THESE de DOCTORAT de l'UNIVERSITE PARIS 6

Spécialité :

PEDOLOGIE

présentée par :

Monsieur Andreas Attila de WOLINSK MIKLOS

pour obtenir le titre de DOCTEUR DE L'UNIVERSITE DE PARIS 6

Sujet de la thèse :

BIODYNAMIQUE d'une COUVERTURE PEDOLOGIQUE dans la REGION de BOTUCATU (BRESIL - SP)

Volume (II)

FIGURES ET PHOTOS

Soutenue le 15 Octobre 1992

Devant le jury composé de :

A. MARIOTTI	(Président)
P. CURMI	(Examinateur)
G. PEDRO	(Examinateur)
A. RUELLAN	(Rapporteur)
F. TOUTAIN	(Rapporteur)
P. TREHEN	(Examinateur)

PLAN DE LA THESE

INTRODUCTION	1
PREMIERE PARTIE: PRESENTATION DU MILIEU NATUREL	2
 Localisation du site d'étude. Climat actuel. Géologie. Géomorphologie. Sols. Végétation. Faune du sol. Conclusion. 	2 2 3 4 6 7 10
DEUXIEME PARTIE: ORGANISATION DE LA COUVERTURE PEDOLOGIO DE BOTUCATU.	QUE 11
CHAPITRE I. CARACTERISATION MACROMORPHOLOGIQUE DES ORGANISATIONS.	11
A. L'INTERFLUVE ET LES VERSANTS	11
I. DESCRIPTION DETAILLEE DES ORGANISATIONS.	11
 Description détaillée d'une toposéquence (séquences AT et ET). Interfluve aplati. Versant Lavapés: tiers supérieur de pente. Différenciations locales 4 Différenciation latérale des organisations de l'interfluve aplati au tiers supérieur de pente 5 Versant Lavapés: mi-pente. 6 Différenciation latérale des organisations du tiers 	11 11 14 17 20 21
supérieur à mi-pente 1.7 Versant Lavapés: tiers inférieur de pente.	23 30
 2. Organisations dues à la faune du sol. 2.1 Fourmis Atta. 2.2 Autres espèces de fourmis. 2.3 Vers de terre. 2.4 Termites épigés. 2.5 Termites endogés. 2.6 Conclusions. 	37 38 41 41 41 42 42
II. L'INVENTAIRE DES HORIZONS ET LEURS RELATIONS SPATIALES.	42
 Les 21 horizons de la toposéquence principale (AT et ET) et leur organisation spatiale. 1.1 Pôle amont. 1.2 Pôle aval. 	42 43 44

 L'apport des autres séquences. 2.1 Séquence CT. 2.2 Séquence DT. 2.3 Conclusions. 	46 47 47 48
 Les courbes d'isodifférenciation: caractérisation tridimensionnelle des organisations. Horizons pédologiques. Charbons de bois. Faune du sol. 4 Conclusions. 	49 49 51 51 52
III. CONCLUSIONS SUR L'ORGANISATION DE L'INTERFLUVE ET DES VERSANTS.	52
 Différenciations verticales. 1.1 Structure. 1.2 Texture. 1.3 Couleur. 	52 52 53 53
 Différenciations latérales. 2.1 Structure. 2.2 Texture. 2.3 Couleur. 2.4 Charbons de bois. 2.5 Les fortes ruptures de pente à l'extrémité aval des versants. 	54 54 54 54 54 55
 Questions posées par cette première approche macromorphologique. 3.1 L'horizon hétérogène en couleur. 3.2 Les horizons sombriques. 3.3 Les horizons superficiels. 3.4 L'appauvrissement superficiel. 3.5 Les transformations structurales microagrégat - polyèdre. 3.6 Les charbons de bois en profondeur. 3.7 Les extrémités aval des versants. 	55 55 55 55 55 56 56 56
CHAPITRE II. CARACTERISATIONS ANALYTIQUES DES ORGANISATIONS.	57
 Données granulométriques. Variations granulométriques à l'échelle du versant: différenciation latérale. Variations granulométriques à l'échelle du profil: différenciation verticale. Le cas particulier du profil T.5. 	57 57 57 58
 Données physico-chimiques. 2.1 Synthèse des données précédentes. 2.2 Fer et carbone totaux. 	58 59 60
 Données minéralogiques. 3.1 Fraction argile. 3.2 Fraction limon. 3.3 Fraction sable fin. 3.4 Conclusions. 	61 61 62 62 62
 4. Données radiométriques au ¹⁴C. 4.1 Datation des charbons de bois. 	62 63

onnées hydriques.	64
onclusion générale.	65
PITRE III. CARACTERISATION MICROSCOPIQUE DES ORGANISATIONS DANS LE VERSANT LAVAPES.	66 66
'interfluve aplati. 1.1 Profil ET.3. 1.2 Profil FT.3A.	66 66 78
iers supérieur de pente. 2.1 Profil P.7. 2.2 Profil T.5.	80 81 97
li-pente. 3.1 Profil P.3. 3.2 Profil P.13. 3.3 Profil P.9.	103 103 114 116
 iers inférieur de pente. 4.1 Profil P.4. 4.2 Transition latérale entre la mi-pente et le tiers inférieur de pente. 4.3 Profil P.17. 4.4 Profil P.5. 4.5 Discussions. 	123 123 125 126 129 130
APITRE IV. SYNTHESE DES DONNEES: ORGANISATION DES RACTERES MORPHOLOGIQUES DANS L'ESPACE.	133
es différents ensembles structuraux. 1.1 Les ensembles superficiels. 1.2 L'ensemble microagrégé. 1.3 L'ensemble à structure composée et de transition microagrégat-polyèdre. 1.4 L'ensemble polyédrique.	133 133 135 138 140
es ensembles texturaux. 2.1 Les variations texturales à l'échelle du versant: différenciation latérale. 2.2 Les variations texturales à l'échelle du profil ou des horizons pédologiques: différenciation verticale.	142 142 142
Couleur. 3.1 Les variations de couleur à l'échelle du versant: différenciation latérale.	143 143
pédologiques: différenciations verticales.	143
DISIEME PARTIE: INTERPRETATIONS.	148
APITRE V. GENESE ET EVOLUTION DES STRUCTURES CROAGREGEES ET POLYEDRIQUES.	148
insemble microagrégé: genèse des agrégats. 1.1 Bref rappel des données morphologiques. 1.2 Données bibliographiques sur la genèse des microagrégats. 1.3 Genèse des microagrégats dans les sols du versant Lavapés. 1.4 Conclusion.	148 148 149 152 159

2. Les différenciations structurales microagrégats - polyèdres.	161									
sols à horizon microagrégé: données bibliographiques. 2 2 Les transitions entre l'ensemble microagrégé et l'ensemble	161									
polyédrique dans la couverture pédologique de Botucatu.	166									
3. Conclusions générales.										
CHAPITRE VI. GENESE ET EVOLUTION DES HORIZONS SUPERFICIELS.										
 Différenciation morphologique dans le pôle amont. 1.1 Origine des agrégats à structure interne continue. 1.2 Origine de la différenciation texturale et de l'accumulation des sables blancs: les phénomènes d'appauvrissement superficiel 										
des sables blancs: les phénomènes d'appauvrissement superficiel. 1.3 Evolution des agrégats biologiques. 1.4 Conclusions.	183 186 186									
 Différenciation morphologique dans le pôle aval. 2.1 Origine des agrégats grumeleux. 2.2 Evolution des agrégats grumeleux. 	187 187 188									
3. Différenciation latérale entre les horizons superficiels des pôles amont et aval.	188									
4. Différenciation latérale de la litière.										
5. Conclusions générales.										
CHAPITRE VII. GENESE DE L'HORIZON HETEROGENE EN COULEUR, DES ENSEMBLES SOMBRES ("SOMBRIC HORIZONS") ET DE LA "STONE-LINE".	193									
 "STONE-LINE". 1. Origine de l'horizon hétérogène en couleur (H3). 1.1 Rappel de quelques données concernant l'horizon 3. 1.2 Les matériaux remontés par les fourmis Atta. 1.3 Interprétations. 4 Estimation de la quantité de matériau remonté par les fourmis Atta. 										
2. Les ensembles sombres.	196									
 2.1 Données bibliographiques concernant les norizons sombres de profondeur. 2.2 Genèse des ensembles sombres supérieur et inférieur. 2.3 Estimation de la quantité des matériaux remontés. 2.4 Conclusion. 	196 197 199 200									
3. Origine de "stone-line".	201									
4. Conclusions.	202									
CHAPITRE VIII. CHRONOLOGIE DES DIFFERENCIATIONS DANS LA COUVERTURE PEDOLOGIQUE DE BOTUCATU.	204									
 Morphologie et organisation spatiale des charbons de bois. 1.1 Charbons de bois millimétriques de sub-surface. 1.2 Charbons de bois de profondeur. 	204 204 205									

-

 Origine des charbons de bois. 2.1 Les charbons de bois millimétriques de sub-surface. 2.2 Les charbons de bois de profondeur. 	205 205 206							
3. Ages des charbons de bois.	207							
 4. Implications dans l'évolution de la couverture pédologique. 4.1 Implications dans l'origine des ensembles sombres. 4.2 Implications sur l'évolution structurale. 								
 4.3 Implications sur l'évolution morphogénétique de la partie aval du versant Lavapés. 4.4 Implications sur le fonctionnement bio-dynamique de la couverture 								
pédologique.	210							
5 Implications paléoclimatiques des charbons de bois de profondeur à Botucatu.	211							
6. Conclusion.	212							
CONCLUSIONS GENERALES.	214							
BIBLIOGRAPHIE.	218							

FIGURES

Figure 1 - Géologie et géomorphologie de l'Etat de Sao Paulo

Groupe Sao Bento Formation Marilia (Grétacé) : grès de dépot fluvial

Formation Serra Geral (Jurassique) : roches volcaniques toléitiques - basaltes Formation Botucatu (Jurassique) : grès éolien

Faille de gravité

Figure 5 - Profils géomophologiques du site d'étude

Figure 7 - Données physico-chimiques des sols des Unités Patrulha et Experimental

lorizon	Profon- deur (cm)				Humidité %		Densité							
		STG 2-1 mm	SG 1-0,5 mm	SM 0,5-0,25 mm	SF 0,25-0,10 num	STP 0,10-0,05 muii	Sabica totaux	Limon 0,05-0,002 mm	Argile 0,002 eun	Argile	1/3 sim	15 a.m	Récile	Appa- rents
АР	0-15	1,7	6,4	28,1	30,2	5,6	72	8	20	4	13	8	2,6	1,4
B,	15-45	1,9	4,6	21.6	32,2	7,7	68	8	24	6	14	9	2,6	1,3
B ₂₁	45-80	1,7	5,7	24,4	28,2	6,0	66	5	29	8	14	10	2,6	1,3
B ₂₂	80-110	2,0	4,4	23,0	29,5	6,1	65	6	29	8	13	10	2,7	1,3

Tableau 1 - Données physiques et chimiques d'un profil de sol de l'unité Patrulha (CARVALHO et alii, 1983)

Localisation des profils de sols analysés

Hurizon	Profon- deur	(Complex	e d'éch	ange - e	.mg/100	Saturation en		рН		Mathe	Culture		
		Ca+2	Mg ⁺²	к+	н+	A1 ⁺³	PO ⁻³	CEC	s	s/T %	H20 1:2,5	KC1 1:2,5	organi- nique	
Ар	0-15	0,1	0,1	0,06	5,4	1,3	0,02	10,4	0,3	3	4,3	3,9	1.9	81
в	15-45	tr	0,2	0,05	5,6	1,4	0,01	10,4	0,2	2	4,4	4,0	1,8	88
18 ₂₁	45-80	tr	0,1	0,04	5,3	1,4	tr	9,0	0,1	2	4,5	4,1	1,3	93
B ₂₂	80-170	tr	0,1	0,03	4,2	1,1	tr	8,2	0,1	2	4,5	4.1	1.0	92

Tableau 2 - Données physiques et chimiques d'un profil de l'unité expérimentale (*)

Horizon	Profun- deur (cm)				Humidité %		Densité							
		STG 2-1 mm	SG 1-0,5 mm	SM 0,5-0,25 mm	SP 0,25-0,10 mm	STF 0,10-0,05 mm	Sables totaux	Limon 0,05-0,002 num	Argile 0,002 mm	Argile	j/3 atm	15 atm	Réclie	Apps- renie
AP	0-15	0,2	3,4	28,7	30,6	3,1	66	21	13	9	16	11	2,7	1,5
в	15-35	0,6	2,6	21,7	25,0	4,1	54	22	24	12	18	13	2,8	1,4
B ₂₁	35-70	0,2	2,0	16,4	20,1	3,3	42	18	40	19	21	16	2,8	1.3
B ₂₂	70-100	0,5	2,5	19,1	20,4	3,5	46	17	37	21	20	15	2,8	1,3
B ₂₃	100-150	0,3	2,8	16.0	22,5	3,4	45	19	36	16	19	14	2,8	1,3
B3	150-180	0,1	1,7	14,9	23,9	4,4	45	18	37	6	19	14	2,8	1,1

Horizons		C	Complex	ce d'éch	ange - e	.mg/100	Satura	tion en	P	н	Matière	Satura-		
	deur	Ca ⁺²	Mg ⁺²	к+	н+	A1 ⁺³	PO ⁻³	CEC	s	Т%	H20 1:2,5	KC1 1:2,5	organi- que %	tion en alumi- nium %
Ap	0-15	4,9	3,2	0,16	1,7	0,0	0,03	8,0	8,3	103	6.6	5,7	1,6	
в	15-35	1,4	0,4	0,04	3,4	0,5	0,01	8,2	1,8	22	5,0	4.5	1,3	22
B21	35-70	2,6	0,0	0,03	2,5	0,1	0,01	7.6	2,6	35	5,5	4,9	0,8	4
B22	70-100	2,2	0,3	0,03	2,2	0,1	0,02	6,8	2,5	37	5,7	5.2	0,8	4
B23	100-150	1,8	0,6	0,03	1,5	0,1	0,02	6,8	2,4	36	5,6	5,6	0,5	4
83	150-180	1,5	0,9	0,03	1,8	0,1	0,02	6,2	2,4	39	5,5	5,6	0,5	4

(*) CARVALHO et alii, 1983

Légende :

l - Unité Patrulha (LE)

2- Unité Expérimentale (TRE integrade LE)

AT, CT, DT Toposéquences étudiées.

Figure 8 - Distribution latérale des sols et des taux d'argile

Versant Lacapés

- (a) Taux d'argile (%)
- (b) Teinte Münsell

Figure 9 - Végétation du site d'étude

Figure 10 - Les parties composantes d'une fourmilière d'Atta. Visualisation partiellement fictive d'une fourmilière adulte, basée sur des excavations ; d'après JONKMAN (1980)

- (^a) Monticule de terre = matériaux du sol remontés par les fourmis.
- (b) Communications externes
- (9 Chenaux
- (d) Chambres

Figure 11 - Fourmis du genre Atta. Contraste et taille entre deux ouvrières. Adapté de WEBER (1972)

Figure 12 - Schéma des différentes parties composant les termitières epigées et endogées (extrait de Grassé, 1984)

(1) Système de cavités comprenant la cellule royale, les chambres à meules, couvains et galeries. Habitacle.

- (2) Réseaux de galeries périphériques
- (3) Matériaux du sol remontés par les termites.

Figure 13 - Parties corporelles de trois individus Isoptèra de la famille des Termitidae

Figure 15 - Différenciation macromorphologique du profil ET.3 à l'interfluve aplati

Figure 16 - Différenciation macromorphologique du profil P.7 - Tiers supérieur de pente

Figure 18 - Difféfrenciation morphologique verticale du profil FT.3A

Figure 21 - Transition latérale entre l'interfluve applati et le tiers supérieur de pente

Figure 23 - Différenciation macromorphologique du profil P.3 - Mi-pente aval

Composée par la juxtaposition des domaines microagrégés et à structure interne contin Microagrégée //Légende: Polyédrique Transitions de couleur diffuse STRUCTURE 111 Prof. (cm) Horizons H 16 H 18 H 13 110 80 6.9 2,5YR3/4 5YR 3/2,5 5YR 3/2,5 Transition structurale très progressive Prof. (cm) H 16 H 15 H 13 120 80 6.4 4 2,5YR3/4 5YR3/2 5YR 3/4

distincte à nette

|||

Figure 24 - Rapport entre les différenciations verticales de couleur et structure dans les profils P.9 et P.3.

Figure 26 - Différenciation macromorphologique du profil P.9 - Mi-pente amont

Figure 27 - Différenciation macromorphologique du profil P.10 - mi-pente amont

Figure 28 - Différenciation macromorphologique du Profil P.13 - Mi-pente amont

Figure 30 - Différenciation macromorphologique du profil P.4 - Tiers inférieur de pente

Figure 31 - Différenciation macromorphologique du profil HT.6 - Séquence HT

Figure 33 - Différenciation macromorphologique du profil P.17 - Tiers inférieur de pente

Figure 34 - Diférenciation macromorphologique du profil P.5 - Tiers inférieur de pente

Figure 35 - Différenciation macromorphologique du profil P.11 - Tiers inférieur de pente

Figure 36 - Différenciation macromorphologique du profil AT.1 - Extrémité aval

Figure 37 - Organisation pédologique bidimensionnelle du versant La

Figure 37 - Organisation pédologique bidimensionnelle du versant Lavapés

LEGENDE

- ↔ H1: Microagrégé; SA à AS; 5YR4/6.
- de de la construcción de la
 - H3: Structure composée; SA à AS; 5YR4/6 et 5YR3/3.
- H4: Structure composée; SA; 5YR3/2.
- • H5: Particulaire très riche en sables blancs.
- H6: Microagrégé; SA à A; 5YR3/4.
- H7: Discontinu; microagrégé; AS; 5YR4/6 ou 4/4.
- H8: Horizon sombrique supérieur amont; microagrégé; AS; 5YR3/2.
- H9: Microagrégé; AS; 5YR3/3.
- • H10: Structure composée; grenue, grumeleux et sables blancs.
- H11: Microagrégé; SA à A; 2.5YR3/6.
- H12: Microagrégé; SA à A; 2.5YR3/4.
- H13: Horizon sombrique inférieur aval; microagrégé; AS à A; 5YR3/2,5.
- H14: Structure composée avec des sables blancs; AS; 5YR3/4. Transition latérale micragrégat-polyèdre.
- H15: Structure composée; AS; 5YR3/4. Transition verticale microagrégat-polyèdre.
- H16: Polyédrique; AS à A; 2.5YR3/4.
- H17: Microagrégé riche en domaines à structure interne continue; SA à AS ; 5YR3/4.
- H18: Horizon sombrique à structure composée; A; 5YR3/2,5. Transition verticale microagrégat-polyèdre.
- **H19:** Grumeleux, AS à A; 5YR3/3 à 2,5YR3/4.
- H20: Structure composée; A; 2,5YR3/4 à 3/6. Transition verticale microagrégat-polyèdre.
- H21: Horizon sombrique polyédrique; A; 5YR3/2,5.
- **E L**1: Litière à 3 phases de décomposition.
- **L2**: Litière à 1 phase de décomposition.
- M. Altérite de basalte **5** Alluvions

Figure 39 - Différenciation macromorphologique du profil CT. 10 - Mi-pente / Séquence CT

Figure 40 - Organisation latérale de la séquence CT en mi-pente

Figure 42 - Organisation spatiale des matériaux à l'aval de la séquence CT - Versant Lavapés

Figure 43 - Différenciation macromorphologique du profil CT.18 - Tiers inférieur de pente / Séquence CT

Figure 45 - Différenciation macromorphologique du profil DT.15 - Tiers inférieur de pente / Séquence DT

Figure 47 - Distribution spatiale en courbe d'isodifférenciation des ensembles sombres

Figure 48 - Distribution spatiale de l'horizon 3 en courbes d'isodifférenciation

Figure 50 - Courbes d'isodifférenciation des matériaux superficiels

Figure 51 - Courbes d'isodifférenciation des charbons de bois et des horizons les plus sombres de la couverture pédologique

Légende

Figure 52 - Carte de répartition de la faune du sol: fourmis Atta, termites épigés et vers de terre

.

.

(A) Particulaire riche en sables blancs, grenue et grumeleuse
(2) Composée: domaines microagrégés avec des sables blancs et domaines

à structure interne continue

Hor.	Prof.	M.O.	pН	Ca+2	Mg+2	K+	H+	Al	S	Т	SIT	Al/S+Al	Arg.	da
	(0111)			Meq. / 100g							(%)	(%)	(%)	(g/cm ³)
						PROFIL P.1.								
Ap	8	1,0	5,5	0,4	0,3	0,08	3,0	0,1	0,78	3,9	20	11	18	1,40
H3	25	0,6	4,7	-	-	0,04	3,4	0,3	0,04	3,7	1,0	88	20	1,53
H9	45	0,6	4,8	-	0,05	0,05	3,0	0,2	0,1	3,4	3,0	75	22	1,46
H2	64	0,5	4,6	-	-	0,01	3,0	0,2	0,01	3,2	0,3	95	24	1,39
H1	150	0,6	5,0	-	-	0,04	3,0	0,2	0,04	3,2	1,0	83	25	1,43
						PROFIL P 7								
Н3	10	1,3	4,6	-	-	0,05	5,4	1,2	0,05	6,7	1,0	96	13	1,31
H9	30	1,5	4,6	-	-	0,04	5,9	0,7	0,04	6,6	1,0	95	22	1,37
H8	50	1,0	4,7	-	-	0,02	6,1	0,9	0,02	6,9	0,3	98	25	1,27
H7	75	0,8	4,6	-		0,01	5,0	0,6	0, <mark>0</mark> 1	5,6	0,2	98	24	1,35
H6	150	0,7	4,7	-	-	0,02	4,8	0,6	0,02	5,4	0,4	97	24	1,41
					PROFIL P.10									
H3	8	1,8	4,5	-	0,05	0,07	4,8	1,1	0,12	6,0	2,0	90	20	-
H6	35	2,1	4,5	-	-	0,04	6,6	1,1	0,04	7,7	0,5	96	27	-
H6	70	1,6	4,6	-	-	0,02	6,2	1,0	0,02	7,2	0,3	98	25	-
H6	110	1,6	4,5	-	-	0,01	6,1	0,9	0,01	7,0	0,1	99	26	-
H6	170	1,1	4,6	0,1	-	0,01	4,8	0,8	0,11	5,7	2,0	88	27	-
						PR	OFIL P.	13						
H3	7	1,4	4,6	0,1	0,05	0,08	5,8	0,9	0,23	6,9	3	80	22	1,63
H14	_35	2,0	4,7	-	-	0,04	6,9	1,1	0,04	8,0	0,5	96	30	1,50
H6/H13	80	1,4	4,6	Ξ.	-	0,02	7,0	1,2	0,02	8,2	0,2	98	24	1,32
H13/H6	125	1,4	4,6	-	-	0,02	6,6	1,1	0,02	7,7	0,3	98	28	1,35
H6	170	1,1	4,6	-	-	0,01	6,1	1,0	0,01	7,1	0,1	99	29	1,29
		×				PROFIL P.9								
H10	8	1,8	4,7	-	0,05	0,09	6,1	1,0	0,14	7,2	2,0	88	7	1,44 *
H16	35	1,1	4,8	-	-	0,04	6,6	1,1	0,04	7,7	0,5	96	29	1,44
H16	70	0,9	4,7	-	-	0,02	5,3	0,7	0,02	7,0	0,3	97	33	1,43
H15	105	1,0	4,7	-	-	0,01	5,3	0,9	0,01	6,2	0,2	99	32	1,31
H13	160	1,7	4,8	0,1	-	0,01	7,5	1,3	0,11	8,8	1,0	92	31	1,25

Figure 56 - Données physicochimiques desxols du versant Lavapés. Extrait de MIKLOS ESPINDOLA (1983) et MIKLOS (1984)

Suite pag. suivante

*H17(20cm)= 1.28

Hor.	Prof.	M.O.	рН	Ca+2	Mg+2	K+	H+	Al	s	т	ST	Al/S+Al	Arg.	da
	(em)	(70)		Meq. / 100g							(%)	(%)	(%)	(g/cm ³)
						PROFIL P.3								
H19	5	2,6	5,0	0,3	0,1	0,14	5,4	0,7	0,54	6,6	8,0	56	24	1,36
H16	30	1,5	5,0	-	0,05	0,07	6,9	1,5	0,12	7,7	2,0	93	35	1,42
H16/H18	70	1,3	5,1	-	-	0,02	6,4	1,4	0,02	7,8	0,3	99	39	1,29
H18/H13	110	1,7	5,1	-	-	0,03	7,8	1,3	0,03	9,1	0,3	98	38	1,20
H6	180	1,1	5,1	-	-	0,02	5,9	1,1	0,02	7,0	0,3	98	38	1,22
						DE	OFIL F	0 4						
H19	6	2.2	5.1	1.9	1.2	0.35	5 1	.4	3 45	8.8	39.0	5	29	_
H16	25	1.2	4.8	0.1	0.3	0.09	5.6	1.2	0.49	7.3	7.0	71	47	-
H16	50	1,2	4,9	0,1	0,1	0.03	6,6	1,5	0.23	8,3	3,0	87	45	_
H20	90	1,1	4,9	-	0,2	0,02	6,4	1,5	0,22	8,1	3,0	87	44	~
H.12	150	0,6	4,9	-	-	0,02	6,1	1,3	0,02	7,4	0,3	98	43	-
			×											
						PF	ROFIL F	9.5						
H19	3	3,3	5,2	2,6	1,2	0,74	4,0	0,2	4,54	8,7	52,1	4	38	-
H16	20	1,2	5,0	0,9	0,6	0,09	7,2	0,7	1,59	9,5	17,0	31	45	-
H20	45	1,0	5,1	1,6	0,4	0,04	4,8	0,3	2,04	7,1	29,0	13	52	-
H11	70	0,7	5,3	2,6	0,3	0,04	4,0	0,1	2,94	7,0	42,0	3	52	-
H11	160	0,7	5,5	3,0	0,5	0,06	3,8	-	3,56	7,4	48,0	0	48	-
						DDOEU 17								
H16	50	0.8	4.6	_	0.2	0.05	62	25	0.30	9.0	33	89	55	* 1.45
H20/H11	150	0,5	5,0	-	0,02	0,1	5,4	1,8	0,10	7,3	1,4	95	51	1,33
														*
U 10	2	2.2	10	0.1	0.7				0.00	0.4	11.0	50	24	
H16	20	3,2	4,0	0,1	0.05	0,19	7,4 5.0	1,0	0.22	9,4 7 1	2.0	20	34	
H16	70	1.0	4,9 5 0	0,1	0.05	0.06	5,5	1,0	0,22	7,1	10.0	52	11	
H20	105	1,0	5,0	1 1	0,05	0.04	5.6	0,9	1.24	ν,ν 7 ο	13.0	24	10	
H11	170	0.9	5,1	0.7	0.05	0.05	5,8	0,4	0.80	7.0	15.0	13	44	
	1,0		5,1	,,,	0,00	0,00		0,1	0,00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	11,0			

* H19 (5cm)=1.35

* H71 (180cm) = 1.26

Figure 57 - Distribution du taux en fer total (Fet) au long du versant Lavapés.

Figure 58 - Distribution du carbone total en profils verticaux au long de la séquence AT.
Figure 59 - Constituants minéraux des sols du versant Lavapés

	ET.3			T.5
Prof. (cm)	Minéraux		Prof. (cm)	Minéraux
5	Q, K, A, Gi, M, H, I		2	Q, K, A, Gi, M, H, I, R
25	Q, K, A, Gi, M, H	0.5	8	Q, K, A, Gi, H, M, I, R
90	Q, K, A, Gi, M, H		70	Q, K, A, Gi, M, H, R, I
200	Q, K, A, Gi, M, H		130	Q, K, Gi, A, H, M, R, I
400	Q, K, A, Gi, M, H, R, I			
	P.7			ET.3
Prof. (cm)	Minéraux		Prof. (cm)	Minéraux
2	OKAGIMHI		2	Q, K, Gi, A, M, H, I
10	OKAGIMHI		10	Q, K, A, I, H, Gi, M
30	Q, K, A, Gi, M, H, R, I		20	Q, K, A, M, H, Gi, I, R
50	O. K. A. Gi. M. H. I		60	Q, K, A, M, H, Gi, I
160	Q, K, Gi, A, M, H, R, I		150	Q, K, A, H, M, Gi, I
			450	Q, K, M, H, A, I, G1
	ET.3		700	Q, K, M, H, I, A, G
				Position des profils seq. A
Prof.	Minteres		ET.3	
(cm)	Mineraux		+	1.5 P7
5	O.K.M.H.I.Gi Go R			P.9
55	O, K, M, H. A. Gi. I. Go. R			
180	O. K. M. H. I. A. Gi. Go			- A
290	Q, K, M, H, I, Gi, A, Go			Basalte
ende :		С	bservati	on :
quartz	I = Ilménite	ré	sultats e	xprimés en ordre semi-quant
kaolinite	R = rutite	d	ecroissai	it vers la droite.

Ribeirao Lavapés

H : hématite

A = anatase

Gi = gibrite M = magnétite ou maghémite Go = goethite

Figure 64 - Difractogrammes de rayons-X des fractions granulométriques de l'horizon 16 en tiers inférieur de pente (P.17 - 55 cm) de la séquence AT

Figure 66 (suite)

Figure 67 - Evolution saisonière de l'humidité pondérale des sols du Versant Lavapés

			Sables dépourvus		Microgrégats				Traits
Hor,	Couleur (maero)	Texture	Structure	de plasma (sables propres)	Couleur (LR)	Forme dominante)	DRFG dominante	Proportion Sq Q/Pl	pédolo- gique importants
Н5	5YR3/2	S	Particulaire	Très abondants	-	-	Monique	Squelette très abondant	-
H4	5YR3/2 à 5YR3/3	SA	Agrégats porphyriques (isotubules) et domaines riches en sables propres	Abondants	Brun et brun sombre	Polyé- driques	Porphy- rique et énau- monique	Très variable	Isotulules bruns et brun sombre et charbon de bois
НЗ	5YR3/3,3/4 et 5YR4/6	SA	Microagrégée et agrégats porphyriques (isotubules)	Fréquents	Brun , Brun lége- rement sombre et rouge jaunâtre	Ovoïdes et mamelon- nés	Porphy- rique et moni- enaulique	Variable	Isotubules bruns, agrotubules rouge jau- natre et charbon de bois
H2	5YR4/4	ŞA	Microagrégée	Rares	Brun jaunâtre	Ovoïdes, mame- lonnés	Moni- enaulique	Squelette plus abondant	Pédotubules
H1	5YR4/6	SA	Microagrégée	Rares	Rouge jaunâtre	Ovoïdes et mame- lonnés	Moni- enaulique	Squelette plus abondant	Pédotubules

Figure	69 -	Princip	naux	caractères	micromor	pholo	gia	ies du	profil	ET 3
+ IGui U	02	1 11101	puun	ouractoros	moromor	photo	5-44	aco uu	prom	11.0

DRFG = Distribution relative des éléments fins et grossiers ;

- Sq = squelette;
- Q = quartz;

Pl = plasma

Figure 70 - Différenciation micromorphologique dans 1'interfluve aplati (profil ET.3)

Figure 71 - Résumé des caractères micromorphologiques en tiers supérieur de pente (profil P.7)

Traits te pédologiques	importants	-	Charbon de bois (mm) et pédotubules	Charbon (μmà mm) et pédotubules	Pédotubules	Charbons (μm) et pédotubules	Pédotubules	Charbons (cm) et pédotubules
Proportions plasma/squelet	quartzeux	squelette beaucoup plus abondant	Très variable	Zs : variable Zi : squelette plus abondant	Squelette plus abondant	Squelette plus abondant	Squelette plus abondant	Squelette plus abondant
DRFG	dominant	Monigue et enau-monique	Porphyriques, enau-monique et monique	Zs : porphy- ryque, enauli- que, enau- monique et monique Zi : porphy- énaulique	Porphy- enaulique	Enaulique	Enaulique	Enaulique
porphyriques iinants)	Forme	,	Ovoïdes	Zs : ovoïdes Zi : variée	Variée	Ovoïdes	Variée	Variée
Agrégats (don	Couleur (LR)		Bruns	Bruns	Bruns	Bruns	Brun jaunâtre	Bruns
gats dominants	Forme	Ovoïdes	Ovoïdes et polyédriques	Zs : ovoïdes et polyédriques Zi : mame- lonnés	Mamelonnés	Ovoïdes très arrondis	Ovoïdes et mamelonnés	Ovoïdes et mamelonnés
Microagré	Couleur (LR)	Bruns et brun sombre	Bruns	Bruns et rouge jaunâtre	Bruns	Brun sombre	Bruns jaunâtre	Bruns
Sables profés		T rès abondants	Abondants	Fréquents	Quelques	Quelques	Quelques	Quelques
Structure		Particulaire	Agrégats prophy- riques et domaines riches en sables propres	Zs : agrégats prophyriques, domaines micro- agrégés et domai- nes riches en sables propres Zi : microagrégés	microagrégé	microagrégée	microagrégée	microagrégée
Texture		S	SA	AS	AS	AS	AS	SA
Couleur	(macro)		5YR3/3 à 3/4	5YR 3/3 et 5YR 4/6	5YR 3/3	5YR 3/2	5YR 4/4	5YR 3/4
Hor.	Hor. H10 H5		H10	H3	H9	H8	H7	9H

Figure 72 - Différenciation micromorphologique en tiers supérieur de pente (profil P.7)

Pédotubules et charbons Trais pédologiques Pédotubules et charbon de bois (μ m et mm) importants de bois (µm et mm) Pédotubules et néostrianes Néostrianes enau-monique enau-monique Porphyrique Porphyrique, enaulique et Porphyrique et enaulique dominant et monique Enaulique DRFG Forme Agrégats porphyriques Ovoïdes Variés Varié (dominants) Couleur (LR) sombre et Bruns Bruns Bruns bruns polyédriques Mamelonnées Mamelonnées, polyédriques Microagrégats dominants Ovoïdes et Ovoïdes et et ovoïdes Forme Ovoïdes rouge jaunâtre Rouge jaunâtre Brun et Couleur Bruns et sombre (LR) sombre Brun brun Abondants Communs Fréquents propres Sables Rares riques et domaines Agrégats porphydomaines porphy-Agrégats porphydomaiunes riches en sables propres riques, domaines microagrégés et riches en sables Microagrégé et Microagrégée Structure propres riques Texture AS SA AS AS Couleur (macro) 25YR 4/6 5YR 4/6 5YR 3/3 5YR 3/3 5YR 4/6 5YR 3/2 et Hor. H10 H3 LΗ H8

Figure 73 - Résumé des caractères microscopiques du profil T.5.

1.18					1			
	Traits	pedologiques importants	Pédotubules	Argilanes, pédo- tubules et nodules lithorelictuels	Argilanes, pédotu- bules, nodules litho- rélictuels et charbons de bois	Pédotubules, charbons de bois et nodules lithorelictuels	Pédotubules, charbons de bois et nodules lithorelictuels	Pédotubules et nodules lithorelictuels
	DRGF		Porphyrique	Porphyrique	Porphyrique, énau -porphy- rique, porphy- enaulique et enaulique	Porphy-enau- lique et enaulique	Porphy-enau- lique et enaulique	Pophy-enau- lique et enaulique
×	Porosité		Chenaux	Cavités et fissures	Vides d'empi- lement et cavités	Vides d'empilement	Vides d'empilement	Vides d'empilement
	orphyriques minants	Forme	Cylindri- ques	Polyédrique	Débit polyédrique	Varié	Varić	Varié
	Agrégats p doi	Couleur (LR)	Bruns	Brun rougeâtre	Brun et brun sombre	Bruns et brun sombre	Bruns	Bruns
	régats dominant	Forme		-	Mamelonnés	Ovoïdes et Mamelonnés	Ovoïdes et mamelonnés	Mamelonnées
	Microag	Couleur (LR)	1	I	Bruns et brun sombre	Bruns et brun sombre	Bruns	Brun rougeâtre
	Structure		Grumeleuse	Polyédrique	Composée : microagrégée et agrégats porphyrique	Microagrégée	Microagrégée	Microagrégée
	Texture		AS	A	A	A	¥	¥
	Plasma	dominant	Brun	Brun rougeâtre	Brun et brun sombre	Brun et brun sombre	Brun	Brun rougeâtre
	Couleur	(macro)	5YR 3/4	2,5YR 3/4	SYR 3/2,5	5YR 3/2,5	5YR 3/4	2,5YR 3/3
	Hori-	zons	H19	H16	H18	H13	H6	H12

Figure 75 - Résumé des caractères micromorphologiques en mi-pente aval (profil P.3)

Figure 77 - Résumé des caractères microscopiques des horizons 3 et 14 du profil P.13

Porosité		Cavités polyconcaves	Vides d'empilement
DRFG		Porphyrique	Porphyrique et Porphy - enau lique
ts dominants	Forme	1	Polyédrique et mamelonnés
Microagréga	Couleur	-	Bruns
Structure		Massive	Composée
Texture		AS à SA	AS
Plasma	domnant	Rouge jaunâtre et brun	Brun
Couleur	(macro)	5YR 3/3,3/4 et 5YR 4/6	5YR 3/4
Horizons		H13	H14

.

Traits pédologiques charbons de bois charbons de bois importants Pédotubules et Pédotubules et Argilanes et pédotubules Argilanes et pédotubules Pédotubules Pédotubules Porphy-enaulique Porphy-enaulique Porphyrique et prophy-enălique et porphyrique et enaulique Porphyrique et enaulique DCFG Enaulique Monique Monique Empilement Empilement Empilement Empilement Empilement Empilement Porosité et chenaux Cavités et fissures Polyédriques Polyédriques et mamelonnés et mamelonnés Mamelonnés Mamelonnés Microagrégats dominants Forme et ovoïdes et ovoïdes brun sombre Couleur Bruns Brun et Brun Brun (sables propres) (sables propres) Microagrégée et particulaire Microagrégée Polyédrique Structure Particulaire Granulaire Composée Composée Texture SA AS à SA AS à A AS à A ASàA AS à A S 5YR 3/2,5 Brun et brun sombre dominant rougeâtre Plasma Brun Brun 2.5YR 3/4 Brun Brun Brun 5YR 3/3 et SYR 3/4 Couleur **5YR 3/4** 5YR 3/4 **5YR 3/4** (macro) Hoňzons H13 H10 H17 H16 H15 H5 9H

Figure 78 - Résumé des caractères microscopiques du profil P.9 en mi-pente amont

Figure 80 - Caractères microscopiques de l'horizon 21

Traits pédologiques importants	Argilanes et pédotubules
Porosité	Fissures et cavités
DRFG	Porphyrique
Structure	Polyédrique
Texture	A
Plasma dominant	Brun
Couleur (macro)	2.5YR 2.5/4
* Horizons	H21

Figure 81 - Résumé des caractères microscopiques du profil P.17

Horizons	Couleur	Plasma			Microagréga	ts dominants			Traits pédologiques
	(macro)	dominant	Texture	Structure	Couleur	Forme	Porosité	DRFG	importants
H19	2.5YR3/4	Brun rougeâtre	ASàA	Grumeleuse	ı	,	Tubulaire	Porphyrique	Isotubules
H16	2.5YR3/6	Rouge	A	Polyédrique	ı	ı	Fissures et cavités	Porphyrique	Argilanes, pédotubules et nodules lithorelictuels
H20	2.5YR3/6	Rouge	A	Composée	Rouge	Mamelonnée	Empilement et cavités	Porphyrique et porphy-enaulique	Argilanes, pédotubules et nodules lithorelictuels
H11	2.5YR3/6	Rouge	A	Microagrégée	Rouge	Mamelonnée	Empilement	Porphy-enaulique	Pédotubules et nodules lithorelictuels

				P.3	Pre- Pre- Pre- Pre- Pre- Pre- Pre- Pre-	100 B		Ho. Dan Br. Dan		
ix de la séquence AT.					3	emble	des, d'isotules et de domaines microagrégés	des et de domaines		
Figure \$2 - Les ensembles structurau	Séquence AT	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Légende Ensembles structuraux:	G Microagrégé	Tolyédrique De transition microagrégat - polyèdre :	Verticale ••• Latérale et verticale au sommet de l'ens polyédrique en mi-pente	insembles superficiels: Composé: juxtaposition d'agrégats ovoï (avec des sables propres)	 Composé: juxtaposition d'agrégats ovoït riches en sables propres Derrivulaire très riche en sables propres 	Grumeleux	

Figure 90 - Différenciation de la porosité et de l'organisation plasmique au fur et à mesure de l'évolution structurale d'après MULLER, 1977

Figure 92 - Transition verticale entre les ensembles microagrégé et polyédrique

Légende

Agrégats grumeleux biologiques

Agrégats polyédriques porphyrique et enau-porphyrique à sous-structure microagrégée ovoïde, très riches en vides polyconcaves

Microagrégats ovoïdes et mamelonnés

Légende

Figure 96 - Différenciation	morphologique et	texturale à l'amont	de l'ensemble	e polyédrique
(profil P.9)				

(·····································)		
		Argile (%)	Sables(%)
	H <i>5</i> H10	17	79
	H17	20	74
27		29	62
Ens. polyédrique OO	H16	33	57
80	H15	32	59
Ens. microagrégé	H13	32	59
190			æ
Légende	\sim		
• • Sables blancs	Agrégats p	olyédriques	
V Agregats biologiques	Microagrég	gats ovoïdes	
🞽 Litière à 3 phases	Microagreg	gats polyedriques	

Figure 99 - Différenciation texturale lors de l'évolution structurale au sommet de l'ensemble polyédrique en mi-pente

POLE AMONT

TNOMA

Figure 110 - Fonctionnement biodynamique actuel: remontée biologique X appauvrissement

Figure 111 - Organisation spatiale des charbons de bois par rapport à la différenciation

Figure 112 - Différenciation de la distribution des vaiséaux vasculaires dans les mono et dicotylédonnes.

ANNEXES

	Т							STO	OCK	ER	DEF	EXC
MES	°C	NOM	COR	EP	P	P - EP	NEG CUM	VAL	ALT	1		
		mm		mm	mm	mm		mm	mm	mm	mm	mm
JAN	21,9	91	1,15	105	185	+ 80	0	125	0	105	0	80
FEV	21,8	90	1,00	90	239	+ 149	0	125	0	90	0	149
MAR	21,4	86	1,05	91	152	+ 61	0	125	0	91	0	61
ABR	19,3	71	0,97	69	65	- 4	- 4	121	- 4	69	0	0
MAI	17,2	56	0,95	53	30	- 23	- 27	100	- 21	51	2	0
JUN	<mark>16,</mark> 4	50	0,89	44	35	- 9	- 36	93	- 7	42	2	0
JUL	16,3	50	0,94	47	28	- 19	- 55	80	- 13	41	6	0
AGO	18,1	62	0,98	61	26	- 35	- 90	60	- 20	46	15	0
SET	19,5	72	1,00	72	63	- 9	- 99	55	- 5	68	4	0
OUT	19,9	75	1,09	82	155	+ 73	0	125	+ 70	82	0	3
NOV	20,6	81	1,10	89	107	+ 18	0	125	0	89	0	18
DEZ	21,3	86	1,17	101	229	+128	0	125	0	101	0	128
ANO	19,5	-	-	904	1 314	+ 410	Ε	Ξ	0	875	29	439

Bilan hydrique du Municipe de Botucatu, selon Thornthwaite et Matter (1955) (in Tubellis et alii, 1971).

Légende :

Т	=	température
NOM nor	nog	rame = évapotranspiration potenciel non corrigé
COR	=	facteur de correction
EP	=	$e^{\text{vapotranspiration potenciel}}, EP = NOM \times COR$
P	=	précipitation
NEGCUM	=	négative cumulé
STOCK	=	stockage
VAL	=	valeur du stockage
ALT	=	altération du stockage
ER	=	évapotranspiration réel; $ER = EP$ lorsque : (a) le négative cumulé est égale à tero;
		ER = P-EP et (b) P - EP est positive ; pour le restant $ER = P + ALT$ sans considérer
		le signal de ALT.
DEF	=	déficience d'évapostranspiration, $DEF = EP - ER$
EXC	=	excédent

ANNEXE I

	ET.3 (1)								
Prof. (cm)	A	LF	LG	SF	SG				
5	10,5	1,2	1,2	19,8	67,3				
25	13,7	0,8	1,5	17,4	66,6				
45	14,0	0,6	4,4	19,7	61,3				
90	11,0	1,3	3,2	18,0	66,5				
200	9,2	1,4	4,9	16,6	67,9				
400	10,8	1,9	5,2	18,4	63.7				

Tableau 1 - Données granulométriques des profils de sols du versant Lavapés

	T.5 (1)								
Prof. (cm)	A	LF	LG	SF	SG				
2 8 25 70 130	17,2 25,0 27,8 23,9 22,0	4,4 4,3 4,7 4,6 2,5	3,3 1,7 5,1 6,2 3,2	28,4 25,1 27,0 27,4 25,2	46,7 43,9 35,4 37,9 47,1				

P.13 (2)									
Prof. (cm)	A	L	SF	SG					
7	22,4	7,1	42,7	27,8					
35	29,6	6,2	39,3	24,9					
80	24,3	14,7	39,4	21,6					
125	27,8	10,9	40,3	21,0					
170	27,2	8,6	42,3	22,0					
460	28,7	12,3	59,	,0 (ST)					

	P. 4	(2)		
Prof. (cm)	A	L	SF	SG
6	29,1	14,7	29,5	26,7
25	46,7	12,3	26,0	15,0
50	44,7	15,3	26,4	13,6
90	44,0	14,5	27,5	14,0
140	42,9	15,8	28,2	13,1
180	44,1	14,7	28,5	12,7

	P.1 (2)								
Prof. (cm)	A	L	SF	SG					
7 25 45 65 150 450	17,7 20,1 22,2 24,0 24,7 25,7	3,4 5,7 5,5 4,5 5,9 11,3	37,8 39,1 40,2 36,7 28,8 63	41,1 35,1 32,1 34,8 40,6 ,0 (ST)					

	P.7 (1)								
Prof. (cm)	A	LF	LG	SF	SG				
2	18,8	5,3	2,5	23,2	50,2				
10	12,6	3,3	1,8	28,2	54,1				
30	22,4	6,0	2,9	24,5	44,2				
50	25,5	4,6	3,4	26,7	39,8				
70	24,4	4,3	4,5	24,8	42,0				
160	23,6	3,9	5,0	26,8	40,7				

P.10 (2)								
Prof. (cm)	A	L	SF	SG				
8	20,4	6,1	44,3	29,2				
35	27,3	8,8	41,6	22,3				
70	25,4	9,8	42,8	22,0				
110	25,5	10,2	43,7	20,6				
	260	87	13 5	21 4				

- (1) Laboratoire INRA Arras / France
- (2) Laboratoire de la Faculté de Sciences Agronomiques -Botucatu / Brésil
- (1) et (2) Méthode de la pipète (loi de Stock) ; dispersant NaOH1N
- (1) A < 2 μ ; 2< LF < 20; 20 < LG < 50; 50 < SF < 200; 200 < SG < 2000
- (2) $A < 2 \mu$; 2 < L < 50; 50 < SF < 250250 < SG < 200; ST = SF + SG

	Р	.9 (1)			
Prof. (cm)	A	LF	LG	SF	SG
2 10 20 60 60 TAMM 150 300 300 TAMM 300 Hcl 450 Hcl 600 700	18,5 16,8 19,6 33,1 31,1 29,2 20,5 28,3 24,7 25,3 29,3 30,5 33,3	2,5 2,7 3,4 3,0 3,1 5,3 5,0 1,6 1,8 7,2 3,4 8,2 11,2	1,8 1,9 2,8 2,7 2,5 3,4 6,3 3,4 6,3 3,4 6,3 3,7 4,6 6,1	26,5 23,4 24,4 26,5 26,8 26,0 28,4 31,1 29,8 27,2 25,6 26,2 22,3	50,7 55,2 49,8 34,7 34,5 36,1 39,8 35,7 40,3 34,0 38,0 30,5 27,1
	Р	.3 (1)			
Prof. (cm)	Α	LF	LG	SF	SG
5 45 110 180 180 Hcl 300 300 Hel 450 450 Hcl 600 700	29,7 40,2 36,3 32,3 33,5 29,9 31,6 29,0 34,1 34,8 38,8	6,7 4,3 6,1 7,6 3,9 6,9 3,6 9,7 3,7 10,7 16,1	4,6 3,9 5,3 5,3 5,1 4,6 7,8 4,8 6,7 8,8	23,3 21,1 22,9 24,7 25,0 23,9 24,1 24,2 23,4 22,1 17,7	35,7 30,5 30,8 30,1 32,3 34,2 36,1 29,3 34,0 25,7 18,6
	P	.17 (1)			
Prof. (cm)	A	LF	LG	SF	SG
5 55 55 TAMM 180 180 TAMM 180 Hcl 290 290 Hcl	46,3 58,0 56,3 43,8 49,0 45,9 43,1 48,4	12,1 9,4 6,8 12,8 7,2 9,2 14,4 10,8	5,8 3,9 5,1 6,4 6,3 4,9 6,8 5,8	16,1 11,9 15,1 17,7 18,3 18,6 16,2 16,4	19,7 16,8 16,7 19,3 19,2 21,4 19,5 18,6
)	P.5 (2)			
Prof. (cm)	A	L	S	F S	G
3 20 45 70 105 160	37,9 45,0 52,4 52,0 49,2 47,9	25,1 25,9 23,0 22,2 23,5 22,0	19, 14, 14, 17, 17, 20,	6 17 5 12 6 10 0 8 6 9 0 10	,4 ,6 ,0 ,8 ,7 ,1

		P.9 (2	2)		
Prof. (cm)	A	L	SF	SG	_
8 35 70 105 160 220 300 400 500 600 700	19,5 29,1 32,8 31,6 31,5 28,8 32,4 32,0 29,4 32,6 35,2	5,6 9,1 10,6 9,7 10,7 10,8 8,3 13,4 15,3 14,4 20,7	43,5 40,8 38,7 38,0 38,8 44,7 43,1 40,4 40,5 38,9 32,3	31,4 21,0 17,9 20,7 19,0 15,7 16,2 14,2 14,4 14,8 14,1	
		P.3 (2	.)		
Prof. (cm)	A	L	SF	SG	_
5 30 65 110 140 180 250 300 450 600 700	23,5 34,7 39,1 37,6 37,9 37,8 35,8 34,6 32,4 37,0 35,0	7,2 10,2 11,4 12,2 11,9 11,0 13,8 13,4 18,2 23,5 33,5	39,1 34,6 32,6 33,8 33,2 34,4 35,2 36,8 35,5 30,2 24,3	30,2 20,5 16,9 16,4 17,0 16,8 15,2 15,2 14,0 9,3 7,2	
		P.17 ((2)		
Prof. (cm)	A	L	SF	SG	
50 150 240 290	55,0 51,0 45,1 46,2	9,0 10,0 23,5 20,9	36 39 21,9 22,2	(ST) 9 (ST) 9,5 10,7	
	P.	11 (2)			
Prof. (cm)	Α	L	SF	SG	
3 30 70 105 170	33,8 33,1 43,9 48,6 44,3	19,8 17,7 26,2 25,4 26,1	25,5 30,7 18,0 17,0 18,7	20,9 18,5 11,9 9,0 10,9	

ANNEXE II

E	Т.3		T.5		P.7
Prof. (cm)	% FeT	Prof. (cm)	% FeT	Prof. (cm)	% FeT
25	2,15	25	4,22	10	2,75
45	2,58	70	3,93	30	4,02
90	2,33	130	3,39	50	3,94
400	2,87			70	4,03
				160	4,30

Tableau 2 - Taux de fer total (FeT) à différentes profondeurs dans les profils du versant Lavapés

]	2.9		P.3		P.17
Prof. (cm)	% FeT	Prof. (cm)	% FeT	Prof. (cm)	% CT
10	4,01	5	8,22	5	13,65
60	6,45	45	8,90	55	14,35
150	7,33	110	8,60	180	13,90
300	6,37	190	10,15		
		300	9,65		

ANNEXE II

Е	Т.3		T.5		P.7
Prof. (cm)	% CT	Prof. (cm)	% CT	Prof. (cm)	% CT
5	1,46	2	3,85	2	3,02
25	1,22	8	1,69	10	1,04
45	0,70	25	1,09	30	1,38
90	0,48	70	0,60	50	1,45
400	0,22	130	1,05	70	0,87
				160	0,86

Tableau 3 - Taux du carbone tota	(CT) à différentes profe	ndeurs dans les profils du	i versant Lavapes
----------------------------------	--------------------------	----------------------------	-------------------

		P.9]	P.3	I	P.17
	Prof. (cm)	% CT	Prof. (cm)	% CT	Prof. (cm)	% CT
	2	2,82	5	3,98	5	3,25
	10	1,35	45	1,28	55	1,00
	20	1,34	110	1,38	180	0,51
se.	60	0,97	190	0,88		
	150	1,63	300	0,72		
	300	0,40				

87

ANNEXE III

Tableau 4 - Résultats des analyses radiométriques en IAC des charbons de bois présentsdans les sols du versant Lavapés (Laboratojge ORSTOM, Boudy)

P.2		3	2.7		P.10		
Prof. (cm)	Age BP	Prof. (cm)	Age BP	Prof. (cm)	Age BP		
10-30	2750 ± 130	100-200	4800 ± 260	100-200	5660 ± 190		
100-200	6110 ± 230						
			12				
C	1.10	P	.13		P.3		
Prof. (cm)	Age BP	Prof. (cm)	Age BP	Prof. (cm)	Age BP		
100-200	4820 ± 270	10-30	140 ± 130	100-200	6050 ± 210		
100-200	4820 ± 270	10-30 100-200	140 ± 130 4420 ± 220	100-200	6050 ± 210		
100-200	4820 ± 270	10-30 100-200	140 ± 130 4420 ± 220	100-200	6050 ± 210		

1	P.4
Prof. (cm)	Age BP
10-30	5820 ± 260
100-200	6110 ± 230

PLANCHES DES PHOTOS

EN COULEUR

æ

- C.1 Monticule de terre d'une foumilière <u>d'Atta sexdens rubropilosa</u> ("sauva limao"). Les matériaux remontés par les fourmis peuvent être rouges ou rouge jaunâtre.
- C.2 Communications externes (chenaux) d'une fourmilière <u>d'Atta sexdens rubropilosa</u> ("sauva limao"). En haut à gauche: granules de terre remontés et déposés par les fourmis aux alentours des chenaux. En bas: effondrement de la structure granulaire après quelques pluies.
- C.3 Communication externe et monticule de terre d'une fourmilière de Pheidole oxyops.
- C.4 Termitières épigées de Cornitermes cumulans.
- C.5 Monticule de terre, composé d'agrégats ovoïdes (< 5 mm), d'une termitière endogée de <u>Synthermes sp.</u>
- C.6 Détail de la transition entre les horizons 3 et 4. Echantillon à structure conservée prélevée entre 5 et 15 cm de profondeur dans le profil FT.3A.

- C.7 Section transversale d'un pédotubule brun rougeâtre foncé (5YR3/2) au sein d'un fond matriciel rouge jaunâtre (5YR4/6).
- C.8 Détail de la transition entre les horizons 3 et 14 (Profil P.13/10-20 cm). La transition se produit par l'apparition abrupte des domaines rouge jaunâtre (5YR4/6) au sein du fond matriciel brun rougeâtre foncé (5YR3/3). Dans l'horizon 3 les domaines rouge jaunâtre occupent à peu près 50 à 70% du volume total.
- C.9 Agrégats ovoïdes (< 5 mm) à sous-structure microagrégée.
- C.10 Fourmis Atta remontant les agrégats ovoïdes de l'intérieur du sol. En autre: la section transversale du chenal est ellipsoïdale.
- C.11 Monticules de terre ayant subi l'action des pluies. La terre des monticules s'étale sur la surface du sol en recouvrant les différents matériaux superficiels et tend à s'homogénéiser avec la topographie locale.

- C.12 La zone à l'intérieur de la ligne interrompue correspond à un monticule de terre d'une fourmilière abandonnée en 1988. Le monticule avait 10 m de largeur et 50 cm d'hauteur. Aujourd d'hui il se trouve partiellement effondré, couvert par une litière et colonisé par des graminées et quelques animaux. Il reste encore une petite bosse à la surface du sol.
- C.13 Matériaux profonds du sol remontés par les fourmis Atta. Ces matériaux ont recouvert l'horizon superficiel.
- C.14 Pédotubule rouge jaunâtre (5YR4/6) à section transversale ellipsoïdale (profil P.7/65 cm; H8-H7; LR).
- C.15 Section longitudinale d'un pédotubule rouge (2.5YR4/6 4/8) (profil P.7/170 cm; H6; LR).
- C.16 Déjections fraiches des vers de terre.
- C.17 Turricules ou agrégats grumeleux.

- C.18 Structure grumeleuse de l'horizon 10.
- C.19 Coupe longitudinale d'une termitière épigée (Cornitermes cumulans).
- C.20 Détail des matériaux du sol remontés par les termites.
- C.21 Charbons de bois à 165 cm de profondeur au sein de l'horizon sombrique aval (H13).
- C.22 Vue d'ensemble du fond matriciel à microagrégats rouge jaunâtre (profil ET.3/190 cm; H1; LR).

- C.23 Plages biréfringentes circulaires au sein du plasma rouge jaunâtre (profil FT.3A/5 cm; H3; LPA).
- C.24 Agrotubules à microagrégats rouge jaunâtre (en haut) et brun sombre (en bas) au sein d'un fond matriciel à dominance de microagrégats bruns (profil P.7/170 cm; H6; LR). Voir le détail de la structure en LF (ph.NB.3).
- C.25 Même site de la photo NB.4. On en distingue que l'isotubule rouge jaunâtre (profil P.7/170 cm; H6; LR).
- C.26 Détaille de la plus forte abondance en microparticules de charbon de bois (< 30 μ m) dans le microagrégat brun sombre en comparaison avec les microagrégats bruns (à droite) et rouge jaunâtre (à gauche) (P7/170 cm; H6; LR).

C.26

- C.27 Agrotubule à microagrégats rouge jaunâtre invahit par un agrotubule à microagrégats brun sombre (profil P.7/170 cm; H6; LR).
- C.28 Hétérogénéité en couleur du fond matriciel microagrégé de l'horizon sombrique amont. Les microagrégats brun sombre sont prédominant (profil P.7/52 cm; H8; LR).
- C.29 Même site de la photo NB.7. Détaille de la couleur des agrégats ovoïdes. Celui à droite présente trois microagrégats ovoïdes rouge jaunâtre complètement englobés dans le fond matriciel porphyrique. Ceci démontre que le macroagrégat ovoïde résulte d'une coalescence des microagrégats ovoïdes. En autre, les squelettes quartzeux sont composés de grains avec une granulométrie exclusivement très fine (< 100 μ m) dans celui à droite et acev une granulométrie variée dans celui à gauche (profil P.7/52 cm; H8; LR).

- C.30 Même site de la photo NB.8. Détaille de la couleur très homogène des domaines enau-porphyriques présents au sein d'un fond matriciel hétérogène en couleur. Celui en haut est rouge jaunâtre et celui en bas est brun (profil P.7/15 cm; H3; LR).
- C.31 Agrégat ovoïde presque totalement détruit par l'invasion de petits agrotubules (< 1 mm) comblés de microagrégats ovoïdes et mamelonnés. Ces agrotubules se forment entre les grains de quartz (profil P.7/15 cm; H3; LF).</p>
- C.32 Détail des microagrégats ovoïdes (< 100 μ m) des petits agrotubules. Ils s'empilent les uns sur les autres en donnant origine aux microagrégats mamelonnés avec des vides intramicroagrégats polyconcaves aux bords anguleux. Ces microagrégats ne contiennent pas de grains de quartz (profil P.7/15 cm; H3; LF).

- C.33 Détaille des domaines rouge jaunâtre présents au sein du fond matriciel à dominance brun. Voir en LF (ph.NB.10) leurs structures internes et formes externes. Ce sont des agrégats porphyriques ovoïdes.En ce qui concerne la granulométrie de leur squelette quartzeux, les deux agrégats à droite (les plus poreux également) sont composés de grains à granulométrie variée; ceux à gauche (les plus denses) présentent le squelette trié (grains très fins) (profil P.7/9 cm; H10; LR).
- C.34 Détail des microparticules de charbon de bois de forme externe ovoïde (profil P.7/15 cm; H3; LR).
- C.35 Agrégat brun sombre riche en microparticules ovoïdes de charbon de bois. Cet agrégat a englobé quelques microagrégats ovoïdes bruns et brun jaunâtre (profil P.7/3 cm; H10; LR).

[0.5 mm

- C.36 Détail de la porosité interne de trois agrégats porphyriques. Remarquer le gradient: celui en haut et à droite est le moins poreux, celui en bas et à droite est intermédiaire et celui à gauche est le plus poreux (profil P.7/5 cm; H10; LF).
- C.37 Détail des microfissures intraplasmiques aux parois irrégulières (profil P.7/5 cm; H10; LP).
- C.38 Agrégat porphyrique recoupé par un réseau de fissures qui délimitent des microagrégats ppolyédriques. Les parois de certaines fissures sont concordantes (profil P7/5 cm; H10; LF).

0.6mm

180µm

60 µm

- C.39 Détail de la porosité de deux agrégats ovoïdes porphyriques. Celui à droite est peu poreux et son squelette quartzeux apparaît complètement entouré par le plasma. Celui à gauche apparaît très fissuré (le plasma et le squelette sont en voie de dissociation) et vidé partiellement de son plasma; sa structure de départ, forme externe et distribution interne du squelette, est plus ou moins conservée (profil P.7/5 cm; H10; LF).
- C.40 Horizon 5 sous la litière. Zone de forte concentration de sables propres (profil P.7/0-1 cm; H5 ; LF).
- C.41 Vue de la transition entre les deux couches inférieures de la litière (profil P.7/-5 cm; L1; LP)

0.6mm

0.6 mm

- C.42 Détail de la couleur des microagrégats de l'horizon 7. Les microagrégats rouge jaunâtre sont largement dominant (profil T.5/70 cm; LR).
- C.43 Détaille de la forme des microagrégats de l'horizon 7. Les microagrégats ovoïdes dominent (profil P.7/70 cm; LF).
- C.44 Néostrianes minces et discontinus à la périphérie des microagrégats ovoïdes rouge jaunâtre (profil P.7/70 cm; H7; LPA).
- C.45 Détail de la couleur des microagrégats. Les microagrégats brun sombre et bruns sont largement dominant (profil P.3/120 cm; H13; LR).
- C.46 Détail de la structure interne d'un charbon de bois. Les vaisaux vasculaires se trouvent distribués uniformément sur toute la section transversale (profil P3/120 cm; H13; LP).

- C.47 Débris centimétrique de charbon de bois recoupé en plusieurs fragments alignés les uns à côté des autres (profil P.3/120 cm; H13; LR). Voir la structure interne de cette organisation en LF (ph.NB.15).
- C.48 Domaine à structure interne continue. La distribution relative des éléments fins et grossiers est de type porphyrique (à gauche) ou enau-porphyrique (à droite). Ces domaines sont très riches en vides polyconcaves. Lorsque l'assemblage est de type porphyrique les vides polyconcaves sont plutôt simples (< 30 μ m); lorsqu'elle est de type enau-porphyrique les vides polyconcaves sont simples et mamelonnés (< 100 μ m). Dans l'assemblage de type enau-porphyrique on constate encore la présence d'une sous-structure microagrégée ovoïde (profil P.3/90 cm; H18; LF).
- C.49 Détail de la couleur hétérogène des agrégats porphyriques. Dans cette hétérogénéité on distingue la présence de plages ovoïdes (30-300 μ m), rouge et brun rougeâtre, complètement noyées dans l'assemblage porphyrique à faible porosité (profil P.3/90 cm; H18; LR). Comparer cette hétérogénéité avec celle du fond matriciel microagrégé (ph.C.50).
- C.50 Détail de la couleur hétérogène des microagrégats: on distingue les microagrégats ovoïdes de différentes couleurs, côte à côte, dans une assemblage à forte porosité (profil P.3/90 cm; H18; LR).
- C.51 Microagrégats ovoïdes (profil P.3/90 cm; H18; LF).

200 mm

- C.52 Transition progressive entre un domaine microagrégé (porphy-enaulique) et un domaine enau-porphyrique à porphyrique. Remarquer la différenciation de la porosité et de la sous-structure lorqu'on passe d'un domaine à l'autre; les cavités polyconcaves deviennent de plus en plus petites au fur et à mesure de la disparition de la sous-structure microagrégée ovoïde (profil P.3/90 cm; H18; LF).
- C.53 Agrétat porphyrique riche en vides polyconcaves sans argilanes (profil P.3/90 cm; H18; LP).
- C.54 Argilanes aux bords des vides (profil P.3/90 cm; H18; LPA).
- C.55 Argilanes sous forme de cuvettes aux bords des cavités polyconcaves dans un domaine enau-porphyrique (profil P.3/90 cm; H18; LP).

60 µm

- C.56 Argilanes isolés au sein de la matrice isotique et sans rapport évident avec les vides. Remarquer leur forme externe très semblable à celles des vides polyconcaves (profil P.3/90 cm; H18; LP).
- C.57 Agrégat porphyrique à sous-structure microagrégée ovoïde marqué par l'hétérogéité en couleur, riche en vides polyconcaves et en argilanes (profil P.3/90 cm; H18; LR). Voir en LP l'organisation des argilanes par rapport à la matrice isotique ou isotrope (ph.C.58).
- C.58 Même site de la photo précédente. Certains microagrégats ovoïdes se trouvent complètement noyés par les argilanes.
- C.59 Fissures interagrégats délimitant des macroagrégats polyédriques (profil P.3/50 cm; H16; LP).
- C.60 Détail de la richesse en débris végétaux à l'intérieur des agrégats grumeleux (profil P.3/5 cm; H19; LP).

200 µm

- C.61 Détail d'un agrégat porphyrique très fissuré en formant un réseau qui délimite des microagrégats polyédriques (profil P.13/35 cm; H14; LF).
- C.62 Détail d'un fond matriciel microagrégé. Les microagrégats polyédriques et mamelonnés prédominent (profil P.13/35 cm; H14; LF).
- C.63 Microagrégats mamelonnés résultant de la coalescence des microagrégats ovoïdes (profil P.9/165 cm; H13; LF).
- C.64 Différenciation structurale au sommet de l'horizon polyédrique en mi-pente amont (profil P.9/25-35 cm; H17-H16; LF).
- C.65 Macroagrégat polyédrique porphyrique invahit par des fissures et par des agrotubules. Le réseau de fissures délimitent des microagrégats polyédriques. Les agrotubules renferment de microagrégats ovoïdes et mamelonnés (profil P.9/33 cm; H16 sommet; LF).

C.64

Domaine microagrége et/su agrotubules Isotubules à -: 01 Proflem) J 500 isot augmentation maines mi X17 R 1:502ri 20.32 30 H16 35cm Agregat polyédique VN 5 Agrohubulen intrespréga polyédique BE CONCI 0 0

180 mm

- C.66 Macroagrégat polyédrique enau-porphyrique juxtaposé à un domaine microagrégé à la base de l'horizon H17 (profil P.9/25 cm; LF).
- C.67 Détail des microagrégats ovoïdes (profil P.17/190 cm; H11; LF).
- C.68 Argilanes orangés, microlités, avec de limites abruptes avec la matrice isotique (profil P.17/55 cm; H16; LP).

- C.69 LPA de la photo précédente. Argilanes très bien orintés à forte biréfringence. Celui au milieu de la photo apparaît sous une forme de cuvette au bord d'une cavité. L'autre, à droite, sans rapport évident avec les vides, présente la forme externe d'un vide polyconcave (profil P.17/55 cm; H16; LPA).
- C.70 Zone, riche en argilanes, recoupéé par une fissure à paroi plus ou moins concordante. Les argilanes peuvent être exposés ou pas à la surface de la paroi (profil P.17/55 cm; H16; LP).
- C.71 Même site de la photo précédente, mais en plus fort grossissement. A gauche, l'argilane est exposé à la paroi de la fissure. Au centre, l'argilane reste à l'intérieur du du fond matriciel sans être exposé.

- C.72 Détail des séparations plasmiques vosépiques (profil P.17/55 cm; H16; LPA).
- C.73 Fissures intermacroagrégats polyédriques. Remarquer la richesse en vides polyconcaves intraagrégat (profil P.17/55 cm; H16; LF).
- C.74 Même site de la photo NB.28, mais en plus fort grossissement. Détail des microagrégats ovoïdes et mamelonnés dans l'agrotubule (profil P.5/185 cm; Transition H11-Altérite de basalte; LP).
- C.75 LPA de photo précédente. Détail des cristalarias de calcédoine (quartz criptocristalin fibreux) sous forme de pont entre les microagrégats de l'agrotubule.
- C.76 Détail des argilanes aus bords des cavités polyconcaves intaagrégat enau-porphyrique (profil P3/90 cm; H18; LP). Voir en LR (ph.C.77) la sous-structure microagrégée marquée par l'hétérogénéité en couleur.

- C.77 Même site la photo précédente. Détail de la sous-structure microagrégée marquée par l'hétérogénéité en couleur. Les plages ovoïdes de couleurs différentes correspondent à des microagrégats ovoïdes colmatés lors de la compaction.
- C.78 Rélique d'un isotubule. Actuellement il se trouve transformé en microagrégats polyédriques (profil P.7/170 cm; H6; LF).
- C.79 Détail d'un micronodule lithorélictuel de basalte ayant une forme externe ovoïde, dispersé dans le fond matriciel microagrégé (profil P.3/140 cm; H6; LF).
- C.80 Séparations plasmiques concentriques au sein d'un microagrégat. Ce microagrégat est à l'intérieur d'un pédotubule (profil P7/160 cm; H6; LPA).
- C.81 Microagrégat ovoïde, de 800 μ m de diamètre, présentant un squelette quartzeux à granulométrie exclusivement très fine, les grains sont inférieurs à 100 μ m. Le squelette du fond matriciel environant présente une granulométrie très varié. La distribution granulométrique du microagrégat ovoïde résulte d'un tri animal (profil P.7/170 cm; H6; LF).

200µm

[180µm

0.6 mm

- C.82 Macroagrégat ovoïde (3 mm) à squelette quartzeux trié. L'origine est biologique (fourmis ou termites) (profil P.7/170 cm; H6; LF).
- C.83 Macroagrégat polyédrique à sous-structure microagrégée ovoïde marquée par l'hétérogénéité en couleur. Détail d'un microagrégat ovoïde brun sombre (au centre) englobépar différents types de plasma. La flèche indique la position d'un argilane (profil P.3/90 cm; H18; LR).
- C.84 Même site de la photo précédente. Détail de la structure et de la porosité. La sousstructure est microagrégée ovoïde, la porosité est composée de cavités polyconcaves. Le microagrégat brun sombre ovoïde (450 μm) présente le squelete quartzeux trié.

PLANCHES DES PHOTOS

EN NOIR ET BLANC

- NB.1 Termitière endogée située dans l'interfluve aplati (profil FT.3).
- NB.2 Même site de la photo C.23, mais en LF et en plus faible grossissement. Isotubule rouge janâtre (profil FT.3A/5 cm; H3; LF).
- NB.3 Même site de la photo C.24. On n'est pas capable de faire la distinction entre les microagrégats des agrotubules et les microagrégats présents dans le fond matriciel environnant.

- NB.4 Détail de la structure microagrégée à l'intérieur des agrotubules bruns (voir ce même site en lumière réflechie dans la photo C.25) en comparaison avec la structure microagrégée du fond matriciel environnant. On est pas capable de faire la distinction. En autre, on peut voir le recoupement de l'isotubule rouge jaunâtre par un agrotubule à microagrégats bruns (au centre). Légende: AgBr = Agrotubule brun; IsBr = Isotubule brun; IsRj = Isotubule rouge jaunâtre; En cercle noir = Agrégats ovoïdes bruns millimétriques; IsBrs = Isotubule brun sombre.
- NB.5 Même site de la photo C.15. La structure interne de l'isotubule rouge jaunâtre est de type porphyrique, riche en cavités polyconcaves simples (< 30 μ m) et mamelonnées (< 100 μ m). Ce qui indique que l'isotubule résulte d'une compaction mécanique des microagrégats, exercés, dans ce cas, par les fourmis Atta.

1cm

NB.6 - Agrotubule ayant 6 cm de diamètre (profil P.7/80 cm; H7; LF).

NB.7 - Détail de la structure interne des macroagrégats ovoïdes présents dans l'horizon sombrique amont. Celui à droite est très dense. Celui à gauche est beaucoup plus poreux; les pores étant composés de vides polyconcaves; la sous-structure est microagrégée ovoïde. Les deux agrégats ovoïdes présentent en commun des coupoles externes; trait qui apparaît couramment dans ce type d'agrégat. L'agrégat ovoïde, à droite, présente encore, complètement isolé au sein du fond matriciel dense, des microagrégats ovoïdes rouge jaunâtre, mais ceci n'est visible que dans la photo C.29, en lumière réfléchie (profil P.7/52 cm; H8; LF).

- NB.8 Domaines enau-porphyriques à sous-structure microagrégée ovoïde, riches en vides polyconcaves. Celui en bas de la photo, présente une forme externe sphérique et celui en haut, une forme ellipsoïdale (profil P.7/15 cm; H3; LF). Voir en LR (ph.C.30) la couleur homogène de ces domaines.
- NB.9 Détail de la structure des horizons superficiels. Les agrégats bruns ovoïdes prédominent (profil P.7/4-9 cm; H10-H3; LF).

.

- NB.10 Même site de la photo C.33. Détail de la forme externe et de la structure interne des domaines rouge jaunâtre. Ce sont des macroagrégats porphyriques ovoïdes. Les deux agrégats, à droite de la photo, présentent une sous-structure microagrégée ovoïde riche en vides polyconcaves, tandis que ceux à gauche, sont très denses. Remarquer que les coupoles externes correspondent à des microagrégats ovoïdes tassés de l'extérieur vers l'intérieur.
- NB.11 Détail de la forte hétérogénéité en couleur et en structure des organisations présentes au sommet de l'horizon 3 (profil P.7/9 cm; LF).

Obs.: voir schémas pag. suivante

- NB.12 Détail de la structure interne d'un macroagrégat ovoïde brun. L'assemblage est de type porphyrique à sous-structure microagrégée ovoïde riche en vides polyconcaves (profil P.7/4 cm; H10; LF).
- NB.13 Détail de la posité d'une zone compactée au tour d'un chenal. La sous-structure est microagrégée ovoïde riche en vides polyconcaves. La morphologie de ces vides témoigne alors la présence de phénomènes de compaction mécanique (profil T.5/70 cm; H7; LF).
- NB.14 Vue d'ensemble du fond matriciel microagrégée de l'horizon 12. Les zones beaucoup plus denses correspondent à des isotubules ou à des fragments d'isotubules, des agrégats ovoïdes ou encore des zones compactées au tour des chenaux et des pédotubules (profil P.3/210 cm; H12; LF).
- NB.15 Même site de la photo C.47. Le charbon de bois est recoupé par des agrotubules, d'origine animale.

1.2 cm

60 jum

1.5 mm

- NB.16 Agrégat cylindrique présentant une série de coupoles internes (fissures courbes), parallèles et distribuées de manière répétitive, dans le sens longitudinale. Remarquer encore la présence en abondance de petites fissures (longueur < 400 μ m) intraagrégat (profil P.3/5 cm; H19; LF).
- NB.17 Vue d'ensemble de la structure de l'horizon grumeleux. Les agrégats cylindriques à coupoles internes sont largement dominant (profil P.3/0-10 cm; H19; LF).
- NB.18 Même site de la photo C.8. Pédotubules très ramifiés et à section elliptique épaté. Ces pédotubules correspondent aux domaines bruns et brun sombre de la photo C.8. Ils recoupent les domaines rouge jaunâtre (profil P.13/10-20 cm; H3-H14; LF).
- NB.19 Macroagrégat polyédrique porphyrique (à gauche) juxtaposé à un domaine microagrégée, au sommet de l'horizon polyédrique (profil P.9/35 cm; H16; LF).
- NB.20 Détail de la porosité interne d'un macroagrégat polyédrique enau-porphyrique. Quelques fissures et de très nombreuses cavités irrégulières. La sous-structure est microagrégée polyédrique (profil P.9/25 cm; H17-base; LF).

2.5mm

- NB.21 Vue d'ensemble de la structure de l'horizon 17. Les macroagrégats porphyriques se trouvent noyés au sein du fond matriciel microagrégé. Les macroagrégats porphyriques sont principalement ovoïdes et cylindriques; leur origine est biologique (faune du sol) (profil P.9/10-20 cm; H17; LF).
- NB.22 Vue d'ensemble de la structure de l'horizon 10 en mi-pente. Structure composée par la juxtaposition d'agrégats ovoïdes et cylindriques et de domaines très riches en sables blancs (profil P.9/0-10 cm; LF).
- NB.23 Vue d'ensemble des macroagrégats ovoïdes de l'horizon 10 en mi-pente. Celui en bas et à gauche de la photo, se trouve partiellement recoupé par des petits agrotubules; celui en haut et à gauche, se trouve totalement transformé, en place, en microagrégats. La photo suivante montre le détail de ces agrotubules (profil P9/5 cm; LF).
- NB.24 Même site de la photo précédente, mais avec un plus fort grossissement. Détail de la transformation en place des macroagrégats ovoïdes en microagrégats, par la faune du sol. Ces microagrégats ressemblent à des boulettes fécales.
- NB.25 Vue d'ensemble de la structure microagrégée de l'horizon 11 en tiers inférieur de pente. Remarquer l'abondance des pédotubules (profil P.17/190 cm; LF).
- NB.26 Vue d'ensemble du fond matriciel de l'horizon polyédrique. Remarquer la richesse en pores tubulaires et en pédotubules (profil P.17/55-65 cm; H16; LF).

- NB.27 Vue d'ensemble des agrotubules qui recoupent un fragment d'altérite de basalte (profil P.5/180 cm; Transition H11-Altérite de basalte; LF).
- NB.28 Même site de la photo précédente, mais avec un plus fort grossissement. Détail d'un agrotubule qui recoupe l'altérite de basalte.
- NB.29 Détail de la structure de l'horizon polyédrique dans l'extrémité aval. Macroagrégat porphyrique à enau-porphyrique, riche en vides polyconcaves et à sous-structure microagrégée ovoïde. Cet agrégat ne présent pas d'argilanes, son plasma est isotique, les séparations plasmiques sont absentes.

[60µm