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Endogenous bioelectrical networks store non-genetic
patterning information during development and
regeneration

Michael Levin

Biology Department, Center for Regenerative and Developmental Biology, Tufts University, Medford, MA, USA

Abstract Pattern formation, as occurs during embryogenesis or regeneration, is the crucial link
between genotype and the functions upon which selection operates. Even cancer and aging can
be seen as challenges to the continuous physiological processes that orchestrate individual cell
activities toward the anatomical needs of an organism. Thus, the origin and maintenance of
complex biological shape is a fundamental question for cell, developmental, and evolutionary
biology, as well as for biomedicine. It has long been recognized that slow bioelectrical gradients
can control cell behaviors and morphogenesis. Here, I review recent molecular data that implicate
endogenous spatio-temporal patterns of resting potentials among non-excitable cells as instructive
cues in embryogenesis, regeneration, and cancer. Functional data have implicated gradients of
resting potential in processes such as limb regeneration, eye induction, craniofacial patterning, and
head-tail polarity, as well as in metastatic transformation and tumorigenesis. The genome is tightly
linked to bioelectric signaling, via ion channel proteins that shape the gradients, downstream genes
whose transcription is regulated by voltage, and transduction machinery that converts changes in
bioelectric state to second-messenger cascades. However, the data clearly indicate that bioelectric
signaling is an autonomous layer of control not reducible to a biochemical or genetic account of
cell state. The real-time dynamics of bioelectric communication among cells are not fully captured
by transcriptomic or proteomic analyses, and the necessary-and-sufficient triggers for specific
changes in growth and form can be physiological states, while the underlying gene loci are free to
diverge. The next steps in this exciting new field include the development of novel conceptual tools
for understanding the anatomical semantics encoded in non-neural bioelectrical networks, and
of improved biophysical tools for reading and writing electrical state information into somatic
tissues. Cracking the bioelectric code will have transformative implications for developmental
biology, regenerative medicine, and synthetic bioengineering.
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Embryogenesis enables genomes embedded in a single
fertilized egg cell to produce the highly complex functional
anatomies upon which selection operates. Thus, molecular
insight into the dynamics by which biological pattern
arises is fundamental to understanding the evolutionary

Michael Levin is a former computer scientist, working on the processing of information by bioelectric signaling in networks
of non-neural cells. Using a combination of developmental genetics, molecular physiology, and computational modeling, his
group studies the biophysics of pattern formation in embryogenesis, regeneration, and cancer. Their goal is to understand the
unique dynamics of bioelectrical controls of cell behavior and integrate them with known transcriptional and epigenetic pathways.
Having shown that bioelectric patterns serve as instructive but non-genetic templates for anatomy in a number of vertebrate and
invertebrate systems, they seek to crack the bioelectric code to improve the control of growth and form for regenerative biomedicine
applications.

process. Importantly, the processes of pattern formation
extend beyond embryonic development. Regeneration,
such as the complete restoration of amputated limbs,
eyes and other organs in salamanders, or of the liver
in mammals, plays a major role in shaping adaptive
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responses to injury (Sánchez Alvarado, 2000; Birnbaum
& Sánchez Alvarado, 2008). This process requires animal
bodies to be able to re-create specific anatomical structures
during adulthood. Lastly, carcinogenesis can be seen as
cellular defections from the correct target morphology –
an inability of the normal field of patterning information
to orchestrate individual cells’ activities toward the
evolutionary success of the body as a whole (Rubin, 1985;
Tsonis, 1987; Dean, 1998). Thus, the instructive influences
that establish, maintain, and correct large-scale pattern
are of central importance to the evolutionary dynamics
among organisms, to the tensions between the goals of
cells and their hosts, and to the strategies of biomedicine
(Levin, 2011, 2012b). Here, I briefly review exciting new
data in developmental bioelectricity, and argue three main
points. First, that bioelectric networks among all cells
are an autonomous layer of instructive information that
regulates complex pattern formation. Second, that the
current gene-centric paradigm needs to be expanded with
conceptual tools and new physiomic data, to fully under-
stand the control of anatomy by bioelectricity and the
evolutionary implications of its top-down causal efficacy.
Third, that transformative changes in biomedicine
and synthetic bioengineering will result from the
functional taming of the unique properties of bioelectrical
signalling.

The field of patterning information impinging on
cells is most often thought of as mediated by chemical
gradients. The mainstream emphasis is on these secreted
signals (Niehrs, 2010; Ben-Zvi et al. 2011), the gene
regulatory networks that couple to them (Huang et al.
2005; Geard & Willadsen, 2009; Gershenson, 2012),
and mechanical forces (Beloussov & Grabovsky, 2006;
Beloussov, 2008; Nelson, 2009; von Dassow & Davidson,
2011; Davidson, 2012), as the main drivers of patterning.
However, this paradigm must now be expanded (Fig. 1A)
to include a crucial new signalling modality that regulates
cell behaviour and controls large-scale patterning of
organisms: endogenous bioelectrical signalling (Levin,
2007, 2012a; Tseng & Levin, 2013). While it has been
known for many decades that endogenous electric fields
participate in embryogenesis and regeneration (Burr &
Northrop, 1935; Lund, 1947; Jaffe & Nuccitelli, 1977;
Nuccitelli et al. 1986; Borgens et al. 1989; Hotary &
Robinson, 1992), recent data have revealed that gradients
of resting potential across tissues provide instructive,
functional cues that establish large-scale anatomical
order (Robinson & Messerli, 1996; McCaig et al. 2005;
Levin, 2013). The development of new molecular-level
techniques has allowed a glimpse into the interplay
of genetic and electrophysiological order, with many
implications for evolutionary biology and biomedicine
(Pullar, 2011; Levin, 2013; Tseng & Levin, 2013).

Bioelectricity refers to slowly changing ion flows emitted
and sensed by all cell types (not rapid spiking in excitable

cells nor external electromagnetic field exposure). I focus
here not on the trans-epithelial electric fields known
to regulate cell motility and wound healing (Shi &
Borgens, 1995; McCaig et al. 2009; Zhao, 2009) or
on nuclear envelope gradients (Mazzanti et al. 2001;
Yamashita, 2011), but on Vmem (plasma membrane resting
potential), which is now known to be much more than a
housekeeping or permissive property. Vmem arises from
the combined action of ion channels and ion pumps,
as well as of gap junctions (GJs) – highly versatile
aqueous connections between the cytoplasm of adjacent
cells that allow voltage and current-mediated signals
to be propagated and regionalized across cell groups.
Cellular Vmem regulates cell-autonomous properties such
as proliferation, differentiation and apoptosis (Blackiston
et al. 2009; Sundelacruz et al. 2009; Aprea & Calegari,
2012), in mature somatic cells (Cone & Tongier, 1971;
Stillwell et al. 1973) as well as stem cells (Stroh et al.
2011; Sundelacruz et al. 2013) and cancer cells (Yang &
Brackenbury, 2013). Moreover, spatio-temporal patterns
of differential Vmem levels across the body are now known
to be instructive cues during embryogenesis, regeneration
and cancer (Adams, 2008; Levin, 2012a; Tseng & Levin,
2013).

Modern tools include reagents such as fluorescent
voltage-sensitive dyes (Adams & Levin, 2012a,b) and
other sensor technologies (Reid et al. 2007; Tyner et al.
2007), and functional strategies using mis-expression, or
pharmacological modulation, of specific ion translocator
proteins to achieve predictable changes in cells’ Vmem levels
(Adams & Levin, 2006, 2013). Using such combinations of
Vmem monitoring and selective depolarization and hyper-
polarization, Vmem gradients have been shown to control
left–right asymmetry (Levin et al. 2002; Adams et al.
2006; Bessodes et al. 2012), craniofacial morphogenesis
(Bendahhou et al. 2003; Vandenberg et al. 2011),
appendage regeneration (Adams et al. 2007; Tseng et al.
2010), head–tail polarity (Beane et al. 2011, 2013), size
of regenerating appendages (Perathoner et al. 2014), and
eye induction (Pai et al. 2012). Importantly, mechanistic
links have now been forged between bioelectric controls
and canonical biochemical pathways, as elegant genetic
experiments revealed how ion flows couple to mainstream
signalling pathways such as inositol-phospholipids (Zhao
et al. 2006), Notch (Raya et al. 2004; Adams et al. 2007), and
Bone Morphogenetic Protein (BMP) (Dahal et al. 2012).
Recent data have also identified a number of mechanisms
by which voltage changes are transduced into down-
stream transcriptional and epigenetic responses. Vmem

gradients signal through the butyrate (Miyauchi et al.
2004; Chernet & Levin, 2013) and serotonin (Fukumoto
et al. 2005; Blackiston et al. 2011) transporters, as well
as voltage-sensitive phosphatases (Murata et al. 2005;
Okamura & Dixon, 2011) and calcium channels (Holliday
& Spitzer, 1990; Stewart et al. 1995; Chopra et al. 2010;
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Pai et al. 2012), to regulate transcription (Langlois &
Martyniuk, 2013) and epigenetic marking (He et al. 2011;
Tseng & Levin, 2012) of downstream targets.

By tracing the causal flow from the voltage change
through the transduction machinery and down to
the mRNA targets, numerous studies have now
mechanistically linked ionic signalling with mainstream
genetics. However, the most salient and unique aspects of
bioelectric networks still remain to be integrated into the
models and workflow of studies in this field. Counter to
the prevalent idea that master regulators must be specific
transcription factor proteins, the information-bearing
signal (the necessary and sufficient trigger) for events such
as eye induction, head determination, or tail regeneration
via Vmem change is a physiological state, not a gene (Levin,
2013; Tseng & Levin, 2013). Studies reveal that the exact
channel or pump used to trigger such morphological
changes is often irrelevant – many sodium, potassium,
chloride, or proton conductances can be used as long as
the appropriate bioelectrical state is reached. This means
that the cause of the given morphological change can
be not a specific gene product (an ion channel protein)
but rather a bioelectrical property not necessarily in 1:1
correspondence with a genetic locus (Fig. 1B). This is true
not only for pattern formation, but also at the level of single
cells: a recent breakthrough in somatic cell reprogramming
showed that conversion to stem cell status was induced
by both an acid bath and streptolysin O treatment
(both of which can depolarize cells), in the absence of
reprogramming transcriptional factors (Obokata et al.
2014).

Because channels and pumps are gated
post-translationally, two cells expressing precisely
the same mRNA and protein can be in extremely

different bioelectrical states. A corollary is that rich
patterns of bioelectrical gradients in a transcriptionally
homogeneous tissue can be completely invisible to protein
and mRNA profiling. Conversely, cells with very different
channel and pump complements may have the same
Vmem, since resting potential is an ensemble state (akin
to the concept of ‘pressure’) that is a function of many
different ion flows. The implication is that workhorse
techniques of modern molecular developmental biology
are insufficient to detect and characterize important
biophysical determinants of morphogenesis.

Crucially, bioelectrical state can not only diverge from
genetic information (Justet et al. 2013), but in a number
of cases is dominant to it. One example is the guidance of
cell motility: if a chemical gradient and an electric field are
set up in opposite directions, the bioelectric vector trumps
the chemical cue in directing cell movement (Zhao, 2009;
Cao et al. 2011). Another example is the differentiation
of human mesenchymal stem cells (hMSCs), which
normally hyperpolarize as they differentiate; despite
the presence of chemical inducers, hMSCs will not
differentiate if kept artificially depolarized (Sundelacruz
et al. 2008). The voltage state can even partially reverse
the differentiation state, inducing plasticity in pre-
differentiated hMSCs (Sundelacruz et al. 2013). A final
example concerns cancer. It has recently been shown
that a metastatic phenotype (overproliferation, matrix
metalloprotease-dependent invasion of body tissues, and
drastic arborization) can be imposed upon genetically
normal melanocytes by depolarization (Blackiston et al.
2011; Lobikin et al. 2012). Conversely, the formation of
tumours by human oncogenes such as p53 and KRAS
mutations can be suppressed, despite the strong pre-
sence of oncogene protein within the cells, by artificially

Figure 1. Bioelectric networks regulate pattern formation
A, selection acts upon the products of patterning processes such as development and regeneration. Biological
patterning is controlled by not only gradients of secreted chemical products of gene regulatory networks, but
also by gradients of cellular resting potential in all tissues. These bioelectric signals regulate cellular behaviours
such as proliferation, differentiation and migration, and also set large-scale anatomical properties such as organ
identity, axial polarity and symmetry. Both chemical and electrical layers exhibit their own internal dynamics driven
by the laws of chemistry and physics, in addition to inputs from the genome and the environment. Bioelectric
gradients are a systems-level, physiological, epigenetic instructive influence that helps drive large-scale patterning
during embryogenesis, regenerative repair and cancer suppression. B, bioelectrical signalling operates in parallel
to the widely studied gene regulatory networks. Ion channel and gap junction proteins are both regulated by,
and themselves determine, resting potential (Vmem), thus implementing feedback loops with complex non-linear
behaviour and self-organization of patterns. Networks of gap-junctionally coupled cells with slow Vmem changes
have the capability of storing and processing information (as do neural networks). Because ion channels, pumps
and gap junctions are gated post-translationally, bioelectrical dynamics in somatic cells is an autonomous layer
of control without 1:1 correspondence to underlying transcriptional or proteomic state (differences in bioelectric
states across tissues are not uniquely determined by, nor necessarily detectable by, tools that monitor, mRNA
or protein profiles). Anatomical states are the results of stable attractors in bioelectrical state space. Bioelectric
networks couple to biochemical signalling because Vmem changes can affect transcription and epigenetic marking,
while itself being sculpted by transcriptional control of ion translocator protein expression within tissues. Together,
these events form a continuous dynamic interplay of genetic and physiological order during the formation and
maintenance of complex anatomical pattern. (Two-layer diagram drawn by Jessica Mustard, Tufts University,
Biology dept.)
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preventing the depolarization that occurs during
oncogenic transformation (Chernet & Levin, 2013). The
latter two examples reveal the potential dissociation
between genetic state and disease outcome; an implication
of these data is that the neoplastic state cannot be pre-
dicted from examination of the genome, transcriptome,
or proteome. On the other hand, the functionally
determinative voltage states cannot be seen in fixed
tissue, stressing the importance of gathering real-time in
vivo bioelectric information over and above analysis of
mutations, mRNA profiles and protein levels.

Bioelectric patterns are clearly important drivers of
cell behaviour and pattern formation, but how do these
patterns originate? Diverse resting potentials across
a tissue can arise from pre-existing differences in ion
channel transcription; but that is not the whole story. Such
regionalized patterns of Vmem can also form de novo, in
transcriptionally and proteomically identical cells, because
cells coupled by gap junctions (electrical synapses) form a
(slow) electrically excitable medium; this is a particularly
interesting aspect because such media are known to
have powerful computational capabilities (Fenton et al.
1999; Gorgcki & Gorgcka, 2007; Adamatzky et al. 2011).
Positive feedback loops implemented by elements such as
voltage-gated ion channels, which both set and respond
to Vmem changes, can drive spontaneous symmetry
breaking and amplification of physiological noise.
Considerable self-organization dynamics can take place
without needing any pre-existing chemical prepattern
(Schiffmann, 1991, 1997; Palacios-Prado & Bukauskas,
2009). This has been studied in nerve and muscle (Zykov,
1990; Chen et al. 1997; Boettiger et al. 2009; Boettiger
& Oster, 2009), and Turing-type self-organization has
long been appreciated in chemical signalling (Takagi
& Kaneko, 2005; Müller et al. 2012; Sheth et al. 2012).
However, models of self-organization of voltage patterns
in groups of non-neural cells remain to be formally
analysed. Quantitative analysis of in silico models of
bioelectric dynamics will need to be integrated with deep
new datasets from appropriate physiomic technologies,
to fully understand and control developmental patterning
in vivo.

One unexpected recent finding illustrates the storage
of patterning information in physiological networks, and
has significant implications for evolutionary dynamics.
Planarian flatworms have the remarkable ability to
regenerate completely from partial body fragments
(Reddien & Sánchez Alvarado, 2004; Saló et al. 2009;
Lobo et al. 2012). They are complex creatures, with a
true brain, bilateral symmetry, a complex behavioural
repertoire, and many body organs (Sarnat & Netsky, 1985;
Gentile et al. 2011). Their capacity for self-repair serves as
a paradigm case of dynamic morphostasis and continuous
remodelling towards a specific target morphology. After a
surgical bisection, the cells at one edge make a tail, while

those at the other edge make a head, revealing that the
adult stem cells which implement regeneration are not
locally controlled (since the cells were direct neighbours
until the scalpel separated them) but must communicate
with the remaining tissue to decide what anatomical
structures must be formed. It was shown recently that
this long-range communication occurs via GJ-mediated
electrical synapses (Scemes et al. 2007; Marder, 2009;
Pereda et al. 2013), and works together with a bioelectric
circuit that determines head vs. tail identity in each
end’s blastema (Beane et al. 2011, 2013). Importantly, it
was shown that inhibition of this gap junction-mediated
communication, using octanol, results in worm fragments
forming heads at both ends (Nogi & Levin, 2005; Oviedo
et al. 2010).

After this transient pharmacological treatment is
complete (2 days of soaking in octanol), the octanol is
completely gone within 24 h (as shown by HPLC analysis
of worm lysate). What is remarkable (Fig. 2) is that weeks
later, when these 2-headed animals have their heads and
tails amputated again (in pure water, with no further
perturbation), the same 2-headed phenotype results, and
this is repeated upon subsequent amputations. A trans-
ient perturbation of physiological cell:cell communication
via gap junctions has stably changed the pattern to
which the animal regenerates upon damage! While
epigenetic processes may be involved, standard chromatin
modification mechanisms alone are not a sufficient
explanation for this, since the ectopic heads (tissue
which might be suggested to have been epigenetically
reprogrammed into a head state from its original tail
identity) are thrown away at each generation of cutting.
What remains is a normal gut fragment, which somehow
knows that it is to form two heads, not one, upon
further cutting; the information about basic anatomical
polarity and body organization must be stored in a
distributed form throughout the animal. The involvement
of electrical synapses and the holographic-like nature
of the information suggest models in which the target
morphology is actually stored (encoded) within the
real-time current dynamics, perhaps akin to storage of
spatial memory in neural networks or similar proposed
processes of memory in non-neural tissues (McConnell
et al. 1959; Turner et al. 2002; Zoghi, 2004; Levin, 2011,
2012b; Baluška & Mancuso, 2013; Shomrat & Levin, 2013).

Although there are no data suggesting that this 2-head
phenotype persists through sexual reproduction, it is in
fact inherited across these animals’ most frequent natural
mode of reproduction: fission. One can imagine that if
such an animal were to be released into the wild and
survived, an observer some decades later would find two
‘species’ of planaria – one with two heads and one with
one head, having very different overall anatomies and
behaviour. Seeking a genomic basis for this speciation
event, the biologist would sequence its genome, and (since
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Figure 2. Stable inheritance of target morphology change
after physiological perturbation
A normal planarian has a head and tail, and regenerates each at the
appropriate end of an amputated fragment (A). When cut into
thirds, and the middle fragment is briefly exposed to octanol, which
temporarily blocks long-range bioelectrical signalling between the
wound and mature tissues, a 2-headed worm results (B). GJC,
gap-junctional communication. Remarkably, upon further rounds of
cutting in plain water (long after the octanol has left the tissues, as
confirmed by HPLC), the 2-headed form is recapitulated (C and D;
images of 2-headed worms provided by Fallon Durant, Tufts
University, Biology dept.). This change in the animal’s target
morphology (the shape to which it regenerates upon damage)
appears to be permanent, and persists across the animal’s normal
reproductive mode (fissioning), despite the fact that the genomic
sequence has not been altered. Chromatin modifications alone do
not explain this, because the posterior wound cells, which could
have been epigenetically reprogrammed to a head fate, are thrown
away at each cut: the information encoding a bipolar 2-head animal
is present even in the normal gut fragment – it is distributed
throughout the body. We propose that this information is a kind of
memory, encoded in electrical networks of somatic cells coupled by
gap junctions, and is stored at the level of bioelectrical dynamics, not
genetics.

octanol exposure was shown to not be genotoxic), would
find no sequence differences accounting for this major
change of body shape. The implications for evolutionary
biology, and the role of physiological vs. genetic change
in this process, are only beginning to be glimpsed and
a number of open questions remain. First, it is not
known whether the patterning change persists because of
a permanent alteration of electrical connectivity (a stable
change of gap-junctional states) as occurs in synaptic
rewiring underlying learning in the CNS, or whether the
GJ connection patterns go back to normal after octanol
removal while the new target morphology state persists as
a new attractor following the alteration of voltage states
(more akin to intrinsic plasticity, Daoudal & Debanne,
2003; Debanne et al. 2003; Pulver & Griffith, 2010, or
the way bits are stored in computer flip–flop circuits).
It is also unclear what other aspects of the worm’s
morphology are encoded; at the moment, all that has
been shown is that the bioelectric network stores a simple
anatomical head–tail polarity dipole, and it is not known
whether more subtle manipulations will reveal that it
also contains rich information about detailed shape and
layout of internal structures. Although it is unknown
what role this mechanism has played in the evolution
of planaria, this example of a non-genetic inheritance
of large-scale bodyplan and behaviour change, as well as
other poorly understood examples of physiological signals
driving stable shape changes (Bubenik & Pavlansky, 1965;
Seno & Shigemoto, 2006; Lobo et al. 2014), suggests that
information encoded in physiological states could be an
important driver of evolutionary change. While bioelectric
circuits provide a flexible and robust mechanism for
environmental signals to alter body shape, subsequent
selection for changes in the gene networks governing ion
channel expression could readily provide a way to canalize
advantageous outcomes by a kind of Baldwin effect.

All of the recent data in a range of vertebrate and
invertebrate systems show that information stored in
bioelectrical states guides both single cell behaviour and
large-scale morphogenesis. While this physiological layer
of controls is autonomous, in that it has its own unique
dynamics and is not determined 1:1 by genetic states,
the bioelectric processes are tightly integrated with gene
regulatory networks. The gradients are produced by genes
encoding ion channels and pumps, and regulate expression
of numerous downstream target genes – a circular causal
chain implementing a cyclical dynamic system in which
physiological and genetic processes continuously inter-
play. Thus, the question is not whether bioelectric or
transcriptional cues are ‘on top’, but rather which events
in this dynamical system represent optimal control points
– master nodes that allow convenient and efficient control
of the resulting shape outcomes. Such nodes are then
particularly attractive targets for evolution as well as
biomedical intervention. Interestingly, in a number of
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cases, bioelectric signals are just such nodes. A very simple
signal mediated by a single ion pump can initiate the
whole cascade of tail, limb, or head formation (Adams
et al. 2007; Beane et al. 2011; Tseng & Levin, 2013).
Indeed, in some cases the bioelectric signal offers greater
functional range than known biochemical triggers. For
example, the eye ‘master regulator’ gene Pax6 is unable
to trigger eye formation anywhere but in the anterior
neural field of vertebrate embryos, while induction of a
specific Vmem range can reprogramme any tissue in the
frog embryo to a complete eye, including gut endoderm
and lateral plate mesoderm (Pai et al. 2012), revealing the
ability of bioelectric cell state to switch fate across germ
layers and induce the patterning of a complex multi-tissue
organ. Because bioelectric signals are able to trigger
complex downstream patterning cascades, it appears that
such physiological states can act as master triggers for
developmental modules – an organizational scheme that
would clearly aid in the evolvability of complex adaptive
structures.

In the examples discussed above, anatomical outcomes
are triggered by specific bioelectrical states, such as Vmem

ranges, which can be implemented by a plethora of
different ion translocator proteins. One implication for
evolution is that ion channel loci and their transcriptional
controls would be free to diverge without consequence
for the organism, as long as the necessary Vmem states
remained in place (implemented by compensating or
entirely different channels). And conversely, the patterning
consequences of evolutionary changes in ion channel
expression/function will not be readily understood
without a consideration of the effects this has on the
bioelectric dynamics within expressing cells. It appears
that the bioelectric code maps systems-level physiological
properties – not genes – onto some patterning events;
for example, while NaV1.2 is natively used by tadpoles to
drive tail regeneration at early stages (Tseng et al. 2010), it
is not ‘a gene for tail regeneration’, as many other channels
can be used to achieve the same signal and outcome.
An implication for biomedicine is that triggering desired
patterning changes, such as limb regeneration cascades,
could be accomplished by targeting any appropriate
natively expressed channel (perhaps with existing ion
channel drugs), not necessarily with one specific channel
type that would require gene therapy for its introduction
into the host. An implication for cancer biology is that
while some ion channels’ expression might be a useful
marker (Wang, 2004; Fraser et al. 2005; Stühmer et al.
2006), there will also be many cases in which the trans-
criptional profile reveals nothing (because of signalling
via post-translational gating of channel state), while drugs
targeting a specific channel (Arcangeli et al. 2009, 2012)
may have no effect (due to compensation and redundancy
of channel types). If indeed cancer is augmented or
induced by a depolarized bioelectric state (Binggeli &

Weinstein, 1986; Olivotto et al. 1996; Yang & Brackenbury,
2013), we will have to think not only about individual ion
channels as oncogenes (Pillozzi et al. 2002; Bennett et al.
2004; Lallet-Daher et al. 2013; Than et al. 2013) but more
about how many channels contribute to a bioelectrical
oncostate, to develop strategies for dominating the resting
potential irrespective of native channel identity (Sharmeen
et al. 2010; Chernet & Levin, 2013).

Molecular bioelectricity is a frontier field in which we
have just begun to appreciate the richness of possibilities.
Future progress will probably require the development of:
(1) entirely new statistical dynamics models of voltage
regulation of morphogenesis, (2) in silico simulations
of self-organization dynamics in bioelectrical networks
(perhaps with principles appropriated form neuro-
science’s study of memory), (3) expansion of tools like
optogenetics to non-neural, non-excitable cells to read
and write electrical state information to living tissues
at will with high spatio-temporal resolution, and (4)
deep physiomic datasets of pattern formation in model
systems which can be mined to crack the bioelectric
code. Existing data indicate that bioelectric networks in
somatic tissues store and process instructive information
that regulates the emergence of large-scale structures
from individual cell behaviours. Learning to control the
dynamics of these signals in vivo will enable highly effective
top-down programming of shape, allowing control at the
level of systems properties such as organ type, topology,
size and large-scale arrangement – an important weapon
in the uphill battle against the exponential complexity
that hinders efforts to control 3–D shape at the level
of individual molecular pathways. Harnessing this new
set of inputs is a key step toward the ability to induce
complex structures to be grown on-demand, as required
for transformative applications in regenerative medicine
and the synthetic biology of hybrid ‘biobot’ devices. As
an important side-benefit for cognitive science, under-
standing the mapping of voltage gradients to tissue-level
decision-making may significantly advance our nascent
efforts to glean the semantics of electric states within the
brain. Thus, the impact of these efforts will not only shed
new light on a different kind of truly epi-genetic factor in
evolution and embryogenesis, but will have transformative
implications for our ability to rationally control growth
and form in regenerative medicine and bioengineering
applications.
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