Disciplina - detalhe

LCE5873 - Métodos Estatísticos de Aprendizado de Máquina


Carga Horária

Teórica
por semana
Prática
por semana
Créditos
Duração
Total
10
8
8
4 semanas
120 horas

Docentes responsáveis
Edwin Moises Marcos Ortega
Idemauro Antonio Rodrigues de Lara

Objetivo
Desenvolver o conhecimento dos alunos sobre métodos estatísticos de aprendizado de máquina, quando e como utilizá-los, como interpretar os resultados, e como aplicá-los na análise de conjuntos de dados grandes.

Conteúdo
Introdução ao aprendizado estatístico. Métodos de classificação: regressão logística, análise discriminante linear e quadrática. Aprendizado não-supervisionado: análise de componentes principais, métodos de agrupamento. Métodos de reamostragem: validação cruzada e o bootstrap. Modelos aditivos generalizados. Métodos baseados em árvores: árvores de classificação e regressão, florestas aleatórias. Máquinas vetor de suporte. Implementação em R.

Bibliografia
Friedman, J., Hastie, T., Tibshirani, R. (2001) The elements of statistical learning. Springer, New York.
James, G., Witten, D., Hastie, T., Tibshirani, R. (2013) An introduction to statistical learning. Springer, New York.
Burger, S.V. (2018) Introduction to machine learning with R. O'Reilly Media, USA.
Wickham, H., Grolemund, G. (2017) R for data science. O'Reilly Media, USA.
Venables, W., Ripley, B. (2002) Modern applied statistics with S. Springer, New York.