that promote cell expansion108. Therefore, it is likely that polarized intracellular organization directing polarized cell-wall patterning occurs in the early development of xylem cells.

Programmed cell death. TE differentiation culminates with the loss of cell contents, leaving behind a functional cellular corpse. This cell-death process has been studied extensively in the *Z. elegans* culture system and described in detail in recent reviews^{109,110}. Here, the essence of the TE cell-death programme will be described by focusing on the plant-specific idiosyncrasies of programmed cell death (PCD).

FIGURE 5 illustrates the process of TE PCD. As TE PCD occurs autonomously and does not require input from other cells, TEs themselves must therefore provide all the components that are necessary for the execution of cell death. The cell-death programme in TEs is tightly coupled with secondary-wall formation. So far, no agent or mutation has been found that prevents the cell-death programme without affecting secondary-wall formation, or vice versa. A crucial step in TE PCD is the transcriptional regulation of TE-PCD-specific genes and, indeed, a number of PCD-specific genes are expressed at the same time²¹. BRs are some of the earliest signalling molecules that direct the cell-death programme, as well as secondary-wall formation, by upregulating the expression of specific genes⁷⁸. Proteins that are encoded by PCD-specific genes include hydrolytic enzymes that function optimally at acidic pHs, or are predicted to do so, such as cysteine proteases, serine proteases, RNases, S1-type nucleases, acid phosphatases and lipases^{21,110}. Most of these newly synthesized enzymes are transported to the vacuole where they are activated 111. This means that in developing TEs, the vacuole changes into

MIDDLE LAMELLA
The thin layer that connects two
plant cells and is rich in pectin.

TONOPLAST
The membrane that encompasses the central vacuole.

ENDOCARP CELL
The cell that composes the innermost fruit wall. Some endocarp cells are destined to die during maturation of the fruit.

ALEURONE CELL

The layered cell that surrounds the starchy endosperm of cereal grains and is instrumental in digesting the materials that are stored in the endosperm. a highly lytic vacuole that is similar to animal lysosomes. Indeed, cell extracts from developing TEs, but not from non-TE cells, can degrade nuclear DNA¹¹².

The autolysis of TEs starts with the rupture of the vacuole¹¹³⁻¹¹⁵. The degradation of nuclear and chloroplast DNA is triggered by vacuole rupture and is completed within only 15 minutes of vacuole collapse, although chlorophyll is degraded much more slowly¹¹⁵. For nuclear-DNA degradation, the S1-type Zn2+-dependent nuclease ZEN1 accumulates in an active form in the vacuole, where it has a pivotal role¹¹². Although Kuriyama¹¹⁴ proposed that a change in the organic-anion permeability of the TONOPLAST initiates vacuole collapse in TEs in vivo, the actual molecular mechanism for vacuole collapse is not yet known. Vacuole-executed PCD might be of widespread occurrence in plants and is seen, for example, in the death of ENDOCARP CELLS during ovary senescence of pea plants¹¹⁶ and the ALEURONE-CELL-death process 117. Although similar hydrolytic enzymes are commonly expressed during vacuole-induced cell death, some genes, such as ZCP4 (which encodes a cysteine protease) and ZEN1, seem to be expressed specifically during TE PCD¹¹⁵. Therefore, there must be some minor variations in the vacuole-mediated cell-death programme in plants. At the final stage of TE maturation, the digested cell contents — containing proteases and nucleases — are released into the extracellular space, usually into a neighbouring hollow TE.

Conclusions and perspectives

Recent advances using *A. thaliana* mutants that have defects in vascular development and cellular studies with *Z. elegans* xylogenic cultures have provided insights into the formation of the three-dimensional plant vascular system at the cellular level. A picture has now

emerged of the molecular organization of plant vascular cell development. Crosstalk among plant hormones, which function as intercellular signals, and their endogenous biosynthesis in distinct vascular cells are involved in the activity of procambial cells and the differentiation from procambial cells into various vascular cells with distinct functions. Downstream of such intercellular signals, new regulatory factors such as HD-ZIP-III homeobox proteins and microRNAs function during the differentiation of procambial cells to xylem cells. The detailed analysis of the process of vascular cell differentiation has also uncovered some unique features of plant cell differentiation, including the cell-death programme.

It is important to note, however, that we still know only a little about procambial cells. For example, in A. thaliana root tips, xylem cell poles start from procambial cells next to the quiescent centre. However, there are a few dozen procambial cells between the quiescent centre and developing TEs along the pole. We do not know what makes these procambial cells different in nature, although it has been reported that a homeobox gene, Oshox1, might be a molecular marker for distinguishing developmental stages of procambial cells in rice roots¹¹⁸. Therefore, our next target should be to dissect the procambial and xylem precursor stages into smaller steps on the basis of their cellular and molecular functions, which will allow us to identify new inter- and intracellular signals that initiate each step. Another important issue for the future is the establishment and maintenance of the polarity of vascular cells, which controls the formation of continuous columns of vascular cells. To understand the molecular mechanism of vascular cell polarity, we have to identify the asymmetrical intracellular-signalling pathways that establish this polarity.

- Ye, Z.-H. Vascular tissue differentiation and pattern formation in plants. Annu. Rev. Plant Biol. 53, 183–202 (2002)
- Dengler, N. & Kang, J. Vascular patterning and leaf shape *Curr. Opin. Plant Biol.* 4, 50–56 (2001).
 Jacobs, W. P. The role of auxin in differentiation of xylem
- around a wound. *Am. J. Bot.* **39**, 301–309 (1952).

 4. Sachs, T. The control of the patterned differentiation of
- 4. Sacris, 1. The control of the patterned differentiation of vascular tissues. *Adv. Bot. Res.* 9, 152–262 (1981).
 5. Sachs, T. Integrating cellular and organismic aspects of
- Sacns, I. Integrating ceilular and organismic aspects of vascular differentiation. *Plant Cell Physiol.* 41, 649–656 (2000).
- Mattsson, J., Sung, Z. R. & Berieth, T. Responses of plant vascular systems to auxin transport inhibition. *Development* 126, 2979–2991 (1999).
- Sieburth, L. E. Auxin is required for leaf vein pattern in Arabidopsis. Plant Physiol. 121, 1179–1190 (1999).
- Berleth, T., Mattsson, K. & Hardtke, C. S. Vascular continuity and auxin signals. *Trends Plant Sci.* 5, 387–393 (2000)
 - This review summarizes the role of polar auxin flow in vascular continuity on the basis of results with mutants and inhibitors of auxin transport.
- Okada, K., Ueda, J., Komaki, M. K., Bell, C. J. & Shimura, Y. Requirement of the auxin polar transport system in early stages of *Arabidopsis* floral bud formation. *Plant Cell* 3, 677–684 (1991).
- Gälweiler, L. et al. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282, 2226–2230 (1998)
 - This paper shows evidence that AtPIN1 is located on the base of vascular cells and functions in polar auxin transport.

- Uggla, C., Moritz, T., Sandberg, G. & Sundberg, B. Auxin as a positional signal in pattern formation in plants. *Proc. Natl Acad. Sci. USA* 93, 9282–9286 (1996).
- This paper shows that cambial cells have the highest concentration of IAA among vascular cells.

 12. Steinmann, T. et al. Coordinated polar localization of auxin
- Steinmann, T. et al. Coordinated polar localization of auxir efflux carrier PIN1 by GNOM ARF GEF. Science 286, 316–318 (1999).
- 13. Geldner, N. et al. The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112, 219–230 (2003) This paper presents a model in which endosomal recycling that is regulated by GNOM ADP-ribosylation-factor-guanine-nucleotide-exchange factor functions in the asymmetrical transport of AtPIN1, leading to polar auxin transport.
- Koizumi, K., Sugiyama, M. & Fukuda, H. A series of novel mutants of Arabidopsis thallana that are defective in the formation of continuous vascular network: calling the auxin signal flow canalization hypothesis into question. Development 127, 3197–3204 (2000).
- Bennett, S. R. M., Alvarez, J., Bossinger, G. & Smyth, D. R. Morphogenesis in pinoid mutants of Arabidopsis thaliana. Plant J. 8, 505–520 (1995).
- Benjamins, R., Quint, A., Weijers, D., Hooykaas, P. & Offringa, R. The PINOID protein kinase regulates organ development in *Arabidopsis* by enhancing polar auxin transport. *Development* 128, 4057–4067 (2001).
- Muday, G. K. & Murphy, A. S. An emerging model of auxin transport regulation. *Plant Cell* 14, 293–299 (2002).
- Baumann, C. A. & Saltiel, A. R. Spatial compartmentalization of signal transduction in insulin action. *Bioessays* 23, 215–222 (2001).

- Simpson, F., Whitehead, J. P. & James, D. E. GLUT4: at the cross roads between membrane trafficking and signal transduction. *Traffic* 2, 2–11 (2001).
- Swarup, R. et al. Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the *Arabidopsis* root apex. *Genes Dev.* 15, 2648–2653 (2001).
- Demura, T. et al. Visualization by comprehensive microarray analysis of gene expression programs during transdifferentiation of mesophyll cells into xylem cells. Proc. Natl Acad. Sci. USA 99, 15794–15799 (2002).
 - This paper, together with reference 96, provides a comprehensive analysis of gene expression during xylem cell differentiation.
- Hobbie, L. et al. The axr6 mutants of Arabidopsis thaliana define a gene involved in auxin response and early development. Development 127, 23–32 (2000).
- Hamann, T., Mayer, U. & Jürgens, G. The auxin-insensitive bodenios mutation affects primary root formation and apical-basal patterning in the Arabidopsis embryo. Development 126, 1387–1395 (1999).
- Hardtke, C. S. & Berleth, T. The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J. 17, 1405–1411 (1998).
- Ulmasov, T., Hagen, G. & Guilfoyle, T. J. Activation and repression of transcription by auxin-response factors. Proc. Natl Acad. Sci. USA 96, 5844–5849
- Berleth, T. & Jürgens, G. The role of the monopteros gene in organising the basal body region of the Arabidopsis embryo. Development 118, 575–587 (1993).

- Przemeck, G. K., Mattsson, J., Hardtke, C. S., Sung, Z. R. & Berleth, T. Studies on the role of the *Arabidopsis* gene *MONOPTEROS* in vascular development and plant cell axialization. *Planta* 200, 229–237 (1996).
- Hellmann, H. & Estelle, M. Plant development regulation by protein degradation. Science 297, 793–797 (2002).
- Groover, A. T., Pattishall, A. & Jones, A. M. IAA8 expression during vascular cell differentiation. *Plant Mol. Biol.* 51, 427–435 (2003).
- Carland, F. M. & McHale, N. A. LOPT: a gene involved in auxin transport and vascular patterning in Arabidopsis. Development 122, 1811–1819 (1996).
- Carland, F. M., Berg, B. L., FitzGerald, J. N. & Jinamornphongs, S. Genetic regulation of vascular tissue patterning in *Arabidopsis*. *Plant Cell* 11, 2123–2137 (1999).
- Deyholos, M. K., Cordner, G., Beebe, D. & Sieburth, L. E.
 The SCARFACE gene is required for cotyledon and leaf vein patterning. Development 127, 3205–3213 (2000).
- Aloni, R. Foliar and axial aspects of vascular differentiation: hypotheses and evidence. *J. Plant Growth Reg.* 20, 22–34 (2001).
- Meinhardt, H. Models of biological pattern formation: common mechanism in plant and animal development *Int. J. Dev. Biol.* 40, 123–134 (1996).
- Nelson, T. & Dengler, N. Leaf vascular pattern formation. Plant Cell 9, 1121–1135 (1997).
- Asai, R., Taguchi, E., Kume, Y., Saito, M. & Kondo, S. Zebrafish *Leopard* gene as a component of the putative reaction–diffusion system. *Mech. Dev.* 89, 87–92 (1999).
- Parker, G., Schofield, R., Sundberg, B. & Turner, S. Isolation of COV1, a gene involved in the regulation of vascular patterning in the stem of Arabidopsis. Development 130, 2139–2148 (2003).
- 2139–2148 (2003).
 Waites, R., Selvadurai, H. R. N., Oliver, I. R. & Hudson, A. The PHANTASTICA gene encodes a MYB transcription factor involved in growth and dorsoventrality of lateral organs in Antirrhium. Cell 93, 779–789 (1998).
- Waites, R. & Hudson, A. phantastica: a gene required for dorsoventrality of leaves in Antirrhinum majus. Development 121, 2143–2154 (1995).
- McConnell, J. R. et al. Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411, 709–713 (2001).
- McConnell, J. R. & Barton, M. K. Leaf polarity and meristem formation in *Arabidopsis*. *Development* 125, 2935–2942 (1998)
- Emery, J. F. et al. Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr. Biol. 13, 1768–1774 (2003).
 - Based on complementary vascular phenotypes of HD-ZIP-III and KANADI mutants, this paper proposes that a genetic programme that is dependent on miRNA controls the radial patterning of vascular bundles as well as shoots.
- Sawa, S. et al. FILAMENTOUS FLOWER, a meristem and organ identity gene of Arabidopsis, encodes a protein with a zinc finger and HMG-related domains. Genes Dev. 13, 1079–1088 (1999).
 Siegfried, K. R. et al. Members of the YABBY gene family
- Siegfried, K. R. et al. Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development 126 4117–4128 (1999).
 Eshed, Y., Baum, S. F., Perea, J. V. & Bowman, J. L.
- Eshed, Y., Baum, S. F., Perea, J. V. & Bowman, J. L Establishment of polarity in lateral organs of plants. *Curr. Biol.* 11, 1251–1260 (2001).
- Kerstetter, R. A., Bollman, K., Taylor, R. A., Bomblies, K. & Poethig, R. S. KANADI regulates organ polarity in Arabidopsis. Nature 411, 706–709 (2001).
- Eshed, Y., Baum, S. F. & Bowman, J. L. Distinct mechanisms promote polarity establishment in carpels of *Arabidopsis. Cell* 99, 199–209 (1999).
- Bonke, M., Thitamadee, S., Mähönen, A. P., Hauser, M.-T. & Helariutta, Y. APL regulates vascular tissue identity in Arabidopsis. Nature 426, 181–186 (2003).
- Scheres, B. et al. Mutants affecting the radial organisation of the Arabidoposis root display specific defects throughout the embryonic axis. Development 121, 53–62 (1995).
- Mähönen, A. P. et al. A novel two-component hybrid molecule regulates vascular morphogenesis of the Arabidopsis root. Genes Dev. 14, 2938–2943 (2000).
 This paper shows the involvement of cytokinin in the formation and maintenance of the procambium.
- Yamada, H. et al. The Arabidopsis AHK4 histidine kinase is a cytokinin-binding receptor that transduces cytokinin signals across the membrane. Plant Cell Physiol. 42, 1017–1023 (2001).
- Suzuki, T., Ishikawa, K., Yamashino, T. & Mizuno, T. An Arabidopsis histidine-containing phosphotransfer (HPt) factor implicated in phosphorelay signal transduction: overexpression of AHP2 in plants results in hypersensitiveness to cytokinin. Plant Cell Physiol. 43, 123–129 (2002).

- Hwang, I. & Sheen, J. Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature 413, 383–389 (2001).
- Sakai, H. et al. ARR1, a transcription factor for genes immediately responsive to cytokinins. Science 294, 1519–1521 (2001).
- Kiba, T. et al. The type-A response regulator, ARR15, acts as a negative regulator in the cytokinin-mediated signal transduction in Arabidopsis thaliana. Plant Cell Physiol. 44, 868–874 (2003).
- Kakimoto, T. Identification of plant cytokinin biosynthetic enzymes as dimethylallyl diphosphate:ATP/ADP isopentenyltransferases. *Plant Cell Physiol.* 42, 677–685 (2001).
- Takel, K., Sakakibara, H. & Sugiyama, T. Identification of genes encoding adenylate isopentenyltransferase, a cytokinin biosynthesis enzyme, in *Arabidopsis thaliana*. *J. Biol. Chem.* 276, 26405–26410 (2001).
- Miyawaki, K., Matsumoto-Kitano, M. & Kakimoto, T. Expression of cytokinin biosynthetic isopentenyltransferase genes in *Arabidopsis*: tissue specificity and regulation by auxin, cytokinin, and nitrate. *Plant J.* 37, 128–138 (2004).
- Fukuda, H. Tracheary element differentiation. Plant Cell 9, 1147–1156 (1997).
 - This review summarizes the process of transdifferentiation from mesophyll cells into xylem cells.
- Baima, S. et al. The expression of the Althb-8 homeobox gene is restricted to provascular cells in Arabidopsis thailana. Development 121, 4171–4182 (1995).
 This is the first paper to show vascular-precursor-cellspecific expression of a member of the HD-ZIP-III gene family.
- gene family.
 Ohashi-Ito, K. & Fukuda, H. HD-Zip III homeobox genes that include a novel member, ZeHB-13 (Zinnia)/AtHB-15 (Arabidopsis), are involved in xylem pattern formation. Plant Cell Physiol. 44, 1350–1358 (2003).
- Ohashi-Ito, K., Demura, T. & Fukura, H. Promotion of transcript accumulation of novel Zinnia immature xylemspecific HD-ZIP III homeobox genes by brassinosteroids. Plant Cell Physiol. 43, 1146–1153 (2002)
- Plant Cell Physiol. 43, 1146–1153 (2002).
 Zhong, R., Taylor, J. J. & Ye, Z.-H. Disruption of interfascicular fiber differentiation in an Arabidopsis mutant. Plant Cell 9, 2159–2170 (1997).
- Plant Cell 9, 2159–2170 (1997).
 64. Zhong, R. & Ye, Z.-H. IFL 1, a gene regulating interfascicular fiber differentiation in Arabidopsis, encodes a homeodomain-leucine zipper protein. Plant Cell 11, 2139–2152 (1999).
- Otsuga, D., DeGuzman, B., Prigge, M. J., Drews, G. N. & Clark, S. E. REVOLUTA regulates meristem initiation at lateral positions. Plant J. 25, 223–236 (2001).
- Baima, S. et al. The Arabidopsis ATHB-8 HD-Zip protein acts as a differentiation-promoting transcription factor of the vascular meristems. Plant Physiol. 126, 643–655 (2001).
- Rhoades, M. W. et al. Prediction of plant microRNA targets Cell 110, 513–520 (2002).
- Tang, G., Reinhart, B. J., Bartel, D. P. & Zamore, P. D. A biochemical framework for RNA silencing in plants. Genes Dev. 17, 49–63 (2003).
- Reinhart, B. J., Weinstein, E. G., Rhoades, M. W., Bartel, B. & Bartel, D. P. MicroRNAs in plants. *Genes Dev.* 16, 1616–1626 (2002).
- Bohmert, K. et al. AGO1 defines a novel locus of Arabidopsis controlling leaf development. EMBO J. 17 170–180 (1998).
- Lynn, K. et al. The PINHEAD/ZWILLE gene acts pleiotropically in Arabidopsis development and has overlapping functions with the ARGONAUTE1 gene Development 126, 469–481 (1999).
 Choe, S. et al. The Arabidopsis dwf7/ste1 mutant is
- Choe, S. et al. The Arabidopsis dwf7/ste1 mutant is defective in the δ7 sterol C-5 desaturation step leading to brassinosteroid biosynthesis. Plant Cell 11, 207–221 (1999).
- Szekeres, M. et al. Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in *Arabidopsis*. Cell 85, 171–182 (1996).
- Asami, T. & Yoshida, S. Brassinosteroid biosynthesis inhibitors. *Trends Plant Sci.* 4, 348–353 (1999).
 Nagata, N., Asami, T. & Yoshida, S. Brassinazole, an
- Nagata, N., Asami, T. & Yoshida, S. Brassinazole, an inhibitor of brassinosteroid biosynthesis, inhibits development of secondary xylem in cress plants (*Lepidium* sativum). Plant Cell Physiol. 42, 1006–1011 (2001).
- Iwasaki, T. & Shibaoka, H. Brassinosteroids act as regulators of tracheary-element differentiation in isolated *Zinnia* mesophyll cells. *Plant Cell Physiol.* 32, 1007–1014 (1991).
- Yamamoto, R. et al. Brassinosteroid levels increase drastically prior to morphogenesis of tracheary elements Plant Physiol. 125, 556–563 (2001).
- Yamamoto, R., Demura, T. & Fukuda, H. Brassinosteroids induce entry into the final stage of tracheary element differentiation in cultured Zinnia cells. Plant Cell Physiol. 38, 980–983 (1997).

- This paper shows that endogenous BRs are involved in the initiation of the last step of xylem cell differentiation.
- Wang, Z.-Y., Seto, H., Fujioka, S., Yoshida, S. & Chory, J. BRI1 is a critical component of a plasma-membrane receptor for plant steroids. *Nature* 410, 380–383 (2001).
- Li, J. & Chory, J. A putative leucine-rich repeat receptor kinase involved in brassinosteroid signaling transduction. *Cell* 90, 929–938 (1997).
- Friedrichsen, D. M., Joazeiro, C. A., Li, J., Hunter, T. & Chory, J. Brassinosteroid-insensitive-1 is a ubiquitiously expressed leucine-rich repeat receptor serine/threonine kinase. *Plant Physiol.* 123, 1247–1256 (2000).
- Clouse, S. D., Langford, M. & McMorris, T. C.
 A brassinosteroid-insensitive mutant in *Arabidopsis thaliana* exhibits multiple defects in growth and development. *Plant Physiol.* 111, 671–678 (1996).
- Li, J. et al. BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110, 213–222 (2002).
- Nam, K. H. & Li, J. BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. *Cell* 110, 203–212 (2002).
 Yin, Y., Wu, D. & Chory, J. Plant receptor kinases: systemin
- Yin, Y., Wu, D. & Chory, J. Plant receptor kinases: systemi receptor identified. *Proc. Natl Acad. Sci. USA* 99, 9090–9092 (2002).
- Clay, N. K. & Nelson, T. VH1, a provascular cell-specific receptor kinase that influences leaf cell patterns in Arabidopsis. Plant Cell 14, 2707–2722 (2002).
- Clouse, S. D. Brassinosteroid signal transduction: clarifying the pathway from ligand perception to gene expression. *Mol. Cell* 10, 973–982 (2002).
- Willemsen, V. et al. Cell polarity and PIN protein positioning in Arabidopsis require STEROL METHYL TRANSFERASE1 function. Plant Cell 15, 612–625 (2003).
- Jang, J. C. et al. A critical role of sterols in embryonic patterning and meristem programming revealed by the fackel mutants of Arabidopsis thaliana. Genes Dev. 14, 1405. 1407 (2000)
- 1485–1497 (2000).
 90. Carland, F. M., Fujioka, S., Takatsuto, S., Yoshida, S. & Nelson, T. The identification of *CVP1* reveals a role for sterols in vascular patterning. *Plant Cell* 14, 2045–2058 (2002).
 This paper shows a crucial role for steroids in the continuity of vascular bundles.
- Motose, H., Fukuda, H. & Sugiyama, M. Involvement of local intercellular communication in the differentiation of *Zinnia* mesophyll cells into tracheary elements. *Planta* 213, 121–131 (2001).
- Motose, H., Sugiyama, M. & Fukuda, H. An arabinogalactan protein(s) is a key component of a fraction that mediates local intercellular communication involved in tracheary element differentiation of *Zinnia* mesophyll cells. *Plant Cell Physiol.* 42, 129–137 (2001).
 - These two papers show that a secreted arabinogalactan protein, xylogen, mediates local intercellular communication that initiates xylem cell differentiation.
- Fukuda, H. & Kobayashi, H. Dynamic organization of the cytoskeleton during tracheary-element differentiation. *Dev. Growth Differ.* 31, 9–16 (1989).
- Doblin, M. S., Kurek, I., Jacob-Wilk, D. & Delmer, D. P. Cellulose biosynthesis in plants: from genes to rosettes *Plant Cell Physiol.* 43, 1407–1420 (2002).
- Taylor, N. G., Howells, R. M., Huttly, A. K., Vickers, K. & Turner, S. R. Interactions among three distinct CesA proteins essential for cellulose synthesis. *Proc. Natl Acad. Sci. USA* 100, 1450–1455 (2003).
 Gardiner, J. C., Taylor, N. G. & Turner, S. R. Control of
- Gardiner, J. C., Taylor, N. G. & Turner, S. R. Control of cellulose synthase complex localization in developing xylem *Plant Cell* 15, 1740–1748 (2003).
- Desprez, T. et al. Resistance against herbicide isoxaben and cellulose deficiency caused by distinct mutations in same cellulose synthase isoform CESA6. Plant Physiol. 128, 482–490 (2002).
- Milloni, D., Sado, P.-E., Stacey, N. J., Roberts, K. & McCann, C. M. Early gene expression associated with the commitment and differentiation of a plant tracheary element is revealed by cDNA-amplified fragment length polymorphism analysis. *Plant Cell* 14, 2813–2824 (2002).
- Hertzberg, M. et al. A transcriptional roadmap to wood formation. Proc. Natl Acad. Sci. USA 98, 14732–14737 (2001).
- Whetten, R., Sun, Y.-H., Zhang, Y. & Sederoff, R. Functional genomics and cell wall biosynthesis in loblolly pine. *Plant Mol. Biol.* 47, 275–291 (2001).
- Kawaoka, A. et al. Functional analysis of tobacco LIM protein Ntlim1 involved in lignin biosynthesis. Plant J. 22, 289–301 (2000).
- Borevitz, J. O., Xia, Y., Blount, J., Dixon, R. A. & Lamb, C. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. *Plant Cell* 12, 2383–2394 (2000).

- Milioni, D. et al. Differential expression of cell-wall-related genes during the formation of tracheary elements in the Zinnia mesophyll cell system. Plant Mol. Biol. 47, 221–238 (2001).
- Burgess, J. & Linstead, P. In vitro tracheary element formation: structural studies and the effect of triiodobenzoic acid. Planta 160, 481–489 (1984).
- Nakashima, J., Takabe, K., Fujita, M. & Fukuda, H. Autolysis during in vitro tracheary element differentiation: formation and location of the perforation. Plant Cell Physiol. 41, 1267–1271 (2000).
- 106. Shinohara, N., Demura, T. & Fukuda, H. Isolation of a vascular cell wall-specific monoclonal antibody recognizing a cell polarity by using a phage display subtraction method. *Proc. Natl Acad. Sci. USA* 97, 2585–2590 (2000).
- 107. Nakanomyo, I., Kost, B., Chua, N.-H. & Fukuda, H. Preferential and asymmetrical accumulation of a Rac small GTPase mRNA in differentiating xylem cells of *Zinnia* elegans. Plant Cell Physiol. 43, 1484–1492 (2002).
- Im, K.-H., Cosgrove, D. J. & Jones, A. M. Subcellular localization of expansin mRNA in xylem cells. *Plant Physiol.* 123, 463–470 (2000).
- 109. Jones, A. M. Programmed cell death in development and defense. *Plant Physiol.* **125**, 94–97 (2001).
- 110. Obara, K. & Fukuda, H. in *Programmed Cell Death in Plants* (ed. Gray, J.) 131–154 (Sheffield Academic Press, UK, 2003).
 111. Funk, V., Kositsup, B., Zhao, C. & Beers, E. P. The
- Funk, V., Kositsup, B., Zhao, C. & Beers, E. P. The *Arabidopsis* xylem peptidase XCP1 is a tracheary element vacuolar protein that may be a papain orthology. *Plant Physiol.* 128, 84–94 (2002).

- 112. Ito, J. & Fukuda, H. ZEN1 is a key enzyme in degradation of nuclear DNA during programmed cell death of tracheary elements. *Plant Cell* 14, 3201–3211 (2002).
 - This paper shows that a distinct S1 nuclease functions in nuclear-DNA degradation in programmed cell death of TEs.
- 113. Groover, A., DeWitt, N., Heidel, A. & Jones, A. Programmed cell death of plant tracheary elements differentiating *in vitro*. *Protoplasma* **196**, 197–211 (1997).
 114. Kuriyama, H. Loss of tonoplast integrity programmed in
- Kuriyama, H. Loss of tonoplast integrity programmed in tracheary element differentiation. *Plant Physiol.* 121, 763–774 (1999).
- Obara, K., Kuriyama, H. & Fukuda, H. Direct evidence of active and rapid nuclear degradation triggered by vacuole rupture during programmed cell death in *Zinnia. Plant Physiol.* 125, 615–626 (2001).
- Vercher, Y., Molowny, A. & Carbonell, J. Gibberellic acid effects on the ultrastructure of endocarp cells of unpollinated ovaries of *Pisum sativum. Physiol. Plant* 71, 302–308 (1987).
- 117. Kuo, A., Cappelluti, S., Cervantes-Cervantes, M., Rodriguez, M. & Bush, D. S. Okaddic acid, a protein phosphatase inhibitor, blocks calcium changes, gene expression, and cell death induced by gibberellin in wheat aleurone cells. *Plant Cell* 8, 259–269 (1996).
- 118. Scarpella, E., Rueb, S., Boot, K. J. M., Hoge, J. H. C. & Meijer, A. H. A role for the rice homeobox gene Oshox7 in provascular cell fate commitment. *Development* 127, 3655–3669 (2000).
 - This paper shows that the use of a homeobox gene as a molecular marker allows us to distinguish developmental stages of procambium in rice roots.

- 119. Fukuda, H., Koizumi, K. & Demura, T. Vascular differentiation. *Shokubutsusaiboukougaku* **12**, 212–222 (2000).
- Weier, T. E., Stocking, C. R., Barbour M. G. & Rost, T. L. Botany 6th edn 118 (John Wiley & Sons, New Jersey, USA, 1982).

Acknowledgements

The author thanks R. Jones, A. Jones, T. Berleth, J. Li, M. Sugiyama and J. Bowman for critical reading of the manuscript. This work was supported in part by Grants-in-Aid from the Ministry of Education, Science, Sports and Culture of Japan, from the Japan Society for the Promotion of Science and from the Mitsubishi Foundation.

Competing interests statement

The author declares that he has no competing financial interests.

Online links

DATABASES

The following terms in this article are linked online to: Interpro: http://www.ebi.ac.uk/interpro/ START

TAIR: http://www.arabidopsis.org/ ARR75 | AtHB8 | AtHB15 | AtPIN1 | AUX1 | auxin resistant-6 | bodenlos | BR11 | BRL1 | BRL2 | cov1 | GNOM | IAA8 | MP | PHB | PHV | PINOID | REV | van3 | wol

FURTHER INFORMATION

The Cellulose Synthase Superfamily: http://cellwall.stanford.edu/ Access to this links box is available online.