Credit hours
In-class work per week |
Practice per week |
Credits |
Duration |
Total |
2 |
2 |
8 |
15 weeks |
120 hours |
Instructor
José Nivaldo Garcia
Objective
To provide students with the basic and essential knowledge of the fundamental theory of structures, enabling them to understand the principles of tests to determine the different physical and mechanical properties of wood, which can be conducted in the laboratory or in loco. To quantify the natural variability of the basic properties of wood within forest populations and that introduced by sawn timber production strategies, and to apply probabilistic criteria in assessing safety in the structural use of wood.
To equip students with the necessary tools to understand the fundamentals of converting trees into sawn timber, the implications of different cutting strategies, and the influences of natural log characteristics on process yield and final product quality.
To train students in the calculation and production of GLULAM (glued-laminated timber), CLT (cross-laminated timber), I-beams, composite beams, plane frames, and plane trusses.
Content
1. Physical properties and characteristics of wood: Moisture content, density, porosity, permeability, dimensional variation;
2. Discrimination of characteristics favoring wood qualification versus disqualification, interrelationships between physical properties, juvenile wood, knots, cracks and warping;
3. Mechanical properties of wood: Ultimate strength (US) in parallel compression to the grain, US in perpendicular compression, US in static bending, US in parallel tension, US in perpendicular tension, US in splitting, Proportionality limit (PL) in parallel compression, PL in perpendicular compression, PL in parallel tension, PL in perpendicular tension, US in shear strength, Janka hardness, abrasion resistance, impact resistance, matrix of elastic constants in tension and compression, interrelationships between mechanical properties;
4. Comparisons with other materials: Concrete, steel, iron, aluminum, plastic, bamboo;
5. Interrelationships between physical and mechanical properties of wood;
6. Calculation of isostatic and hyperstatic timber structures: Using strength of materials methods, matrix method and Principle of Virtual Works (PVW);
7. Variability of wood physical and mechanical properties and structural safety: Characteristic strengths, calculation using semi-probabilistic method;
8. Connections for roundwood or sawn timber: Nails, bold, metal connectors, metal rings, pins, adhesives, dowels and tenons;
9. Bending stress distribution along beam transversal height: Linear, non-linear;
10. Growth stresses and strains in trees: Peripheral stresses and strains, distribution along tree trunk radius and height, displacements in sawn timber during and after breakdown;
11. Engineered wood products: Types and characteristics, wood gluing, adhesive types, wood characteristics affecting bonding, Glued Laminated Timber (Glulam), Cross Laminated Timber (CLT), Laminated Veneer Lumber (LVL), Edge Glued Panel (EGP), prestressing in timber beams, wood houses and general constructions;
12. Wood engineering and genetic improvement: Gains in properties, gains in structure;
13. Sawmill and integrated industries projects: Radial sawing, tangential sawing, balanced tangential sawing, sawmill and integrated industries layouts;
14. Uses of planted woods (Pine, Eucalypts, Teak, Cunninghamia, others) and precious woods, the case of ordinary laminated beam enveloped by appearence woods;
15. Uses of AI (Chat GPT, Gemini, Copilot, Claude, Bardeen, Deep Seek, Gamma, others,) on the preparation of projects, presentations (lectures, classes, speeches), technical reports, academic texts and scientific papers.
Bibliography
AFNOR. - Methodes d`essais genérales NFB 51. Paris. 1966.
ARCHER, R. R. Growth stresses and strains in trees. Berlin, Springer, 1986. 240p.
ASTM. - Standard method of testing small clear specimens of timber D 142 - 52. Philadelphia. 1982. p. 59 - 166.
BOUVET, J. M. Effect of spacing on juvenile growth and variabilyt of Eucalyptus clones. Canadian Journal of Forest Research, v. 27, p. 174-179, 1997.
POLANCO, C. A. Variación en la clasificación visual de madera aserrada y su impacto en la fabricación, comportamiento mecánico y estabilidad lateral en MLE de Campnosperma panamense Standl. y Acacia mangium Willd. 2019. Tese (Doutor em Recursos Florestais) - Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba.
ABRANTES, C. A. Determinação do momento fletor último no regime linear elástico em vigas de madeira laminada colada. 2012. Tese (Doutor em Recursos Florestais) - Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba.
BSI. - Methodes of testing small clear specimens of timber B 5313 London. 1975. DESCH, H. E. Timber its structure and properties. New York, 5 ed. St. Martin. 1973. 424 p.
DIN - Bestimmung der wuchseigenschaften von nadelschnsttholz - DIN 52181. Berlin. 1975.
DIN - Prufung von holtz - bestimmung des feuchtigkeitsgehaltes - DIN 52184. Berlin. 1952.
DIN - Prufung von holz - schlaglregeversuch bestimmung der bruchschlagarbeit DIN 52189. Berlin. 1981.
DIN - Prufung von holtz zugversuch DIN 52188. Berlin. 1952.
GARCIA, J. N. Estado de tensão em árvores e de deformação em peças de madeira serrada. São Paulo, 1992. 243 p. (Tese – Doutorado EPUSP-BR).
GARCIA, J. N. Técnicas de desdobro de eucalipto. In: SEMINÁRIO INTERNACIONAL DE UTILIZAÇÃO DA MADEIRA DE EUCALIPTO PARA SERRARIA, São Paulo, 1995. Anais. Piracicaba: IPEF/IPT, 1995, p. 59-67.
GARCIA, J. N. An alternative sawmill plant to improve Eucalyptus lumber quality. Vancouver: University of British Columbia, 1997. V.2, p. 865-874. International Wood Machining Seminar, 13, Vancouver, 1997.
HILLIS, W. E. & BROWN, A. G. Eucalyptus for wood production. Melbourne, 2 ed. CSIRO. 1984. 433 p.
KARLSEN, G. Wooden structures. Moscow, 6 ed. Mir Publishers. 1967. 638 p.
KOLLMANN, F. F. P. & CÔTÉ Jr., W. A. Principles of wood science and technology. New York, Heidelberg. vl. 1968. 592 p.
KUBLER, H. Growth stresses in trees and related wood properties. FOREST PRODUCTS ABSTRACTS, 10(3): 61-119, 1987.
MALAN, F. S. Studies on the phenotypic variation in growth - stress intensity and its associations with tree and wood properties of South African grown Eucalyptus grandis. Stellenbosch, 1984 (Tese - Doutorado). 258 p.
MALAN, F.S.; HOON, M. Effect of initial spacing and thinning on some wood properties of Eucaliptus grandis. South African Forestry Journal, v. 163. p. 13-20, 1992.
MALAN, F.S. Eucalyptus improvement for lumber production. In: SEMINÁRIO INTERNACIONAL DE UTILIZAÇÃO DA MADEIRA DE EUCALIPTO PARA SERRARIA, São Paulo, 1995. Anais. Piracicaba: IPEF/IPT, 1995. p. 1-19.
MATTHECK, C.; KUBLER, H. Wood: the internal optimization of trees. Berlin: Springer Verlag, 1995. 129p.
PANSHIN, A. J. et alii. Forest products their sources, production, and utilization. New York, 2 ed.
Mcgrawn - Hill. 1962.538 p.
PANSHIN, A. J. & ZEEUW, C. de. Textbook of wood technology. New York, 3 ed. McGrawn - Hill. vl. 1970. 705 p.
PFEIL, W. Estruturas de madeira: dimensionamento segundo as normas brasileiras NB 11 e os modernos critérios das normas alemãs e americanas. Rio de Janeiro, Livros Técnicos e Científicos. 1978. 253 p.
POLGE, H. Utilisation des spectres de diffraction des rayons X pour les études de qualité du bois. Nancy, 1966 (Tese - Doutorado - UN/Fr.). 215 p.
POST, I. L. An investigation of the longitudinal growth stresses in Trees. New York, 1979 (Tese - Doutorado - SUNY/USA). 108 p.
Schacht, L. & Garcia, J. N. Variação entre e intra clones nas rachaduras de topo em Eucalyptus urophylla S. T. Blake. Colombo: EMBRAPA, 1997. V. 3, p. 401-404. IUFRO. Conference on Silvilculture and Improvement of Eucalyptus, Salvador, 1997.
Schacht, L. & Garcia, J. N. Variação genética de indicadores de tensões de crescimento em clones de Eucalyptus urophylla. Colombo: EMBRAPA, 1997. V. 3, p. 405-410. IUFRO. Conference on Silvilculture and Improvement of Eucalyptus, Salvador, 1997.
TIMOSHENKO, S. Mecânica técnica. Rio de Janeiro, 3 ed. Livros Técnicos e Científicos. 1979. vl.
TIMOSHENKO, S. Resistência dos materiais. Rio de Janeiro, livros Técnicos e Científicos. 1979. 2v.
TIMOSHENKO, S. & GOODIER, J. N. Teoria da elasticidade. Rio de Janeiro, Guanabara. 1980. 545 p.
WALLIS, N. K. Australian timber handbook. Sydney, Halstead. 1963. 391 p.
WILKINS, A. P.; KITAHARA, R. Silvicultural treatments and associated growth rates, growth strains and wood properties in 12.5-year-old Eucalyptus grandis. Australian Forestry, V. 54, n.1/2, p.99-104, 1991.
Forest Products Laboratory. 2021. Wood handbook—wood as an engineering material. General Technical Report FPL-GTR-282. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. 543 p
Journals: Australian Forestry, Australian Forestry Industry Journal, Australian Journal of Applied Science, Australian Journal of Scientific Research. Canadian Journal of Forest Research, Forest Products Journal Forest Science, Holz Alz Roh - Und Werkstoff, Holzforschung, Scientia Forestalis, IUFRO Proceedings, South African Forestry Journal, Wood and Fiber Science, Wood Science and Technology, outros.
Moore, J.R., Cown, D.J. Corewood (Juvenile Wood) and its Impact on wood utilisation. Curr Forestry Rep 3, 107–118 (2017). https://doi.org/10.1007/s40725-017-0055-2.
Zobel, B.J., Sprague, J.R. (1998). General concepts of juvenile wood. In: Juvenile Wood in Forest Trees. Springer Series in Wood Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72126-7_1.
Balboni, B. M., Wessels, C. B., & Garcia, J. N. (2021). A length-independent index for timber bow and spring validated on Eucalyptus grandis. Wood Material Science & Engineering, 18(1), 201–211. https://doi.org/10.1080/17480272.2021.2010802.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR7190: 2022 – Part 1: Design of Timber Structures
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR7190: 2022 Timber Structures - Part 2: Test Method; Structural timber. Grading. Requirements for visual and mechanical grading standards
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR7190: 2022 Timber Structures – Part 3: Test Method for clear samples.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR7190: 2022 Part 4: Design of Timber
Structures –Test Method - Structural timber. Strength classes.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR7190: 2022 Timber Structures – Part 5: Test Method for structural timber. Grading. Requirements for mechanical connections.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR7190: 2022 Timber Structures – Part 6: Test Method Structural Glulam members. Requirements delamination, shear glue line.
Gril, J., Jullien, D., Bardet, S. et al. Tree growth stress and related problems. J Wood Sci 63, 411–432 (2017). https://doi.org/10.1007/s10086-017-1639-y.
CEN. 2018. Timber structures – Cross laminated timber – Requirements. EN 16351.