Disciplina - detalhe

LPV5738 - Modelos em Agricultura


Carga Horária

Teórica
por semana
Prática
por semana
Créditos
Duração
Total
3
3
8
15 semanas
120 horas

Docentes responsáveis
Durval Dourado Neto
Klaus Reichardt

Objetivo
A disciplina tem por objetivo integrar conhecimentos referentes às diferentes sub-áreas da Agronomia
(fitotecnia, fisiologia e agrometeorologia, principalmente) com ênfase em modelos mecanísticos e
problemas de escala, além de apresentar aos alunos uma visão global e crítica dos modelos atuais que
subsidiam ações de manejo.

Conteúdo
Simbologia, terminologia, modelos e modelagem: conceitos, definições e utilidades. Escala temporal e
espacial. O sistema agrícola. Fotossíntese. Respiração. Partição de carboidratos. Eficiência de conversão
de carboidrato em fitomassa seca. Modelos para estimativa da produtividade vegetal. Modelos
norteadores de ação de manejo e de planejamento referentes às fases solo, planta, atmosfera e biótica
(pragas, doenças e plantas daninhas). Modelos autorregressivos para estimativas de atributos do clima.
Modelos mecanísticos para simulação (modelos determinísticos e estocásticos) de arquitetura radicular e
de produtividade das culturas de Brachiaria spp., soja, milho, cana-de-açúcar e feijão.

Bibliografia
among Dryland Grain Yeild and Soil-Water Content in a Sloping Field. 2003. Ascough II, J.C., Flanagan,
D.C., David, O. Assessing the Potential of the Object Modeling System (Oms) for Erosion Prediction
Modeling. 2005. Andales, A.A., David, O., Ahuja, L.R. Development of a Forage Growth Component in
the Object Modeling System. 2005. BOHM, W. Methods of studying root systems. Ecological Studies,
v.33. Springer Verlag, Berlin, 1979. 188p. BRAGG, P.L.; GOVI, G.; CANNEL, R.Q.A comparison of
methods,including angled and vertical minirhizotrons, for studying root growth and distribution in a
springoat crop. Plant and Soil, v.73, p.435-440, 1983. CANNEL, R. Q. A rapid method for estimating the distribution of roots in the field. In: RUSSEL, R. S.; IGUE, K.; MEHTA, Y. R. (ed.) The soil/root system in relation to brazilian agriculture. Londrina, Fundação Instituto Agronômico do Paraná, p. 339-43, 1981. CLAUSTNITZER, V.; HOPMANS, J.W. An algorithm for three dimensional, simultaneous modeling of root growth and transient soil water flow (version 1.0).Davis, LAWR/UCDAVIS, 1993. 108p. COSTA, A. F. S. da. Influência das condições climáticas no crescimento e desenvolvimento de Plantas de Feijão (Zea mays L.), avaliadas em diferentes épocas de plantio. Viçosa, 1994. 109p. (Tese - UFV). DIGGLE, A.J. ROOTMAP: a model in three-dimensional coordinates of the growth and structure os fibrous root systems. Plant and Soil, v.105, p.1988. GOUDRIAAN, J.; LAAR, H.H. van, Modelling Potential Crop Growth Processes: textbook with exercises. Dordrecht: Kluwer Academic Publishers, 1994. 238p. (Current issues in production ecology, 2). HACKETT, C.; ROSE, D. A. A model of the extension and branching of a seminal root of barley, and its use in studying relations between root dimensions. 1. The model. Australian Journal of Biological Sciences, 25: 669-79, 1972. Karel D. Vohnout. Mathematical Modeling for System Analysis in Agricultural Research. 2004. KLEPPER, B.; BELFORD, R.K.; RICKMAN, R.W. Root and shoot development in winter wheat. Agronomy Journal, v.76, 117-122, 1984. L. Ahuja (Editor), Lajpat R. Ahuja (Editor), Liwang Ma (Editor), Terry A. Howell (Editor). Agricultural System Models in Field Research and Technology Transfer (Hardcover). 2002. LIMA, M. G. de. Calibração e validação do modelo Ceres-Maize em condições tropicais do Brasil. Piracicaba, 1995. 119p. (Tese -ESALQ). LUNGLEY, D. R. The growth of root systems - a numerical computer simulation model. Plant and Soil, 38:145-59, 1973. Mcmaster, Gregory; Wilhelm, Wallace; Frank, A. Developmental Sequences for Simulating Crop Phenology for Water-Limiting Conditions. 2004. PAGES, L.; JORDAN, M.O.; PICARD, D. A simulation model of the three-dimensional architecture of the maize root system. Plant and Soil, v.119, p.147-154, 1989. PEARSON, R.W. Significance of rooting pattern to cropo production and some problems of root research. In: CARSON, E.W.(ed.). The plant root and its environment. University Press of Virginia, p.247-270. PEREIRA, A.R.; MACHADO,E.C. Análise quantitativa do crescimento de comunidade vegetal. Campinas: Instituto Agronômico, 1987. 33p. (IAC. Boletim Técnico, 114). PORTER, J.R.; KLEPPER, B.BELFORD, R.K. A model (WHTROOT) which synchronizes root growth and development with shoot development for winter wheat. Plant and Soil, v.92, p.133-145, 1986. REICHARDT, K.; TIMM, L.C. Solo, planta e atmosfera: conceitos, processos e aplicações. Ed. Manole, 3. Ed., 585 p. 2016. ROSE, D.A. Thedescription of the growth of root systems. Plant and Soil, v.75, p.405-415, 1983. SMIT, A.L.;GROENWOLD, J.; VOS, J. The Wageningen Rhizolab - a facility to study soil-root-shoot-atmosphere interactions in crops. II-Methods of root observations. Plant and Soil, v.161, p.288-298, 1994. TARDIEU, F. Analysis of the spatial variability of maize root density. I-Effect of wheel compaction on the spatial arrangement of root. Plant and Soil, v.107, p.259-266, 1988. TARDIEU, F. Analysis of the spatial variability of maizeroot density. II-Distances between roots. Plant and Soil, v.107, p.267-272, 1988. VAN DE GEIJN, S.C., VOS, J.; GROENWOLD, J., GOUDRIAAN, J., LEFFELAAR, P.A. The wageningen rhizolab - a facility to study soil-root-shoot-atmosphere interactions in crops. I-Description of main functions. Plant and Soil, v.161, p.275-287, 1994. WADDINGTON, J. Observation of plant roots in situ. Canadian Journal of Botany, v.49, p.1850-1852, 1971. WIT, C.T. Simulation of assimilation, respiration and transpiration of crops. Wageningen, Centre for Agricultural Publishing and Documentation, The Netherlands, 140p. 1978. G. Tcherkez, S. Nogues, J. Bleton, G. Cornic, F. Badeck, and J. Ghashghaie. Metabolic Origin of Carbon Isotope Composition of Leaf Dark-Respired CO2 in French Bean. Plant Physiology, January 1, 2003; 131(1): 237 - 244. Gomez-Casanovas, N.; Blanc-Betes, E.; Gonzalez-Meler, M.A.; Azcon-Nieto, J. Changes in Respiratory Mitochondrial Machinery and Cytochrome and Alternative Pathway Activities in Response to Energy Demand Underlie the Acclimation of Respiration to Elevated CO2 in the Invasive Opuntia ficus-indica. Plant Physiology, September 1, 2007; 145(1): 49 - 61. J. A. Bunce. Direct and Acclimatory Responses of Dark Respiration and Translocation to Temperature. Ann. Bot., July 1, 2007; 100(1): 67 - 73. D. Timlin, S. M. Lutfor Rahman, J. Baker, V. R. Reddy, D. Fleisher, and B. Quebedeaux Whole Plant Photosynthesis, Development, and Carbon Partitioning in Potato as a Function of Temperature. Agron. J., August 3, 2006; 98(5): 1195 - 1203. T. KINUGASA, K. HIKOSAKA, and T. HIROSE. Respiration and Reproductive Effort in Xanthium canadense. Ann. Bot., July 1, 2005; 96(1): 81 - 89.
PAOLINELLI, A. (Org.) ; DOURADO NETO, D. (Org.) ; MANTOVANI, E. C. (Org.) . Diferentes abordagens sobre agricultura irrigada no Brasil (versão digital): história, política pública, economia e recurso hídrico. 1. ed. Piracicaba: Escola Superior de Agricultura 'Luiz de Queiroz' Divisão de Biblioteca, 2021. v. 1. 574p .
PAOLINELLI, A. (Org.) ; DOURADO NETO, D. (Org.) ; MANTOVANI, E. C. (Org.) . Diferentes abordagens sobre agricultura irrigada no Brasil (versão digital): técnica e cultura. 1. ed. Piracicaba: Escola Superior de Agricultura 'Luiz de Queiroz' Divisão de Biblioteca, 2021. v. 1. 598p .