Course detail

LET5839 - Modeling Insect Populations


Credit hours

In-class work
per week
Practice
per week
Credits
Duration
Total
2
2
8
15 weeks
120 hours

Instructor
Wesley Augusto Conde Godoy

Objective
To provide students with fundamentals for the application of mathematical modeling in Entomology. The
course contains essential elements of mathematical ecology to understand the processes that govern the
dynamics of insect populations, including the analysis of population trends, hotspots, dynamic behavior
patterns, and population persistence. In addition, the theoretical framework used in the discipline will
provide subsidies to increase mathematical models of the predator-prey or host-parasitoid type with
biological control strategies and integrated pest management.

Content
Population growth will be studied through computer simulations using Excel spreadsheets and
programming in R. Populations will be studied increasingly and gradually, starting with simplified cases.
Topics include unlimited population growth, passing through models dependent on density, age
structure, population migration, and moving towards interactive models such as herbivore-plant, preypredator,
parasitoid host, and trophic interaction models. The logical reasoning for understanding the
functioning of biological systems consisting of pests and natural enemies will be explored in the course, leading students to interact with each other and with computer programs. Thus, the complexity of the models will be introduced step by step so that the student can understand all the processes involved in population modeling. The modules intended to study interactive models (competition, predator-prey, and host-parasitoid) will receive significant attention due to the course theme applied to pest management. Basic notions of integral and differential calculus will be reviewed in the course.

Bibliography
Alphey, N., Bonsall, M. B., Alphey, L. 2011. Modeling resistance to genetic control of insects. Journal of Theoretical Biology, 270: 42–55.
Barclay, H. J., Vreysen, M. J. B. 2011. A dynamic population model for tsetse (Diptera: Glossinidae) area-wide integrated pest management. Population Ecology, 53: 89–110.
Bennett, J. A., Gillespie, D. R., Shipp, J. L., Vanlaerhoven, S. L. 2009. Foraging strategies and patch distributions: intraguild interactions between Dicyphus hesperus and Encarsia formosa. Ecological Entomology, 34: 58-65.
Behmer, S. T. 2009. Insect herbivore nutrient regulation. Annual Review of Entomology, 54: 165-187.
Bernstein, R. 2003. Population ecology. An introduction to computer simulations. John Wiley, Chichester, UK.
Bolker, B. M. 2008. Ecological models and data in R. Princeton University Press, NJ.
Cabello, T, Gámez, M., Torres, A, Garay, J. 2011. Possible effects of inter-specific competition on the coexistence of two parasitoid species: Trichogramma brassicae Bezdenko and Chelonus oculator (F.) (Hymenoptera: Trichogrammatidae, Braconidae). Community Ecology, 12: 78-88
Clark, J. S. 2007. Models for ecological data. Princeton University Press, Princeton, NJ.
Cushing, J. M., Costantino, R. F., Dennis, B., Desharnais, R. A., Henson, S. M. 2003. Chaos in ecology. Experimental nonlinear dynamics. Academic Press, Amsterdam.
Dennis, E. B., Kéry, M., Morgan, B. J. T. et al. 2021. Integrated modelling of insect population dynamics at two temporal scales. Ecological Modelling, 441: 109408.
Dukas, R. 2008. Evolutionary biology of insect learning. Annual Review of Entomology, 53: 145-160.
Grasman, J., van Herwaarden, O. A., Hemerik, L., van Lenteren, J. C., 2001. A two-component model of host-parasitoid interactions: determination of the size of inundative releases of parasitoids in biological pest control. Mathematical Biosciences, 169: 207-216.
HastingsA., Gross, L. J. 2012. Encyclopedia of theoretical ecology. University of California Press.
Hochberg, M. E., Ives, A. R. 2000. Parasitoid population biology. Princeton University Press, Princeton, NJ, USA.
Hovestadt, T., Binzenhofer, B., Nowicki, P., Settele, J. 2011. Do all inter-patch movements represent dispersal? A mixed kernel study of butterfly mobility in fragmented landscapes. Journal of Animal Ecology, 80: 1070–1077.
Iqbal, J., MacLean, D. A. 2010. Prediction of balsam fir sawfly defoliation using a Bayesian network model. Canadian Journal of Forest Research, 40: 2322–2332.
Kogan, M., Jepson, P. 2007. Perspectives in ecological theory and integrated pest management. Cambridge University Press, Cambridge, UK.
Lenteren, J. C. 2003. Quality control and production of biological control agents. Theory and testing procedures. CABI Publishing, Wallingford, Oxon, UK.
Liebhold, A. M., Tobin, P. C. 2008. Population ecology of invasions and their management. Annual
Review of Entomology, 53: 387-408.
Martin, P., Bateson, P. 2004. Measuring behaviour. An introductory guide. Cambridge University Press, Cambridge, UK.
Neal, D. 2004. Introduction to population biology. Cambridge University Press, Cambridge, UK.
Parra, J. R., Botelho, P. S. M., Corrêa-Ferreira, B. S., Bento, J. M. S. 2002. Controle biológico no Brasil. Editora Manole Ltda., São Paulo.
Pastor, J. 2008. Mathematical ecology of populations and ecosystems. Wiley-Blackwell, Oxford, UK.
Raffael, T. R., Martin, L. B., Rohr, J. R. 2008. Parasites as predators: unifying natural enemy ecology. Trends in Ecology and Evolution, 23: 610-618.
Roughgarden, J. Primer of ecological theory. Prentice-Hall. Upper Saddle River, NJ, USA.
Saïd, I, Kaabi, B., Rochat, D. 2011. Evaluation and modeling of synergy to pheromone and plant kairomone in American palm weevil. Chemistry Central Journal, 5: 1-11.
Stevens, M. H. H. 2009. A primer of ecology with R. Springer, Berlin.
Speight, M. R., Hunter, M. D., Watt, A. D. 2008. Ecology of insects. Concepts and applications. Wiley-Blackwell, Oxford, UK.
Sutherland, W. J. 2006. Ecological Census Techniques. Cambridge University Press, Cambridge, UK.
Tang, S., Cheke, R. A. 2008. Models for integrated pest control and their biological implications. Mathematical Biosciences, 215: 115-125.
Tang, S., Xiao, Y., Cheke, R. A. 2008. Multiple attractors of host-parasitoid models with integrated pest management strategies: Eradication, persistence and outbreak. Theoretical Population Biology, 73: 181-197.
Tang, S., Cheke, R. A., Xiao, Y. 2009. Effects of Predator and Prey Dispersal on Success or Failure of Biological Control. Bulletin of Mathematical Biology, 71: 2025–2047.
Tang, S. Tang, G., Cheke, R. A. 2010. Optimum timing for integrated pest management: Modelling rates of pesticide application and natural enemy releases. Journal of Theoretical Biology, 264: 623–638.
Tonnang, J. E. Z., Hervé, B. D. B., Biber-Freudenberger, L. 2017. Advances in crop insect modelling methods—Towards a whole system approach. Ecological Modelling 354: 88–103.
Wajnberg, E., Scott, J. K., Quimby, P. C. 2001. Evaluating indirect ecological effects of biological control. CABI Publishing, Wallingford, Oxon, UK.
Wajnberg, E., Bernstein, C., Van Alphen, J. 2008. Behavioral ecology of insect parasitoids. Blackwell Publishing, Malden, MA, USA.