Credit hours
In-class work per week |
Practice per week |
Credits |
Duration |
Total |
2 |
2 |
8 |
15 weeks |
120 hours |
Instructor
José Nivaldo Garcia
Objective
To provide the student with the basic and indispensable knowledge of the structure theory so that he can understand the essentials of the tests to determine the different physical and mechanical properties of the wood, which can be carried out in the laboratory or "in loco". To quantify the natural variability of the basic properties of the wood within forest populations and the one introduced by the strategies of production of sawn wood and to act, within probabilistic criteria, in the quantification of the safety in the structural use of the wood. Provide students with the necessary tools to understand the fundamentals of lumber tree conversion, the implications of different cutting strategies, and the influence of log moisture wood logs characteristics on process and the final product quality.
Content
1. Properties and Physical Characteristics of Wood:
- Moisture
- Density
- Porosity
- Dimensional variation
- Characteristics of wood qualification
- Characteristics of disqualification of wood
- Interrelations between physical properties
2. Mechanical Properties of Wood:
- Compression strenght in paralel to the grain
- Compression streinght on normal to the grain
- Static bending streinght
- Tensile strenght in parallel to the grain
- Tensile Strenght in normal to the grain
- Tensile strength at cracking resistance limit
- Compression stress at proportional limit in parallel to the grain
- Compression stress at proporcional limit in normal to the grain
- Tensile stress at proportional limit in paralel to the grain
- Tensile stress at proporcional limit in normal to the grain
- Shear strength
- Janka hardness
- Abrasion resistance
- Shock resistance
- Traction and compression flexibility and rigidith matrix
- Interrelationships between mechanical properties
3. Comparisons with other Materials:
- Concrete
- Steel
- Iron
- Aluminum
- Plastic
- Bamboo
4. Interrelations between the Physical and Mechanical Properties of wood.
5. Calculation of isostatic and hyperstatic wood structures
- by strenght of the materials
- by the matricial method
- displacements due to material elasticity
- displacements by the principle of virtual works
- displacements by elasticity theory
6. The variability of the physical and mechanical properties of wood and the structures safety
- characteristic strenght
- calculation by the semi-probabilistic method
7. Connections of round pieces or sawn timber
- screws
- metal connectors
- metal rings
- adhesives
8. Distribution of bending stress along beam height
- linear
- non linear
9. Growth stresses and strains in stems
- peripheral stresses and strains
- distribution along the tree radius
- displacements on lumber during and after the unfolding
10. Engineered Wood Products
- types and characteristics
- wood glue
- types of adhesives
- characteristics of wood affecting bonding
- Glued Laminated Timber (Glulam)
- Cross Laminated Timber (CLT)
- Laminated Veneer Lumber (LVL)
- Edge Glued Panel (EGP)
- protrusion on wooden beams
11. Wood engineering and genetic improvement
- gain in properties
- gain in structure
12. Sawmill projects and prefabricated structures
- radial breakdown
- tengential breakdown
- tangential balanced breakdown
- layout of sawmills
- native woods case
- Pinus case
- Eucalyptus case
Bibliography
ABNT. - Cálculo e execução de estruturas de madeira NBR 7190/97. Rio de Janeiro. 1997. 107 p.
AFNOR. - Methodes d`essais genérales NFB 51. Paris. 1966.
ARCHER, R. R. Growth stresses and strains in trees. Berlin, Springer, 1986. 240p.
ASTM. - Standard method of testing small clear specimens of timber D 142 - 52. Philadelphia. 1982. p. 59 - 166.
BOUVET, J.M. Effect of spacing on juvenile growth and variabilyt of Eucalyptus clones. Canadian Journal of Forest Research, v. 27, p. 174-179, 1997.
POLANCO, C. A. Variación en la clasificación visual de madera aserrada y su impacto en la fabricación, comportamiento mecánico y estabilidad lateral en MLE de Campnosperma panamense Standl. y Acacia mangium Willd. 2019. Tese (Doutor em Recursos Florestais) - Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba.
ABRANTES, C. A. Celso Antonio Abrantes. Determinação do momento fletor último no regime linear elástico em vigas de madeira laminada colada. 2012. Tese (Doutor em Recursos Florestais) - Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba.
BSI. - Methodes of testing small clear specimens of timber B 5313 London. 1975.
DESCH, H. E. Timber its structure and properties. New York, 5 ed. St. Martin. 1973. 424 p.
DIN - Bestimmung der wuchseigenschaften von nadelschnsttholz - DIN 52181. Berlin. 1975.
DIN - Prufung von holtz - bestimmung des feuchtigkeitsgehaltes - DIN 52184. Berlin. 1952.
DIN - Prufung von holz - schlaglregeversuch bestimmung der bruchschlagarbeit DIN 52189. Berlin. 1981.
DIN - Prufung von holtz zugversuch DIN 52188. Berlin. 1952.
GARCIA, J. N. Estado de tensão em árvores e de deformação em peças de madeira serrada. São Paulo, 1992. 243 p. (Tese – Doutoramento EPUSP-BR).
GARCIA, J. N. Técnicas de desdobro de eucalipto. In: SEMINÁRIO INTERNACIONAL DE UTILIZAÇÃO DA MADEIRA DE EUCALIPTO PARA SERRARIA, São Paulo, 1995. Anais. Piracicaba: IPEF/IPT, 1995, p. 59-67.
Garcia, J. N. An alternative sawmill plant to improve Eucalyptus lumber quality. Vancouver: University of British Columbia, 1997. V.2, p. 865-874. International Wood Machining Seminar, 13, Vancouver, 1997.
HILLIS, W. E. & BROWN, A. G. Eucalyptus for wood production. Melbourne, 2 ed. CSIRO. 1984. 433 p.
KARLSEN, G. Wooden structures. Moscow, 6 ed. Mir Publishers. 1967. 638 p.
KOLLMANN, F. F. P. & CÔTÉ Jr., W. A. Principles of wood science and technology. New York, Heidelberg. vl. 1968. 592 p.
KUBLER, H. Growth stresses in trees and related wood properties. FOREST PRODUCTS ABSTRACTS, 10(3): 61-119, 1987.
MALAN, F. S. Studies on the phenotypic variation in growth - stress intensity and its associations with tree and wood properties of South African grown Eucalyptus grandis. Stellenbosch, 1984 (Tese - Doutorado). 258 p.
MALAN, F.S.; HOON, M. Effect of initial spacing and thinning on some wood properties of Eucaliptus grandis. South African Forestry Journal, v. 163. p. 13-20, 1992.
MALAN, F.S. Eucalyptus improvement for lumber production. In: SEMINÁRIO INTERNACIONAL DE UTILIZAÇÃO DA MADEIRA DE EUCALIPTO PARA SERRARIA, São Paulo, 1995. Anais. Piracicaba: IPEF/IPT, 1995. p. 1-19.
MATTHECK, C.; KUBLER, H. Wood: the internal optimization of trees. Berlin: Springer Verlag, 1995. 129p.
PANSHIN, A. J. et alii. Forest products their sources, production, and utilization. New York, 2 ed. Mcgrawn - Hill. 1962. 538 p.
PANSHIN, A. J. & ZEEUW, C. de. Textbook of wood technology. New York, 3 ed. McGrawn - Hill. vl. 1970. 705 p.
PFEIL, W. Estruturas de madeira: dimensionamento segundo as normas brasileiras NB 11 e os modernos critérios das normas alemãs e americanas. Rio de Janeiro, Livros Técnicos e Científicos. 1978. 253 p.
POLGE, H. Utilisation des spectres de diffraction des rayons x pour les études de qualité du bois. Nancy, 1966 (Tese - Doutorado - UN/Fr.). 215 p.
POST, I. L. An investigation of the longitudinal growth stresses in Trees. New York, 1979 (Tese - Doutorado - SUNY/USA). 108 p.
Schacht, L. & Garcia, J. N. Variação entre e intra clones nas rachaduras de topo em Eucalyptus urophylla S. T. Blake. Colombo: EMBRAPA, 1997. V. 3, p. 401-404. IUFRO. Conference on Silvilculture and Improvement of Eucalyptus, Salvador, 1997.
Schacht, L. & Garcia, J. N. Variação genética de indicadores de tensões de crescimento em clones de Eucalyptus urophylla. Colombo: EMBRAPA, 1997. V. 3, p. 405-410. IUFRO. Conference on Silvilculture and Improvement of Eucalyptus, Salvador, 1997.
TIMOSHENKO, S. Mecânica técnica. Rio de Janeiro, 3 ed. Livros Técnicos e Científicos. 1979. vl.
TIMOSHENKO, S. Resistência dos materiais. Rio de Janeiro, livros Técnicos e Científicos. 1979. 2v.
TIMOSHENKO, S. & GOODIER, J. N. Teoria da elasticidade. Rio de Janeiro, Guanabara. 1980. 545 p.
WALLIS, N. K. Australian timber handbook. Sydney, Halstead. 1963. 391 p.
WILKINS, A. P.; KITAHARA, R. Silvicultural treatments and associated growth rates, growth strains and wood properties in 12.5-year-old Eucalyptus grandis. Australian Forestry, V. 54, n.1/2, p.99-104, 1991.
USDA-FPL. Wood Handbook: wood as na engineering material.1999. 463p.
Journals:
Australian Forestry, Australian Forestry Industry Journal, Australian Journal of Applied Science, Australian Journal of Scientific Research. Canadian Journal of Forest Research, Forest Products Journal Forest Science, Holz Alz Roh - Und Werkstoff, Holzforschung, IPEF/Scientia Forestalis, IUFRO Proceedings, South African Forestry Journal, Wood and Fiber Science, Wood Science and Technology.