Page 35 - MODELO

This is a SEO version of MODELO. Click here to view full version

« Previous Page Table of Contents Next Page »

Em pouco mais de meio século, metade da área do cerrado foi desmatada e deu lugar a atividades agrícolas. Para avaliar o efeito dessa alteração no uso do solo sobre a disponibilidade hídrica, o doutorando Paulo Tarso de Oliveira, do grupo de São Carlos, fez um estudo usando dados de sensoriamento remoto em toda a área desse bioma. Com os sensores, é possível avaliar não só a alteração da vegetação, mas também quantificar as precipitações, os índices de evapotranspiração pelas plantas e estimar a variação de armazenamento de água. Segundo artigo publicado em setembro de 2014 na Water Resources Research, os dados indicam uma redução do escoamento por causa de atividades agrícolas mais intensas.

O desmatamento e o uso agrícola do solo têm importância, mas Wendland afirma que o maior problema para a recarga do aquífero hoje é a redução nas chuvas. “O aquífero supre a falta de precipitação por dois ou três anos, depois já não consegue manter o escoamento de base nos rios”, diz. Nos últimos anos as precipitações da estação chuvosa foram abaixo da média, o que diz os resultados observados. Explica também, segundo ele, fenômenos alarmantes como o esgotamento da principal nascente do rio São Francisco, que permaneceu seca por cerca de três meses e só voltou a jorrar água no final de novembro. O desafio do gerenciamento das águas subterrâneas, que representam 98% da água doce do planeta, tem outras particularidades em zonas urbanas, onde pode ser um recurso crucial. Segundo o geólogo Ricardo Hirata, do Instituto de Geociências (IGc) da USP, 75% dos municípios paulistas são abastecidos, em parte ou completamente, por essas águas. Isso inclui cidades importantes do estado, com destaque para Ribeirão Preto, onde elas servem a 100% dos mais de 600 mil habitantes. Na escala nacional, outras cidades completamente abastecidas por águas subterrâneas são Juazeiro do Norte, no Ceará, Santarém, no Pará, e Uberaba, em Minas Gerais, de acordo com o livro Águas subterrâneas urbanas no Brasil, em processo de publicação pelo Igc e pelo Centro de Pesquisa em Águas Subterrâneas (Cepas).

Surpreendente nas cidades é que a água perdida pelo abastecimento público vai parar no aquífero. “A impermeabilização do solo diminui a penetração da água da chuva, mas as perdas compensam e superam essa redução e o saldo é uma recarga maior onde há cidades, em comparação com outras áreas”, explica Hirata. “Se analisarmos a água de um poço qualquer em São Paulo, metade será do aquífero e metade da Sabesp.” Ele estima que a capital paulista tenha quase 13 mil poços, todos particulares, muitos ilegais. “Existe uma legislação para gerenciamento desse recurso, mas ela não é seguida”, conta.

Um problema causado pelas cidades é a contaminação dos aquíferos por nitrato, devido a vazamentos no sistema de esgotos. Como a descontaminação é cara, os poços afetados acabam abandonados. Nas cidades em que são usados para abastecimento público, a solução é misturar água poluída à de poços limpos para que a qualidade total seja aceitável. “Em Natal não há mais água suficiente para mesclar”, alerta Hirata. O subterrâneo é fonte de 70% da água na capital potiguar.

Outro tipo de poluição importante vem da indústria, como a causada pelos solventes organoclorados. O geólogo Reginaldo Bertolo, também do Igc e diretor do Cepas, estuda como esse poluente se comporta no aquífero abaixo de Jurubatuba, na zona Sul paulistana, uma região industrial desde os anos 1950. “É um contaminante de difícil comportamento no aquífero”, conta. Nessa rocha dura, onde a água corre em fraturas, o composto mais denso do que a água se aprofunda e só para quando chega a um estrato impermeável. “São produtos tóxicos e carcinogênicos.” A poluição impede o uso da água subterrânea numa região onde a demanda é forte.

Em colaboração com pesquisadores da Universidade de Guelph, no Canadá, o grupo de Bertolo está mapeando esses poluentes para entender como ele se comporta e propor estratégias para eliminá-lo do aquífero. Para isso, o próximo passo é usar um sistema desenvolvido pelos canadenses para retirar amostras da rocha e instalar poços de monitoramento especiais. “O equipamento permite coletar água de mais de 20 fraturas diferentes numa mesma perfuração”, afirma. “Vamos fazer um modelo matemático para reproduzir o que acontece e fazer prognósticos.”

Bertolo alerta que é importante mapear melhor as águas subterrâneas e analisar sua qualidade, porque é um recurso que pode ser complementar nas cidades. “A água subterrânea é um recurso pouco conhecido.” A engenheira Monica Porto, da Escola Politécnica da USP, não acredita que seja possível expandir muito o uso dessas águas na Região Metropolitana de São Paulo. Em sua opinião, para ir além dos cerca de 10 metros cúbicos por segundo (m3/s) extraídos dos milhares de poços existentes, seriam necessários milhares de novas perfurações. “Mas esses 10 m3/s não podem faltar, precisamos cuidar deles.”

Monica, que já foi presidente e ainda integra o conselho consultivo da Associação Brasileira de Recursos Hídricos, pensa em maneiras de assegurar a segurança hídrica para a população. Faltar água está, de fato, entre as coisas mais graves que podem acontecer numa cidade. “Somos obrigados a trabalhar com uma probabilidade de falha muito baixa.” Segundo ela, em 2009 o governo paulista encomendou a uma empresa de consultoria um estudo sobre o que precisaria ser feito para garantir o suprimento de água. O

Page 35 - MODELO

This is a SEO version of MODELO. Click here to view full version

« Previous Page Table of Contents Next Page »