Vantagens

Maior interação com ambiente eleva uso de cultivar transgênico no Brasil

Pedro Patric Pinho Morais e Aluízio Borém*

Adoção de cultivares transgênicos, no Brasil, alcançou, em 2012/13, taxa de 77.7% (12,4 milhões de hectares), com crescimento de 3,7% em 2013/14

Desde 2007, ano no qual foi aprovado o primeiro "evento" de milho transgênico no Brasil, o uso de cultivares com incorporação desta tecnologia vem aumentando significativamente. A adoção de cultivares transgênicos, no Brasil,

era de apenas 1,2% (170 mil hectares) da área total plantada na safra de 2008/09; em 2012/13, esta taxa foi de 77,7% (12,4 milhões de hectares), com crescimento de 3,7% em 2013/14 (Céleres, 2013). Esta rápida adoção está fundamentada em

certas vantagens, sendo as econômicas as principais.

Comos cultivares transgênicos, o aumento dos custos com sementes são compensados com reduções nos custos com aplicação dos insumos (herbicidas e inseticidas).

VISÃO AGRÍCOLA Nº13 VA JUL | DEZ 2015 61

E quando há possibilidade de redução de perdas causadas por pragas, os retornos financeiros ainda são maiores, reforçando a viabilidade econômica do uso da tecnologia (Duarte et al., 2009). Dessa forma, é importante enfatizar que o uso de cultivares transgênicos de milho não aumenta a produtividade (eles possuem potencial genético igual ao de um mesmo híbrido sem o transgene); o que muda é sua interação com o ambiente, evitando perdas causadas por efeitos bióticos a campo e, mais recentemente, abióticos.

TOLERÂNCIA A HERBICIDAS

Há, no mercado brasileiro, três opções de cultivares tolerantes a herbicidas: (I) cultivares oriundos de eventos tolerantes a glufosinato de amônio; (2) cultivares oriundos de eventos tolerantes a glifosato; (3) cultivares oriundos da combinação

de eventos tolerantes a glufosinato de amônio e glifosato. Estas três opções estão listadas na Tabela I. O uso destes cultivares tende a trazer vantagens aos produtores que os adotam, quais seiam: (1) baixa ou ausência de fitotoxicidade aos herbicidas (Figura I); (2) facilidade para superar problemas de manejo de plantas daninhas; (3) facilidade para a adoção de técnicas de manejo integrado ou para continuidade do manejo, quando o controle cultural ou mecânico não são eficientes; (4) aumento nas opções de manejo de plantas daninhas; (5) economia para os produtores, visto que as culturas tolerantes diminuem os prejuízos causados pela deriva de herbicidas e pelos herbicidas persistentes no solo, quando há rotação de culturas, além da possibilidade de controle das plantas daninhas botanicamente relacionadas à cultura; (6) maior segurança ao ambiente, devido ao menor número de herbicidas usados em campo (Figura I).

PLANTAS DANINHAS RESISTENTES

Antes que as falhas de controle aparecam no campo, algumas práticas de manejo podem ser implantadas, com a intenção de minimizar os riscos de surgimento de plantas resistentes, objetivando a diminuição da pressão de seleção e o controle dos indivíduos resistentes antes que possam se multiplicar. São elas: (1) rotação no uso de herbicidas com diferentes mecanismos de ação; (2) aplicações sequenciais de herbicidas com diferentes mecanismos de ação; (3) mistura de herbicidas com diferentes mecanismos de ação e de detoxificação; (4) limitação das aplicações de um mesmo herbicida; (5) uso de herbicidas com menor pressão de seleção;

TABELA 1 | DESCRIÇÃO DOS CULTIVARES TRANSGÊNICOS DE MILHO APROVADOS PELA CTNBIO, PARA COMERCIALIZAÇÃO NO BRASIL, ENTRE 2007 E 2015.

NOME COMERCIAL	EVENTO/ANO	CARACTERÍSTICA	NOME COMERCIAL	EVENTO/ANO	CARACTERÍSTICA
Milho Liberty Link (Bayer)	T25/2007	TG*	Agrisure Viptera 3 (Syngenta)	BT11 x MIR162 x GA21/2010	RI, TG, TGA
YieldGard (Monsanto)	MON 810/2007	RI*	MON 88017 (Monsanto)	MON 88017/2010	RC, TG
Agrisure TL (Syngenta)	BT 11/2007	RI, TGA*	Power Core PW/Dow (Monsanto / Dow Agro.)	MON 89034 × TC1507 × NK603/2010	RI, TG, TGA
RR2 (Monsanto)	NK603/2008	G	TC1507 x MON 8010 x NK603 (Du Pont)	TC1507 x MON 8010 x NK603/2011	RI, TG, TGA
TG (Syngenta)	GA21/2008	TG	TC1507 x MON810 (Du Pont)	TC1507 x MON810/2011	RI, TGA
Herculex (Du Pont / Dow Agro.)	TC1507/2008	RI, TGA	YieldGard VT PRO 3 (Monsanto)	MON 89034 x MON 88017/2011	RI, RC, TG
Agrisure Viptera (Syngenta)	MIR162/2009	RI	Herculex XTRA Maize (Du Pont)	TC1507 x DAS- 59122-7/2013	RI, RC, TG
YieldGard/RR2 (Monsanto)	MON 810 x NK 603/2009	RI, TG	Agrisure Viptera 4 (Syngenta)	Bt11 x MIR162 x MIR604 x GA21/2014	RI, RC, TG, TGA
Agrisure TL/TG (Syngenta)	BT11 x GA21/ 2009	RI, TG	Agrisure RW (Syngenta)	MIR604/2014	RC
YieldGard VT PRO (Monsanto)	MON 89034/2009	RI	Enlist Maize (DowAgro.)	DAS40278/2015	TD*
Herculex/RR2 (Du Pont)	TC 1507 x NK 603/2009	RI, TG, TGA	SN* (Monsanto)	NK603x T25/2015	TG, TGA
YieldGard VT PRO 2 (Monsanto)	MON 89034 x NK 603/2010	RI, TG	SN (Du Pont)	TC1507 x MON810 x MIR162 x NK603/2015	RI, TG, TGA

^{*}Resistência a insetos-praga (Lepdópteros): RI; resistência a insetos-praga (Coleópteros): RC; tolerante ao glifosato: TG; tolerante ao glufosinato de amônio: TGA; tolerante ao 2,4-D: TD; SN: nome comercial não disponível.
Fonte: Adaptado de Morais & Borém, 2015.

FIGURA 1 | CULTIVARES DE MILHO RR E CONVENCIONAL, APÓS 15 DIAS DE APLICAÇÃO DE HERBICIDA À BASE DE GLIFOSATO

Fonte: Laboratório de Melhoramento de Plantas Alógamas USP/ESALQ, 2014.

(6) rotação do plantio de culturas; (7) rotação dos métodos de controle de plantas daninhas; (8) uso de sementes certificadas; (9) controle de plantas em áreas adjacentes (terraços, pós-colheita).

Concomitantemente a essas práticas, o uso de cultivares com eventos piramidados (stacking) (CP4-EPSPS + PAT), que expressam duas proteínas distintas para tolerância a herbicidas, viabilizará o emprego de produtos com diferentes mecanismos de ação, resultando em um controle eficiente e por maior número de anos do que se essas mesmas iniciativas fossem tomadas isoladamente — já que a probabilidade de uma planta daninha se tornar resistente a ambos os mecanismos, simultaneamente, é menor.

RESISTÊNCIA A INSETOS-PRAGAS

No Brasil, o primeiro evento aprovado para o desenvolvimento de cultivares de milho resistentes a insetos-praga deu-se em 2007 — evento MON 810, da Monsanto (YieldGard). Além deste, outros 14 eventos foram aprovados, posteriormente, até o ano de 2013 (Tabela I). Os cultivares oriun-

dos destes eventos expressam proteínas Bte/ou proteínas VIPs, importantes para o controle de pragas como a lagarta-do-cartucho (Spodoptera frugiperda) (Figura 2), a lagarta-da-espiga (Helicoverpa zea), a broca-da-cana (Diatraea saccharalis) e alguns coleópteros, como a vaquinha (Diabrotica speciosa) e o western corn rootworm (Diabrotica virgifera).

Outra praga que vem preocupando os agricultores e pesquisadores é a Helicoverpa armigera, que possui grande mobilidade, polifagia e alta taxa de reprodução. O uso do cultivar Bt pode trazer bons resultados, principalmente se for com dois ou mais eventos piramidados, pois já foi verificado que as proteínas CrylAb, CrylAc, Cry2Aa e Cry2Ab controlam H. armigera em ínstares iniciais (Liao et al., 2002). Além disso, o emprego de outros métodos integrados de controle é primordial, a exemplo do uso do controle biológico e/ou químico, por meio de inseticidas recomendados ou adotados de forma emergencial, como é o caso dos produtos à base de benzoato de emamectina (em áreas com cultivar não Bt).

MANEJO DE INSETOS-PRAGA RESISTENTES

Monitoramento — Conforme estabelecido pela CTNBio, qualquer organismo geneticamente modificado requer um monitoramento pós-liberação comercial. No caso das plantas transgênicas, o monitoramento deve estar focado na "quebra" da resistência e, se possível, na frequência dos alelos de resistência nas populações de insetos-praga, sendo essa uma das chaves do sucesso no uso de cultivares transgênicos com ação inseticida — e uma das tarefas mais difíceis para os pesquisadores.

Alta dose — Entenda-se como portadora de "alta dose" a planta que expressa a proteína inseticida em concentração de, pelo menos, 25 vezes necessária para matar 99% de uma população suscetível de referência. A alta expressão da proteína inseticida torna ineficaz qualquer mecanismo que confere, ao inseto, níveis de resistência baixos ou moderados. Esta característica é do cultivar, determinada pelo seu obtentor.

Refúgio – Compreende a área onde determinada parcela da população (de inseto-praga) não é exposta à pressão de seleção. No Brasil, a recomendação técnica da área de refúgio, para milho Bt, varia de 5% a 20% da área total (Figura 3). Esta recomendação é influenciada, especialmente, pela eficácia da proteína utilizada, sobretudo se a cultivar possuir eventos piramidados. As empresas estão adotando a alternativa do "refúgio no saco", que já traz adicionada na embalagem a proporção necessária de sementes não transgênicas, facilitando o manejo e maximizando o tempo necessário para a operação de plantio. Outros detalhes importantes a serem vistos são: (1) a área de refúgio não deve estar a mais de 800 m de distância dos cultivares transgênicos (distância máxima verificada pela dispersão dos adultos de S. frugiperda); (2) não se recomenda, nestas áreas, a aplicação de inseticidas à base de Bt, ou mesmo de iscas tóxicas, para controle de mariposas, o que implica na seleção de insetos

VISÃO AGRÍCOLA Nº 13 VA JUL | DEZ 2015 63

Cultivares transgênicos aumentam custos com sementes, mas reduzem custos com aplicação dos insumos (herbicidas e inseticidas)

resistentes e com menor efetividade da tecnologia ao longo de tempo; (3) o milho convencional usado pode ser o mesmo cultivar sem o transgene ou, então, um cultivar com características agronômicas similares ao transgênico usado.

Piramidação de genes Bt (stacking)

— A primeira geração de cultivares Bt foi composta por plantas que expressavam uma única proteína. Já a segunda geração consistiu de cultivares que expressavam duas ou mais proteínas com ações inseticidas. Esta piramidação (ou stacking) dos genes é particularmente importante, porque permite a expressão de distintos mecanismos de resistência contra os insetos-praga, resultando em resistência mais eficaz e duradoura.

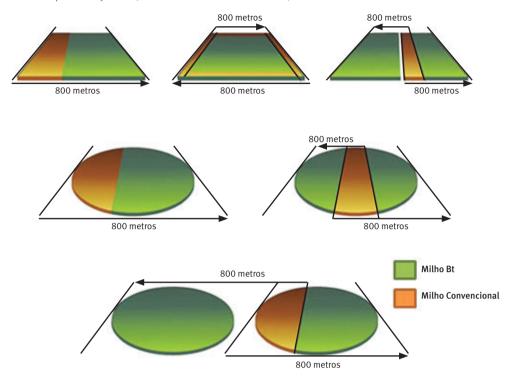

Baixa dose/MIP (controle biológico) — Estratégia que pode ser usada quando existe baixa dose da proteína Bt,

FIGURA 2 | CULTIVARES DE MILHO BT E CONVENCIONAL (COM ATAQUE DE SPODOPTERAFRUGIPERDA)*

* Estádio fenológico de seis folhas completamente expandidas (V6). Fonte: Laboratório de Melhoramento de Plantas Alógamas USP/ESALQ, 2014.

FIGURA 3 | DISPOSIÇÃO ESQUEMÁTICA DE ÁREAS DE REFÚGIO, EM LAVOURAS TRADICIONAIS E EM PIVÔ CENTRAL

Fonte: Agroceres, 2013.

como ocorre nos casos dos cultivares de milho que expressam a proteína CrylAb, para o controle de *S. frugiperda*. Adicionando a isto, usa-se o manejo integrado de pragas (MIP), podendo-se empregar o controle biológico, bem como uma maior área de refúgio em relação a um cultivar que expresse a proteína em alta dose para o inseto-praga.

Rotação de culturas — Deve ser feita com culturas que expressam diferentes proteínas Bt, ou, então, com culturas não Bt, podendo ser da mesma espécie ou de espécies diferentes; ou seja, com espécies hospedeiras ou não hospedeiras dos insetos-praga.

Coexistência — Em áreas vizinhas do milho transgênico e convencional, é exigida por lei a adoção de normas de coexistência (Resolução Normativa nº 4 da CTNBio).

* Pedro Patric Pinho Morais é engenheiro agrônomo, mestre, doutorando na Universidade Federal de Viçosa (UFV) e integrante do corpo de pesquisa do Laboratório de Melhoramento de Plantas Alógamas ESALQ/USP (pedro.morais@ufv.br) e Aluízio Borém é engenheiro agrônomo, mestre, doutor e professor da Universidade Federal de Viçosa (UFV) (borem@ufv.br).

REFERÊNCIAS BIBLIOGRÁFICAS

BORÉM, A.; ALMEIDA, G. Plantas Geneticamente Modificadas: desafios e oportunidades para regiões tropicais. Visconde do Rio Branco: Suprema, 2011. 390 p.

CÉLERES. Primeiro acompanhamento de adoção da biotecnologia agrícola no Brasil, safra 2013/14. Uberlândia, MG, ago. 2013. (lº Informativo biotecnologia).

DUARTE, J. O.; GARCIA, J. C.; CRUZ, J. C. Aspectos econômicos da produção de milho transgênico. Sete Lagoas: Embrapa Milho e Sorgo, 2009. 15 p. (Embrapa Milho e Sorgo. Circular técnica 127). LIAO, C. Y.; HECKEL, D. G.; AKHURST, R. Toxicity of *Bacillus thuringiensis* insecticidal proteins for *Helicoverpa armigera* and *Helicoverpa punctigera* (Lepidoptera: Noctuidae), major pests of cotton. *Journal of Invertebrate Pathology*, v. 80, n. 1, p. 55–63, maio 2002.

MORAIS, P.P.P.; BORÉM, A. Cultivares transgênicos. In: BORÉM, A.; GALVÃO, J.C.C; PIMENTEL, M.A. (Eds). *Milho*: do Plantio à Colheita. Viçosa: Editora UFV, 2015. p. 154-177.

VISÃO AGRÍCOLA №13 VA JUL | DEZ 2015 65