Name: entire (e)

Accessions: H2

Gene ID: Solyc04g076850

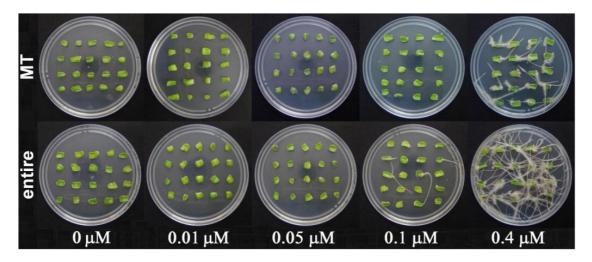
Map position: chromosome 4 (long arm)

Gene function: entire codes for AUX/IAA9, a transcriptional repressor of auxin

signaling

Gene effect: the mutated allele increases auxin response.

Phenotypes: MT-*e* presents simple leaves and parthenocarpy.


Comments:

Description of accessions available: MT-e is a BC6Fn introgressed from LA2922

Figures:

MT-*e* showing simple leaves

Cotiledonary explants of MT-e are more responsive to auxin (NAA) for root formation when compared to MT.

Bibliography

Butler L (1951) New linkage groups in the tomato. Jour. Hered. 42: 100-104.

Dengler, NG (1984) Comparison of Leaf Development in Normal (+/+), Entire (e/e), and Lanceolate (La/+) Plants of Tomato, Lycopersicon esculentum 'Ailsa Craig'. Botanical Gazette 145:66-77.

Koenig D, Bayer E, Kang J, Kuhlemeier C, Sinha N (2009) Auxin patterns *Solanum lycopersicum* leaf morphogenesis. Development 136: 2997-3006.

Wang H, Jones B, Li Z, Frasse P, Delalande C, Regad F, Chaabouni S, Latché A, Pech J, Bouzayen M (2005) The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis. Plant Cell 17: 2676-2692.

Zhang J, Chen R, Xiao J, Qian C, Wang T, Li H, Ouyang B, Ye Z (2007) A single-base deletion mutation in *SIIAA9* gene causes tomato (*Solanum lycopersicum*) entire mutant. Journal of Plant Research 120: 671-678.