Course detail

LCB5745 - Plant Neurophysiology


Credit hours

In-class work
per week
Practice
per week
Credits
Duration
Total
4
4
10
15 weeks
150 hours

Instructor
Ricardo Ferraz de Oliveira

Objective
Plants are dynamic and highly sensitive organisms that actively and competitively forage for limited resources, both above and below ground; they accurately compute their circumstances, use sophisticated cost-benefit analysis, and take defined actions to mitigate and control diverse environmental insults.

Content
Plants have a very well organized sensing system, which allows them to explore efficiently the environment and to react rapidly to potential dangerous circumstances. Below and above ground, plants are aware of the space surrounding them. Such responsiveness is, indeed, necessary to provide the appropriate actions in response to the environmental stimuli. Plants have memory, are able to learn, to solve problems and to make decisions.

Bibliography
The philosophy of plant neurobiology: a manifesto. 2016.
Brilliant Green. Mancuso. S. 2015
Perceptive Levels in Plants: A Transdisciplinary Challenge in Living Organism’s Plasticity. 2013.
The First Brain: The Neuroscience of Planarians. Oné R. Pagán. 2012
1. Baluska, F. et al. (2006) Communication in Plants: Neuronal Aspects of Plant Life, Springer Verlag.
2. Kurata, T. et al. (2005) Intercellular movement of transcriptionfactors. Curr. Opin. Plant Biol. 8, 600–605.
3. Yoo, B.C. et al. (2004) A systemic small RNA signaling system in plants. Plant Cell 16, 1979–2000.
4. Kim, J.Y. (2005) Regulation of short-distance transport of RNA and protein. Curr. Opin. Plant Biol. 8, 45–52.
5. Ryan,C.A. et al. (2002) Polypeptide hormones. Plant Cell 14,S251–S264.
6. Camilli, A. and Bassler, B.L. (2006) Bacterial small-molecule signaling pathways. Science 311, 1113–1116.
7. Bais, H.P. et al. (2004) How plants communicate using the underground information superhighway. Trends Plant Sci. 9, 26–32.
8. Weir, T.L. et al. (2006) Oxalate contributes to the resistance of Gaillardia grandiflora and Lupinus sericeus to a phytotoxin produced by Centaurea maculosa. Planta 223, 785–795.
9. Shepherd, V.A. (2005) From semi-conductors to the rhythms of sensitive plants: the research of J.C. Bose. Cell. Mol. Biol. 51, 607–619.
10. Simons, P. (1992) The Action Plant: Movement and Nervous Behavior in Plants, Oxford Press.
11. Attenborough, D. (1995) The Private Life of Plants: A Natural History of Plant Behavior, Princeton University Press.
12. Narby, J. (2005) Intelligence in Nature, J.P. Tarcher Press.
13. Roshchina, V.V. (2001) Neurotransmitters in Plant Life, Science Publishers
14. Trewavas, A. (2005) Green plants as intelligent organisms. Trends Plant Sci. 10, 413–419.
15. Stahlberg, R. (2006) Historical overview on plant neurobiology. Plant. Signal. Behav. 1, 6–8.
16. Trewavas, A. (2003) Aspects of plant intelligence. Ann. Bot. (Lond.) 92, 1–20
17. Galvani, L. (1791) De viribus Electricitatis in Motu Musculari Commentarius. Bon. Sci. Art. Inst. Acad. Comm. 7, 363–418.
18. von Humboldt, A. (1797) Versuche u¨ber die gereizte Muskel- undNervenfaser nebst Vermuthungen u¨ber den chemischen Process des Lebens in der Thier und Pflanzenwelt, Posen.
19. Botting, D. (1973) Humboldt and the Cosmos, Georg Rainbird.
20. Du Bois-Reymond, E. (1848) Untersuchungen u¨ber tierische Elektrizita¨ t (Vol. I), Reimer.
21. Burdon-Sanderson, J. (1873) Note on the electrical phenomena which accompany stimulation of the leaf of Dionea muscipula. Proc. Roy. Soc. London 21, 495–496.
22. Kunkel, K.A.J. (1878) U¨ ber elektromotorische Wirkungen an unverletzten lebenden Pflanzenteilen. Arb. Bot. Inst.Wu¨ rzburg 2, 1–17.
23. Bose, J.Ch. (1907) Plant Response as a Means of Physiological Investigation, Longman, Green & Co.
24. Bose, J.Ch. (1926) The Nervous Mechanism of Plants, Longman,Green & Co.
25. Pfeffer,W. (1873) Physiologische Untersuchungen, Engelmann-Verlag.
26. Pfeffer, W. (1906) The Physiology of Plants: a Treatise upon the Metabolism and Sources of Energy in Plants, Clarendon Press.
27. Haberlandt, G. (1890) Das reizleitende Gewebesystem der Sinnpflanze, Engelmann-Verlag.
28. Bunning, E. (1959). Die seismonastischen Reaktionen. In Encyclopedia of PlantPhysiology (Vol. XVII) (Physiology ofMovements) (Ruhland, W., ed.), pp. 184–238, Springer Verlag.
29. Gunar, I.I. and Sinykhin, A.M. (1963) Functional significance of action currents affecting the gas exchange of higher plants. Sov. Plant. Physiol. 10, 219–226.
30. Pickard, B.G. (1973) Action potentials in higher plants. Bot. Rev. 39, 172–201
31. Trebacz, K. et al. (2006) Electrical signals in long-distance communication in plants. In Communications in Plants. Neuronal Aspects of Plant Life (Balus?ka, F. et al., eds), pp. 277–290, Springer Verlag.
32. Stahlberg, R. et al. (2006) Slow wave potentials – a propagating electrical signal unique to higher plants. In Communication in Plants: Neuronal Aspects of Plant Life (Balus?ka, F. et al., eds), pp. 291–308, Springer Verlag.
33. Stahlberg, R. et al. (2006) Shade-induced action potentials in Helianthus anuus L. originate primarily from the epicotyl. Plant Signal. Behav. 1, 15–22
34. Volkov, A.G. (2006) Electrophysiology and phototropism. In Communication in Plants: Neuronal Aspects of Plant Life (Balus?ka, F. et al., eds), pp. 351–368, Springer Verlag.
35. Koziolek, C. et al. (2003) Transient knockout of photosynthesis mediated by electrical signals. New Phytol. 161, 715–722.
36. Lautner, S. et al. (2005) Characteristics of electrical signals in poplar and responses in photosynthesis. Plant Physiol. 138, 2200–2209.
37. Knoblauch, M. et al. (2004) ATP-independent contractile proteins from plants. Nat. Mater. 2, 600–603.
38. Volkov, A.G. (2000) Green plants: electrochemical interfaces. J. Electroanal. Chem. 483, 150–156.
39. Wagner, E. et al. (2006) Hydro-electrochemical integration of the higher plant – basis for electrogenic flower initiation. In Communication in Plants: Neuronal Aspects of Plant Life (Balus?ka, F. et al., eds), pp. 369–389, Springer Verlag.
40. Sinyukhin, A.M. and Britikov, E.A. (1967) Action potentials in the reproductive system of plants. Nature 215, 1278–1280.
41. Spanjers, A.W. (1981) Biolelectric potential changes in the style of Lilium longiflorum Thunb. After self- and cross-pollination of the stigma. Planta 153, 1–5.
42. Fromm, J. andEschrich,W.(1988)Transport processes instimulated and non-stimulated leaves of Mimosa pudica. Trees (Berl.) 2, 7–24.
43. Fromm, J. and Bauer, T. (1994) Action potentials in maize sieve tubes change phloem translocation. J. Exp. Bot. 273, 463–469.
44. Fisahn, J. et al. (2004) Analysis of the transient increase in cytosolic Ca2+ during the action potential of higher plants with high temporal resolution: requirement ofCa2+ transients for inductionof jasmonic acid biosynthesis andPINIIgene expression. PlantCell Physiol.45, 456–459.
45. Wildon, D.C. et al. (1992) Electrical signaling and systemic proteinase inhibitor induction in the wounded plant. Nature 360, 62–65.
46. Malone, M. et al. (1994) The relationship between wound-induced proteinase inhibitors and hydraulic signals in tomato seedlings. Plant Cell Environ. 17, 81–87.
47. Herde, O. et al. (1995) Proteinase inhibitor II gene expression induced by electrical stimulation and control of photosynthetic activity in tomato plants. Plant Cell Physiol. 36, 737–742.
48. Herde, O. et al. (1996) Localized wounding by heat initiates the accumulation of proteinase inhibitor II in abscisic acid deficient tomato plants by triggering jasmonic acid biosynthesis. Plant Physiol. 112, 853–860.
49. Stankovic, B. and Davies, E. (1996) Both action potentials and variation potentials induce proteinase inhibitor gene expression in tomato. FEBS Lett. 390, 275–279.
50. Stankovic, B. and Davies, E. (1998) The wound response in tomato involves rapid growth and electric responses, systemically upregulated transcription of proteinase inhibitor and calmodulin. Plant Cell Physiol. 39, 268–274.
51. van Bel, A.J.E. and Ehlers, K. (2003) Electrical signalling via plasmodesmata. In Plasmodesmata (Oparka, K., ed.), pp. 263–278,Blackwell Publishing 52 Spalding, E.P. et al. (1992) Ion channels in Arabidopsis plasma membrane: transport characteristics and involvement in lightinduced voltage changes. Plant Physiol. 99, 96–102.
53. Pearce, G. et al. (1991) A polypeptide from tomato leaves induces wound-inducible inhibitor proteins. Science 253, 895–898.
54. Narvaez-Vasquez, J. et al. (1995) Autoradiographic and biochemical evidence for the systemic translocation of systemin in tomato plants. Planta 195, 593–600.
55. Wang, Z.Y. and He, J.X. (2004) Brassinosteroid signal transduction – choices of signals and receptors. Trends Plant Sci. 9, 91–96.
56. Moyen, C. and Johannes, E. (1996) Systemin transiently depolarizes the tomato mesophyll cell membrane and antagonizes fusicoccininduced extracellular acidification of mesophyll tissue. Plant Cell Environ. 19, 464–470.
57. Pena-Cortes, H. et al. (1995) Signals involved in wound-induced proteinase inhibitor II gene expression in tomato and potato plants. Proc. Natl. Acad. Sci. U. S. A. 92, 4106–4113.
58. Balus?ka, F. et al. (2004) Root apices as plant command centres: the unique ‘brain-like’ status of the root apex transition zone. Biologia Bratisl.) 59, 9–17.
59. Brenner, E.D. (2002) Drugs in the plant. Cell 109, 680–681.
60. Lam, H.M. et al. (1998) Glutamate-receptor genes in plants. Nature 396, 125–126.
61. Dennison, K.L. and Spalding, E.P. (2000) Glutamate-gated calcium fluxes in Arabidopsis. Plant Physiol. 124, 1511–1514.
62. Dubos, C. et al. (2003) A role for glycine in the gating of plant NMDAlike receptors. Plant J. 35, 800–810.
63. Lacombe, B. et al. (2001) The identity of plant glutamate receptors. Science 292, 1486–1487.
64. Brenner, E.D. et al. (2000) Arabidopsis mutants resistant to S(+)-betamethyl- alpha, beta-diaminopropionic acid, a cycad-derived glutamate receptor agonist. Plant Physiol. 124, 1615–1624.
65. Kim, S.A. et al. (2001) Overexpression of the AtGluR2 gene encoding an Arabidopsis homolog of mammalian glutamate receptors impairs calcium utilization and sensitivity to ionic stress in transgenic plants. Plant Cell Physiol. 42, 74–84.
66. Kang, J. and Turano, F.J. (2003) The putative glutamate receptor 1.1 (AtGLR1.1) functions as a regulator of carbon and nitrogen metabolism in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 100, 6872–6877.
67. Filleur, S. et al. (2005) Nitrate and glutamate sensing by plant roots. Biochem. Soc. Trans. 33, 283–286
68. Sivaguru, M. et al. (2003) Aluminum rapidly depolymerizes cortical microtubules and depolarizes the plasma membrane: evidence that these responses are mediated by a glutamate receptor. Plant Cell Physiol. 44, 667–675.
69. Spencer, P.S. (1999) Food toxins, ampa receptors, and motor neuron diseases. Drug Metab. Rev. 31, 561–587.
70. Li, J. et al. (2006) A rice glutamate receptor-like gene is critical for the division and survival of individual cells in the root apical meristem. Plant Cell 18, 340–349.
71. Turano, F.J. et al. (2001) The putative glutamate receptors from plants are related to two superfamilies of animal neurotransmitter receptors via distinct evolutionary mechanisms. Mol. Biol. Evol. 18, 1417–1420.
72. Beuve, N. et al. (2004) Putative role of g-aminobutyric acid (GABA) as a long distance signal in up-regulation of nitrate uptake in Brassica napus L. Plant Cell Environ. 27, 1035–1046.
73. Palanivelu, R. et al. (2003) Pollen tube growth and guidance is regulated by POP2, an Arabidopsis gene that controls GABA levels. Cell 114, 47–59.
74. Bouche, N. and Fromm, H. (2004) GABA in plants: just a metabolite? Trends Plant Sci. 9, 110–115.
75. Sagane, Y. et al. (2005) Molecular characterization of maize acetylcholinesterase. A novel enzyme family in the plant kingdom. Plant Physiol. 138, 1359–1371.
76. Kolar, J. and Machackova, I. (2005) Melatonin in higher plants: occurrence and possible functions. J. Pineal Res. 39, 333–341.
77. Arnao,M.B. and Herna´ndez-Ruiz, J. (2006) The physiological function of melatonin in plants. Plant Signal. Behav. 1, 88–95.
78. Muday, G.K. et al. (2003) Vesicular cycling mechanisms that control auxin transport polarity. Trends Plant Sci. 8, 301–304.
79. Friml, J. (2003) Auxin transport – shaping the plant. Curr. Opin. Plant Biol. 6, 7–12.
80. Samaj, J. et al. (2002) Involvement of the mitogen-activated protein kinase SIMK in regulation of root hair tip growth. EMBO J. 21, 3296– 3306.
81. Balus?ka, F. et al. (2003) Polar transport of auxin: carrier-mediated flux across the plasma membrane or neurotransmitter-like secretion? Trends Cell Biol. 13, 282–285.
8. Friml, J. and Wis´niewska, J. (2005). Auxin as an intercellular signal. In Intercellular Communication in Plants (Flemming A., ed.), Annual Plant Reviews 16, pp. 1–26, Blackwell Publishing.
83. Wisniewska, J. et al. (2006) Polar PIN localization directs auxin flow in plants. Science 312, 883.
84. Petrasek, J. et al. (2006) PIN proteins perform a rate-limiting function in cellular auxin efflux. Science 312, 914–918.
85. Geisler, M. and Murphy, A. (2006) The ABC of auxin transport: the role of p-glycoproteins in plant development. FEBS Lett. 580, 1094–1102.
86. Delbarre, A. et al. (1998) Short-lived and phosphorylated proteins contribute to carrier-mediated efflux, but not to influx, of auxin in suspension-cultured tobacco cells. Plant Physiol. 116, 833–844.
87. Mancuso, S. et al. (2005) Non-invasive and continuous recordings of auxin fluxes in intact root apex with a carbon-nanotube-modified and self-referencing microelectrode. Anal. Biochem. 341, 344–351.
88. Schlicht, M. et al. (2006) Auxin immunolocalization implicates a vesicular neurotransmitter-like mode of polar auxin transport in root apices. Plant Signal. Behav. 1, 122–13.
89. Balus?ka, F. et al. (2005) Plant synapses: actin-based adhesion domains for cell-to-cell communication. Trends Plant Sci. 10, 106–11.
90. Barlow, P.W. et al. (2004) Polarity in roots. In Polarity in Plants (Lindsey, K., ed.), pp. 192–241, Blackwell Publishing.
91. Felle, H. et al. (1991) The electrical response of maize to auxin. Biochim. Biophys. Acta 1064, 199–204.
92. Keller, C.P. and Van Volkenburgh, E. (1996) The electrical response of Avena coleoptile cortex to auxins: evidence in vivo for activation of a Cl_ conductance. Planta 198, 404–412.
93. Steffens, B. et al. (2001) The auxin signal for protoplast swelling is perceived by extracellular ABP1. Plant J. 27, 591–599.
94. Bauly, J.M. et al. (2000) Overexpression of auxin-binding protein enhances the sensitivity of guard cells to auxin. Plant Physiol. 124, 1229–1238.
9. Yamagami, M. et al. (2004) Two distinct signaling pathways participate in auxin-induced swelling of pea epidermal protoplasts. Plant Physiol. 134, 735–747.
96. Parry, G. and Estelle, M. (2006) Auxin receptors: a new role for F-box proteins. Curr. Opin. Cell Biol. 18, 152–156.
97. Kawano, T. et al. (2001) Fungal auxin antagonist hypaphorine competitively inhibits indole-3-acetic acid-dependent superoxide generation by horseradish peroxidase. Biochem. Biophys. Res. Commun. 288, 546–551.
98. Laloi, C. et al. (2004) Reactive oxygen signalling: the latest news. Curr. Opin. Plant Biol. 7, 323–328.
99. Apel, K. and Hirt, H. (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55, 373–399.
100 Pagnussat, G.C. et al. (2004) Nitric oxide mediates the indole acetic acid induction activation of a mitogen-activated protein kinase cascade involved in adventitious root development. Plant Physiol. 135, 279–286.
101. Huang, E.P. (1997) Synaptic plasticity: a role for nitric oxide in LTP. Curr. Biol. 7, R141–R143.
102. Sanderoot, A.A. et al. (2000) The Arabidopsis genome. An abundance of soluble N-ethylmaleimide-sensitive factor adaptor protein receptors. Plant Physiol. 124, 1558–1569.