

Canola (Brassica napus L.)

Jéssika Angelotti-Mendonça Lucas Baiochi Riboldi Carlos Dornelles Ferreira Soares Paulo Roberto de Camargo e Castro Ricardo Alfredo Kluge

Universidade de São Paulo Escola Superior de Agricultura"Luiz de Queiroz" Divisão de Biblioteca Universidade de São Paulo - USP Escola Superior de Agricultura "Luiz de Queiroz" - ESALQ Divisão de Biblioteca - DIBD

Jéssika Angelotti-Mendonça¹
Lucas Baiochi Riboldi²
Carlos Dornelles Ferreira Soares³
Paulo Roberto de Camargo e Castro⁴
Ricardo Alfredo Kluge⁵

- ¹ Mestranda no Programa de Pós-graduação em Fitotecnia ESALQ/USP jangelotti.mendonca@usp.br
- ² Doutorando no Programa de Pós-graduação em Fisiologia e Bioquímica de Plantas - ESALQ/USP - lucas_riboldi@yahoo.com.br
- ³ Mestrando no Programa de Pós-graduação em Fitotecnia-ESALQ/USP dornelles.soares@hotmail.com
- ⁴ Professor Titular Departamento de Ciências Biológicas ESALQ/USP prcastro@usp.br
- Professor Associado Departamento de Ciências Biológicas ESALQ/USP rakluge@usp.br

Canola (Brassica napus L.)

Série Produtor Rural - nº 61

Piracicaba 2016

DIVISÃO DE BIBLIOTECA - DIBD

Av. Pádua Dias, 11 - Caixa Postal 9 13418-900 - Piracicaba - SP

biblioteca.esalq@usp.br • www4.esalq.usp.br/biblioteca

Revisão e Edição Eliana Maria Garcia

Foto Capa Mayara Mariana Garcia

Layout Capa José Adilson Milanêz

Editoração Eletrônica Maria Clarete Sarkis Hyppolito

Impressão e Acabamento Serviço de Produções Gráficas - ESALQ

Tiragem 300 exemplares

Dados Internacionais de Catalogação na Publicação DIVISÃO DE BIBLIOTECA - ESALQ/USP

Canola (Brassica napus L.) / Jéssica Angelotti-Mendonça, J. ...[et al.]. - -

Piracicaba: ESALQ - Divisão de Biblioteca, 2016.

32 p. : il. (Série Produtor Rural, nº 61)

Bibliografia.

ISSN:

1. Canola 2. Plantas oleaginosas I. Angelotti-Mendonça, J. II. Riboldi, L.B. III. Soares, C.D.F. IV. Castro, P.R. de C. e V. Kluge, R.A. VI. Escola Superior de Agricultura "Luiz de Queiroz" - Divisão de Biblioteca VII. Título VIII. Série

CDD 633.853 C 227

SUMÁRIO

1 INTRODUÇÃO	5
2 CARACTERÍSTICAS DA PLANTA	7
3 CULTIVARES	9
4 CONDIÇÕES EDAFOCLIMÁTICAS	13
4.1 Zoneamento agrícola	
5 EFEITOS DOS FATORES ECOLÓGICOS	17
5.1 Temperatura	
5.2 Radiação solar	
5.3 Ventos	18
5.4 Geadas	18
5.5 Relações hídricas	19
5.6 Solos	21
6 IMPLANTAÇÃO E TRATOS CULTURAIS	23
6.1 Rotação de culturas	
6.2 Adubação	24
6.3 Colheita	25
7 CARACTERÍSTICAS DOS PRODUTOS E SUBPRODUTOS	27
REFERÊNCIAS	29

A canola (*Brassica napus* L.) é uma oleaginosa que foi desenvolvida a partir do melhoramento genético da colza, que por sua vez, teve origem por meio do cruzamento interespecífico que ocorreu de forma espontânea entre a mostarda (*Brassica rapa* L., syn. *campestris*) e o repolho selvagem (*Brassica oleracea* L.). Alguns autores afirmam que essa espécie surgiu no norte da Europa, enquanto outros sugerem que foi na região mediterrânea, onde ambas espécies progenitoras existem.

A espécie é dividida em duas subespécies, a spp. oleífera, utilizada para produção de óleo, tanto para a indústria alimentícia como para a produção de biodiesel, sendo também utilizada em práticas como a rotação de culturas e para ração animal, e a spp. rapifera, chamada também de rutabaga ou nabo sueco, que possui raízes alongadas, e sua parte aérea é usualmente usada para confecção de forragem.

Canola é a abreviação de 'CANadian Oil Low Acid', termo comercial utilizado para designar o óleo que, devido ao melhoramento, passou a ter quantidades adequadas de compostos que poderiam de outro modo, causar toxicidade. Entre os óleos vegetais, o óleo de canola destaca-se como um dos melhores em relação à composição de ácidos graxos, possuindo menores teores de gorduras saturadas, maiores teores de gorduras monoinsaturadas, além de alto teor de vitamina E e ômega-3.

A produção no Brasil é apenas da spp. *oleífera*, que foi iniciada em escala comercial em 1974 no Rio Grande do Sul. O cultivo da canola no sul do país apresenta diversas vantagens, principalmente na viabilidade na rotação de culturas com o milho, soja,

trigo e feijão, aumentando o rendimento e a qualidade desses grãos, por controlar doenças e melhorar a eficácia na utilização de nutrientes, bem como representar uma boa fonte de biomassa para o solo.

O maior produtor ao nível mundial de canola é o Canadá, que em 2013 produziu mais de 17 milhões de toneladas de grãos. O Brasil tem uma área plantada de canola estimada em torno de 40,5 mil hectares, com uma produtividade média de 1.546 kg ha⁻¹. Os principais produtores nacionais são os estados do Paraná e Rio Grande do Sul, a produção nacional em agosto desse ano, atingiu 62,6 mil toneladas.

2 CARACTERÍSTICAS DA PLANTA

A Brassica napus L. apresenta raiz do tipo pivotante, com grande quantidade de raízes secundárias. O caule é ereto, podendo alcançar até 1,5 metro de altura. Possui folhas carnudas, lisas e de coloração verde-azulada, sendo que as folhas inferiores apresentam pecíolos, já as superiores estão ligadas diretamente ao caule. A inflorescência é alongada, não apresenta brácteas e é do tipo rácimo, ou seja, os pedicelos das flores ficam distribuídos em diferentes alturas na mesma haste floral. As flores são formadas por 4 pétalas de coloração amarela, cada uma medindo entre 7 e 11 mm de comprimento.

O fruto é uma vagem deiscente do tipo síliqua, que pode medir entre 5 e 10 cm, firmada em pedicelo de 1 a 3 cm de comprimento. A síliqua (seca) apresenta uma ponta curta de formato cônico, na qual são produzidos cerca de 15 a 25 grãos por vagem. Estes possuem formato redondo com diâmetro variando entre 1,5 e 3 mm, apresentando coloração que pode variar desde um marrom-avermelhado até preto-azulado. Os grãos apresentam geralmente entre 24 e 27% de proteína e de 38 a 50% de óleo.

A espécie possui adaptação tanto para cultivo no inverno, como na primavera. Na Europa, são cultivados os tipos de inverno, já em países como Austrália e Canadá são usados os tipos de primavera. No Brasil é cultivada apenas a Brassica napus L. var. oleífera, tipo de primavera. A principal diferença entre os dois tipos, é que os cultivares de inverno necessitam de um período de vernalização, ou seja, temperaturas inferiores a 7°C por um período mínimo de oito semanas, para que haja o florescimento. Enquanto que os cultivares de primavera exigem fotoperíodo longo e não precisam de vernalização. Segue abaixo um breve resumo das características de plantio dos cultivares mais utilizadas no Brasil, em sua maioria desenvolvidas e estudadas pela EMBRAPA no sul do país:

HYOLA 43: A altura das plantas desse híbrido pode ser desuniforme dependendo das condições de umidade e temperatura no começo do ciclo, porém isso não afeta o rendimento dos grãos. É resistente à canela-preta. Altura de planta: entre 84 e 140 cm. Início da floração: entre 51-66 dias após emergência. Duração da floração: 20-49 dias. Emergência até a colheita: 119-157 dias.

HYOLA 60: É uma ótima opção para manter alto rendimento dos grãos em áreas sujeitas a geadas, pois apresenta longo período de floração, possuindo mais camadas de flores, que substituem as que foram abortadas pelo frio. É um híbrido muito sensível ao fotoperíodo, devendo ser semeado logo após a colheita de lavouras precoces de outras culturas, também

apresenta sensibilidade a resíduos de herbicidas de outras culturas. É resistente à canela-preta. Altura de plantas: 91 a 163 cm. Início da floração: 59 a 79 dias. Floração: dura de 24 a 53 dias. Emergência até a colheita: 128 a 160 dias.

HYOLA 61: Híbrido resistente a condições adversas como temperaturas muito altas ou muito baixas, alta umidade, geadas e déficit hídrico, conseguindo manter o rendimento. É resistente à canela-preta. Altura de plantas: 78 a 129 cm. Início da floração: 53 a 77 dias. Floração: dura de 28 a 52 dias. Emergência até a colheita: de 123 a 155 dias.

HYOLA 411: O cultivo exige solos com alta fertilidade. É resistente à canela-preta. Altura de planta: entre 128 e 139 cm. Início da floração: entre 59-65 dias após a emergência. Duração da floração: 30-72 dias. Emergência até a colheita: 120-150 dias.

HYOLA 420: Dependendo das condições de cultivo, esse híbrido pode apresentar alto índice de rebrota das plantas. Recomendam-se duas dessecações para a implantação de uma outra cultura. É suscetível à canela-preta. Altura das plantas: 116 a 130 cm. Início da floração: 64 a 70 dias. Floração: dura de 20 a 47 dias. Emergência até a colheita: 116 a 150 dias.

HYOLA 432: Híbrido recomendado para regiões propicias ao frio intenso, geadas, estiagens e, onde possa haver risco à canela-preta, pois esse cultivar apresenta resistência à essa doença. O período do ciclo pode variar de acordo com a época de semeadura. Altura de plantas: 89 a 124 cm. Início da floração: 47 a 73 dias. Floração: dura de 29 a 50 dias. Emergência até a colheita: 119 a 134 dias.

HYOLA 433: Semeadura recomendada para solos de alta fertilidade, também é exigente em outras condições favoráveis. Resistente à canela-preta. Altura de planta: entre 124 e 131 cm. Início da floração: entre 58-67 dias. Duração da floração: 28-73 dias. Emergência até a colheita: 120-150 dias.

4.1 Zoneamento agrícola

O zoneamento agroclimático é um conjunto de técnicas que inclui conhecimentos científicos de agrometeorologia, histórico estatístico de clima e pesquisas, visando a determinação da aptidão climática das regiões de um país, estado ou município, para o cultivo de determinada espécie de interesse agrícola.

A canola é tradicionalmente cultivada em regiões de clima temperado, geralmente em latitudes acima de 24 a 35°, com maior concentração entre os paralelos 40 e 50° N. No hemisfério sul, tem sido cultivada na Austrália e América do Sul, principalmente no Chile e Argentina.

As sementes de canola são muito pequenas (1 a 2 mm de diâmetro) o que as torna sensíveis às adversidades pedoambientais desde o plantio até a emergência. Em temperatura do solo inferior a 10°C e com baixo teor de água, a germinação e o crescimento das plântulas podem ser inviabilizados. Isso ocorre devido à baixa mobilização de lipídios sob baixas temperaturas, associado à limitação de energia disponível durante o crescimento inicial das plântulas de canola.

A geada é o fenômeno meteorológico mais prejudicial à canola no estádio de plântula, podendo também causar prejuízos se ocorrer durante o florescimento, com comprometimento parcial ou total da produção da lavoura. O dano é mais severo, com morte de plantas, quando a geada ocorre sem um período de frio (pelo menos três dias) anterior a mesma, que é chamado de aclimatação. A aclimatação torna as plantas de canola mais tolerantes à geada,

reduzindo ou até evitando os danos, dependendo da intensidade da geada.

Durante o período de floração, altas temperaturas, acima de 27°C, são prejudiciais, principalmente associadas ao déficit hídrico, pois reduzem a duração dessa fase, e podem afetar a viabilidade do polem e a receptividade das flores, resultando em redução de até 50% do rendimento de grãos, devido ao abortamento de síliquas.

A semeadura da canola na região norte e noroeste do Rio Grande do Sul deve ocorrer entre 14 de abril e 20 de junho, enquanto que na região sul do estado a recomendação é para o período de 15 de maio a 15 de junho ou entre 15 de agosto e 15 de setembro, devendo-se sempre observar a previsão de ocorrência de geada próxima à data de plantio, o que pode debilitar ou matar as plantas durante o período de emergência.

Há viabilidade climática para a produção de canola na cidade de Ribeirão Preto, estado de São Paulo, uma vez que as características climáticas da região apresentam-se coincidentes com as necessidades da planta. Dessa forma, a semeadura de canola na região deveria ocorrer na primeira quinzena do mês de março, para evitar possíveis danos causados por excesso de precipitação na colheita.

Recentemente, a cultura da canola foi introduzida na região Centro-Oeste do Brasil, sendo cultivada na entre safra de soja, milho e algodão. A canola é sensível ao déficit hídrico durante todo seu ciclo, assim como a altas ou baixas temperaturas. Para a região de Goiás é recomendada a realização da semeadura de canola entre o início de fevereiro e meados de março, sempre respeitando as indicações do Ministério da Agricultura quanto às combinações do tipo de solo e cultivar indicado para cada município, para não haver prejuízos com a produção.

A Tabela 1 apresenta o período de semeadura indicado de acordo com as portarias elaboradas pelo Ministério da Agricultura Pecuária e Abastecimento. Os seis estados brasileiros possuem Zoneamento Agroclimático a nível municipal, descritos nas portarias.

Tabela 1 - Zoneamento agroclimático dos estados produtores de canola

Estado	Período de semeadura		
Rio Grande do Sul	11 de abril a 30 de junho		
Santa Catarina	21 de março a 30 de setembro		
Paraná	01 de março a 31 de maio		
Mato Grosso do Sul	01 de fevereiro a 30 de abril		
São Paulo	01 de março a 20 de maio		
Goiás	01 de fevereiro a 10 de março		

Fonte: Adaptado de Brasil (2012)

5.1 Temperatura

A canola é originalmente uma planta adaptada a condições amenas e com chuvas regularmente distribuídas ao longo do seu período de crescimento. Temperaturas entre 5°C e 25°C são ideais para o cultivo, sendo que temperaturas abaixo de 5°C provocam a inibição da germinação e emergência de plântulas, assim como acima de 25°C causam estresse térmico e falhas no florescimento e frutificação.

A canola cultivada no Brasil apresenta considerável resposta à temperatura do ar, sendo este o fator ambiental que regula o desenvolvimento da planta. São plantas oriundas de cultivares de primavera, mais adaptadas às nossas condições.

Altas temperaturas reduzem o período de floração e de maturação, além de afetar a viabilidade do grão de polem e a receptividade das flores, traduzindo-se em menores rendimentos. Essas condições, quando aliadas ao déficit hídrico, são as maiores causas de perdas na produção. Um importante efeito da temperatura do ar nas plantas é a definição dos estádios fenológicos, já que esta elevação acelera os estádios de crescimento da planta, encurtando o ciclo total, ocasionando perdas de qualidade das sementes e de produtividade.

5.2 Radiação solar

A radiação solar é o principal recurso que determina o crescimento e a produtividade das culturas, quando as condições hídricas e nutricionais não são limitantes. A interceptação e utilização desta fonte são realizadas pelas folhas das plantas. A arquitetura da copa é essencial para esta interceptação. A interceptação da radiação solar é baixa no início do desenvolvimento da planta e tem sua máxima eficiência no período próximo a floração.

A radiação incidente é um fator intimamente relacionado ao espaçamento entre as plantas. Quanto menor o espaçamento, ao redor de 120 plantas por metro quadrado, para a canola, as plantas crescem mais, porém a produção de sementes é menor. Neste caso, há grande competição das plantas pela radiação incidente, reduzindo a produção de sementes por planta e gerando possíveis problemas com o crescimento excessivo das plantas, como acamamento. Um espaçamento em torno de 80 plantas por metro quadrado é aquele em que foi obtida a máxima produtividade.

5.3 Ventos

O vento intenso afeta a cultura da canola da mesma maneira que outras plantas cultivadas, seja na modificação do microclima, danos a partes da planta, acamamento e também na floração, causando problemas na polinização. Outro fator importante, é que a canola apresenta alta deiscência natural, ou seja, a abertura das síliquas antes da colheita, que causam perdas expressivas de grãos. O excesso de ventos aumenta o atrito entre as síliquas e consequente abertura das mesmas. Assim, recomenda-se que a colheita seja realizada assim que a maturação fisiológica dos grãos seja completada.

5.4 Geadas

A canola é suscetível a geada apenas até 30 dias após a germinação das plantas e durante o florescimento.

Durante o crescimento das plantas, sob geadas moderadas de até -3°C, houve recuperação das plantas, mas guando as temperaturas chegaram a -6°C ocorreu perda total das plantas.

Durante a floração, a geada causa o abortamento das flores. Como a canola apresenta um longo período de floração, eventuais geadas no início da floração não irão comprometer muito a produtividade. Porém, se a geada ocorrer no final do florescimento e início da granação, os prejuízos são maiores, pelo fato de os grãos estarem em seu estádio leitoso, com elevados teores de água. Após este período, não existem problemas.

5.5 Relações hídricas

A canola é uma planta que necessita de boas condições de água no solo, distribuída adequadamente ao longo do ciclo, principalmente no período de floração, aliada a temperaturas amenas. O sucesso da canola nas pradarias canadenses se deve principalmente a estes fatores e a qualidade dos solos, que conseguem absorver e armazenar grandes quantidades de água.

A evapotranspiração média da canola no Rio Grande do Sul é de 1,87 mm dia-1 com valor máximo de 2,8 mm dia-1. Sendo assim apontada uma necessidade hídrica ao redor de 310 mm durante o ciclo da canola.

As necessidades hídricas da canola dependem da variedade utilizada, mas se assemelham em muito a plantas tidas pelos brasileiros como culturas de inverno, englobando neste grupo o trigo, aveia e cevada. Porém, em comparação com as mesmas, a canola tem perdas expressivas de produtividade quando a disponibilidade hídrica é semelhante, devido a sua maior necessidade de água. As variedades

polonesas de canola tendem a usar menos água que as argentinas, pois apresentam maturação mais precoce, o que diminui consideravelmente o uso da água. Deste modo, em locais secos e com problemas de frio, recomenda-se utilizar variedades mais precoces.

A canola é uma planta relativamente sensível à falta de água, originária de regiões frias e adaptada a condições de baixa evapotranspiração. No Canadá é cultivada principalmente nos meses mais quentes do ano, porém o mesmo não ocorre no Brasil. A necessidade de frio faz seu cultivo ser quase exclusivo das regiões mais frias do sul do país, onde temos horas de frio e umidade do solo compatíveis para o crescimento adequado da cultura.

Condições de falta de água no cultivo da canola, influenciam desfavoravelmente o florescimento e a formação das síliquas e grãos. Em plantas pertencentes à família *Brassicaceae*, o número de sementes corresponde muito à quantidade de síliquas por planta. A principal consequência da falta de água no período de formação das sementes é a abscisão das síliquas, que diminui intensamente o peso seco das mesmas. Porém, esta diminuição leva a um aumento no tamanho das sementes, se comparadas com sementes de plantas sob condições de irrigação.

A falta de água compromete principalmente o enchimento das sementes. Vários estudos apontam que a irrigação complementar, principalmente em locais secos, durante este período, aumenta o tempo de floração e o número de sementes por síliqua, assim como a área foliar, e deste modo a quantidade de fotoassimilados. Além disso, o uso de cultivares mais precoces, também chamados de cultivares de primavera, encurtam o período de permanência das plantas no campo, evitando assim, problemas com períodos mais secos.

A irrigação é um fator determinante para aumentar o rendimento de grãos da canola, uma vez que a mesma é sensível ao déficit hídrico em todas as suas fases de desenvolvimento. O manejo adequado de umidade do solo é responsável pelo crescimento do sistema radicular e pela área foliar, favorecendo a retenção de folhas por mais tempo. Além disso, estende o período de floração e incrementa os componentes de rendimento da canola. Estudos no Canadá, demonstraram incremento de produtividade de 1.600 kg ha⁻¹ apenas com o uso adequado da irrigação.

5.6 Solos

Os solos para o cultivo da canola devem ser bem drenados e sem compactação. O pH do solo deve ser superior a 5.5. Deve-se evitar áreas de cultivo onde tenham sido plantadas canola por pelo menos 2 anos, já que podem abrigar a doenças como canela-preta e a esclerotínia.

A indicação de canola como uma planta para ser utilizada em rotação de culturas vem do fato desta acumular mais nutrientes que o trigo, por exemplo. No resíduo deixado na colheita, foram encontrados 40% de nitrogênio, 30% de fósforo e 85% de potássio. Esta ciclagem de nutrientes é extremamente importante para a cultura subsequente, proporcionando grandes benefícios.

A canola possui fontes ricas de óleo de altíssima qualidade e elevados teores proteicos em suas sementes. Por isso, é exigente em adubação com enxofre, fonte principal para formação de aminoácidos e consequentemente, proteínas. Sua formação vai levar a uma queda na produtividade, causando abortamento de flores e síliquas pequenas e mal formadas. Costuma-se

aplicar gesso como fonte de enxofre, principalmente antes da semeadura e sulfato de amônio como adubação de cobertura.

Plantas da família *Brassicaceae* não permitem tanto colonização das raízes como a ligação das hifas dos fungos micorrízicos. Portanto, não são observados benefícios da colonização das raízes pelas micorrizas. Como a canola é uma planta não micorrízica, ela necessita de zinco em solos alcalinos, tendo como fonte o solo ou aplicações foliares. Como não se possue solos com pH elevados no Brasil, este nutriente é desconsiderado nas adubações.

IMPLANTAÇÃO E TRATOS 60

O rendimento de grãos de canola é dependente da combinação de certos componentes como, o número de plantas por hectare, número de síliquas por planta, número de sementes por síliqua e peso individual da semente. Estratégias para altas produções de canola devem considerar o incremento de tais componentes. para assim aumentar o rendimento de grãos.

A canola tem sido introduzida como uma alternativa para cultivo de inverno, buscando incrementar a rotação de culturas. O emprego de híbridos adequados, em substituição aos cultivares de polinização aberta, permite obter rendimentos de grãos mais elevados, provenientes dos benefícios do vigor híbrido e do maior potencial genético de materiais desenvolvidos recentemente. Os híbridos de canola apresentam ainda a vantagem adicional da maturação mais uniforme que a dos cultivares de polinização aberta, característica de importância fundamental para a redução de perdas por deiscência natural.

6.1 Rotação de culturas

Devido a alta suscetibilidade da canola a pragas e doenças, seu cultivo é recomendado em uma mesma área, apenas após um intervalo mínimo de 2 anos. Dessa forma, para se obter sucesso com o cultivo de canola é necessário que se faça rotação de culturas na área, sempre adotando plantas de famílias diferentes da canola. O sistema de rotação que oferece maiores benefícios é a sequência, soja-canola-milhotrigo, por oferecer vantagens em relação ao controle de doenças, aproveitamento dos nutrientes e redução do efeito fitotóxico da canola sobre o cultivo subsequente, uma vez que a soja é sensível e o milho não apresenta sensibilidade.

A exsudação de compostos fitotóxicos pela canola promove a inibição do crescimento de uma série de plantas cultivadas. O efeito alelopático negativo da canola se deve à síntese e acúmulo de glucosinolatos no parênquima. Apesar de se usar cultivares com baixas concentrações de glucosinolatos, a concentração produzida ainda é suficiente para provocar problemas de desenvolvimento no cultivo subsequente.

No entanto, existem alguns benefícios que esses compostos podem trazer para a área de cultivo. Os glucosinolatos liberados e acumulados no solo têm um efeito supressor de patógenos do solo, como oomicetos e nematoides, além disso, a volatilização e a solubilização dos glucosinolatos, inibe a germinação de sementes de plantas invasoras na área.

Outra questão que deve ser observada antes do cultivo de canola é o histórico de herbicidas aplicados na cultura anterior, uma vez que a cultura é sensível a uma série de herbicidas, entre os quais se destacam: atrazina, cinazina, diclosulfan, flumetsulan, fomesafen, imazaquim, imazetaphir e metribuzim. Não existem estudos que apontem com precisão um intervalo seguro entre a aplicação desses produtos e o cultivo da canola, este período é variável entre as regiões, sendo assim, não é recomendado o cultivo de canola nessas áreas.

6.2 Adubação

A canola é uma planta exigente em termos nutricionais, principalmente em nitrogênio e enxofre. Deve-se evitar acidez excessiva do solo ou baixo teor de matéria orgânica, a fim de se obter elevadas produtividades. Cada solo deve passar por análise prévia dos nutrientes disponíveis, mas

geralmente recomenda-se a aplicação de 20 kg de N ha⁻¹ junto com 20 kg de S ha⁻¹, na semeadura e mais 40 kg de N ha⁻¹, em cobertura.

A canola tem uma alta demanda e resposta ao nitrogênio, sendo que a maior parte deste nutriente deve ser aplicado na semeadura, no entanto, pode também ser aplicado durante o crescimento, em cobertura. O resultado da aplicação de N é bastante variável, dependendo das condições de cultivo, mas a literatura relata produções em torno de 2600 a 2800 kg ha⁻¹, quando o nitrogênio é aplicado adequadamente. Estudos recentes apontam que doses de aproximadamente 90 kg ha⁻¹ de nitrogênio levam a máxima produtividade no sul do país, não importando a fonte aplicada, como sulfato de amônio ou ureia.

Deve-se tomar cuidado com o excesso de fertilização, principalmente durante a semeadura, já que as sementes de canola são altamente suscetíveis a danos pelo fertilizante. Na produção de canola, a aplicação de nitrogênio em cobertura é indispensável, para se obter rendimentos satisfatórios. Como se trata de uma cultura utilizada em rotação, principalmente de culturas como soja e milho, não são observadas deficiências de fósforo e potássio. Porém, a adubação potássica eleva a produtividade e a melhoria da qualidade fisiológica e sanitária das sementes.

6.3 Colheita

A colheita é um dos momentos mais decisivos no sistema de produção de canola. A canola possui frutos com alta deiscência natural, maturação desuniforme e de baixo para cima. Essas características tornam a operação de colheita um dos fatores mais relevantes para se obter altas produções. Visando a redução das perdas, a colheita da canola pode ser

feita de duas formas, por meio do corte e enleiramento no momento da maturação fisiológica ou por meio de colheita direta no momento em que os grãos atingirem 18% de umidade.

A operação de corte e enleiramento consiste em se fazer o corte das plantas e amontoar as mesmas, deixando no campo por um período de 3 a 5 dias para que a umidade dos grãos seja reduzida, posteriormente os grãos são trilhados e armazenados. Já a colheita direta, deve ser realizada o mais próximo de 18% de umidade nos grãos, uma vez que a canola possui maturação pouco homogênea, havendo grãos com umidade alta que podem ser amassados no momento da colheita e grãos com umidade muito baixa, suscetíveis a deiscência natural, assim como perdas por quebra durante a operação de colheita.

CARACTERISTICAS DOS N

O cultivo de canola no Brasil tem três finalidades básicas: produção de óleo comestível; produção de biodiesel e produção de ração animal com o farelo dos grãos. Os grãos de canola são ricos em óleo, podendo conter mais de 40% do mesmo em sua composição. O óleo de canola é considerado um alimento saudável por médicos e nutricionistas devido a sua composição de ácidos graxos, contendo elevada quantidade de ômega-3, vitamina E e gorduras monoinsaturadas, sendo assim, de grande interesse social o aumento da produção de óleo comestível de canola.

Na Europa, o óleo de canola é amplamente utilizado para a produção de biodiesel, sendo referência para a produção mundial. No Brasil, a produção de biodiesel a partir de canola ainda é incipiente. Apesar do óleo de canola ter ganho espaço ao longo dos últimos anos, em torno de 75% do biodiesel é proveniente do óleo de soja e cerca de 20% originário de gordura bovina. Visando a diversificação de matéria prima para a indústria, a canola se apresenta como uma excelente alternativa, uma vez que a tendência mundial é a migração para o uso de matrizes energéticas sustentáveis. A produção de biodiesel de canola traz uma série de vantagens, para os países com inverno rigoroso, a principal seria o baixo ponto de congelamento do óleo de canola (-3°C). Outra vantagem é a baixa tendência a oxidação do biodiesel de canola. o que evita problemas de corrosão em peças do motor de veículos.

O farelo de canola possui 34 a 38% de proteína. sendo um excelente suplemento proteico na formulação de rações para bovinos, suínos, ovinos e aves, e tem sido comercializado sem dificuldades. A sua utilização na alimentação animal é limitada em razão da presença de glucosinolatos excedendo 15µmol grama-1, o que afeta negativamente a reprodução dos mesmos. Sendo assim, a utilização de farelo de canola como ração, deve ser feita em mistura com outras fontes nutricionais em proporções que o glucosinolato não constitua um problema.

BIRUNARA, A.: SHEKARI, F.: HASSANPOURAGHDAM. M.B.; KHORSHIDI, M.B; ESFANDYARI, E. Effects of water deficit stress on yield, yield components and phenology of canola (Brassica napus L.) at different growth stages. Journal of Food, Agriculture & Environment, Helsinki, v. 9, n. 3/4, p. 506-509, 2011.

BRASIL. Ministério da Agricultura Pecuária e Abastecimento. Zoneamento agroclimático para a cultura da canola. 2011. Disponível em: http://www.cnpt.embrapa.br/culturas/canola/ zoneamento.htm>. Acesso em: 12 set. 2015.

BUZZA, G. Canola. In: JESSOP, R.S.; WRIGHT, R.L. (Ed.). Agronomy and potential of alternative crop species. Sydney: Inkata Press, 1991. p. 19-26.

CALLIHAN, B.: BRENNAN, J.: MILLER, T.: BROWN, J.: MOORE M. Guide to identification of canola, mustard, rapeseed and related weeds. Moscow: University of Idaho, 2000. 26 p.

COMPANHIA NACIONAL DE ABASTECIMENTO. Acompanhamento da safra brasileira: grãos. v. 2: safra 2014/15, n. 11; décimo primeiro levantamento. Brasília, 2015. 107 p.

CORDEIRO, L.A.M.; REIS, M.S.; ALVARENGA, E.M. A cultura da canola. Vicosa: UFV, 1999. 50 p.

DALMAGO, G.A.; CUNHA, G.R.; TOMM, G.O.; SANTI, A.; PIRES, J.L.F. Canola. In: MONTEIRO, B.A. **Agrometeorologia dos cultivos:** o fator meteorológico na produção agrícola. Brasília: INMET, 2009. p. 131-149.

DIAS, J.C. A. **Canola/colza**: alternativa de inverno com perspectiva de produção de óleo comestível e combustível. Capão do Leão; Pelotas: EMBRAPA, CPATB, 1992. 46 p. (Boletim de Pesquisa, 3).

FAO. **Production index.** 2015. Disponível em: http://faostat.fao.org. Acesso em: 08 out. 2015.

INOMATA, N. *Brassica* vegetable crops. In: SIGH, R.J. (Ed.). **Genetic resources, chromosome engineering, and crop improvement:** vegetable crops. Boca Raton: CRC Press, 2006. v. 3, p. 115-146.

MOHAMMADI, K.; ROKHZADI, A. An integrated fertilization system of canola (*Brassica napus* L.) production under different crop rotations. **Industrial Crops and Products**, Amsterdam, v. 37, p. 264-269, 2012.

PEREIRA, A.R.; ANGELOCCI, L.R.; SENTELHAS, P.C. **Agrometeorologia:** fundamentos e aplicações práticas. Guaíba: Ed. Agropecuária. 2002. 478 p.

SNOWDON, R.; FRIEDT, W.; LUHS, W. *Brassica* oilseeds. In: SIGH, R.J. (Ed.). **Genetic resources, chromosome engineering, and crop improvement:** oilseed crops. Boca Raton: CRC Press, 2006. v. 4, chap. 7, p.195-230.

SOETEDJO. P.: MARTIN. L.D.: JANES. A.J.V. Canopy architecture, light utilization and productivity of intercrops of field pea and canola. In: AUSTRALIAN AGRONOMY CONFERENCE, 9., 1998, Curtin. **Proceedings...** Curtin: The Australian Regional Institute, 1998. p. 20-23.

SOLEYMANI, A.; SHAHRAJABIAN, M. The effect of plant populations on solar radiation absorption, light transmission and yield components of spring rape seed cultivars. In: WORLD SUSTAINABILITY FORUM, 2., 2012, Basel, **Proceedings...** Basel: Multidisciplinary Digital Publishing Institute, 2012. (Sciforum Electronic Conference Series, 2).

THOMAS, P. The grower's manual. Winnipeg: Canola Council of Canada, 2003. Disponível em: http:// www.canolacouncil.org/crop-production canola grower's manual contents Acesso em: 17 set. 2015.

TOMM, G.O. Indicativos tecnológicos para produção de canola no Rio Grande do Sul. Passo Fundo: Embrapa Trigo. 2007. 68 p. (Embrapa Trigo. Sistemas de Produção, 4).

. **Cultivo da canola**. 2. ed. Passo Fundo: Embrapa Trigo, 2014. (Embrapa Trigo. Sistema de Produção, 3). Disponível em: https://www.spo.cnptia.embrapa.br. Acesso em: 20 out. 2014.

TOMM, G.O.; WIETHÖLTER, S.; DALMAGO, G.A.; SANTOS, H.P. dos. Tecnologia para produção de canola no Rio Grande do Sul. Passo Fundo: Embrapa Trigo, 2009. 41 p. (Embrapa Trigo. Documentos, 92).

VASCONCELOS, R.L.; GIACOMO, K.S.; GARCIA, A.; SOUZA, E C. Viabilidade climática para o cultivo de canola em Ribeirão Preto - SP. **Nucleus**, Quezon City, v. 9, n. 2, p. 195-200, Oct. 2012.

VIERHEILEIG, H.; BENNETT, R.; KIDDLES, G.; KALDORF, M.; LUDWIG-MULLER, J. Differences in glucosinolate patterns and arbuscular mycorrhizal status of glucosinolate-containing plant species. **New Phytologist**, London, v. 146, p. 343-352, 2000.

WESTPHALEN, S.L.; BERGAMASCHI, H. Evapotranspiração da colza (*Brassica napus* L.) através de evapotranspirômetros "tipo Thorntwaithe". In: REUNIÃO ANUAL DE PROGRAMAÇÃO DE PESQUISA E ASSISTÊNCIA TÉCNICA DA COLZA, 1., 1982, Porto Alegre. Porto Alegre: Instituto de Pesquisa Agronômica, 1982. p. 73-80.

INFORMAÇÕES AOS AUTORES

A Série Produtor Rural é editada desde 1997 pela Divisão de Biblioteca da Escola Superior de Agricultura "Luiz de Queiroz"/USP e tem como objetivo publicar textos acessíveis aos produtores com temas diversificados e informações práticas, contribuindo para a Extensão Rural.

Pode publicar

- · Pesquisadores e docentes da ESALQ e CENA;
- Alunos cujos textos serão revisados por orientadores ou quem o Presidente da Comissão de Cultura e Extensão designar;
- Demais pesquisadores, porém, com a chancela da Comissão de Cultura e Extensão que avaliará os textos previamente.

Requisitos para publicação

- Texto redigido em Word, com linguagem simples, acessível e didática a ser encaminhado para: referencia.esalg@usp.br
- Ilustrações e figuras em alta resolução, facilitando a compreensão do texto.

www4.esalq.usp.br/biblioteca/publicacoes-a-venda/serie-produtor-rural

COMO ADQUIRIR

Para adquirir as publicações, depositar no Banco do Brasil, Agência 0056-6, C/C 306.344-5 o valor referente ao(s) exemplare(s), acrescido de R\$ 7,50 para o envio, posteriormente enviar via fax (19) 3429-4340, e-mail ou correspondência o comprovante de depósito, o(s) título(s) da(s) publicação(ões), nome e endereço completo para fazermos o envio, ou através de cheque nominal à Universidade de São Paulo - ESALQ.

Acesse nosso site

www4.esalq.usp.br/biblioteca

Série Produtor Rura USP/ESALQ/DIBD

A Série Produtor Rural é editada desde 1997 pela Divisão de Biblioteca da Escola Superior de Agricultura "Luiz de Queiroz"/USP e tem como objetivo publicar textos acessíveis aos produtores com temas diversificados e informações práticas, contribuindo para a Extensão Rural.